1
|
Pasha A, Tondo A, Favre C, Calvani M. Inside the Biology of the β3-Adrenoceptor. Biomolecules 2024; 14:159. [PMID: 38397396 PMCID: PMC10887351 DOI: 10.3390/biom14020159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Since the first discovery in 1989, the β3-adrenoceptor (β3-AR) has gained great attention because it showed the ability to regulate many physiologic and metabolic activities, such as thermogenesis and lipolysis in brown and white adipose tissue, respectively (BAT, WAT), negative inotropic effects in cardiomyocytes, and relaxation of the blood vessels and the urinary bladder. The β3-AR has been suggested as a potential target for cancer treatment, both in adult and pediatric tumors, since under hypoxia its upregulation in the tumor microenvironment (TME) regulates stromal cell differentiation, tumor growth and metastases, signifying that its agonism/antagonism could be useful for clinical benefits. Promising results in cancer research have proposed the β3-AR being targeted for the treatment of many conditions, with some drugs, at present, undergoing phase II and III clinical trials. In this review, we report the scientific journey followed by the research from the β3-Ars' discovery, with focus on the β3-Ars' role in cancer initiation and progression that elects it an intriguing target for novel antineoplastic approaches. The overview highlights the great potential of the β3-AR, both in physiologic and pathologic conditions, with the intention to display the possible benefits of β3-AR modulation in cancer reality.
Collapse
Affiliation(s)
- Amada Pasha
- Department of Pediatric Hematology–Oncology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (A.P.); (A.T.); (C.F.)
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy
| | - Annalisa Tondo
- Department of Pediatric Hematology–Oncology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (A.P.); (A.T.); (C.F.)
| | - Claudio Favre
- Department of Pediatric Hematology–Oncology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (A.P.); (A.T.); (C.F.)
| | - Maura Calvani
- Department of Pediatric Hematology–Oncology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (A.P.); (A.T.); (C.F.)
| |
Collapse
|
2
|
Buxton ILO, Asif H, Barnett SD. β3 Receptor Signaling in Pregnant Human Myometrium Suggests a Role for β3 Agonists as Tocolytics. Biomolecules 2023; 13:1005. [PMID: 37371585 DOI: 10.3390/biom13061005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Preterm labor leading to preterm birth is the leading cause of infant morbidity and mortality. At the present time, nothing can reliably halt labor once it begins. The knowledge that agonists of the β2 adrenergic receptor relax airway smooth muscle and are effective in the treatment of asthma led to the notion that β2 mimetics would prevent preterm birth by relaxing uterine smooth muscle. The activation of cAMP-dependent protein kinase by β2 receptors is unable to provide meaningful tocolysis. The failure of β2 agonists such as ritodrine and terbutaline to prevent preterm birth suggests that the regulation of uterine smooth muscle is disparate from that of airway. Other smooth muscle quiescent-mediating molecules, such as nitric oxide, relax vascular smooth muscle in a cGMP-protein kinase G-dependent manner; however, nitric oxide activation of protein kinase G fails to explain the relaxation of the myometrium to nitric oxide. Moreover, nitric oxide-mediated relaxation is blunted in preterm labor, and thus, for this reason and because of the fall in maternal blood pressure, nitric oxide cannot be employed as a tocolytic. The β3 adrenergic receptor-mediated relaxation of the human myometrium is claimed to be cAMP-dependent protein kinase-dependent. This is scientifically displeasing given the failure of β2 agonists as tocolytics and suggests a non-canonical signaling role for β3AR in myometrium. The addition of the β3 agonist mirabegron to pregnant human myometrial strips in the tissue bath relaxes oxytocin-induced contractions. Mirabegron stimulates nitric oxide production in myometrial microvascular endothelial cells, and the relaxation of uterine tissue in vitro is partially blocked by the addition of the endothelial nitric oxide synthase blocker Nω-Nitro-L-arginine. Recent data suggest that both endothelial and smooth muscle cells respond to β3 stimulation and contribute to relaxation through disparate signaling pathways. The repurposing of approved medications such as mirabegron (Mybetriq™) tested in human myometrium as uterine tocolytics can advance the prevention of preterm birth.
Collapse
Affiliation(s)
- Iain L O Buxton
- Myometrial Function Group, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Hazik Asif
- Myometrial Function Group, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Scott D Barnett
- Myometrial Function Group, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| |
Collapse
|
3
|
Asif H, Barnett SD, Buxton ILO. Title: β3 Adrenergic Receptor Signaling in the Human Myometrium. Reprod Sci 2022; 30:124-134. [PMID: 35380411 PMCID: PMC8980516 DOI: 10.1007/s43032-022-00917-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/11/2022] [Indexed: 01/06/2023]
Abstract
Preterm labor leading to preterm birth is the leading cause of infant morbidity and mortality. Although β2 adrenergic agonists fail to provide adequate tocolysis, the expression of the β3 adrenergic receptor in myometrium and its unique signaling suggest a role for β3 agonist in the management of preterm labor. Western blot analysis showed that the β3 adrenergic receptor expression increased in human pregnancy myometrium compared to nonpregnant tissues (p < 0.0001). There was no difference in β3 adrenergic receptor expression throughout pregnancy (p > 0.05). The addition of the β3 agonist mirabegron in the tissue bath relaxed oxytocin contracted myometrium with an EC50 of 41.5 µM. Relaxation was partially blocked by the addition of the eNOS blocker Nω-nitro-L-arginine, or the large conductance potassium channel blocker paxilline. Combination of Nω-nitro-L-arginine and paxilline prevented mirabegron-mediated relaxation. Imaging revealed that the β3 adrenergic receptors are expressed by both myocyte and microvascular endothelial cells isolated from human myometrium. Nitric oxide production measured by 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate revealed that mirabegron stimulated nitric oxide production in myometrial endothelial cells. These data suggest that both endothelial and smooth muscle cells contribute to relaxation through disparate signaling pathways. Repurposing of approved medications tested in human myometrium as uterine tocolytics can advance prevention of preterm birth. These data argue that further examination of β3 adrenergic receptor signaling in myometrium may reveal mirabegron as a useful tocolytic in combination tocolysis regimens.
Collapse
Affiliation(s)
- Hazik Asif
- School of Medicine, Department of Pharmacology, Myometrial Function Laboratory, University of Nevada, Reno, NV 89557-0318 USA
| | - Scott D. Barnett
- School of Medicine, Department of Pharmacology, Myometrial Function Laboratory, University of Nevada, Reno, NV 89557-0318 USA
| | - Iain L. O. Buxton
- School of Medicine, Department of Pharmacology, Myometrial Function Laboratory, University of Nevada, Reno, NV 89557-0318 USA
| |
Collapse
|
4
|
Villegas D, Giard O, Brochu-Gaudreau K, Rousseau É. Activation of TRPV4 channels leads to a consistent tocolytic effect on human myometrial tissues. Eur J Obstet Gynecol Reprod Biol X 2021; 10:100124. [PMID: 33733088 PMCID: PMC7941160 DOI: 10.1016/j.eurox.2021.100124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 02/26/2021] [Indexed: 11/21/2022] Open
Abstract
Specific pharmacological activation of alternative Ca2+ conductance. Activation of TRPV channels, abolishes the rhythmic contractile activity. Tocolysis was consistently induced on human myometrial strips.
