1
|
Tahara M, Kiyota N, Imai H, Takahashi S, Nishiyama A, Tamura S, Shimizu Y, Kadowaki S, Ito KI, Toyoshima M, Hirashima Y, Ueno S, Sugitani I. A Phase 2 Study of Encorafenib in Combination with Binimetinib in Patients with Metastatic BRAF-Mutated Thyroid Cancer in Japan. Thyroid 2024; 34:467-476. [PMID: 38343359 DOI: 10.1089/thy.2023.0547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2024]
Abstract
Background: Driver mutations at BRAF V600 are frequently identified in papillary thyroid cancer and anaplastic thyroid cancer (ATC), in which BRAF inhibitors have shown clinical effectiveness. This Japanese phase 2 study evaluated the efficacy and safety of a BRAF inhibitor, encorafenib, combined with an MEK inhibitor, binimetinib, in patients with BRAF V600-mutated thyroid cancer. Methods: This phase 2, open-label, uncontrolled study was conducted at 10 institutions targeted patients with BRAF V600-mutated locally advanced or distant metastatic thyroid cancer not amenable to curative treatment who became refractory/intolerant to ≥1 previous vascular endothelial growth factor receptor-targeted regimen(s) or were considered ineligible for those. The primary endpoint was centrally assessed objective response rate (ORR). The secondary endpoints included duration of response (DOR), progression-free survival (PFS), overall survival (OS), and safety. Results: We enrolled 22 patients with BRAFV600E-mutated thyroid cancer: 17 had differentiated thyroid cancer (DTC), and 5 had ATC. At data cutoff (October 26, 2022), the median follow-up was 11.5 (range = 3.4-19.0) months. The primary endpoint of centrally assessed ORR was 54.5% (95% confidence interval [CI] 32.2-75.6; partial response in 12 patients and stable disease in 10). The ORRs in patients with DTC and ATC were 47.1% (8 of 17) and 80.0% (4 of 5), respectively. The medians for DOR and PFS by central assessment and for OS were not reached in the overall population, the DTC subgroup, or the ATC subgroup. At 12 months, the rate of ongoing response was 90.9%, and the PFS and OS rates were 78.8% and 81.8%, respectively. All patients developed ≥1 adverse events (AEs): grade 3 AEs in 6 patients (27.3%). No patients developed grade 4-5 AEs. The most common grade 3 AE was lipase increased (4 patients [18.2%]). Those toxicities were mostly manageable with appropriate monitoring and dose adjustment. Conclusions: Treatment with encorafenib plus binimetinib met the primary endpoint criteria and demonstrated clinical benefit in patients with BRAFV600E-mutated thyroid cancer regardless of its histological type, such as DTC or ATC, with no new safety concerns identified. Encorafenib plus binimetinib could thus be a new treatment option for BRAF V600-mutated thyroid cancer. Clinical Trial Registration number: Japan Registry of Clinical Trials: jRCT2011200018.
Collapse
Affiliation(s)
- Makoto Tahara
- Department of Head and Neck Medical Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Naomi Kiyota
- Department of Medical Oncology and Hematology, Cancer Center, Kobe University Hospital, Kobe, Hyogo, Japan
| | - Hiroo Imai
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Shunji Takahashi
- Department of Medical Oncology, The Cancer Institute Hospital of JFCR, Koto-ku, Tokyo, Japan
| | - Akihiro Nishiyama
- Department of Medical Oncology, Kanazawa University Hospital, Kanazawa, Ishikawa, Japan
| | - Shingo Tamura
- Department of Medical Oncology, Clinical Research Institute, National Hospital Organization Kyushu Medical Center, Fukuoka, Fukuoka, Japan
| | - Yasushi Shimizu
- Department of Medical Oncology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Shigenori Kadowaki
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya, Aichi, Japan
| | - Ken-Ichi Ito
- Division of Breast and Endocrine Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | | | | | | | - Iwao Sugitani
- Department of Endocrinology, Nippon Medical School Hospital, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
2
|
