1
|
Kozubek A, Katarzyńska-Banasik D, Kowalik K, Grzegorzewska AK, Hrabia A, Sechman A. Nitrophenols disrupt the expression and activity of biotransformation enzymes (CYP3A and COMT) in chicken ovarian follicles in vivo and in vitro. J Appl Toxicol 2024; 44:756-769. [PMID: 38238931 DOI: 10.1002/jat.4573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/27/2023] [Accepted: 12/10/2023] [Indexed: 04/16/2024]
Abstract
Nitrophenols are environmental pollutants and xenobiotics, the main sources of which are diesel exhaust fumes and pesticides. The biotransformation processes that take place in the liver are defence mechanisms against xenobiotics, such as nitrophenols. Our previous study showed that the chicken ovary is an additional xenobiotic detoxification place and that nitrophenols disrupt steroidogenesis in chicken ovarian follicles. Therefore, the present study aimed to determine the in vivo and in vitro effects of 4-nitrophenol (PNP) and 3-methyl-4-nitrophenol (PNMC) on the expression and activity of phase I (CYP3A) and phase II (COMT) biotransformation enzymes in chicken ovary. In an in vivo study, hens were treated with a vehicle or 10 mg PNP or PNMC/kg b.wt. per day for 6 days. In an in vitro study, prehierarchical white and yellowish follicles, as well as the granulosa and theca layers of the three largest preovulatory follicles (F3, F2 and F1), were isolated and then incubated in a control medium or medium supplemented with PNP (10-6 M) or PNMC (10-6 M) for 24 or 48 h. Both in vivo and in vitro studies showed that nitrophenols exert tissue- and compound-dependent (PNP or PNMC) effects on CYP3A and COMT gene (real-time PCR) protein (Western blot) expression and their activity (colorimetric methods). The inhibitory effect of nitrophenols in vivo on the activity of biotransformation enzymes suggest that the ovary has the capacity to metabolise PNP and PNMC.
Collapse
Affiliation(s)
- Anna Kozubek
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, Krakow, 30-059, Poland
| | - Dorota Katarzyńska-Banasik
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, Krakow, 30-059, Poland
| | - Kinga Kowalik
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, Krakow, 30-059, Poland
| | - Agnieszka K Grzegorzewska
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, Krakow, 30-059, Poland
| | - Anna Hrabia
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, Krakow, 30-059, Poland
| | - Andrzej Sechman
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, Krakow, 30-059, Poland
| |
Collapse
|
2
|
Henríquez S, Valdivia MJ, Mainigi M, Villarroel C, Velasquez L, Strauss Iii JF, Devoto L. The role of estrogen metabolites in human ovarian function. Steroids 2024; 203:109368. [PMID: 38278282 DOI: 10.1016/j.steroids.2024.109368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
Estrogens produced by the ovary play diverse roles in controlling physiological changes in the function of the female reproductive system. Although estradiol acts through classical nuclear receptors, its metabolites (EMs) act by alternative pathways. It has been postulated that EMs act through paracrine-autocrine pathways to regulate key processes involved in normal follicular growth, corpus luteum (CL) development, function, and regression. The present review describes recent advances in understanding the role of EMs in human ovarian physiology during the menstrual cycle, including their role in anovulatory disorders and their action in other target tissues.
Collapse
Affiliation(s)
- Soledad Henríquez
- Institute for Maternal and Child Research (IDIMI), Faculty of Medicine, University of Chile, Santiago, Chile; Institute of Interdisciplinary Research in Biomedical Sciences (I3CBSEK), Faculty of Health Sciences, SEK University, Santiago, Chile.