Background Human myometrium is a therapeutic target for labor induction and preterm labor. Objective This study aimed to assess the physiological role of alternative calcium conductance on contractions triggered by uterotonic drugs in human myometrium. Membrane conductances, supported by TRPV channels, may provide alternative pathways to control either free intracellular and/or submembrane Ca2+-concentration, which in turn will modulate membrane polarization and contractile responses. Study design Uterine biopsies were obtained from consenting women undergoing elective caesarean delivery at term without labor (N = 22). Isometric tension measurements were performed on uterine smooth muscle strips (n = 132). Amplitude, frequency, and area under the curve (AUC) of phasic contractions, as well as resting tone, were measured under various experimental conditions. Immuno histo- and cyto-chemistry, as well as Western blot analyses, have been performed with specific antibodies against TRPV1, TRPV3, and TRPV4 proteins. TRPV4 agonists; GSK1016790A, 4αPDD, and 5,6-EET were used to assess the role of TRPV4 channels on rhythmic activity triggered by 30–300 nM oxytocin. 5 μM of ruthenium red was used as an efficient blocker of ionic current through TRPV4 channels. Nanomolar concentrations of iberiotoxin (IbTX) were also used to confirm the downstream involvement of BKCa channels in controlling uterine reactivity and contractility. Results The expression of TRPV3 and TRPV4 isoforms has now been demonstrated in human myometrial tissue and cell culture. Nanomolar concentrations of the TRPV4 agonists, (either GSK1016790A or 4αPDD) abolished the rhythmic contractions, resulting in a rapid and consistent tocolytic effect. While 5 μM of ruthenium reversed this tocolytic effect. The addition of IbTX (a BKCa channel blocker) reversed the effects of GSK1016790A. Carvacrol, a TRPV3 agonist, had similar tocolytic effects on rhythmic contractions albeit at higher concentrations. This inhibitory effect was also reversed by ruthenium red. Conclusion Collectively, these data suggest that activation of TRPV4 leads to a Ca2+ entry and subsequent BKCa channel activation (increase in open state probability), which in turn hyperpolarizes the myometrial cell membrane, inactivating L-type Ca2+ channels and efficiently abrogates contractile activity. Consequently, alternative Ca2+ conductance supported by TRPV4 plays a physiological role in the modulation of myometrial reactivity.
Collapse
Affiliation(s)
- Daniela Villegas
- Department of Obstetrics and Gynecology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, and Centre de Recherche du CHUS, Sherbrooke, QC, Canada
| | - Olivier Giard
- Department of Obstetrics and Gynecology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, and Centre de Recherche du CHUS, Sherbrooke, QC, Canada
| | - Karine Brochu-Gaudreau
- Department of Obstetrics and Gynecology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, and Centre de Recherche du CHUS, Sherbrooke, QC, Canada
| | - Éric Rousseau
- Department of Obstetrics and Gynecology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, and Centre de Recherche du CHUS, Sherbrooke, QC, Canada
| |
Collapse
|
5
|
Sharma V, Nair SV, Jaitley P, Nakade UP, Sharma A, Choudhury S, Garg SK. ATP-sensitive and maxi potassium channels regulate BRL 37344-induced tocolysis in buffaloes-an in vitro study. Theriogenology 2017; 107:194-202. [PMID: 29172176 DOI: 10.1016/j.theriogenology.2017.10.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 11/17/2022]
Abstract
Cellular coupling of beta3-adrenoceptors (β3-ADR) to potassium channels in myometrium is largely unknown. In vitro study was undertaken to unravel the presence of β3-adrenergic receptors (ADR) and the role of K+-channels in mediating β3-ADR-induced relaxation in isolated myometrial strips from cyclic non-pregnant water buffaloes. Isometric tension was recorded in isolated myometrial strips using data acquisition system based physiograph. Compared to SR 59230A, BRL 37344 was found to be more potent in inducing β3-dependent myometrial relaxation which was significantly (p < 0.05) inhibited in the presence of β3 antagonist, SAR 150640. The immunoreactive protein to β3-ADR was also detected in membrane fraction of myometrial protein. Further, incubation with BRL 37344 (10 μM) significantly (p < 0.05) increased c-AMP accumulation (37.58 ± 9.52 pmol/mg protein; n = 4) in the myometrial strips compared to basal c-AMP level (16.85 ± 3.87 pmol/mg protein; n = 4). The concentration response curves (CRC) of BRL 37344 were significantly (p < 0.05) shifted towards right in the presence of KATP channels specific blocker, glibenclamide (10 μM) and maxi K+-channels (BKCa) specific blocker, iberiotoxin (100 nM), with decrease in both efficacy and potency as compared to control. However, 4-aminopyridine (4-AP), a specific blocker of the voltage gated K+-channels (Kv), failed to alter the CRC of BRL 37344. Existence of immunoreactive protein to Kir6.1, α-subunit of BKCa and Kv1.1 channels were also detected in the membrane fraction of myometrial protein. Based on the above findings, it can be concluded that BRL 37344 is a potent stimulator of β3-adrenoceptors in buffalo myometrium and besides mediating their effect through rise in c-AMP, they are coupled to KATP and BKCa channels in inducing tocolytic effects.
Collapse
Affiliation(s)
- Vipin Sharma
- Smooth Muscle & Molecular Pharmacology Laboratory, Department of Veterinary Pharmacology & Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam, Go-Anusandhan Sansthan, Mathura 281001, India
| | - Sooraj V Nair
- Smooth Muscle & Molecular Pharmacology Laboratory, Department of Veterinary Pharmacology & Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam, Go-Anusandhan Sansthan, Mathura 281001, India
| | - Pooja Jaitley
- Smooth Muscle & Molecular Pharmacology Laboratory, Department of Veterinary Pharmacology & Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam, Go-Anusandhan Sansthan, Mathura 281001, India
| | - Udayraj P Nakade
- Smooth Muscle & Molecular Pharmacology Laboratory, Department of Veterinary Pharmacology & Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam, Go-Anusandhan Sansthan, Mathura 281001, India
| | - Abhishek Sharma
- Smooth Muscle & Molecular Pharmacology Laboratory, Department of Veterinary Pharmacology & Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam, Go-Anusandhan Sansthan, Mathura 281001, India
| | - Soumen Choudhury
- Smooth Muscle & Molecular Pharmacology Laboratory, Department of Veterinary Pharmacology & Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam, Go-Anusandhan Sansthan, Mathura 281001, India.
| | - Satish Kumar Garg
- Smooth Muscle & Molecular Pharmacology Laboratory, Department of Veterinary Pharmacology & Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam, Go-Anusandhan Sansthan, Mathura 281001, India
| |
Collapse
|
6
|
Altered uterine contractility in response to β-adrenoceptor agonists in ovarian cancer. J Physiol Sci 2016; 67:711-722. [PMID: 27838886 PMCID: PMC5639028 DOI: 10.1007/s12576-016-0500-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/28/2016] [Indexed: 11/29/2022]
Abstract
We aimed to prospectively examine β-adrenoceptor-mediated uterine contractility in women suffering from gynecological malignancies. Myometrial specimens were obtained from non-pregnant women undergoing hysterectomy for benign gynecological disorders, and ovarian, endometrial, synchronous ovarian–endometrial, and cervical cancer. Contractions of myometrial strips in an organ bath before and after cumulative dosages of β2- and β3-adrenoceptor agonists with preincubation of propranolol, SR 59230A, and butoxamine were studied. All agonists induced a dose-dependent attenuation for uterine contractility in endometrial or cervical cancer, similar to that observed in the reference group. Contradictory effects were observed for ovarian cancer alone or in combination with endometrial cancer. CL 316243 or ritodrine abolished the relaxation, whereas BRL 37344 increased the uterine contractility in ovarian cancer. Moreover, β-adrenoceptor antagonists caused varied effects for β2- or β3-adrenoceptor agonists. Our experiments demonstrate that ovarian cancer, alone or as synchronous ovarian–endometrial cancer, substantially alters uterine contractility in response to β-adrenoceptor agonists.
