1
|
Friedman HR, Gaston LS, Chan LF, Majzoub JA. Absent, but not glucocorticoid-modulated, corticotropin-releasing hormone (Crh) regulates anxiety-like behaviors in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614550. [PMID: 39386648 PMCID: PMC11463484 DOI: 10.1101/2024.09.23.614550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis is a well characterized endocrine response system. Hypothalamic Crh in the paraventricular nucleus of the hypothalamus (PVH) initiates HPA axis signaling to cause the release of cortisol (or corticosterone in rodents) from the adrenal gland. PVH-specific deletion of Crh reduces anxiety-like behaviors in mice. Here we report that manipulation of PVH Crh expression in primary adrenal insufficiency or by dexamethasone (DEX) treatment do not alter mouse anxiety behaviors. In Experiment 1, we compared wildtype (WT) mice to those with primary adrenal insufficiency ( Mrap KO) or global deletion of Crh ( Crh KO). We analyzed behaviors using open field (OF) and elevated plus maze (EPM), PVH Crh mRNA expression by spatial transcriptomics, and plasma ACTH and corticosterone after a 15-minute restraint test with ELISAs. EPM analysis showed Crh KO mice were less anxious than WT and Mrap KO mice, and Mrap KO mice had no distinguishing behavioral phenotype. In Experiment 2, we evaluated HPA axis habituation to chronically elevated Crh expression by comparing mice treated with 5-8 weeks of DEX with those similarly treated followed by DEX withdrawal for 1 week. All mice regardless of genotype and treatment showed no significant behavioral differences. Our findings suggest that reduced anxiety associated with low Crh expression requires extreme deficiency, perhaps outside of those PVH Crh neurons negatively regulated by glucocorticoids. If these findings extend to humans, they suggest that increases in Crh expression with primary adrenal insufficiency, or decreases with exogenous glucocorticoid therapy, may not alter anxiety behaviors via modulation of Crh expression.
Collapse
|
2
|
Lim KY, Hong W. Neural mechanisms of comforting: Prosocial touch and stress buffering. Horm Behav 2023; 153:105391. [PMID: 37301130 PMCID: PMC10853048 DOI: 10.1016/j.yhbeh.2023.105391] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Comforting is a crucial form of prosocial behavior that is important for maintaining social unity and improving the physical and emotional well-being of social species. It is often expressed through affiliative social touch toward someone in distress, providing relief for their distressed state. In the face of increasing global distress, these actions are paramount to the continued improvement of individual welfare and the collective good. Understanding the neural mechanisms responsible for promoting actions focused on benefitting others is particularly important and timely. Here, we review prosocial comforting behavior, emphasizing synthesizing recent studies carried out using rodent models. We discuss its underlying behavioral expression and motivations, and then explore both the neurobiology of prosocial comforting in a helper animal and the neurobiology of stress relief following social touch in a recipient as part of a feedback loop interaction.
Collapse
Affiliation(s)
- Kayla Y Lim
- Department of Neurobiology and Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Weizhe Hong
- Department of Neurobiology and Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
3
|
Gouws JM, Sherrington A, Zheng S, Kim JS, Iremonger KJ. Regulation of corticotropin-releasing hormone neuronal network activity by noradrenergic stress signals. J Physiol 2022; 600:4347-4359. [PMID: 36040213 PMCID: PMC9825848 DOI: 10.1113/jp283328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/26/2022] [Indexed: 01/11/2023] Open
Abstract
Noradrenaline is a neurotransmitter released in response to homeostatic challenge and activates the hypothalamic-pituitary-adrenal axis via stimulation of corticotropin-releasing hormone (CRH) neurons. Here we investigated the mechanism through which noradrenaline regulates activity within the CRH neuronal network. Using a combination of in vitro GCaMP6f Ca2+ imaging and electrophysiology, we show that noradrenaline induces a robust increase in excitability in a proportion of CRH neurons with many neurons displaying a bursting mode of activity. Noradrenaline-induced activation required α1 -adrenoceptors and L-type voltage-gated Ca2+ channels, but not GABA/glutamate synaptic transmission or sodium action potentials. Exposure of mice to elevated corticosterone levels was able to suppress noradrenaline-induced activation. These results provide further insight into the mechanisms by which noradrenaline regulates CRH neural network activity and hence stress responses. KEY POINTS: GCaMP6f Ca2+ imaging and on-cell patch-clamp recordings reveal that corticotropin-releasing hormone neurons are activated by noradrenaline with many neurons displaying a bursting mode of activity. Noradrenaline-induced activation requires α1 -adrenoceptors. Noradrenaline-induced Ca2+ elevations persist after blocking GABAA , AMPA, NMDA receptors and voltage-gated Na+ channels. Noradrenaline-induced Ca2+ elevations require L-type voltage-gated Ca2+ channels. Corticosterone suppresses noradrenaline-induced excitation.
