1
|
Liu Q, Zhang WC, Chen B, Song YW. [Correlation between serum ghrelin and liver-expressed antimicrobial peptide-2 with idiopathic short stature in children]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:1261-1266. [PMID: 39725387 DOI: 10.7499/j.issn.1008-8830.2404038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
OBJECTIVES To investigate the expression levels of ghrelin and liver-expressed antimicrobial peptide-2 (LEAP-2) in children with idiopathic short stature (ISS) to provide reference for further understanding the etiology of short stature. METHODS A prospective study was conducted from December 2021 to October 2023, involving 46 children diagnosed with ISS (ISS group) and 46 healthy children with normal height (control group) at the First Affiliated Hospital of Shihezi University. General data and serum levels of ghrelin and LEAP-2 were compared between the two groups. The predictive value of these two indicators for ISS was evaluated using receiver operating characteristic (ROC) curve analysis. RESULTS The serum level of ghrelin in the ISS group was higher than that in the control group, while the level of LEAP-2 was lower (P<0.05). The ratio of LEAP-2 to ghrelin was lower in the ISS group compared to the control group (P<0.05). Multivariate logistic regression analysis showed that HtSDS, IGF-1, ghrelin, LEAP-2, and the ratio of LEAP-2/ghrelin were independently associated with the occurrence of ISS (P<0.05). ROC curve analysis indicated that the AUCs for ghrelin, LEAP-2, the ratio of ghrelin to LEAP-2, and their combination in predicting ISS were all >0.8. The optimal cutoff values for ghrelin, LEAP-2, and the LEAP-2/ghrelin ratio were 5 607 pg/mL, 1 155 pg/mL, and 0.212, respectively. In children with ISS, ghrelin showed a negative correlation with chronological age, LEAP-2, and the LEAP-2/ghrelin ratio (P<0.05), while it was positively correlated with growth rate and peak growth hormone levels (P<0.05). LEAP-2 was negatively correlated with growth rate, peak growth hormone levels, and ghrelin (P<0.05), but positively correlated with chronological age and the LEAP-2/ghrelin ratio (P<0.05). CONCLUSIONS Ghrelin and LEAP-2 are correlated with the occurrence of ISS, which may provide references for the diagnosis and etiological analysis of children with ISS.
Collapse
Affiliation(s)
- Qing Liu
- Department of Pediatrics, First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang 832008, China
| | | | - Bo Chen
- Department of Pediatrics, First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang 832008, China
| | - Ya-Wen Song
- Department of Pediatrics, First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang 832008, China
| |
Collapse
|
2
|
Emini M, Bhargava R, Aldhwayan M, Chhina N, Rodriguez Flores M, Aldubaikhi G, Al Lababidi M, Al-Najim W, Miras AD, Ruban A, Glaysher MA, Prechtl CG, Byrne JP, Teare JP, Goldstone AP. Satiety Hormone LEAP2 After Low-Calorie Diet With/Without Endobarrier Insertion in Obesity and Type 2 Diabetes Mellitus. J Endocr Soc 2024; 9:bvae214. [PMID: 39659543 PMCID: PMC11631353 DOI: 10.1210/jendso/bvae214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Indexed: 12/12/2024] Open
Abstract
Context The liver/foregut satiety hormone liver-expressed antimicrobial peptide 2 (LEAP2) is an inverse agonist at the acyl ghrelin receptor (GHSR), increasing after food intake and decreasing after bariatric surgery and short-term nonsurgical weight loss, but effects of long-term dietary weight loss are unknown. Objective The objective of this study was to examine and compare the effects of these interventions on fasting and postprandial plasma LEAP2 and investigate potential metabolic mediators of changes in plasma LEAP2. Methods Plasma LEAP2 was measured in a previously published 2-year trial comparing standard medical management (SMM) (including 600-kcal/day deficit) with duodenal-jejunal bypass liner (DJBL, Endobarrier) insertion (explanted after 1 year) in adults with obesity and inadequately controlled type 2 diabetes mellitus. Results In the SMM group (n = 25-37), weight decreased by 4.3%, 8.1%, 7.8%, and 6.4% at 2, 26, 