Busaidy NL, Konda B, Wei L, Wirth LJ, Devine C, Daniels GA, DeSouza JA, Poi M, Seligson ND, Cabanillas ME, Sipos JA, Ringel MD, Eisfeld AK, Timmers C, Shah MH. Dabrafenib Versus Dabrafenib + Trametinib in BRAF-Mutated Radioactive Iodine Refractory Differentiated Thyroid Cancer: Results of a Randomized, Phase 2, Open-Label Multicenter Trial. Thyroid 2022; 32:1184-1192. [PMID: 35658604 PMCID: PMC9595631 DOI: 10.1089/thy.2022.0115] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Background: Oncogenic BRAF mutations are commonly found in advanced differentiated thyroid cancer (DTC), and reports have shown efficacy of BRAF inhibitors in these tumors. We investigated the difference in response between dabrafenib monotherapy and dabrafenib + trametinib therapy in patients with BRAF-mutated radioactive iodine refractory DTC. Methods: In this open-label randomized phase 2 multicenter trial, patients aged ≥18 years with BRAF-mutated radioactive iodine refractory DTC with progressive disease by Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 within 13 months before enrollment were eligible. Patients were randomly assigned to receive dabrafenib alone or dabrafenib + trametinib. The primary endpoint was objective response rate by modified RECIST (minor response of -20% to -29%, partial and complete response) within the first 24 weeks of therapy. Trial Registration Number: NCT01723202. Results: A total of 53 patients were enrolled. The objective response rate (modified RECIST) was 42% (11/26 [95% confidence interval {CI} 23-63%]) with dabrafenib versus 48% (13/27 [CI 29-68%]) with dabrafenib + trametinib (p = 0.67). Objective response rate (RECIST 1.1) was 35% (9/26 [CI 17-56%]) with dabrafenib and 30% (8/27 [CI 14-51%]) with dabrafenib + trametinib. Most common treatment-related adverse events included skin and subcutaneous tissue disorders (17/26, 65%), fever (13/26, 50%), hyperglycemia (12/26, 46%) with dabrafenib alone and fever (16/27, 59%), nausea, chills, fatigue (14/27, 52% each) with dabrafenib + trametinib. There were no treatment-related deaths. Conclusions: Combination dabrafenib + trametinib was not superior in efficacy compared to dabrafenib monotherapy in patients with BRAF-mutated radioiodine refractory progressive DTC.
Collapse
Affiliation(s)
- Naifa L. Busaidy
- Division of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bhavana Konda
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Lai Wei
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Lori J. Wirth
- Division of Hematology and Medical Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Catherine Devine
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gregory A. Daniels
- Division of Hematology and Oncology, University of California San Diego Moores Cancer Center, La Jolla, California, USA
| | - Jonas A. DeSouza
- Division of Medical Oncology, The University of Chicago, Chicago, Illinois, USA
| | - Ming Poi
- Department of Pharmacology, The Ohio State University, Columbus, Ohio, USA
| | - Nathan D. Seligson
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Maria E. Cabanillas
- Division of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jennifer A. Sipos
- Division of Endocrinology, Diabetes, and Metabolism, The Ohio State University and The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Matthew D. Ringel
- Division of Endocrinology, Diabetes, and Metabolism, The Ohio State University and The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Ann-Kathrin Eisfeld
- Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Cynthia Timmers
- Translational Sciences Discovery Lab, Incyte Corporation, Wilmington, Delaware, USA
| | - Manisha H. Shah
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| |
Collapse
|
3
|
Zhu C, Zhang M, Wang Q, Jen J, Liu B, Guo M. Intratumor Epigenetic Heterogeneity-A Panel Gene Methylation Study in Thyroid Cancer. Front Genet 2021; 12:714071. [PMID: 34539742 PMCID: PMC8446600 DOI: 10.3389/fgene.2021.714071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/16/2021] [Indexed: 11/18/2022] Open
Abstract