Collapse
Affiliation(s)
- Julia M. Gouws
- Centre for Neuroendocrinology, Department of Physiology, School of Biomedical SciencesUniversity of OtagoDunedinOtagoNew Zealand
| | - Aidan Sherrington
- Centre for Neuroendocrinology, Department of Physiology, School of Biomedical SciencesUniversity of OtagoDunedinOtagoNew Zealand
| | - Shaojie Zheng
- Centre for Neuroendocrinology, Department of Physiology, School of Biomedical SciencesUniversity of OtagoDunedinOtagoNew Zealand
| | - Joon S. Kim
- Centre for Neuroendocrinology, Department of Physiology, School of Biomedical SciencesUniversity of OtagoDunedinOtagoNew Zealand
| | - Karl J. Iremonger
- Centre for Neuroendocrinology, Department of Physiology, School of Biomedical SciencesUniversity of OtagoDunedinOtagoNew Zealand
| |
Collapse
|
4
|
Wagle M, Zarei M, Lovett-Barron M, Poston KT, Xu J, Ramey V, Pollard KS, Prober DA, Schulkin J, Deisseroth K, Guo S. Brain-wide perception of the emotional valence of light is regulated by distinct hypothalamic neurons. Mol Psychiatry 2022; 27:3777-3793. [PMID: 35484242 PMCID: PMC9613822 DOI: 10.1038/s41380-022-01567-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/25/2022] [Accepted: 04/06/2022] [Indexed: 02/08/2023]
Abstract
Salient sensory stimuli are perceived by the brain, which guides both the timing and outcome of behaviors in a context-dependent manner. Light is such a stimulus, which is used in treating mood disorders often associated with a dysregulated hypothalamic-pituitary-adrenal stress axis. Relationships between the emotional valence of light and the hypothalamus, and how they interact to exert brain-wide impacts remain unclear. Employing larval zebrafish with analogous hypothalamic systems to mammals, we show in free-swimming animals that hypothalamic corticotropin releasing factor (CRFHy) neurons promote dark avoidance, and such role is not shared by other hypothalamic peptidergic neurons. Single-neuron projection analyses uncover processes extended by individual CRFHy neurons to multiple targets including sensorimotor and decision-making areas. In vivo calcium imaging uncovers a complex and heterogeneous response of individual CRFHy neurons to the light or dark stimulus, with a reduced overall sum of CRF neuronal activity in the presence of light. Brain-wide calcium imaging under alternating light/dark stimuli further identifies distinct and distributed photic response neuronal types. CRFHy neuronal ablation increases an overall representation of light in the brain and broadly enhances the functional connectivity associated with an exploratory brain state. These findings delineate brain-wide photic perception, uncover a previously unknown role of CRFHy neurons in regulating the perception and emotional valence of light, and suggest that light therapy may alleviate mood disorders through reducing an overall sum of CRF neuronal activity.