50, and 104 weeks and fasting plasma LEAP2 decreased from baseline mean ± SD 15.3 ± 0.9 ng/mL by 1.7, 3.8, 2.1, and 2.0 ng/mL, respectively. Absolute/decreases in fasting plasma LEAP2 positively correlated with absolute/decreases in body mass index, glycated hemoglobin A1c, fasting plasma glucose, serum insulin, homeostatic model assessment for insulin resistance, and serum triglycerides. Despite greater weight loss in the DJBL group (n = 23-30) at 26 to 50 weeks (10.4%-11.4%), the decrease in fasting plasma LEAP2 was delayed and attenuated (vs SMM), which may contribute to greater weight loss by attenuating GHSR signaling. Plasma LEAP2 did not increase with weight regain from 50 to 104 weeks after DJBL explant, suggesting a new set point with weight loss maintenance. Increases in plasma LEAP2 after a 600-kcal meal (10.8%-16.1% at 1-2 hours) were unaffected by weight loss, improved glucose metabolism, or DJBL insertion (n = 9-25), suggesting liver rather than duodenum/jejunum may be the primary source of postprandial LEAP2 secretion. Conclusion These findings add to our understanding of the regulation and potential physiological role of plasma LEAP2.
Collapse
Affiliation(s)
- Mimoza Emini
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | - Raghav Bhargava
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | - Madhawi Aldhwayan
- College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Navpreet Chhina
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | - Marcela Rodriguez Flores
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | - Ghadah Aldubaikhi
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | - Moaz Al Lababidi
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | - Werd Al-Najim
- Department of Metabolism, Diabetes and Reproduction, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | - Alexander D Miras
- Department of Metabolism, Diabetes and Reproduction, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | - Aruchuna Ruban
- Department of Surgery and Cancer, Imperial College London, St. Mary‘s Hospital, London W2 1NY, UK
| | - Michael A Glaysher
- Division of Surgery, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Christina G Prechtl
- Clinical Trials Unit, Department of Public Health, Imperial College London, London W12 7TA, UK
| | - James P Byrne
- Division of Surgery, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Julian P Teare
- Department of Surgery and Cancer, Imperial College London, St. Mary‘s Hospital, London W2 1NY, UK
| | - Anthony P Goldstone
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| |
Collapse
|
3
|
King ME, Herzing HM, McLeod KR, Klotz JL, Foote AP, Edwards JL, Harmon DL. Impact of endophyte-infected tall fescue seed consumption on endocrine changes associated with intake regulation and post-absorptive metabolism in growing steers. Domest Anim Endocrinol 2024; 89:106873. [PMID: 39032187 DOI: 10.1016/j.domaniend.2024.106873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/18/2024] [Accepted: 07/09/2024] [Indexed: 07/22/2024]
Abstract
Fescue toxicosis is a syndrome occurring from the consumption of endophyte-infected tall fescue and results in substantial economic losses to the beef industry primarily from reduced growth accompanied by decreased dry matter intake (DMI); however, the associations characterizing this reduction in DMI have yet to be elucidated. The objective of this experiment was to identify endocrine changes associated with intake regulation post-consumption of endophyte-infected tall fescue seed (E+). Twelve Holstein steers were stratified by body weight and assigned to 1 of 3 treatments (n=4): 0 ppm ergovaline (ERV), 1.8 ppm ERV, or 2.7 ppm ERV. Treatments were achieved by combining differing proportions of ground E+ and non-endophyte-infected tall fescue seed. Steers were adapted to their diets for 7 d followed by a 7 d DMI collection period. Within treatment, steers were assigned to a sampling day (d 16 or d 17). Blood samples were collected every 20 min for 8 h, beginning 1 h before feeding. Intake data was analyzed using the MIXED procedure of SAS 9.4 (SAS Inst. Inc., Cary, NC) with