Background Thyroid cancer (TC) is the most common endocrine malignancy, and the incidence is increasing very fast. Surgical resection and radioactive iodine ablation are major therapeutic methods, however, around 10% of differentiated thyroid cancer and all anaplastic thyroid carcinoma (ATC) are failed. Comprehensive understanding the molecular mechanisms may provide new therapeutic strategies for thyroid cancer. Even though genetic heterogeneity is rigorously studied in various cancers, epigenetic heterogeneity in human cancer remains unclear. Methods A total of 405 surgical resected thyroid cancer samples were employed (three spatially isolated specimens were obtained from different regions of the same tumor). Twenty-four genes were selected for methylation screening, and frequently methylated genes in thyroid cancer were used for further validation. Methylation specific PCR (MSP) approach was employed to detect the gene promoter region methylation. Results Five genes (AP2, CDH1, DACT2, HIN1, and RASSF1A) are found frequently methylated (>30%) in thyroid cancer. The five genes panel is used for further epigenetic heterogeneity analysis. AP2 methylation is associated with gender (P < 0.05), DACT2 methylation is associated with age, gender and tumor size (all P < 0.05), HIN1 methylation is associated to tumor size (P < 0.05) and extra-thyroidal extension (P < 0.01). RASSF1A methylation is associated with lymph node metastasis (P < 0.01). For heterogeneity analysis, AP2 methylation heterogeneity is associated with tumor size (P < 0.01), CDH1 methylation heterogeneity is associated with lymph node metastasis (P < 0.05), DACT2 methylation heterogeneity is associated with tumor size (P < 0.01), HIN1 methylation heterogeneity is associated with tumor size and extra-thyroidal extension (all P < 0.01). The multivariable analysis suggested that the risk of lymph node metastasis is 2.5 times in CDH1 heterogeneous methylation group (OR = 2.512, 95% CI 1.135, 5.557, P = 0.023). The risk of extra-thyroidal extension is almost 3 times in HIN1 heterogeneous methylation group (OR = 2.607, 95% CI 1.138, 5.971, P = 0.023). Conclusion Five of twenty-four genes were found frequently methylated in human thyroid cancer. Based on 5 genes panel analysis, epigenetic heterogeneity is an universal event. Epigenetic heterogeneity is associated with cancer development and progression.
Collapse
Affiliation(s)
- Chaofan Zhu
- Department of Head and Neck Surgery, Peking University Cancer Hospital and Institute, Beijing, China.,Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, China
| | - Meiying Zhang
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, China
| | - Qian Wang
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, China
| | - Jin Jen
- Genome Analysis Core, Medical Genome Facility, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, United States
| | - Baoguo Liu
- Department of Head and Neck Surgery, Peking University Cancer Hospital and Institute, Beijing, China
| | - Mingzhou Guo
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, China.,State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
4
|
Laha D, Nilubol N, Boufraqech M. New Therapies for Advanced Thyroid Cancer. Front Endocrinol (Lausanne) 2020; 11:82. [PMID: 32528402 PMCID: PMC7257776 DOI: 10.3389/fendo.2020.00082] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 02/07/2020] [Indexed: 12/14/2022] Open
Abstract
Thyroid cancer is the most common endocrine cancer. The discovery of new biomarkers for thyroid cancer has significantly improved the understanding of the molecular pathogenesis of thyroid cancer, thus allowing more personalized treatments for patients with thyroid cancer. Most of the recently discovered targeted therapies inhibit the known oncogenic mechanisms in thyroid cancer initiation and progression such as MAPK pathway, PI3K/Akt-mTOR pathways, or VEGF. Despite the significant advances in molecular testing and the discoveries of new and promising therapeutics, effective treatments for advanced and metastatic, iodine-refractory thyroid cancer are still lacking. Here, we aim to summarize the current understanding of the genetic alterations and the dysregulated pathways in thyroid cancer and to discuss the most recent targeted therapies and immunotherapy for advanced thyroid cancer with a promising anti-tumor activity and clinical benefit.