Collapse
|
7
|
Hehir MP, Morrison JJ. Paeoniflorin, a novel heat-shock protein inducing compound, and human myometrial contractility in vitro. J Obstet Gynaecol Res 2015; 42:302-6. [PMID: 26643660 DOI: 10.1111/jog.12895] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 08/17/2015] [Accepted: 10/05/2015] [Indexed: 12/28/2022]
Abstract
AIM Heat shock proteins (HSPs) are synthesized in virtually all organisms in response to increases in temperature. They are associated with a relaxant effect on the human myometrium and are present in decreased concentration in the myometrium at the time of labor. Paeoniflorin is derived from Paeonia lactiflora and has been shown to induce the synthesis of HSPs in cultured mammalian cells. The purpose of the study was to evaluate the effect of paeoniflorin on human uterine contractility. MATERIAL AND METHODS Samples of human myometrium were taken at lower segment cesarean section. Dissected muscle strips were suspended under isometric conditions and exposed to cumulative additions of paeoniflorin in concentrations ranging from 1 nmol/L to 10 mol/L. Control experiments were simultaneously performed. RESULTS Paeoniflorin was found to exert an inhibitory effect on spontaneous and agonist-induced contractions compared to control strips. The mean maximal inhibition values were: 42.21% ± 9.26 for spontaneous contractions (n = 6; P < 0.0001) and 47.84% ± 9.05 for oxytocin-induced contractions (n = 6; P < 0.0001). CONCLUSION The HSP inducing compound, paeoniflorin, had a relaxant effect on human uterine contractility in vitro. These results reinforce the fact that HSPs may play a physiological role in the onset of labor and may also provide future targets for novel tocolytic treatments.
Collapse
Affiliation(s)
- Mark P Hehir
- NUI Galway, Obstetrics and Gynaecology, Clinical Science Institute, Newcastle, Galway, Ireland
| | - John J Morrison
- NUI Galway, Obstetrics and Gynaecology, Clinical Science Institute, Newcastle, Galway, Ireland
| |
Collapse
|
8
|
Li Y, Lorca RA, Ma X, Rhodes A, England SK. BK channels regulate myometrial contraction by modulating nuclear translocation of NF-κB. Endocrinology 2014; 155:3112-22. [PMID: 24914944 PMCID: PMC4098006 DOI: 10.1210/en.2014-1152] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The large-conductance Ca(2+)-activated K(+) (BK) channel plays an essential role in maintaining uterine quiescence during pregnancy. Growing evidence has shown a link between the BK channel and bacterial lipopolysaccharide (LPS)-induced nuclear factor-κB (NF-κB) activation in macrophages. In the uterus, NF-κB activation plays an important role in inflammatory processes that lead to parturition. Our objective was to determine whether the BK channel regulates uterine contraction, in part, by modulating NF-κB translocation into the nucleus. We compared the effects of BK channel modulation to those of LPS on NF-κB nuclear translocation and contraction in an immortalized human myometrial cell line (human telomerase reverse transcriptase [hTERT]) and uterine myocytes. Our results showed that BK channel inhibitors paxilline and penitrem A induced translocation of NF-κB into the nucleus in both hTERT cells and uterine myocytes to a similar extent as LPS treatment, and LPS and paxilline similarly reduced BK channel currents. Conversely, neither BK channel openers nor blockade of the small conductance Ca(2+)-activated K(+) channel protein 3 had an effect on NF-κB translocation. Additionally, collagen-based assays showed that paxilline induced contraction of hTERT cells and uterine myocytes. This was dependent upon cyclooxygenase-2 activity. Moreover, paxilline-induced contractility and increased cyclooxygenase-2 expression both depended on availability of free NF-κB. This study suggests that BK channels regulate myometrial contraction, in part, by modulating nuclear translocation of NF-κB.
Collapse
Affiliation(s)
- Youe Li
- Center for Women's Reproductive Sciences Research, Department of Obstetrics and Gynecology, Basic Science Division, Washington University in St Louis, St Louis, Missouri 63110
| | | | | | | | | |
Collapse
|
9
|
Lorca RA, Prabagaran M, England SK. Functional insights into modulation of BKCa channel activity to alter myometrial contractility. Front Physiol 2014; 5:289. [PMID: 25132821 PMCID: PMC4116789 DOI: 10.3389/fphys.2014.00289] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/14/2014] [Indexed: 12/15/2022] Open
Abstract
The large-conductance voltage- and Ca(2+)-activated K(+) channel (BKCa) is an important regulator of membrane excitability in a wide variety of cells and tissues. In myometrial smooth muscle, activation of BKCa plays essential roles in buffering contractility to maintain uterine quiescence during pregnancy and in the transition to a more contractile state at the onset of labor. Multiple mechanisms of modulation have been described to alter BKCa channel activity, expression, and cellular localization. In the myometrium, BKCa is regulated by alternative splicing, protein targeting to the plasma membrane, compartmentation in membrane microdomains, and posttranslational modifications. In addition, interaction with auxiliary proteins (i.e., β1- and β2-subunits), association with G-protein coupled receptor signaling pathways, such as those activated by adrenergic and oxytocin receptors, and hormonal regulation provide further mechanisms of variable modulation of BKCa channel function in myometrial smooth muscle. Here, we provide an overview of these mechanisms of BKCa channel modulation and provide a context for them in relation to myometrial function.
Collapse
Affiliation(s)
- Ramón A Lorca
- Department of Obstetrics and Gynecology, Washington University in St. Louis School of Medicine St. Louis, MO, USA
| | - Monali Prabagaran
- Department of Obstetrics and Gynecology, Washington University in St. Louis School of Medicine St. Louis, MO, USA
| | - Sarah K England
- Department of Obstetrics and Gynecology, Washington University in St. Louis School of Medicine St. Louis, MO, USA
| |
Collapse
|
10
|
Chaemsaithong P, Madan I, Romero R, Than NG, Tarca AL, Draghici S, Bhatti G, Yeo L, Mazor M, Kim CJ, Hassan SS, Chaiworapongsa T. Characterization of the myometrial transcriptome in women with an arrest of dilatation during labor. J Perinat Med 2013; 41:665-81. [PMID: 23893668 PMCID: PMC4183453 DOI: 10.1515/jpm-2013-0086] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 05/17/2013] [Indexed: 01/28/2023]
Abstract
OBJECTIVE The molecular basis of failure to progress in labor is poorly understood. This study was undertaken to characterize the myometrial transcriptome of patients with an arrest of dilatation (AODIL). STUDY DESIGN Human myometrium was prospectively collected from women in the following groups: (1) spontaneous term labor (TL; n=29) and (2) arrest of dilatation (AODIL; n=14). Gene expression was characterized using Illumina® HumanHT-12 microarrays. A moderated Student's t-test and false discovery rate adjustment were used for analysis. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) of selected genes was performed in an independent sample set. Pathway analysis was performed on the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database using Pathway Analysis with Down-weighting of Overlapping Genes (PADOG). The MetaCore knowledge base was also searched for pathway analysis. RESULTS (1) Forty-two differentially expressed genes were identified in women with an AODIL; (2) gene ontology analysis indicated enrichment of biological processes, which included regulation of angiogenesis, response to hypoxia, inflammatory response, and chemokine-mediated signaling pathway. Enriched molecular functions included transcription repressor activity, heat shock protein (Hsp) 90 binding, and nitric oxide synthase (NOS) activity; (3) MetaCore analysis identified immune response chemokine (C-C motif) ligand 2 (CCL2) signaling, muscle contraction regulation of endothelial nitric oxide synthase (eNOS) activity in endothelial cells, and triiodothyronine and thyroxine signaling as significantly overrepresented (false discovery rate <0.05); (4) qRT-PCR confirmed the overexpression of Nitric oxide synthase 3 (NOS3); hypoxic ischemic factor 1A (HIF1A); Chemokine (C-C motif) ligand 2 (CCL2); angiopoietin-like 4 (ANGPTL4); ADAM metallopeptidase with thrombospondin type 1, motif 9 (ADAMTS9); G protein-coupled receptor 4 (GPR4); metallothionein 1A (MT1A); MT2A; and selectin E (SELE) in an AODIL. CONCLUSION The myometrium of women with AODIL has a stereotypic transcriptome profile. This disorder has been associated with a pattern of gene expression involved in muscle contraction, an inflammatory response, and hypoxia. This is the first comprehensive and unbiased examination of the molecular basis of an AODIL.