treatment, day, and the interaction as fixed effects. Hormone and metabolite data were analyzed with the fixed effect of treatment, time, and the interaction including time as a repeated measure and orthogonal contrasts. Dry matter intake was linearly decreased with increasing ERV in the diet (P < 0.001). Insulin and leptin concentrations exhibited a quadratic effect (P = 0.018 and P = 0.005) with insulin concentrations highest for the 2.7 ppm treatment and leptin concentrations highest for the 1.8 ppm treatment. No differences were detected for active ghrelin or β-hydroxybuytrate concentrations among treatment groups. Further, steers consuming both the 1.8 and 2.7 ppm ERV treatments had lower prolactin concentrations compared to the 0 ppm treatment (quadratic, P= 0.019). Glucose concentrations had a tendency for a linear increase as ERV concentrations increased (P = 0.091). A treatment × time interaction (P = 0.002) was noted in NEFA concentrations, with the 1.8 ppm ERV treatment showing increased pre-feeding concentrations, and the 2.7 ppm ERV treatment exhibiting elevated NEFA concentrations as time post-feeding progressed. The results suggest that E+ consumption reduces intake likely through alterations in intake-related hormones and post-absorptive metabolism and contributes to our current understanding of E+ effects on intake reduction while providing avenues for future research.
Collapse
Affiliation(s)
- Mindy E King
- Department of Animal and Food Science, University of Kentucky, Lexington, KY, USA
| | - Hannah M Herzing
- Department of Animal and Food Science, University of Kentucky, Lexington, KY, USA
| | - Kyle R McLeod
- Department of Animal and Food Science, University of Kentucky, Lexington, KY, USA
| | - James L Klotz
- Forage-Animal Production Research Unit, USDA-ARS, Lexington, KY, USA
| | - Andrew P Foote
- Department of Animal and Food Science, Oklahoma State University, Stillwater, OK, USA
| | - J Lannett Edwards
- Department of Animal Science, The University of Tennessee, Knoxville, TN, USA
| | - David L Harmon
- Department of Animal and Food Science, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
4
|
Englund A, Gilliam-Vigh H, Suppli MP, Gasbjerg LS, Vilsbøll T, Knop FK. Intestinal expression profiles and hepatic expression of LEAP2, ghrelin and their common receptor, GHSR, in humans. Peptides 2024; 177:171227. [PMID: 38657907 DOI: 10.1016/j.peptides.2024.171227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 04/26/2024]
Abstract
Liver-expressed antimicrobial peptide 2 (LEAP2) and ghrelin have reciprocal effects on their common receptor, the growth hormone secretagogue receptor (GHSR). Ghrelin is considered a gastric hormone and LEAP2 a liver-derived hormone and both have been proposed to be involved in the pathophysiology of obesity and type 2 diabetes (T2D). We investigated the mRNA expression of LEAP2, ghrelin and GHSR along the intestinal tract of individuals with and without TD2, and in the liver of men with and without obesity. Mucosal biopsies retrieved with 30-cm intervals throughout the small intestine and from 7 well-defined locations along the large intestine from 12 individuals with T2D and 12 healthy controls together with liver biopsies from 15 men with obesity and 15 lean men were subjected to bulk transcriptomics analysis. Both in individuals with and without T2D, mRNA expression of LEAP2 increased through the small intestine until dropping at the ileocecal valve, with little LEAP2 mRNA expression in the large intestine. Pronounced LEAP2 expression was observed in the liver of men with and without obesity. Robust ghrelin mRNA expression was observed in the duodenum of individuals with and without T2D, gradually decreasing along the small intestine with little expression in the large intestine. Ghrelin mRNA expression was not detected in the liver biopsies, and GHSR mRNA expression was not. In conclusion, we provide unique mRNA expression profiles of LEAP2, ghrelin and GHSR along the human intestinal tract showing no T2D-associated changes, and in the liver showing no differences between men with and without obesity.