Collapse
|
5
|
Credendino SC, Bellone ML, Lewin N, Amendola E, Sanges R, Basu S, Sepe R, Decaussin-Petrucci M, Tinto N, Fusco A, De Felice M, De Vita G. A ceRNA Circuitry Involving the Long Noncoding RNA Klhl14-AS, Pax8, and Bcl2 Drives Thyroid Carcinogenesis. Cancer Res 2019; 79:5746-5757. [PMID: 31558562 DOI: 10.1158/0008-5472.can-19-0039] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 08/07/2019] [Accepted: 09/13/2019] [Indexed: 11/16/2022]
Abstract
Klhl14-AS is a long noncoding RNA expressed since early specification of thyroid bud and is the most enriched gene in the mouse thyroid primordium at E10.5. Here, we studied its involvement in thyroid carcinogenesis by analyzing its expression in cancer tissues and different models of neoplastic transformation. Compared with normal thyroid tissue and cells, Klhl14-AS was significantly downregulated in human thyroid carcinoma tissue specimens, particularly the anaplastic histotype, thyroid cancer cell lines, and rodent models of thyroid cancer. Downregulating the expression of Klhl14-AS in normal thyroid cells decreased the expression of thyroid differentiation markers and cell death and increased cell viability. These effects were mediated by the binding of Klhl14-AS to two miRNAs, Mir182-5p and Mir20a-5p, which silenced Pax8 and Bcl2, both essential players of thyroid differentiation. MIR182-5p and MIR20a-5p were upregulated in human thyroid cancer and thyroid cancer experimental models and their effects on Pax8 and Bcl2 were rescued by Klhl14-AS overexpression, confirming Klhl14-AS as a ceRNA for both Pax8 and Bcl2. This work connects deregulation of differentiation with increased proliferation and survival in thyroid neoplastic cells and highlights a novel ceRNA circuitry involving key regulators of thyroid physiology. SIGNIFICANCE: This study describes a new ceRNA with potential tumor suppression activity and helps us better understand the regulatory mechanisms during thyroid differentiation and carcinogenesis.
Collapse
Affiliation(s)
- Sara C Credendino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Maria L Bellone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Nicole Lewin
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Elena Amendola
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (CNR), Naples, Italy
| | - Remo Sanges
- Computational Genomics Laboratory, Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Swaraj Basu
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Romina Sepe
- Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (CNR), Naples, Italy
| | | | - Nadia Tinto
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,CEINGE-Biotecnologie Avanzate, Naples, Italy
| | - Alfredo Fusco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Mario De Felice
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (CNR), Naples, Italy
| | - Gabriella De Vita
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
6
|
Allen A, Qin ACR, Raj N, Wang J, Uddin S, Yao Z, Tang L, Meyers PA, Taylor BS, Berger MF, Yaeger R, Reidy-Lagunes D, Pratilas CA. Rare BRAF mutations in pancreatic neuroendocrine tumors may predict response to RAF and MEK inhibition. PLoS One 2019; 14:e0217399. [PMID: 31158244 PMCID: PMC6546234 DOI: 10.1371/journal.pone.0217399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/12/2019] [Indexed: 12/24/2022] Open
Abstract
The clinical significance of BRAF alterations in well-differentiated (WD) metastatic pancreatic neuroendocrine tumor (panNET) is unknown, but BRAF-mutated panNET could represent a subset characterized by an identifiable and clinically actionable driver. Following the identification of two patients with WD metastatic panNET whose tumors harbored BRAF mutations, we queried the MSK-IMPACT series of 80 patients with WD metastatic panNET for additional mutations in BRAF, and in other genes involved in RAS/ RTK/ PI3K signaling pathways. BRAF mutations were identified in six samples (7.5%): two tumors harbored V600E mutations, one tumor each expressed K601E, T599K, and T310I mutations, and one tumor expressed both G596D and E451K BRAF. Few additional actionable driver alterations were identified. To determine the ERK activating capability of four BRAF mutations not previously characterized, mutant constructs were tested in model systems. Biochemical characterization of BRAF mutations revealed both high and low activity mutants. Engineered cells expressing BRAF K601E and V600E were used for in vitro drug testing of RAF and MEK inhibitors currently in clinical use. BRAF K601E demonstrated reduced sensitivity to dabrafenib compared to BRAF V600E, but the combination of RAF plus MEK inhibition was effective in cells expressing this mutation. Herein, we describe the clinical course of a patient with BRAF K601E and a patient with BRAF V600E WD metastatic panNET, and the identification of four mutations in BRAF not previously characterized. The combined clinical and biochemical data support a potential role for RAF and MEK inhibitors, or a combination of these, in a selected panNET population.