Collapse
Affiliation(s)
- Mahendra Wagle
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, 94143-2811, USA
| | - Mahdi Zarei
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, 94143-2811, USA
| | - Matthew Lovett-Barron
- Department of Bioengineering, Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Kristina Tyler Poston
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, 94143-2811, USA
| | - Jin Xu
- Tianqiao and Chrissy Chen Institute for Neuroscience, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Vince Ramey
- Biophysics Graduate Group, University of California, Berkeley, CA, USA
- Invitae Inc., San Francisco, CA, USA
| | - Katherine S Pollard
- Gladstone Institute of Data Science & Biotechnology, San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, University of California, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - David A Prober
- Tianqiao and Chrissy Chen Institute for Neuroscience, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Jay Schulkin
- Department of Obstetrics & Gynecology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Karl Deisseroth
- Department of Bioengineering, Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Su Guo
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, 94143-2811, USA.
- Programs in Human Genetics and Biological Sciences, Kavli Institute of Fundamental Neuroscience, The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Bakar Aging Research Institute, University of California, San Francisco, CA, 94143-2811, USA.
| |
Collapse
|
5
|
Bruzsik B, Biro L, Sarosdi KR, Zelena D, Sipos E, Szebik H, Török B, Mikics E, Toth M. Neurochemically distinct populations of the bed nucleus of stria terminalis modulate innate fear response to weak threat evoked by predator odor stimuli. Neurobiol Stress 2021; 15:100415. [PMID: 34765699 PMCID: PMC8572958 DOI: 10.1016/j.ynstr.2021.100415] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 10/25/2022] Open
Abstract
Anxiety and trauma-related disorders are characterized by significant alterations in threat detection, resulting in inadequate fear responses evoked by weak threats or safety stimuli. Recent research pointed out the important role of the bed nucleus of stria terminalis (BNST) in threat anticipation and fear modulation under ambiguous threats, hence, exaggerated fear may be traced back to altered BNST function. To test this hypothesis, we chemogenetically inhibited specific BNST neuronal populations (corticotropin-releasing hormone - BNSTCRH and somatostatin - BNSTSST expressing neurons) in a predator odor-evoked innate fear paradigm. The rationale for this paradigm was threefold: (1) predatory cues are particularly strong danger signals for all vertebrate species evoking defensive responses on the flight-avoidance-freezing dimension (conservative mechanisms), (2) predator odor can be presented in a scalable manner (from weak to strong), and (3) higher-order processing of olfactory information including predatory odor stimuli is integrated by the BNST. Accordingly, we exposed adult male mice to low and high predatory threats presented by means of cat urine, or low- and high-dose of 2-methyl-2-thiazoline (2MT), a synthetic derivate of a fox anogenital product, which evoked low and high fear response, respectively. Then, we tested the impact of chemogenetic inhibition of BNSTCRH and BNSTSST neurons on innate fear responses using crh- and sst-ires-cre mouse lines. We observed that BNSTSST inhibition was effective only under low threat conditions, resulting in reduced avoidance and increased exploration of the odor source. In contrast, BNSTCRH inhibition had no impact on 2MT-evoked responses, but enhanced fear responses to cat odor, representing an even weaker threat stimulus. These findings support the notion that BNST is recruited by uncertain or remote, potential threats, and CRH and SST neurons orchestrate innate fear responses in complementary ways.
Collapse
Affiliation(s)
- Biborka Bruzsik
- Laboratory of Translational Behavioural Neuroscience, Institute of Experimental Medicine, Budapest, Hungary.,Janos Szentagothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Laszlo Biro
- Laboratory of Translational Behavioural Neuroscience, Institute of Experimental Medicine, Budapest, Hungary.,Laboratory of Thalamus Research, Institute of Experimental Medicine, Budapest, Hungary
| | - Klara Rebeka Sarosdi
- Laboratory of Translational Behavioural Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
| | - Dora Zelena
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary.,Center for Neuroscience, Szentágothai Research Center, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
| | - Eszter Sipos
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary
| | - Huba Szebik
- Laboratory of Translational Behavioural Neuroscience, Institute of Experimental Medicine, Budapest, Hungary.,Janos Szentagothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Bibiána Török
- Janos Szentagothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary.,Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary
| | - Eva Mikics
- Laboratory of Translational Behavioural Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
| | - Mate Toth
- Laboratory of Translational Behavioural Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|