Collapse
Affiliation(s)
- Anders Englund
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark.
| | - Hannah Gilliam-Vigh
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark.
| | - Malte P Suppli
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark.
| | - Lærke S Gasbjerg
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Steno Diabetes Center Copenhagen, Herlev, Denmark.
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Steno Diabetes Center Copenhagen, Herlev, Denmark; Novo Nordisk A/S, Novo Allé, Bagsværd, Denmark.
| |
Collapse
|
5
|
Tufvesson-Alm M, Zhang Q, Aranäs C, Blid Sköldheden S, Edvardsson CE, Jerlhag E. Decoding the influence of central LEAP2 on food intake and its effect on accumbal dopamine release. Prog Neurobiol 2024; 236:102615. [PMID: 38641041 DOI: 10.1016/j.pneurobio.2024.102615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
The gut-brain peptide ghrelin and its receptor are established as a regulator of hunger and reward-processing. However, the recently recognized ghrelin receptor inverse agonist, liver-expressed antimicrobial peptide 2 (LEAP2), is less characterized. The present study aimed to elucidate LEAP2s central effect on reward-related behaviors through feeding and its mechanism. LEAP2 was administrated centrally in mice and effectively reduced feeding and intake of palatable foods. Strikingly, LEAP2s effect on feeding was correlated to the preference of the palatable food. Further, LEAP2 reduced the rewarding memory of high preference foods, and attenuated the accumbal dopamine release associated with palatable food exposure and eating. Interestingly, LEAP2 was widely expressed in the brain, and particularly in reward-related brain areas such as the laterodorsal tegmental area (LDTg). This expression was markedly altered when allowed free access to palatable foods. Accordingly, infusion of LEAP2 into LDTg was sufficient to transiently reduce acute palatable food intake. Taken together, the present results show that central LEAP2 has a profound effect on dopaminergic reward signaling associated with food and affects several aspects of feeding. The present study highlights LEAP2s effect on reward, which may have applications for obesity and other reward-related psychiatric and neurological disorders.
Collapse
Affiliation(s)
- Maximilian Tufvesson-Alm
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 13A, Gothenburg SE-405 30, Sweden
| | - Qian Zhang
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 13A, Gothenburg SE-405 30, Sweden
| | - Cajsa Aranäs
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 13A, Gothenburg SE-405 30, Sweden
| | - Sebastian Blid Sköldheden
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 13A, Gothenburg SE-405 30, Sweden
| | - Christian E Edvardsson
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 13A, Gothenburg SE-405 30, Sweden
| | - Elisabet Jerlhag
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 13A, Gothenburg SE-405 30, Sweden.
| |
Collapse
|
6
|
Andreoli MF, Fittipaldi AS, Castrogiovanni D, De Francesco PN, Valdivia S, Heredia F, Ribet-Travers C, Mendez I, Fasano MV, Schioth HB, Doi SA, Habib AM, Perello M. Pre-prandial plasma liver-expressed antimicrobial peptide 2 (LEAP2) concentration in humans is inversely associated with hunger sensation in a ghrelin independent manner. Eur J Nutr 2024; 63:751-762. [PMID: 38157050 DOI: 10.1007/s00394-023-03304-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE The liver-expressed antimicrobial peptide 2 (LEAP2) is a newly recognized peptide hormone that acts via the growth hormone secretagogue receptor (GHSR) blunting the effects of ghrelin and displaying ghrelin-independent actions. Since the implications of LEAP2 are beginning to be elucidated, we investigated if plasma LEAP2 concentration varies with feeding status or sex and whether it is associated with glucose metabolism and appetite sensations. METHODS We performed a single test meal study, in which plasma concentrations of