Collapse
|
11
|
Corriveau S, Pasquier JC, Blouin S, Bellabarba D, Rousseau É. Chronic levothyroxine and acute T3 treatments enhance the amplitude and time course of uterine contractions in human. Am J Physiol Endocrinol Metab 2013; 304:E478-85. [PMID: 23249699 DOI: 10.1152/ajpendo.00346.2012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study compares the functional consequences of levothyroxine (T4) treatment during pregnancy as well as the acute affects of triiodothyronine (T3) on spontaneous uterine contractile activities observed in vitro. Uterine biopsies were obtained from consenting women undergoing elective caesarean at term (n = 28). Spontaneous contractile activities from T4-treated pregnant women (n = 8) were compared with control patients (n = 20) by isometric tension measurements. Effects of acute T3 and T4 on control tissues were also monitored. Area under the curve, amplitude, time to peak, duration, and frequency were quantified. In uterine strips from women treated for hypothyroidism, phasic uterine contractions of larger amplitude (+77%) were observed, with a prolonged duration at 90% relaxation (+138%) and reduced frequency (-55%) compared with values of the control group. The addition of exogenous T3 in vitro on control strips induced a significant increase in the duration of the contractions and a significant decrease in frequency (P < 0.05), which partially mimics the results obtained in strips from T4-treated women. Significant modifications of contractile properties were observed in strips from pregnant women treated with levothyroxine, consistent with those observed with the addition of exogenous T3. Clinical practices of modern obstetrics should take into account the effect of thyroid hormones on uterine contractions' time course to ensure a tighter followup at the end of pregnancy to achieve safer delivery.
Collapse
Affiliation(s)
- Stéphanie Corriveau
- Department of Obstetrics and Gynecology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | | | | |
Collapse
|
12
|
Mittal P, Romero R, Tarca AL, Draghici S, Nhan-Chang CL, Chaiworapongsa T, Hotra J, Gomez R, Kusanovic JP, Lee DC, Kim CJ, Hassan SS. A molecular signature of an arrest of descent in human parturition. Am J Obstet Gynecol 2011; 204:177.e15-33. [PMID: 21284969 PMCID: PMC3053040 DOI: 10.1016/j.ajog.2010.09.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 08/18/2010] [Accepted: 09/27/2010] [Indexed: 12/22/2022]
Abstract
OBJECTIVE This study was undertaken to identify the molecular basis of an arrest of descent. STUDY DESIGN Human myometrium was obtained from women in term labor (TL; n = 29) and arrest of descent (AODes; n = 21). Gene expression was characterized using Illumina HumanHT-12 microarrays. A moderated Student t test and false discovery rate adjustment were applied for analysis. Confirmatory quantitative reverse transcription-polymerase chain reaction and immunoblot were performed in an independent sample set. RESULTS Four hundred genes were differentially expressed between women with an AODes compared with those with TL. Gene Ontology analysis indicated enrichment of biological processes and molecular functions related to inflammation and muscle function. Impacted pathways included inflammation and the actin cytoskeleton. Overexpression of hypoxia inducible factor-1a, interleukin -6, and prostaglandin-endoperoxide synthase 2 in AODes was confirmed. CONCLUSION We have identified a stereotypic pattern of gene expression in the myometrium of women with an arrest of descent. This represents the first study examining the molecular basis of an arrest of descent using a genome-wide approach.
Collapse
Affiliation(s)
- Pooja Mittal
- Perinatology Research Branch, National Institute of Child Health and Human Development/National Institutes of Health/Department of Health and Human Services, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ahn HS, dela Peña I, Kim YC, Cheong JH. 4-Chloro-7-Trifluoromethyl-10 H- Benzo[4,5]furo[3,2- b]Indole-1-Carboxylic Acid (TBIC), a Putative BK Ca Channel Opener with Uterine Relaxant Activities. Pharmacology 2011; 87:331-40. [DOI: 10.1159/000328141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 04/04/2011] [Indexed: 11/19/2022]
|
14
|
Corriveau S, Rousseau E, Berthiaume M, Pasquier JC. Lipoxygenase and cyclooxygenase inhibitors reveal a complementary role of arachidonic acid derivatives in pregnant human myometrium. Am J Obstet Gynecol 2010; 203:266.e1-7. [PMID: 20684944 DOI: 10.1016/j.ajog.2010.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 04/19/2010] [Accepted: 06/07/2010] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The aim of this study was to assess the involvement of lipoxygenase (LOX) metabolic pathways in uterine tissues from pregnant women as well as the combined inhibition of LOX and cyclooxygenase (COX) on contractile activity. STUDY DESIGN Uterine biopsies were performed from consenting women undergoing elective caesarean sections at term (n = 24). Western blot analysis and isometric tension measurements were performed in vitro on fresh human myometrial strips. Concentration-response curves to arachidonic acid (AA) 861 and baicalein (5- and 12-LOX inhibitors, respectively) were performed. The combined effects of baicalein and indomethacin were also assessed. Contractile activities were quantified by calculating both amplitude and the area under the curve over 20 minute periods. RESULTS 5- and 12-LOX were present in all tested tissues. Addition of AA861 or baicalein resulted in tocolytic effects (P < .05). Finally, the combined inhibition of both COX and 12-LOX pathways resulted in additive tocolytic effects. CONCLUSION 5- and 12-LOX pathways modulate human myometrium contractility.