| | - Maria Jose Valdivia
- Institute for Maternal and Child Research (IDIMI), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Monica Mainigi
- Department of Obstetrics and Gynecology and Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Claudio Villarroel
- Institute for Maternal and Child Research (IDIMI), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Luis Velasquez
- Institute of Interdisciplinary Research in Biomedical Sciences (I3CBSEK), Faculty of Health Sciences, SEK University, Santiago, Chile
| | - Jerome F Strauss Iii
- Department of Obstetrics and Gynecology and Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Luigi Devoto
- Institute for Maternal and Child Research (IDIMI), Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
3
|
Henríquez S, Kohen P, Xu X, Villarroel C, Muñoz A, Godoy A, Strauss JF, Devoto L. Significance of pro-angiogenic estrogen metabolites in normal follicular development and follicular growth arrest in polycystic ovary syndrome. Hum Reprod 2021; 35:1655-1665. [PMID: 32558920 DOI: 10.1093/humrep/deaa098] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
STUDY QUESTION Do alterations in pro- and anti-angiogenic estrogen metabolites in follicular fluid (FF) contribute to the follicular growth arrest and anovulation associated with polycystic ovary syndrome (PCOS)? SUMMARY ANSWER FF of PCOS women with anovulation have reduced levels of pro-angiogenic estrogen metabolites (EMs) and vascular endothelial growth factor (VEGF) compared to that of fertile women with regular menstrual cycles, but exogenous gonadotropins increase the pro-angiogenic EMs and VEGF levels in PCOS women. WHAT IS KNOWN ALREADY PCOS is characterized by the arrest of follicular development that leads to chronic anovulation. Follicular arrest is generally associated with elevated plasma levels of luteinizing hormone (LH), androgens and anti-Mullerian hormone (AMH). There is also reduced angiogenesis in the follicles of PCOS women compared to those of normal cycling women. It is known that angiogenesis is a critical factor during follicular development. We and other investigators have explored the role of EMs in ovarian angiogenesis, particularly in human corpus luteum function, showing that 4-hydroxyestrone (4-OHE1) and 16-ketoestradiol (16-kE2) have pro-angiogenic effects while 2-methoxyestradiol (2-ME2) and 2-methoxyestrone (2-ME1) have anti-angiogenic effects. Additionally, 2-hydroxyestradiol (2-OHE2), which is produced in the ovary, has proliferative and pro-angiogenic properties. We hypothesized that EMs could be involved in angiogenesis necessary for ovarian follicular development in fertile women, and that dysregulation of these factors may contribute to follicular arrest in PCOS. The relationship between EMs, VEGF and AMH in the pathophysiology of follicular arrest in PCOS has not been previously studied at a follicular level in anovulatory women without ovulation induction. STUDY DESIGN, SIZE, DURATION This is a comparative experimental study of serum and FF collected from different sized follicles (antral ˂10 mm and dominant ˃16 mm) of women with and without ovarian stimulation. The study included women with regular menstrual cycles who were proven to be fertile (n = 20) and PCOS women with follicular arrest who were candidates for ovarian drilling (n = 17), as well as other patients requiring ovarian stimulation, i.e. control women undergoing IVF for male factor infertility (n = 12) and PCOS women undergoing IVF (n = 17). In vitro studies were carried out on granulosa-lutein cells (GCs) obtained from subsets of women undergoing IVF for male factor infertility (n = 6) and PCOS women undergoing IVF (n = 6). GCs were maintained in culture for up to 6 days. PARTICIPANTS/MATERIALS, SETTING, METHODS Intrafollicular estradiol, estrone and EMs concentrations were determined by high performance liquid chromatography-mass spectrometry. Testosterone in serum was measured by RIA, and LH, FSH and sex hormone-binding globulin in serum were measured with IRMA kits. AMH was determined in serum and FF by enzyme linked immunosorbant assay (ELISA). VEGF levels were measured in FF and conditioned medium by ELISA. Conditioned medium were obtained from cultured GCs. The angiogenic potential was assessed by in vitro angiogenic assays. MAIN RESULTS AND THE ROLE OF CHANCE Pro-angiogenic EMs (4-OHE1, 16-kE2 and 2-OHE2) and VEGF were lower in FF of antral follicles of PCOS women with follicular arrest compared those of fertile women with ovulatory cycles (P < 0.05). In contrast, higher concentrations of AMH were found in FF of antral follicles from PCOS women with follicular arrest compared to those of fertile women with ovulatory cycles (P < 