LEAP2, ghrelin, insulin and glucose as well as visual analogue scales for hunger, desire to eat, prospective food consumption, fullness were assessed before and 60 min after breakfast in 44 participants (n = 21 females) with normal weight (NW) or overweight/obesity (OW/OB). RESULTS Pre-prandial plasma LEAP2 concentration was ~ 1.6-fold higher whereas ghrelin was ~ 2.0-fold lower in individuals with OW/OB (p < 0.001) independently of sex. After adjusting for body mass index (BMI) and sex, pre-prandial plasma LEAP2 concentration displayed a direct relationship with BMI (β: 0.09; 95%CI: 0.05, 0.13; p < 0.001), fat mass (β: 0.05; 95%CI: 0.01, 0.09; p = 0.010) and glycemia (β: 0.24; 95%CI: 0.05, 0.43; p = 0.021), whereas plasma ghrelin concentration displayed an inverse relationship with BMI and fat mass but not with glycemia. Postprandial plasma LEAP2 concentration increased ~ 58% in females with OW/OB (p = 0.045) but not in females with NW or in males. Pre-prandial plasma LEAP2 concentration displayed an inverse relationship with hunger score (β: - 11.16; 95% CI: - 18.52, - 3.79; p = 0.004), in a BMI-, sex- and ghrelin-independent manner. CONCLUSIONS LEAP2 emerges as a key hormone implicated in the regulation of metabolism and appetite in humans. TRIAL REGISTRATION The study was retrospectively registered in clinicaltrials.gov (April 2023). CLINICALTRIALS gov Identifier: NCT05815641.
Collapse
Affiliation(s)
- María F Andreoli
- Instituto de Desarrollo e Investigaciones Pediátricas (IDIP), HIAEP Sor María Ludovica de la Plata, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), Calle 63 # 1069, La Plata, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina.
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden.
| | - Antonela S Fittipaldi
- Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE). Universidad Nacional la Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y CIC-PBA, Calle 526 S/N Entre 10 y 11, La Plata, Buenos Aires, Argentina
| | - Daniel Castrogiovanni
- Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE). Universidad Nacional la Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y CIC-PBA, Calle 526 S/N Entre 10 y 11, La Plata, Buenos Aires, Argentina
| | - Pablo N De Francesco
- Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE). Universidad Nacional la Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y CIC-PBA, Calle 526 S/N Entre 10 y 11, La Plata, Buenos Aires, Argentina
| | - Spring Valdivia
- Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE). Universidad Nacional la Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y CIC-PBA, Calle 526 S/N Entre 10 y 11, La Plata, Buenos Aires, Argentina
| | - Florencia Heredia
- Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE). Universidad Nacional la Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y CIC-PBA, Calle 526 S/N Entre 10 y 11, La Plata, Buenos Aires, Argentina
| | | | - Ignacio Mendez
- Instituto de Desarrollo e Investigaciones Pediátricas (IDIP), HIAEP Sor María Ludovica de la Plata, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), Calle 63 # 1069, La Plata, Buenos Aires, Argentina
| | - María V Fasano
- Instituto de Desarrollo e Investigaciones Pediátricas (IDIP), HIAEP Sor María Ludovica de la Plata, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), Calle 63 # 1069, La Plata, Buenos Aires, Argentina
- Centro de Matemática la Plata, Facultad de Ciencias Exactas, UNLP/CIC-PBA, La Plata, Argentina
| | - Helgi B Schioth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden
| | - Suhail A Doi
- Department of Population Medicine, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Abdella M Habib
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Mario Perello
- Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE). Universidad Nacional la Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y CIC-PBA, Calle 526 S/N Entre 10 y 11, La Plata, Buenos Aires, Argentina.
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden.