Collapse
Affiliation(s)
- Stéphanie Corriveau
- Department of Obstetrics and Gynecology, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | |
Collapse
|
15
|
Silberman Y, Ariwodola OJ, Chappell AM, Yorgason JT, Weiner JL. Lateral paracapsular GABAergic synapses in the basolateral amygdala contribute to the anxiolytic effects of beta 3 adrenoceptor activation. Neuropsychopharmacology 2010; 35:1886-96. [PMID: 20410872 PMCID: PMC3055643 DOI: 10.1038/npp.2010.59] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Norepinephrine (NE) is known to play an integral role in the neurobiological response to stress. Exposure to stressful stimuli increases NE levels in brain regions that regulate stress and anxiety, like the basolateral amygdala (BLA). NE is thought to increase excitability in these areas through alpha- and beta-adrenoceptors (ARs), leading to increased anxiety. Surprisingly, recent studies have shown that systemic beta 3-AR agonist administration decreases anxiety-like behaviors, suggesting that beta 3-ARs may inhibit excitability in anxiety-related brain regions. Therefore, in this study we integrated electrophysiological and behavioral approaches to test the hypothesis that the anxiolytic effects of beta 3-AR agonists may be mediated by an increase in BLA GABAergic inhibition. We examined the effect of a selective beta 3-AR agonist, BRL37344 (BRL), on GABAergic synapses arising from local circuit interneurons and inhibitory synapses originating from a recently described population of cells called lateral paracapsular (LPCS) interneurons. Surprisingly, BRL selectively enhanced LPCS-evoked inhibitory postsynaptic currents (eIPSCs) with no effect on local GABAergic inhibition. BRL also had no effect on glutamatergic synaptic excitation within the BLA. BRL potentiation of LPCS eIPSCs was blocked by the selective beta 3-AR antagonist, SR59230A, or by intracellular dialysis of Rp-CAMPS (cAMP-dependent protein kinase inhibitor), and this enhancement was not associated with any changes in spontaneous IPSCs or LPCS paired-pulse ratio. BRL also increased the amplitude of unitary LPCS IPSCs (uIPSCs) with no effect on uIPSC failure rate. Finally, bilateral BLA microinjection of BRL reduced anxiety-like behaviors in an open-field assay and the elevated plus-maze. Collectively, these data suggest that beta 3-AR activation selectively enhances LPCS, but not local, BLA GABAergic synapses, and that increases in LPCS-mediated inhibition may contribute to the anxiolytic profile of beta 3-AR agonists.
Collapse
Affiliation(s)
- Yuval Silberman
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Olusegun J Ariwodola
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Ann M Chappell
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Jordan T Yorgason
- Neuroscience Program, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Jeff L Weiner
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston Salem, NC, USA,Neuroscience Program, Wake Forest University School of Medicine, Winston Salem, NC, USA,Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston Salem, NC 27157, USA, Tel: +1 336 716 8692, Fax: +1 336 716 8501, E-mail:
| |
Collapse
|
16
|
17 alpha-hydroxyprogesterone caproate vehicle, castor oil, enhances the contractile effect of oxytocin in human myometrium in pregnancy. Am J Obstet Gynecol 2010; 202:453.e1-4. [PMID: 20452486 DOI: 10.1016/j.ajog.2010.03.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 12/08/2009] [Accepted: 03/11/2010] [Indexed: 11/23/2022]
Abstract
OBJECTIVE The possibility exists that the vehicle for 17-alpha-hydroxyprogesterone caproate, castor oil, exerts an effect on human uterine contractility. The aim of this study was to evaluate its effects on contractility of myometrial preparations that were obtained during pregnancy. STUDY DESIGN Myometrial strips were suspended under isometric conditions. Contractility was induced with oxytocin. Strips were incubated in castor oil or physiologic salt solution and suspended for a further oxytocin challenge. Contractile integrals were compared between both groups. RESULTS Strips that were exposed to castor oil demonstrated increased contractile activity that was elicited by oxytocin (mean contractility value, 165.53%+/-17.03%; n=8; P=.004), compared with control strips (mean contractility value, 72.57%+/-7.48%; n=8; P=.003). There was a significant increase in contractile activity of the castor oil-exposed strips, compared with those that were exposed to physiologic salt solution (n=8; P<.001). CONCLUSION Exposure of human myometrial preparations to castor oil results in enhanced oxytocin-induced contractility.
Collapse
|
17
|
Corriveau S, Berthiaume M, Rousseau E, Pasquier JC. Why eicosanoids could represent a new class of tocolytics on uterine activity in pregnant women. Am J Obstet Gynecol 2009; 201:420.e1-7. [PMID: 19788974 DOI: 10.1016/j.ajog.2009.07.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 06/12/2009] [Accepted: 07/16/2009] [Indexed: 11/15/2022]
Abstract
OBJECTIVE The purpose of this study was to assess the effects of exogenous eicosanoids on spontaneous uterine contractile activity. STUDY DESIGN Eight uterine biopsies were performed from women who were undergoing elective cesarean delivery. Tension measurements were performed in vitro on myometrial strips. Contractile activities were quantified by the calculation of the area under the curve. The effects of eicosanoids and specific enzyme inhibitors were assessed. Fractions from various uterine tissues were analyzed by Western blot. RESULTS Data demonstrate the presence, in some tested tissues, of cytochrome P-450 epoxygenase and soluble epoxide hydrolase, which respectively produce and degrade epoxyeicosatrienoic acid regioisomers. Inhibition of soluble epoxide hydrolase with 12-(3-adamantan-1-yl-ureido)-dodecanoic acid or omega-hydroxylase with N-methylsulfonyl-12,12-dibromododec-11-enamide resulted in a tocolytic effect; N-methylsulfonyl-6-[2-propargyloxyphenyl] hexanamide, which is an epoxygenase inhibitor, had no effect. Exogenous epoxyeicosatrienoic acids displayed significant tocolytic effects on spontaneous contractile activities. CONCLUSION Epoxy- and hydroxyeicosanoids represent new bioactive, arachidonic acid by-products with in vitro tocolytic activities. These findings suggest that cytochrome P-450 isozymes may represent relevant pharmacologic targets under physiopathologic conditions.
Collapse
Affiliation(s)
- Stéphanie Corriveau
- Department of Obstetrics and Gynecology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | |
Collapse
|
18
|
Inoue Y, Yoshizato T, Kawarabayashi T. Investigation of beta(2)-adrenoceptor subtype selectivity and organ specificity for bedoradrine (KUR-1246), a novel tocolytic beta-adrenergic receptor stimulant. J Obstet Gynaecol Res 2009; 35:405-13. [PMID: 19527375 DOI: 10.1111/j.1447-0756.2008.01001.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The aim of this study was to evaluate the beta-adrenergic receptor (beta-AR) selectivity, organ specificity and efficacy of delaying the onset of spontaneous delivery of bedoradrine (KUR-1246), a novel uterine relaxant. METHODS beta-AR selectivity was evaluated in terms of the amount of cyclic adenosine monophosphate produced by bedoradrine, ritodrine and isoprenaline in Chinese hamster ovary cells expressing human beta(1)-, beta(2)-AR or beta(3)-AR. Inhibition of contractions of the atrium, trachea and proximal colon by bedoradrine were compared with those of the uterus in pregnant rats using an organ bath method. Finally, the delaying effect of bedoradrine on spontaneous labor was evaluated by an in vivo study using term pregnant rats. RESULTS EC(50) values of bedoradrine for cyclic adenosine monophosphate production in Chinese hamster ovary cells via beta(1)-, beta(2)- and beta(3)-AR were 2400 +/- 30, 2.9 +/- 0.10 and 363 +/- 3 nmol/L, respectively, indicating that bedoradrine had 832- and 126-fold higher selectivity for beta(2)-AR than for beta(1)- and beta(3)-AR. EC(50) values of bedoradrine for the uterus, atrium, trachea and proximal colon were 1.01 +/- 0.27, 2300 +/- 356, 1610 +/- 299 and 219 +/- 23.5 nmol/L, respectively. Thus, bedoradrine was 2280-, 1590- and 217-fold more specific for the uterus than for the atrium, trachea and proximal colon, respectively. Bedoradrine delayed the spontaneous delivery of 21-day-pregnant rats in a dose-dependent manner. CONCLUSIONS Bedoradrine is a promising drug for the treatment of preterm labor in obstetrical practice because it has better selectivity for beta(2)-AR and specificity for the uterus than currently used agents and may effectively delay spontaneous delivery.