0.05). Exogenous gonadotropins used in IVF increased pro-angiogenic EMs and VEGF production in PCOS women, reaching similar profiles compared to control women receiving gonadotropins in their IVF treatment for male factor infertility. The pro-angiogenic EM 2-OHE2 increased the angiogenic potential and VEGF levels of GCs from PCOS women compared to the basal condition (P < 0.05). These findings suggest that there is a role for pro-angiogenic EMs in the control of follicular VEGF production. LIMITATIONS, REASONS FOR CAUTION The limitations include the possibility that in vitro analysis of GCs might not reflect the in vivo mechanisms involved in the pro-angiogenic action of 2-OHE2 since GCs obtained at the time of oocyte retrieval belong to a very early stage of the luteal phase and might not be representative of GCs during follicular growth. Therefore, our findings do not conclusively rule out the possibility that other in vivo mechanisms also account for defective angiogenesis observed in PCOS. WIDER IMPLICATIONS OF THE FINDINGS The present study highlights the significance of EMs, angiogenic factors and AMH and their interaction in the pathophysiology of follicular development in PCOS. This study provides new insights into the role of pro-angiogenic factors in follicular arrest in PCOS. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by CONICYT/FONDECYT 1140693 and NIH grant R01HD083323. All authors declare no conflict of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Soledad Henríquez
- Institute for Maternal and Child Research (IDIMI), Faculty of Medicine, University of Chile, Santiago, Chile.,Institute of Interdisciplinary Research in Biomedical Sciences (I3CBSEK), Faculty of Health Sciences, SEK University, Santiago, Chile
| | - Paulina Kohen
- Institute for Maternal and Child Research (IDIMI), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Xia Xu
- Research Technology Program, Biomedical Research (formerly SAIC-Frederick), Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Claudio Villarroel
- Institute for Maternal and Child Research (IDIMI), Faculty of Medicine, University of Chile, Santiago, Chile.,Department of Obstetrics and Gynecology, Faculty of Medicine, San Borja-Arriaran Clinical Hospital, University of Chile, Santiago, Chile
| | - Alex Muñoz
- Institute for Maternal and Child Research (IDIMI), Faculty of Medicine, University of Chile, Santiago, Chile.,Department of Obstetrics and Gynecology, Faculty of Medicine, San Borja-Arriaran Clinical Hospital, University of Chile, Santiago, Chile
| | - Ana Godoy
- Institute for Maternal and Child Research (IDIMI), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Jerome F Strauss
- Department of Obstetrics and Gynecology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Luigi Devoto
- Institute for Maternal and Child Research (IDIMI), Faculty of Medicine, University of Chile, Santiago, Chile.,Department of Obstetrics and Gynecology, Faculty of Medicine, San Borja-Arriaran Clinical Hospital, University of Chile, Santiago, Chile
| |
Collapse
|
4
|
Barć J, Karpeta A, Gregoraszczuk EŁ. Action of Halowax 1051 on Enzymes of Phase I (CYP1A1) and Phase II (SULT1A and COMT) Metabolism in the Pig Ovary. Int J Endocrinol 2013; 2013:590261. [PMID: 23653643 PMCID: PMC3638669 DOI: 10.1155/2013/590261] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 03/21/2013] [Indexed: 11/23/2022] Open
Abstract
Polychlorinated naphthalenes (PCNs) are a group of organochlorinated compounds exhibiting dioxin-like properties. Previously published data showed the direct action of PCN-rich Halowax 1051 on ovarian follicular steroidogenesis. Taking into consideration that the observed biological effects of PCNs may be frequently side effects of metabolites generated by their detoxification, the aim of this study was to determine the activity and expression of enzymes involved in phase I (cytochrome P450, family 1 (CYP1A1)) and phase II (sulfotransferase (SULT1A) and catechol-O-methyltransferase (COMT)) detoxification metabolism. Cocultures of granulosa and theca interna cells collected from sexually mature pigs were exposed to 1 pg/mL to 10 ng/mL of Halowax 1051 for 1 to 48 hours, after which levels and activities of CYP1A1, SULT1A, and COMT were measured. Dose-dependent increases of CYP1A1 activity and expression were observed. High doses of Halowax 1051 were inhibitory to COMT and SULT1A activity and reduced their protein levels. In conclusion, fast activation of phase I enzymes with simultaneous inhibition of phase II enzymes indicates that the previously observed effect of Halowax 1051 on follicular steroidogenesis may partially result from metabolite action occurring locally in ovarian follicles.