| |
Collapse
|
7
|
Pedersen MGB, Lauritzen ES, Svart MV, Støy J, Søndergaard E, Thomsen HH, Kampmann U, Bjerre M, Jessen N, Møller N, Rittig N. Nutrient sensing: LEAP2 concentration in response to fasting, glucose, lactate, and β-hydroxybutyrate in healthy young males. Am J Clin Nutr 2023; 118:1091-1098. [PMID: 37844838 DOI: 10.1016/j.ajcnut.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND The appetite-suppressing potential of liver-expressed antimicrobial peptide 2 (LEAP2), and its antagonistic effects on the hunger-inducing hormone ghrelin have attracted scientific interest. It is unclear how LEAP2 is influenced by fasting and how it responds to specific nutrients. OBJECTIVES The purpose of this investigation was to assess whether LEAP2 concentration 1) decreases after fasting, 2) increases postprandially, and 3) is regulated by nutrient sensing in the splanchnic bed. METHODS Plasma LEAP2 concentration was measured in blood samples from 5 clinical cross-over trials, following 1) 36 h of fasting (n = 8), 2) 10 h of fasting (n = 37, baseline data pooled from 4 of the clinical trials), 3) Oral and intravenous glucose administration (n = 11), 4) Oral and intravenous Na-lactate administration (n = 10), and 5) Oral and intravenous Na-β-hydroxybutyrate (BHB) administration (n = 8). All 5 trials included healthy males. RESULTS Compared with a 10-h fasting period, the median LEAP2 concentration was 38% lower following 36 h of fasting (P < 0.001). Oral administration of glucose elevated, whereas intravenous glucose administration lowered LEAP2 concentration (intervention x time, P = 0.001), resulting in a mean difference of 9 ng/mL (95% confidence interval [CI]: 1, 17) after 120 min. Oral lactate increased, and intravenous lactate decreased LEAP2 (intervention x time, P = 0.007), with a mean difference between interventions of 10 ng/mL (95% CI: 6, 15) after 120 min. In contrast, oral and intravenous administration of BHB reduced the LEAP2 concentration (main effect of time, P < 0.001). CONCLUSIONS Our investigations show that LEAP2 concentration was lower after a 36-h fast than an overnight fast and that oral delivery of glucose and lactate elevated LEAP2 concentration compared with intravenous administration, whereas LEAP2 concentrations decreased with both oral and intravenous BHB. This indicates that the LEAP2 concentration is sensitive to intestinal exposure to specific substrates, highlighting the need for future studies exploring the relationship between nutrients and LEAP2. This trial was registered at clinicaltrials.gov as NCT01840098, NCT03204877, NCT04299815, NCT03935841, and NCT01705782.
Collapse
Affiliation(s)
- Mette Glavind Bülow Pedersen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus N, Denmark; Medical/Steno Aarhus Research Laboratory, Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark.
| | | | - Mads Vandsted Svart
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus N, Denmark; Medical/Steno Aarhus Research Laboratory, Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Julie Støy
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus N, Denmark
| | - Esben Søndergaard
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus N, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus C, Denmark
| | - Henrik Holm Thomsen
- Department of Internal Medicine, Viborg Regional Hospital, Viborg, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus C, Denmark
| | - Ulla Kampmann
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus N, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus C, Denmark
| | - Mette Bjerre
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus N, Denmark; Medical/Steno Aarhus Research Laboratory, Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Niels Jessen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus N, Denmark
| | - Niels Møller
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus N, Denmark; Medical/Steno Aarhus Research Laboratory, Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Nikolaj Rittig
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus N, Denmark; Medical/Steno Aarhus Research Laboratory, Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| |
Collapse
|
8
|
Holá L, Tureckiuová T, Kuneš J, Železná B, Maletínská L. High-Fat Diet Induces Resistance to Ghrelin and LEAP2 Peptide Analogs in Mice. Physiol Res 2023; 72:607-619. [PMID: 38015760 PMCID: PMC10751049 DOI: 10.33549/physiolres.935189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/01/2023] [Indexed: 01/05/2024] Open
Abstract
Recent data suggest that the orexigenic peptide ghrelin and liver-expressed antimicrobial peptide 2 (LEAP2) have opposing effects on food intake regulation. Although circulating ghrelin is decreased in obesity, peripheral ghrelin administration does not induce food intake in obese mice. Limited information is available on ghrelin resistance in relation to LEAP2. In this study, the interplay between ghrelin and LEAP2 in obesity induced by a high-fat (HF) diet in mice was studied. First, the progression of obesity and intolerance to glucose together with plasma levels of active and total ghrelin, leptin, as well as liver LEAP2 mRNA expression at different time points of HF diet feeding was examined. In addition, the impact of switch from a HF diet to a standard diet on plasma ghrelin and LEAP2 production was studied. Second, sensitivity to the stable ghrelin analogue [Dpr3]Ghrelin or our novel LEAP2 analogue palm-LEAP2(1-14) during the progression of HF diet-induced obesity and after the switch for standard diet was investigated. Food intake was monitored after acute subcutaneous administration. HF diet feeding decreased both active and total plasma ghrelin and increased liver LEAP2 mRNA expression along with intolerance to glucose and the switch to a standard diet normalized liver LEAP2 mRNA expression and plasma level of active ghrelin, but not of total ghrelin. Additionally, our study demonstrates that a HF diet causes resistance to [Dpr3]Ghrelin, reversible by switch to St diet, followed by resistance to palm-LEAP2(1-14). Further studies are needed to determine the long-term effects of LEAP2 analogues on obesity-related ghrelin resistance.