Collapse
Affiliation(s)
- Yoshihito Inoue
- Department of Obstetrics and Gynecology, Faculty of Medicine, School of Medicine Fukuoka University, Jonan-ku, Fukuoka, Japan.
| | | | | |
Collapse
|
19
|
Mitchell BF, Taggart MJ. Are animal models relevant to key aspects of human parturition? Am J Physiol Regul Integr Comp Physiol 2009; 297:R525-45. [PMID: 19515978 DOI: 10.1152/ajpregu.00153.2009] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Preterm birth remains the most serious complication of pregnancy and is associated with increased rates of infant death or permanent neurodevelopmental disability. Our understanding of the regulation of parturition remains inadequate. The scientific literature, largely derived from rodent animal models, suggests two major mechanisms regulating the timing of parturition: the withdrawal of the steroid hormone progesterone and a proinflammatory response by the immune system. However, available evidence strongly suggests that parturition in the human has significantly different regulators and mediators from those in most of the animal models. Our objectives are to critically review the data and concepts that have arisen from use of animal models for parturition and to rationalize the use of a new model. Many animal models have contributed to advances in our understanding of the regulation of parturition. However, we suggest that those animals dependent on progesterone withdrawal to initiate parturition clearly have a limitation to their translation to the human. In such models, a linear sequence of events (e.g., luteolysis, progesterone withdrawal, uterine activation, parturition) gives rise to the concept of a "trigger" mechanism. Conversely, we propose that human parturition may arise from the concomitant maturation of several systems in parallel. We have termed this novel concept "modular accumulation of physiological systems" (MAPS). We also emphasize the urgency to determine the precise role of the immune system in the process of parturition in situations other than intrauterine infection. Finally, we accentuate the need to develop a nonprimate animal model whose physiology is more relevant to human parturition. We suggest that the guinea pig displays several key physiological characteristics of gestation that more closely resemble human pregnancy than do currently favored animal models. We conclude that the application of novel concepts and new models are required to advance translational research in parturition.
Collapse
Affiliation(s)
- Bryan F Mitchell
- Department of Obstetrics & Gynecology, Heritage Medical Research Centre, University of Alberta, Edmonton, Alberta, Canada.
| | | |
Collapse
|
20
|
Hristov KL, Cui X, Brown SM, Liu L, Kellett WF, Petkov GV. Stimulation of beta3-adrenoceptors relaxes rat urinary bladder smooth muscle via activation of the large-conductance Ca2+-activated K+ channels. Am J Physiol Cell Physiol 2008; 295:C1344-53. [PMID: 18799656 DOI: 10.1152/ajpcell.00001.2008] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We investigated the role of large-conductance Ca(2+)-activated K(+) (BK) channels in beta3-adrenoceptor (beta3-AR)-induced relaxation in rat urinary bladder smooth muscle (UBSM). BRL 37344, a specific beta3-AR agonist, inhibits spontaneous contractions of isolated UBSM strips. SR59230A, a specific beta3-AR antagonist, and H89, a PKA inhibitor, reduced the inhibitory effect of BRL 37344. Iberiotoxin, a specific BK channel inhibitor, shifts the BRL 37344 concentration response curves for contraction amplitude, net muscle force, and tone to the right. Freshly dispersed UBSM cells and the perforated mode of the patch-clamp technique were used to determine further the role of beta3-AR stimulation by BRL 37344 on BK channel activity. BRL 37344 increased spontaneous, transient, outward BK current (STOC) frequency by 46.0 +/- 20.1%. In whole cell mode at a holding potential of V(h) = 0 mV, the single BK channel amplitude was 5.17 +/- 0.28 pA, whereas in the presence of BRL 37344, it was 5.55 +/- 0.41 pA. The BK channel open probability was also unchanged. In the presence of ryanodine and nifedipine, the current-voltage relationship in response to depolarization steps in the presence and absence of BRL 37344 was identical. In current-clamp mode, BRL 37344 caused membrane potential hyperpolarization from -26.1 +/- 2.1 mV (control) to -29.0 +/- 2.2 mV. The BRL 37344-induced hyperpolarization was eliminated by application of iberiotoxin, tetraethylammonium or ryanodine. The data indicate that stimulation of beta3-AR relaxes rat UBSM by increasing the BK channel STOC frequency, which causes membrane hyperpolarization and thus relaxation.
Collapse
Affiliation(s)
- Kiril L Hristov
- Dept. of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, Univ. of South Carolina, Coker Life Sciences Bldg., Rm. 709, 715 Sumter St., Columbia, SC 29208, USA
| | | | | | | | | | | |
Collapse
|
21
|
Moynihan AT, Hehir MP, Sharkey AM, Robson SC, Europe-Finner GN, Morrison JJ. Histone deacetylase inhibitors and a functional potent inhibitory effect on human uterine contractility. Am J Obstet Gynecol 2008; 199:167.e1-7. [PMID: 18455134 DOI: 10.1016/j.ajog.2008.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 10/18/2007] [Accepted: 01/08/2008] [Indexed: 11/17/2022]
Abstract
OBJECTIVE This study was undertaken to investigate the effects of 3 histone deacetylase inhibitors on human uterine contractility. STUDY DESIGN Biopsy specimens of human myometrium were obtained at elective cesarean section (n = 18). Dissected myometrial strips suspended under isometric conditions, undergoing spontaneous, and oxytocin-induced contractions, were subjected to cumulative additions of 3 histone deacetylase inhibitors: trichostatin A, suberic bishydroxamate (1 nmol/L-10 micromol/L) and valproic acid (100 nmol/L--1 mmol/L). Control experiments were run simultaneously. Integrals of contractile activity were measured by using the PowerLab hardware unit and Chart v3.6 software. Data were analyzed by using 1-way analysis of variance, followed by post hoc analysis. RESULTS All 3 histone deacetylase inhibitor compounds exerted a potent and cumulative inhibitory effect on spontaneous (n = 18) and oxytocin-induced (n =18) contractility. The mean maximal inhibition values for the 3 compounds were as follows: trichostatin A, 46-54% (P < .05); valproic acid, 35-36% (P < .05); and suberic bishydroxamate, 53-65% (P < .05). CONCLUSION The histone deacetylase inhibitors trichostatin A, valproic acid, and suberic bishydroxamate exerted a potent inhibitory effect on human uterine contractions. This raises the possibility that this new class of compounds may have tocolytic potential, in addition to their current clinical indications. We speculate that this inhibitory effect may be linked, at least in part, to the ability of histone deacetylase inhibitors to induce the expression of genes involved in maintaining myometrial quiescence via epigenetic mechanisms but may also potentially involve nonepigenetic pathways.