Collapse
Affiliation(s)
- Justyna Barć
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology, Jagiellonian University, 31-387 Krakow, Poland
- *Justyna Barć:
| | - Anna Karpeta
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology, Jagiellonian University, 31-387 Krakow, Poland
| | - Ewa Łucja Gregoraszczuk
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology, Jagiellonian University, 31-387 Krakow, Poland
| |
Collapse
|
5
|
Karpeta A, Warzecha K, Jerzak J, Ptak A, Gregoraszczuk E. Activation of the enzymes of phase I (CYP2B1/2) and phase II (SULT1A and COMT) metabolism by 2,2′,4,4′-tetrabromodiphenyl ether (BDE47) in the pig ovary. Reprod Toxicol 2012; 34:436-42. [DOI: 10.1016/j.reprotox.2012.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 05/21/2012] [Accepted: 06/21/2012] [Indexed: 01/21/2023]
|
6
|
Nair S, Al-Hendy A, Tamboli RA, Marks-Shulman PA, Abumrad NN. Increased COMT expression in PCOS biology. Mol Cell Endocrinol 2012; 355:188-9. [PMID: 22342814 DOI: 10.1016/j.mce.2012.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
Sun L, Hu W, Liu Q, Hao Q, Sun B, Zhang Q, Mao S, Qiao J, Yan X. Metabonomics reveals plasma metabolic changes and inflammatory marker in polycystic ovary syndrome patients. J Proteome Res 2012; 11:2937-46. [PMID: 22428626 DOI: 10.1021/pr3000317] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a common, clinically heterogeneous endocrine disorder affecting women of reproductive age, associated with endocrinopathy and metabolic abnormalities. Although some metabolic parameters have been investigated, very little information has been reported on the changes of small metabolites in biofluids. The aim of this study was to establish the metabolic profile of PCOS and compare it with that of controls. In this cross-sectional study of 34 women with PCOS and 36 controls, contents of small metabolites and lipids in plasma samples were measured using nuclear magnetic resonance (NMR)-based techniques and analyzed using multivariate statistical methods. Significant decrease (P < 0.05) in the levels of amino acids (leucine, isoleucine, methionine, glutamine, and arginine), citrate, choline, and glycerophosphocholine/phosphocholine (GPC/PC), and increase (P < 0.05) in the levels of lactate, dimethylamine (DMA), creatine, and N-acetyl glycoproteins were observed in PCOS patients compared with the controls. Subgroups of patients with obesity, metabolic syndrome, or hyperandrogenism exhibited greater metabolic deviations than their corresponding subgroups without these factors. PCOS patients have perturbations in amino acid metabolism, the tricarboxylic acid (TCA) cycle, and gut microflora, as well as mild disturbances in glucose and lipid metabolism. The elevated level of N-acetyl glycoproteins demonstrates the existence of low-grade chronic inflammation in PCOS patients.
Collapse
Affiliation(s)
- Liye Sun
- National Center of Biomedical Analysis, Beijing 100039, China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Hill LD, Ewens KG, Maher BS, York TP, Legro RS, Dunaif A, Strauss JF. Catechol-O-methyltransferase (COMT) single nucleotide polymorphisms and haplotypes are not major risk factors for polycystic ovary syndrome. Mol Cell Endocrinol 2012; 350:72-7. [PMID: 22178088 PMCID: PMC3264817 DOI: 10.1016/j.mce.2011.11.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 11/17/2011] [Accepted: 11/18/2011] [Indexed: 10/14/2022]
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine disorder that affects 5-8% of reproductive age women. The primary features of PCOS are hyperandrogenemia, chronic anovulation and infertility. It has been suggested that defects in ovarian steroid metabolism contribute to the follicular growth arrest and abnormal production of ovarian steroid hormones that are characteristic of PCOS. 2-Methoxyestradiol (2-ME) is formed by the action of catechol-O-methyltransferase (COMT) on 2-hydroxyestradiol. COMT expression is increased in the follicles and ovarian stroma of women with PCOS. Moreover, 2-ME decreases granulosa cell proliferation and steroidogenesis, raising the possibility that ovarian dysfunction associated with PCOS is due, in part, to increased synthesis of 2-ME resulting from increased COMT activity. Four single-nucleotide polymorphisms (SNPs) (rs6269, rs4633, rs4818, rs4680) in the COMT gene characterize haplotypes, which are associated with large variations in COMT enzymatic activity. The aim of this study was to determine whether individual COMT SNPs and the COMT haplotypes are associated with PCOS using a family-based test of association and linkage. Additionally, we examined the relationships between COMT SNPs and haplotypes with quantitative variables usually assessed in the evaluation of women with PCOS. There were no significant correlations between genotype and total testosterone, non-SHBG bound testosterone and BMI. However, we found that the prolactin level in women with PCOS varied significantly with COMT haplotype, and suggest that this association reflects a genetic factor influencing the stress response. Our findings suggest that common variants and haplotypes of the COMT gene are not major contributors to risk for PCOS, but that COMT genotype may influence prolactin levels.