Collapse
Affiliation(s)
- L Holá
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Praha 6, Czech Republic.
| | | | | | | | | |
Collapse
|
9
|
Fernández-Verdejo R, Mey JT, Ravussin E. Effects of ketone bodies on energy expenditure, substrate utilization, and energy intake in humans. J Lipid Res 2023; 64:100442. [PMID: 37703994 PMCID: PMC10570604 DOI: 10.1016/j.jlr.2023.100442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023] Open
Abstract
The potential of ketogenic approaches to regulate energy balance has recently gained attention since ketones may influence both energy expenditure and energy intake. In this narrative review, we summarized the most relevant evidence about the role of ketosis on energy expenditure, substrate utilization, and energy intake in humans. We considered different strategies to induce ketosis, such as fasting, dietary manipulation, and exogenous ketone sources. In general, ketosis does not have a major influence on energy expenditure but promotes a shift in substrate utilization towards ketone body oxidation. The strategies to induce ketosis by reduction of dietary carbohydrate availability (e.g., ketogenic diets) do not independently influence energy intake, being thus equally effective for weight loss as diets with higher carbohydrate content. In contrast, the intake of medium-chain triglycerides and ketone esters induces ketosis and appears to increase energy expenditure and reduce energy intake in the context of high carbohydrate availability. These latter strategies lead to slightly enhanced weight loss. Unfortunately, distinguishing the effects of the various ketogenic strategies per se from the effects of other physiological responses is not possible with the available human data. Highly controlled, inpatient studies using targeted strategies to isolate the independent effects of ketones are required to adequately address this knowledge gap.
Collapse
Affiliation(s)
- Rodrigo Fernández-Verdejo
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA; Laboratorio de Fisiología del Ejercicio y Metabolismo (LABFEM), Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
| | - Jacob T Mey
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Eric Ravussin
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
10
|
Bhargava R, Luur S, Rodriguez Flores M, Emini M, Prechtl CG, Goldstone AP. Postprandial Increases in Liver-Gut Hormone LEAP2 Correlate with Attenuated Eating Behavior in Adults Without Obesity. J Endocr Soc 2023; 7:bvad061. [PMID: 37287649 PMCID: PMC10243873 DOI: 10.1210/jendso/bvad061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Indexed: 06/09/2023] Open
Abstract
Background The novel liver-gut hormone liver-expressed antimicrobial peptide-2 (LEAP2) is a centrally acting inverse agonist, and competitive antagonist of orexigenic acyl ghrelin (AG), at the GH secretagogue receptor, reducing food intake in rodents. In humans, the effects of LEAP2 on eating behavior and mechanisms behind the postprandial increase in LEAP2 are unclear, though this is reciprocal to the postprandial decrease in plasma AG. Methods Plasma LEAP2 was measured in a secondary analysis of a previous study. Twenty-two adults without obesity attended after an overnight fast, consuming a 730-kcal meal without or with subcutaneous AG administration. Postprandial changes in plasma LEAP2 were correlated with postprandial changes in appetite, high-energy (HE) or low-energy (LE) food cue reactivity using functional magnetic resonance imaging, ad libitum food intake, and plasma/serum AG, glucose, insulin, and triglycerides. Results Postprandial plasma LEAP2 increased by 24.5% to 52.2% at 70 to 150 minutes, but was unchanged by exogenous AG administration. Postprandial increases in LEAP2 correlated positively with postprandial decreases in appetite, and cue reactivity to HE/LE and HE food in anteroposterior cingulate cortex, paracingulate cortex, frontal pole, and middle frontal gyrus, with similar trend for food intake. Postprandial increases in LEAP2 correlated negatively with body mass index, but did not correlate positively with increases in glucose, insulin, or triglycerides, nor decreases in AG. Conclusions These correlational findings are consistent with a role for postprandial increases in plasma LEAP2 in suppressing human eating behavior in adults without obesity. Postprandial increases in plasma LEAP2 are unrelated to changes in plasma AG and the mediator(s) remain uncertain.