Collapse
Affiliation(s)
- Audrey T Moynihan
- Department of Obstetrics and Gynaecology, Clinical Science Institute, University College Hospital Galway, Galway, Ireland
| | | | | | | | | | | |
Collapse
|
22
|
Zhang X, Wang L, Xu L, Zou L. Effects of Atractylodes macrocephala on the cytomembrane Ca2+-activated K+ currents in cells of human pregnant myometrial smooth muscles. ACTA ACUST UNITED AC 2008; 28:200-3. [PMID: 18480998 DOI: 10.1007/s11596-008-0222-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Indexed: 11/25/2022]
Abstract
The study examined the inhibitory effect of Atractylodes macrocephala (AM) on the uterine contraction during premature delivery and explored its electrophysiological mechanism by studying the effects of AM on the Ca(2+)-activated K(+) currents of pregnant human myometrial smooth muscle cells with or without the treatment with interleukin-6. Single cells were acutely isolated from pregnant human myometrial smooth muscles. Whole-cell Ca(2+)-activated K(+) currents were recorded by using an Axopatch1-D amplifier. The cells were divided into three groups: group A in which AM was added into perfusate, group B, in which interleukin-6 was added into perfusate) and group C in which AM was added into perfusate after addition of interleukin-6. IL-6 10 ng/mL inhibited BK(ca) by 36.9%+/-13.7% as compared with control (P<0.01). AM at 2 mg/mL raised BK(ca) by 36.7%+/-22.6% or 45.2%+/-13.7% with or without the treatment of IL-6, respectively (P<0.01). It is concluded that AM was able to enhance the BK(ca) of pregnant human myometrial smooth muscle cells treated or untreated with interleukin-6 and its effect on the BK(ca) IL-treated cells was stronger that its effect on BK(ca) of untreated cells. Our results suggested that AM can help to maintain the membrane potentials and the resting status of pregnant human myometrial smooth muscle cells.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | | | | | | |
Collapse
|
23
|
Hehir MP, Glavey SV, Morrison JJ. Uterorelaxant effect of ghrelin on human myometrial contractility. Am J Obstet Gynecol 2008; 198:323.e1-5. [PMID: 18177835 DOI: 10.1016/j.ajog.2007.09.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 07/20/2007] [Accepted: 09/19/2007] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Ghrelin is a peptide that regulates maternal appetite and energy expenditure as well as playing a role in fetal nutrition. The purpose of the study was to investigate the effects of ghrelin on human myometrial contractility in vitro. STUDY DESIGN Biopsy specimens of human myometrium were obtained at elective cesarean section (n = 21). Dissected myometrial strips suspended under isometric conditions, undergoing spontaneous and oxytocin-induced contractions, were exposed to cumulative additions of ghrelin in the concentration range of 1 nmol/L to 1 micromol/L. Control experiments were performed simultaneously. RESULT Ghrelin exerted an inhibitory effect on contractility, compared with control strips. The mean maximal inhibition values were as follows: 33.66% +/- 2.63% for spontaneous contractions (n = 6; P < .05), and 31.55% +/- 4.64% for oxytocin-induced contractions (n = 6; P < .05). CONCLUSION This inhibitory effect of ghrelin on uterine contractions suggests it plays a physiologic role in regulation of myometrial activity and further studies to evaluate the signaling pathways involved may help to define this role. These findings highlight the emerging role of metabolic modulation of myometrium, and particularly at extremes of body mass index measurements.
Collapse
|
24
|
Moynihan AT, Smith TJ, Morrison JJ. The relaxant effect of nifedipine in human uterine smooth muscle and the BK(Ca) channel. Am J Obstet Gynecol 2008; 198:237.e1-8. [PMID: 18226634 DOI: 10.1016/j.ajog.2007.08.074] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2007] [Revised: 05/21/2007] [Accepted: 08/30/2007] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The purpose of this study was to investigate the effects of K+ channel blockade on the uterorelaxant effects of nifedipine in human myometrium during pregnancy. STUDY DESIGN Biopsies of human myometrium were obtained at elective cesarean section (n = 24). Dissected myometrial strips suspended under isometric conditions, undergoing spontaneous and oxytocin-induced contractions, were subjected to K+ channel blockade using tetraethylammonium (TEA) or iberiotoxin (IbTX) followed by cumulative additions of nifedipine (1 nmol/L-10 micromol/L). Control experiments were run simultaneously. Integrals of contractile activity were measured using the PowerLab hardware unit and Chart v3.6 software. Data were analyzed using one-way analysis of variance (ANOVA) followed by post hoc analysis. RESULTS Nifedipine exerted a potent and cumulative inhibitory effect on spontaneous contractions and oxytocin-induced contractions in human myometrium in vitro, in comparison to control measurements (P < .05, n = 6). Incubation of strips with TEA or IbTX, prior to addition of nifedipine, significantly attenuated the relaxant effect exerted by nifedipine (P < .05, n = 6). CONCLUSION This study demonstrates that the uterorelaxant effect of nifedipine is attenuated by potassium channel (K+) blockade. This suggests that K+ channel conductance, and particularly the BK(Ca) channel, plays a role in the potent relaxant effect of nifedipine, hitherto presumed to act solely through L-gated calcium channels.
Collapse
Affiliation(s)
- Audrey T Moynihan
- Department of Obstetrics and Gynaecology, Clinical Science Institute, University College Hospital Galway, Galway, Ireland, UK
| | | | | |
Collapse
|
25
|
Weaver AK, Olsen ML, McFerrin MB, Sontheimer H. BK channels are linked to inositol 1,4,5-triphosphate receptors via lipid rafts: a novel mechanism for coupling [Ca(2+)](i) to ion channel activation. J Biol Chem 2007; 282:31558-68. [PMID: 17711864 PMCID: PMC2227909 DOI: 10.1074/jbc.m702866200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Glioma cells prominently express a unique splice variant of a large conductance, calcium-activated potassium channel (BK channel). These channels transduce changes in intracellular calcium to changes of K(+) conductance in the cells and have been implicated in growth control of normal and malignant cells. The Ca(2+) increase that facilitates channel activation is thought to occur via activation of intracellular calcium release pathways or influx of calcium through Ca(2+)-permeable ion channels. We show here that BK channel activation involves the activation of inositol 1,4,5-triphosphate receptors (IP(3)R), which localize near BK channels in specialized membrane domains called lipid rafts. Disruption of lipid rafts with methyl-beta-cyclodextrin disrupts the functional association of BK channel and calcium source resulting in a >50% reduction in K(+) conductance mediated by BK channels. The reduction of BK current by lipid raft disruption was overcome by the global elevation of intracellular calcium through inclusion of 750 nm Ca(2+) in the pipette solution, indicating that neither the calcium sensitivity of the channel nor their overall number was altered. Additionally, pretreatment of glioma cells with 2-aminoethoxydiphenyl borate to inhibit IP(3)Rs negated the effect of methyl-beta-cyclodextrin, providing further support that IP(3)Rs are the calcium source for BK channels. Taken together, these data suggest a privileged association of BK channels in lipid raft domains and provide evidence for a novel coupling of these Ca(2+)-sensitive channels to their second messenger source.
Collapse
Affiliation(s)
- Amy K. Weaver
- From the Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Michelle L. Olsen
- From the Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Michael B. McFerrin
- From the Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Harald Sontheimer
- From the Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
26
|
Abstract
Preterm birth remains a major cause of perinatal mortality and long term handicap in surviving infants. This is one of the most important clinical problems in Europe and across the world. While some preterm births are iatrogenic, associated with severe complications of pregnancy (e.g. hypertensive disorders, antepartum haemorrhage, infection), or the result of multiple pregnancies following assisted reproduction, a high proportion of preterm births occur following spontaneous preterm labour of unknown cause. Early intervention in this group of women would have a significant impact on neonatal mortality and morbidity figures. However, the endocrine changes preceding parturition in women remain elusive and this makes it difficult to predict spontaneous labour at term, let alone preterm labour. Moreover our understanding of myometrial physiology remains rudimentary, limiting our options to devise improved pharmacological strategies to control uterine contractility when this is indicated. There is a need for concerted European and international research efforts to improve our knowledge of the mechanism of labour in women, to identify diagnostic markers to predict preterm labour and to develop uterine selective drugs to inhibit uterine contractions in a safe and efficient manner. This aim will be achieved by multidisciplinary research efforts from academics and industry, using traditional laboratory and clinical research methods, as well as novel technologies.