Collapse
Affiliation(s)
- Lori D Hill
- Department of Obstetrics and Gynecology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Dallal C, Taioli E. Urinary 2/16 estrogen metabolite ratio levels in healthy women: a review of the literature. Mutat Res 2010; 705:154-162. [PMID: 20601100 PMCID: PMC3760212 DOI: 10.1016/j.mrrev.2010.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 06/10/2010] [Accepted: 06/23/2010] [Indexed: 12/18/2022]
Abstract
This is a summary of the published literature on the urinary 2/16 estrogen metabolite ratio in human populations, and a report the observed range of normal values in healthy women. Original research studies that included the measurement of urinary estrogen metabolites in human subjects were identified through an extensive Medline search; 43 distinct studies were identified, including a total of 6802 healthy women. The range of mean values of the 2/16 ratio measured with the ELISA method varied from 0.98 to 1.74; in studies of pre-menopausal women the range of mean values was 1.5-2.74, in studies of post-menopausal women mean values ranged from 1.15 to 2.25. The heterogeneity across studies was highly significant (p-value Q-test: <0.0001). In multivariable analyses, only race confirmed its role as an independent predictor of 2/16 ratio (F-value: 7.95; p-value: 0.009), after adjustment for age and menopausal status. There appears to be a large body of data on the 2/16 urinary ratio in healthy women. However, summary estimates are difficult to perform due to the high variability of the published study-specific values. The data suggests that race may be a contributor to 2/16 urinary ratio levels.
Collapse
Affiliation(s)
- Cher Dallal
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Emanuela Taioli
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States; Department of Epidemiology and Biostatistics, SUNY Downstate Medical Center, Brooklyn, NY, United States.
| |
Collapse
|
10
|
DE CRÉE CARL. POLYCYSTIC OVARY SYNDROME AND ESTROGEN METABOLISM IN FEMALE ATHLETES. Med Sci Sports Exerc 2010; 42:216. [DOI: 10.1249/mss.0b013e3181c95c23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Wentz MJ, Shi SQ, Shi L, Salama SA, Harirah HM, Fouad H, Garfield RE, Al-Hendy A. Treatment with an inhibitor of catechol-O-methyltransferase activity reduces preterm birth and impedes cervical resistance to stretch in pregnant rats. Reproduction 2007; 134:831-9. [DOI: 10.1530/rep-07-0245] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Catechol-O-methyltransferase (COMT) enzyme catalyzes the methylation of the 2- or 4-hydroxyestrogens to 2- or 4-methoxyestrogens. Both the hydroxyestrogens and methoxyestrogens have been shown to block or enhance the effects of estrogen respectively. Our objective was to investigate the potential role of COMT in parturition and cervical ripening using a rat model. Immunohistochemistry was conducted to detect and localize the COMT protein in rat uterine tissues during pregnancy. We measured the longitudinal changes in urinary 2-hydroxyestrogen before, during, and after pregnancy in rats. Animal studies were conducted to determine the effect of treatment with a selective COMT inhibitor on (1) mifepristone-induced preterm birth and (2) cervical resistance to stretch in pregnant rats. The intensity of staining for the COMT protein differed within the luminal epithelium, uterine gland epithelium, endometrium, and myometrium during pregnancy. Levels of staining for the COMT protein in rat myometrium were highest on day 1 and lowest on days 8 and 13, but high levels returned by days 16 and 19 of pregnancy. The levels of urinary 2-hydroxyestrogen gradually increased in the first 2 weeks of pregnancy, peaked from days 16 to 18 of pregnancy, and then gradually returned to pre-pregnancy levels after delivery. The percentage of pups retained in the uterus of pregnant rats treated with both mifepristone and COMT inhibitor (48 ± 15%) was significantly higher (P< 0.05) when compared with the value of pregnant rats treated with mifepristone alone (12 ± 4%). The resistance to stretch was significantly higher (P< 0.05) in cervical tissues from the pregnant rats treated with COMT inhibitor (0.28) when compared with cervical tissues taken from rats treated with vehicle control (0.18). Modulation of COMT activity may play a role in the regulation of myometrial contractility and cervical ripening during pregnancy.
Collapse
|