Collapse
Affiliation(s)
- Raghav Bhargava
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Sandra Luur
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Marcela Rodriguez Flores
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Mimoza Emini
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Christina G Prechtl
- School of Public Health, Faculty of Medicine, Imperial College London, St. Mary's Hospital, London, W2 1PG, UK
| | - Anthony P Goldstone
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| |
Collapse
|
11
|
Ragland TJ, Malin SK. Plasma LEAP-2 Following a Low-Calorie Diet with or without Interval Exercise in Women with Obesity. Nutrients 2023; 15:655. [PMID: 36771362 PMCID: PMC9918887 DOI: 10.3390/nu15030655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/14/2023] [Accepted: 01/22/2023] [Indexed: 02/01/2023] Open
Abstract
Liver-expressed antimicrobial peptide-2 (LEAP-2) is associated with caloric intake and glucose metabolism. Purpose: Assess if a low-calorie diet with interval exercise (LCD+INT) raises LEAP-2 more than LCD in relation to appetite and cardiometabolic health. Methods: Women with obesity were randomized to either 2 weeks of LCD (n = 13, ~1200 kcal/d) or LCD+INT (n = 12; 60 min/d) of INT at 3 min of 90% and 50% HRpeak, respectively. LEAP-2 and acylated ghrelin (AG) were measured at 0, 30, and 60 min, while glucose, insulin, C-peptide, and free fatty acids (FFA) were obtained up to 180 min of a 75 g OGTT. Fasting and 120 min OGTT appetite were assessed via visual analog scales. Results: LCD reduced the BMI (p < 0.001) compared with LCD+INT, but only LCD+INT increased the VO2 max (p = 0.04). Treatments reduced fasting LEAP-2 (p = 0.05), but only LCD increased LEAP-2 iAUC60 min (p = 0.06) and post-prandial LEAP-2 stimulation (p = 0.02). Higher post-LEAP-260 min tended to relate to a lower desire to eat 120 min of sweet (r = 0.40, p = 0.07) and salty foods (r = 0.41, p = 0.06), as well as lower AG30 min (r = -0.51, p = 0.01) and higher FFA iAUC180 min (r = 0.56, p = 0.007) post-treatment. Conclusion: LCD, with or without INT, reduced fasting LEAP-2, but only LCD raised post-prandial LEAP-2. How diet and exercise impact LEAP-2 for lower chronic disease risk awaits further investigation.
Collapse
Affiliation(s)
| | - Steven K. Malin
- Department of Kinesiology & Health, New Brunswick, NJ 08091, USA
- Department of Kinesiology, University of Virginia, Charlottesville, VA 22903, USA
- Division of Endocrinology, Metabolism & Nutrition, Department of Medicine, Rutgers University, New Brunswick, NJ 08091, USA
- New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ 08091, USA
- Institute of Translational Medicine and Science, Rutgers University, New Brunswick, NJ 08091, USA
| |
Collapse
|