Collapse
Affiliation(s)
- Andrés López Bernal
- University of Bristol, Clinical Science at South Bristol (Obstetrics and Gynaecology), St Michael's Hospital and Dorothy Hodgkin Building, Bristol, UK.
| |
Collapse
|
27
|
Brainard AM, Korovkina VP, England SK. Potassium channels and uterine function. Semin Cell Dev Biol 2007; 18:332-9. [PMID: 17596977 PMCID: PMC2012947 DOI: 10.1016/j.semcdb.2007.05.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Accepted: 05/03/2007] [Indexed: 01/14/2023]
Abstract
Ion channels are effector proteins that mediate uterine excitability throughout gestation. This review will focus primarily on the role of potassium channels in regulating myometrial tone in pregnancy and labor contractions. During gestation, potassium channels maintain the uterus in a state of quiescence by contributing to the resting membrane potential and counteracting contractile stimuli. This review summarizes the current knowledge about the significance of the potassium channels in maintaining a normal gestational period and initiating labor contractions at term.
Collapse
Affiliation(s)
- Adam M Brainard
- University of Iowa Carver College of Medicine, Department of Molecular Physiology and Biophysics, Iowa City, IA 52242, United States
| | | | | |
Collapse
|
28
|
López Bernal A. The regulation of uterine relaxation. Semin Cell Dev Biol 2007; 18:340-7. [PMID: 17582797 DOI: 10.1016/j.semcdb.2007.05.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Accepted: 05/03/2007] [Indexed: 10/23/2022]
Abstract
The regulation of uterine relaxation is poorly understood but research in myometrial tissue and other types of smooth muscle has defined a number of receptors, ion channels and regulatory proteins that are likely to be involved. Some of these proteins are substrates for protein kinases, especially cyclic nucleotide dependent kinases. More research is necessary to identify the key molecules involved in the maintenance of uterine quiescence in pregnancy. The use of tocolytics in preterm labour remains controversial; there is a need to identify better pharmacological targets to provoke safe and selective uterine relaxation and improve neonatal outcome.
Collapse
Affiliation(s)
- A López Bernal
- University of Bristol, Department of Clinical Science at South Bristol (Obstetrics & Gynaecology), Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Whitson Street, Bristol BS1 3NY, UK.
| |
Collapse
|
29
|
Croci T, Cecchi R, Marini P, Rouget C, Viviani N, Germain G, Guagnini F, Fradin Y, Descamps L, Pascal M, Advenier C, Breuiller-Fouché M, Leroy MJ, Bardou M. In vitro and in vivo pharmacological characterization of ethyl-4-[trans-4-[((2S)-2-hydroxy-3-[4-hydroxy-3[(methylsulfonyl)amino]-phenoxy]propyl) amino]cyclohexyl]benzoate hydrochloride (SAR150640), a new potent and selective human beta3-adrenoceptor agonist for the treatment of preterm labor. J Pharmacol Exp Ther 2007; 321:1118-26. [PMID: 17351104 DOI: 10.1124/jpet.106.119123] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ethyl-4-[trans-4-[((2S)-2-hydroxy-3-[4-hydroxy-3[(methylsulfonyl)amino] phenoxy]propyl) amino]cyclohexyl]benzoate hydrochloride (SAR150640) was characterized as a new potent and selective beta(3)-adrenoceptor agonist for the treatment of preterm labor. SAR150640 and its major metabolite, the corresponding acid 4-[trans-4-[((2S)-2-hydroxy-3-[4-hydroxy-3[(methylsulfonyl) amino] phenoxy]propyl)amino]cyclohexyl]benzoic acid (SSR500400), showed high affinity for beta(3)-adrenoceptors (K(i) = 73 and 358 nM) and greater potency than (-)-isoproterenol in increasing cAMP production in membrane preparations from human neuroblastoma cells (SKNMC), which express native beta(3)-adrenoceptors (pEC(50) = 6.5, 6.2, and 5.1, respectively). SAR150640 and SSR500400 also increased cAMP production in membrane preparations from human uterine smooth muscle cells (UtSMC), which also express native beta(3)-adrenoceptors (pEC(50) = 7.7 and 7.7, respectively). In these cells, SAR150640 dose-dependently inhibited oxytocin-induced intracellular Ca(2+) mobilization and extracellular signal-regulated kinase 1/2 phosphorylation. SAR150640 and SSR500400 had no beta(1)- or beta(2)-agonist or antagonist activity in guinea pig atrium and trachea, or in human isolated atrium and bronchus preparations. Both compounds concentration-dependently inhibited spontaneous contractions in human near-term myometrial strips, with greater potency than salbutamol and 4-[3-[(1,1-dimethylethyl)-amino]-2-hydroxypropoxy]-1,3-dihydro-2H-benzimidazol-2-one hydrochloride (CGP12177) (pIC(50) = 6.4, 6.8, 5.9, and 5.8, respectively), but with similar potency to (-)-isoproterenol and atosiban (oxytocin/vasopressin V(1)a receptor antagonist). SAR150640 also inhibited the contractions induced by oxytocin and prostaglandin F(2alpha). In vivo, after intravenous administration, SAR150640 (1 and 6 mg/kg), but not atosiban (6 mg/kg), dose-dependently inhibited myometrial contractions in conscious unrestrained female cynomolgus monkeys, with no significant effects on heart rate or blood pressure. In contrast, salbutamol (50 and 250 microg/kg) had no inhibitory effect on uterine contractions, but it dose-dependently increased heart rate. These findings indicate a potential for the therapeutic use of SAR150640 in mammals during preterm labor.
Collapse
Affiliation(s)
- Tiziano Croci
- Exploratory Research Department, Sanofi-Midy Research Center, sanofi-aventis, SpA., Via G. B. Piranesi, 38, 20137 Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Affiliation(s)
- Roger Smith
- Mothers and Babies Research Centre, Hunter Medical Research Institute, John Hunter Hospital, Newcastle, NSW, Australia.
| |
Collapse
|
31
|
Moynihan AT, Hehir MP, Glavey SV, Smith TJ, Morrison JJ. Inhibitory effect of leptin on human uterine contractility in vitro. Am J Obstet Gynecol 2006; 195:504-9. [PMID: 16647683 DOI: 10.1016/j.ajog.2006.01.106] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 01/20/2006] [Accepted: 01/27/2006] [Indexed: 11/23/2022]
Abstract
OBJECTIVE The purpose of this study was to investigate the effects of leptin on human uterine contractility in vitro. STUDY DESIGN Biopsies of human myometrium were obtained at elective cesarean section (n = 18). Dissected myometrial strips suspended under isometric conditions, undergoing spontaneous and oxytocin-induced contractions, were exposed to cumulative additions of leptin in the concentration range of 1 nmol/L to 1 micromol/L. Control strips were run simultaneously. Integrals of contractile activity were measured using the PowerLab hardware unit and Chart v3.6 software. RESULTS Leptin exerted a potent and cumulative inhibitory effect on spontaneous and oxytocin-induced contractions compared to control strips. The mean maximal inhibition values were as follows: 46.794 +/- 5.133% (n = 6; P < .001) for spontaneous contractions and 42.323 +/- 3.692% (n = 6; P < .001) for oxytocin-induced contractions. There was an apparent reduction in both frequency and amplitude of contractions. CONCLUSION This physiologic inhibitory effect of leptin on uterine contractility may play a role in the dysfunctional labor process associated with maternal obesity, and the resultant high cesarean section rates.
Collapse
Affiliation(s)
- Audrey T Moynihan
- Department of Obstetrics and Gynaecology, Clinical Science Institute, University College Hospital Galway, National University of Ireland, Galway, Ireland
| | | | | | | | | |
Collapse
|