1
|
Aljaibeji H, Heydarpour M, Stanton AM, Williams JS, Pojoga LH, Romero JR, Williams GH. Role of Raptor Gene Variants in Hypertension: Influence on Blood Pressure Independent of Salt Intake in White Population. Hypertension 2024; 81:1167-1177. [PMID: 38497230 PMCID: PMC11023780 DOI: 10.1161/hypertensionaha.123.22273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/29/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND The mTOR (mechanistic target of rapamycin) is an essential regulator of fundamental biological processes. mTOR forms 2 distinct complexes, mTORC1 (mTOR complex 1) when it binds with RAPTOR (Regulatory-associated Protein of mTOR) and mTORC2 (mTOR complex 2) when it associates with RICTOR (Rapamycin-insesitive companion of mTOR). Due to the previous link between the mTOR pathway, aldosterone, and blood pressure (BP), we anticipated that variants in the mTOR complex might be associated with salt-sensitive BP. METHODS BP and other parameters were assessed after a one-week liberal Na+ (200 mmol/d) and a one-week restricted Na+ (10 mmol/d) diet in 608 White subjects from the Hypertensive Pathotype cohort, single-nucleotide variants in MTOR, RPTOR, and RICTOR genes were obtained for candidate genes analyses. RESULTS The analysis revealed a significant association between a single nucleotide variants within the RPTOR gene and BP. Individuals carrying the RPTOR rs9901846 homozygous risk allele (AA) and heterozygous risk allele (GA) exhibited a 5 mm Hg increase in systolic BP on a liberal diet compared with nonrisk allele individuals (GG), but only in women. This single nucleotide variants effect was more pronounced on the restricted diet and present in both sexes, with AA carriers having a 9 mm Hg increase and GA carriers having a 5 mm Hg increase in systolic BP compared with GG. Interestingly, there were no significant associations between MTOR or RICTOR gene variants and BP. CONCLUSIONS The RPTOR gene variation is associated with elevated BP in White participants, regardless of salt intake, specifically in females.
Collapse
Affiliation(s)
- Hayat Aljaibeji
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, MA (H.A., M.H., A.M.S., J.S.W., L.H.P., J.R.R., G.H.W.)
| | - Mahyar Heydarpour
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, MA (H.A., M.H., A.M.S., J.S.W., L.H.P., J.R.R., G.H.W.)
| | - Ana Maria Stanton
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, MA (H.A., M.H., A.M.S., J.S.W., L.H.P., J.R.R., G.H.W.)
| | - Jonathan S Williams
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, MA (H.A., M.H., A.M.S., J.S.W., L.H.P., J.R.R., G.H.W.)
| | - Luminita H Pojoga
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, MA (H.A., M.H., A.M.S., J.S.W., L.H.P., J.R.R., G.H.W.)
| | - Jose R Romero
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, MA (H.A., M.H., A.M.S., J.S.W., L.H.P., J.R.R., G.H.W.)
| | - Gordon H Williams
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, MA (H.A., M.H., A.M.S., J.S.W., L.H.P., J.R.R., G.H.W.)
| |
Collapse
|
2
|
Ali Y, Gomez-Sanchez CE, Plonczynski M, Naray-Fejes-Toth A, Fejes-Toth G, Gomez-Sanchez EP. mTOR Regulates Mineralocorticoid Receptor Transcriptional Activity by ULK1-Dependent and -Independent Mechanisms. Endocrinology 2024; 165:bqae015. [PMID: 38325289 PMCID: PMC10887451 DOI: 10.1210/endocr/bqae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
The mineralocorticoid receptor (MR) is a transcription factor for genes mediating diverse, cell-specific functions, including trophic effects as well as promoting fluid/electrolyte homeostasis. It was reported that in intercalated cells, phosphorylation of the MR at serine 843 (S843) by Unc-51-like kinase (ULK1) inhibits MR activation and that phosphorylation of ULK1 by mechanistic target of rapamycin (mTOR) inactivates ULK1, and thereby prevents MR inactivation. We extended these findings with studies in M1 mouse cortical collecting duct cells stably expressing the rat MR and a reporter gene. Pharmacological inhibition of ULK1 dose-dependently increased ligand-induced MR transactivation, while ULK1 activation had no effect. Pharmacological inhibition of mTOR and CRISPR/gRNA gene knockdown of rapamycin-sensitive adapter protein of mTOR (Raptor) or rapamycin-insensitive companion of mTOR (Rictor) decreased phosphorylated ULK1 and ligand-induced activation of the MR reporter gene, as well as transcription of endogenous MR-target genes. As predicted, ULK1 inhibition had no effect on aldosterone-mediated transcription in M1 cells with the mutated MR-S843A (alanine cannot be phosphorylated). In contrast, mTOR inhibition dose-dependently decreased transcription in the MR-S843A cells, though not as completely as in cells with the wild-type MR-S843. mTOR, Raptor, and Rictor coprecipitated with the MR and addition of aldosterone increased their phosphorylated, active state. These results suggest that mTOR significantly regulates MR activity in at least 2 ways: by suppressing MR inactivation by ULK1, and by a yet ill-defined mechanism that involves direct association with MR. They also provide new insights into the diverse functions of ULK1 and mTOR, 2 key enzymes that monitor the cell's energy status.
Collapse
Affiliation(s)
- Yusuf Ali
- Research Service, G. V. (Sonny) Montgomery VA Medical Center, Jackson, MS 39216, USA
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Celso E Gomez-Sanchez
- Research Service, G. V. (Sonny) Montgomery VA Medical Center, Jackson, MS 39216, USA
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Maria Plonczynski
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | - Geza Fejes-Toth
- Department of Physiology, Dartmouth Medical School, Lebanon, NH 03755, USA
| | - Elise P Gomez-Sanchez
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|