1
|
Liu RA, Wang BY, Chen X, Pu YQ, Zi JJ, Mei W, Zhang YP, Qiu L, Xiong W. Association Study of Pleural Mesothelioma and Oncogenic Simian Virus 40 in the Crocidolite-Contaminated Area of Dayao County, Yunnan Province, Southwest China. Genet Test Mol Biomarkers 2024; 28:189-198. [PMID: 38634609 DOI: 10.1089/gtmb.2023.0532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Background: In Dayao County, Chuxiong Yi Autonomous Prefecture, Yunnan Province, Southwest China, 5% of the surface is scattered with blue asbestos, which has a high incidence of pleural mesothelioma (PMe). Simian virus 40 (SV40) is a small circular double-stranded DNA polyomavirus that can cause malignant transformation of normal cells of various human and animal tissue types and promote tumor growth. In this study, we investigate whether oncogenic SV40 is associated with the occurrence of PMe in the crocidolite-contaminated area of Dayao County, Yunnan Province, Southwest China. Methods: Tumor tissues from 51 patients with PMe (40 of whom had a history of asbestos exposure) and pleural tissues from 12 non-PMe patients (including diseases such as pulmonary maculopathy and pulmonary tuberculosis) were collected. Three pairs of low-contamination risk primers (SVINT, SVfor2, and SVTA1) were used to detect the gene fragment of SV40 large T antigen (T-Ag) by polymerase chain reaction (PCR). The presence of SV40 T-Ag in PMe tumor tissues and PMe cell lines was detected by Western blotting and immunohistochemical staining with SV40-related antibodies (PAb 101 and PAb 416). Results: PCR, Western blotting, and immunohistochemical staining results showed that the Met5A cell line was positive for SV40 and contained the SV40 T-Ag gene and protein. In contrast, the various PMe cell lines NCI-H28, NCI-H2052, and NCI-H2452 were negative for SV40. PCR was negative for all three sets of low-contamination risk primers in 12 non-PMe tissues and 51 PMe tissues. SV40 T-Ag was not detected in 12 non-PMe tissues or 51 PMe tissues by immunohistochemical staining. Conclusion: Our data suggest that the occurrence of PMe in the crocidolite-contaminated area of Yunnan Province may not be related to SV40 infection and that crocidolite exposure may be the main cause of PMe. The Clinical Trial Registration number: 2020-YXLL20.
Collapse
Affiliation(s)
- Ru-Ai Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dali University, Dali, China
- Yunnan Provincial Key Laboratory of Clinical Biochemical Testing, Dali University, Dali, China
| | - Bo-Yong Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dali University, Dali, China
- Yunnan Provincial Key Laboratory of Clinical Biochemical Testing, Dali University, Dali, China
| | - Xin Chen
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dali University, Dali, China
- Yunnan Provincial Key Laboratory of Clinical Biochemical Testing, Dali University, Dali, China
| | - Yuan-Qian Pu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dali University, Dali, China
- Yunnan Provincial Key Laboratory of Clinical Biochemical Testing, Dali University, Dali, China
| | - Jia-Ji Zi
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dali University, Dali, China
- Yunnan Provincial Key Laboratory of Clinical Biochemical Testing, Dali University, Dali, China
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, China
| | - Wen Mei
- Department of Pathology, The First People's Hospital of Chuxiong Prefecture, Chuxiong, China
| | - Ye-Pin Zhang
- Department of Pathology, The First People's Hospital of Chuxiong Prefecture, Chuxiong, China
| | - Lu Qiu
- School of Chemistry and Life Sciences, Chuxiong Normal College, Chuxiong, China
| | - Wei Xiong
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dali University, Dali, China
- Yunnan Provincial Key Laboratory of Clinical Biochemical Testing, Dali University, Dali, China
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, China
| |
Collapse
|
2
|
Gazzellone A, Sangiorgi E. From Churchill to Elephants: The Role of Protective Genes against Cancer. Genes (Basel) 2024; 15:118. [PMID: 38255007 PMCID: PMC10815068 DOI: 10.3390/genes15010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
Richard Peto's paradox, first described in 1975 from an epidemiological perspective, established an inverse correlation between the probability of developing cancer in multicellular organisms and the number of cells. Larger animals exhibit fewer tumors compared to smaller ones, though exceptions exist. Mice are more susceptible to cancer than humans, while elephants and whales demonstrate significantly lower cancer prevalence rates than humans. How nature and evolution have addressed the issue of cancer in the animal kingdom remains largely unexplored. In the field of medicine, much attention has been devoted to cancer-predisposing genes, as they offer avenues for intervention, including blocking, downregulating, early diagnosis, and targeted treatment. Predisposing genes also tend to manifest clinically earlier and more aggressively, making them easier to identify. However, despite significant strides in modern medicine, the role of protective genes lags behind. Identifying genes with a mild predisposing effect poses a significant challenge. Consequently, comprehending the protective function conferred by genes becomes even more elusive, and their very existence is subject to questioning. While the role of variable expressivity and penetrance defects of the same variant in a family is well-documented for many hereditary cancer syndromes, attempts to delineate the function of protective/modifier alleles have been restricted to a few instances. In this review, we endeavor to elucidate the role of protective genes observed in the animal kingdom, within certain genetic syndromes that appear to act as cancer-resistant/repressor alleles. Additionally, we explore the role of protective alleles in conditions predisposing to cancer. The ultimate goal is to discern why individuals, like Winston Churchill, managed to live up to 91 years of age, despite engaging in minimal physical activity, consuming large quantities of alcohol daily, and not abstaining from smoking.
Collapse
Affiliation(s)
| | - Eugenio Sangiorgi
- Sezione di Medicina Genomica, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| |
Collapse
|
3
|
Marker PC, Unterberger CJ, Swanson SM. GH-dependent growth of experimentally induced carcinomas in vivo. Endocr Relat Cancer 2023; 30:e220403. [PMID: 36826838 PMCID: PMC10140676 DOI: 10.1530/erc-22-0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/24/2023] [Indexed: 02/25/2023]
Abstract
Interest in investigating the role of the growth hormone (GH)/insulin-like growth factor 1 (IGF-1) axis in the initiation and progression of experimentally induced carcinomas has arisen due to several observations in the human population. First, subjects with Laron syndrome who lack GH signaling have significantly lower rates of cancer than people who have normal GH signaling. Second, epidemiologic studies have found strong associations between elevated circulating IGF-1 and the incidence of several common cancers. Third, women who bear children early in life have a dramatically reduced risk of developing breast cancer, which may be due to differences in hormone levels including GH. These observations have motivated multiple studies that have experimentally altered activity of the GH/IGF-1 axis in the context of experimental carcinoma models in mice and rats. Most of these studies have utilized carcinoma models for four organ systems that are also frequent sites of carcinomas in humans: the mammary gland, prostate gland, liver, and colon. This review focuses on these studies and describes some of the most common genetic models used to alter the activity of the GH/IGF-1 axis in experimentally induced carcinomas. A recurring theme that emerges from these studies is that manipulations that reduce the activity of GH or mediators of GH action also inhibit carcinogenesis in multiple model systems.
Collapse
Affiliation(s)
- Paul C. Marker
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Christopher J. Unterberger
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Steven M. Swanson
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|