Collapse
Affiliation(s)
- Amy Allen
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Alice Can Ran Qin
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Nitya Raj
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Jiawan Wang
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Sharmeen Uddin
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Zhan Yao
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Laura Tang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Paul A. Meyers
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Barry S. Taylor
- Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Michael F. Berger
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Rona Yaeger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Diane Reidy-Lagunes
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Christine A. Pratilas
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
7
|
Landa I, Knauf JA. Mouse Models as a Tool for Understanding Progression in Braf V600E-Driven Thyroid Cancers. Endocrinol Metab (Seoul) 2019; 34:11-22. [PMID: 30784243 PMCID: PMC6435851 DOI: 10.3803/enm.2019.34.1.11] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/12/2018] [Accepted: 12/19/2018] [Indexed: 02/06/2023] Open
Abstract
The development of next generation sequencing (NGS) has led to marked advancement of our understanding of genetic events mediating the initiation and progression of thyroid cancers. The NGS studies have confirmed the previously reported high frequency of mutually-exclusive oncogenic alterations affecting BRAF and RAS proto-oncogenes in all stages of thyroid cancer. Initially identified by traditional sequencing approaches, the NGS studies also confirmed the acquisition of alterations that inactivate tumor protein p53 (TP53) and activate phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) in advanced thyroid cancers. Novel alterations, such as those in telomerase reverse transcriptase (TERT) promoter and mating-type switching/sucrose non-fermenting (SWI/SNF) complex, are also likely to promote progression of the BRAFV600E-driven thyroid cancers. A number of genetically engineered mouse models (GEMM) of BRAFV600E-driven thyroid cancer have been developed to investigate thyroid tumorigenesis mediated by oncogenic BRAF and to explore the role of genetic alterations identified in the genomic analyses of advanced thyroid cancer to promote tumor progression. This review will discuss the various GEMMs that have been developed to investigate oncogenic BRAFV600E-driven thyroid cancers.
Collapse
Affiliation(s)
- Iñigo Landa
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jeffrey A Knauf
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
8
|
Sun Y, Tian H, Liu C, Yang D, Li Z. A Clamp-Based One-Step Droplet Digital Reverse Transcription PCR (ddRT-PCR) for Precise Quantitation of Messenger RNA Mutation in Single Cells. ACS Sens 2018; 3:1795-1801. [PMID: 30148353 DOI: 10.1021/acssensors.8b00524] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Precise detection of the low copy numbers of messenger RNA (mRNA) mutation in single cells is of great significance but still remains challenging. Herein, by integrating the outstanding features of a rationally designed peptide nucleic acid (PNA) clamp for highly selective discrimination of single-nucleotide variation, and droplet digital PCR for ultrasensitive and precise quantification, we have developed a robust one-step droplet digital reverse transcription PCR (ddRT-PCR) method which enables precise mRNA mutation detection in single cells with ultrahigh specificity to clearly discern as low as 0.01% mutated mRNA in a high background of wild-type mRNA. Because of its outstanding single-molecule level sensitivity and ultrahigh specificity, this ddRT-PCR method holds great promise for studying cellular heterogeneity at the single cell level, as well as for the precise quantification of mutant mRNAs in complex plasma or serum for liquid biopsy.
Collapse
Affiliation(s)
- Yuanyuan Sun
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi Province, P. R. China
| | - Hui Tian
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi Province, P. R. China
| | - Chenghui Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi Province, P. R. China
| | - Dandan Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi Province, P. R. China
| | - Zhengping Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi Province, P. R. China
| |
Collapse
|
9
|
Wächter S, Wunderlich A, Greene BH, Roth S, Elxnat M, Fellinger SA, Verburg FA, Luster M, Bartsch DK, Di Fazio P. Selumetinib Activity in Thyroid Cancer Cells: Modulation of Sodium Iodide Symporter and Associated miRNAs. Int J Mol Sci 2018; 19:ijms19072077. [PMID: 30018229 PMCID: PMC6073679 DOI: 10.3390/ijms19072077] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/06/2018] [Accepted: 07/07/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The MEK (mitogen-activated protein kinase)⁻inhibitor selumetinib led to increased radioiodine uptake and retention in a subgroup of patients suffering from radioiodine refractory differentiated thyroid cancer (RR-DTC). We aimed to analyse the effect of selumetinib on the expression of sodium iodide symporter (NIS; SLC5A5) and associated miRNAs in thyroid cancer cells. METHODS Cytotoxicity was assessed by viability assay in TPC1, BCPAP, C643 and 8505C thyroid cancer cell lines. NIS, hsa-let-7f-5p, hsa-miR-146b-5p, and hsa-miR-146b-3p expression was determined by quantitative RT-PCR. NIS protein was detected by Western blot. Radioiodine uptake was performed with a Gamma counter. RESULTS Selumetinib caused a significant reduction of cell viability in all thyroid cancer cell lines. NIS transcript was restored by selumetinib in all cell lines. Its protein level was found up-regulated in TPC1 and BCPAP cells and down-regulated in C643 and 8505C cells after treatment with selumetinib. Treatment with selumetinib caused a down-regulation of hsa-let-7f-5p, hsa-miR-146b-5p and hsa-miR-146b-3p in TPC1 and BCPAP cells. In 8505C cells, a stable or down-regulated hsa-miR-146b-5p was detected after 1h and 48h of treatment. C643 cells showed stable or up-regulated hsa-let-7f-5p, hsa-miR-146b-5p and hsa-miR-146b-3p. Selumetinib treatment caused an increase of radioiodine uptake, which was significant in TPC1 cells. CONCLUSIONS The study shows for the first time that selumetinib restores NIS by the inhibition of its related targeting miRNAs. Further studies are needed to clarify the exact mechanism activated by hsa-miR-146b-5p, hsa-miR-146b-3p and hsa-let7f-5p to stabilise NIS. Restoration of NIS could represent a milestone for the treatment of advanced RR-DTC.
Collapse
Affiliation(s)
- Sabine Wächter
- Department of Visceral Thoracic and Vascular Surgery, Philipps-University Marburg, Baldingerstrasse, 35043 Marburg, Germany.
| | - Annette Wunderlich
- Department of Visceral Thoracic and Vascular Surgery, Philipps-University Marburg, Baldingerstrasse, 35043 Marburg, Germany.
| | - Brandon H Greene
- Institute of Medical Biometry and Epidemiology, Philipps-University Marburg, Bunsenstrasse 3, 35037 Marburg, Germany.
| | - Silvia Roth
- Department of Visceral Thoracic and Vascular Surgery, Philipps-University Marburg, Baldingerstrasse, 35043 Marburg, Germany.
| | - Moritz Elxnat
- Department of Visceral Thoracic and Vascular Surgery, Philipps-University Marburg, Baldingerstrasse, 35043 Marburg, Germany.
| | - Sebastian A Fellinger
- Department of Nuclear Medicine, Philipps-University Marburg, Baldingerstrasse, 35043 Marburg, Germany.
| | - Frederik A Verburg
- Department of Nuclear Medicine, Philipps-University Marburg, Baldingerstrasse, 35043 Marburg, Germany.
| | - Markus Luster
- Department of Nuclear Medicine, Philipps-University Marburg, Baldingerstrasse, 35043 Marburg, Germany.
| | - Detlef K Bartsch
- Department of Visceral Thoracic and Vascular Surgery, Philipps-University Marburg, Baldingerstrasse, 35043 Marburg, Germany.
| | - Pietro Di Fazio
- Department of Visceral Thoracic and Vascular Surgery, Philipps-University Marburg, Baldingerstrasse, 35043 Marburg, Germany.
| |
Collapse
|
10
|
Song H, Zhang J, Ning L, Zhang H, Chen D, Jiao X, Zhang K. The MEK1/2 Inhibitor AZD6244 Sensitizes BRAF-Mutant Thyroid Cancer to Vemurafenib. Med Sci Monit 2018; 24:3002-3010. [PMID: 29737325 PMCID: PMC5965018 DOI: 10.12659/msm.910084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background BRAFV600E mutation occurs in approximately 45% of papillary thyroid cancer (PTC) cases, and 25% of anaplastic thyroid cancer (ATC) cases. Vemurafenib/PLX4032, a selective BRAF inhibitor, suppresses extracellular signal-regulated kinase kinase/extracellular signal-regulated kinase 1/2 (MEK/ERK1/2) signaling and shows beneficial effects in patients with metastatic melanoma harboring the BRAFV600E mutation. However, the response to vemurafenib is limited in BRAF-mutant thyroid cancer. The present study evaluated the effect of vemurafenib in combination with the selective MEK1/2 inhibitor AZD6244 on cell survival and explored the mechanism underlying the combined effect of vemurafenib and AZD6244 on thyroid cancer cells harboring BRAFV600E. Material/Methods Thyroid cancer 8505C and BCPAP cells harboring the BRAFV600E mutation were exposed to vemurafenib (0.01, 0.1, and 1 μM) and AZD6244 (0.01, 0.1, and 1 μM) alone or in the indicated combinations for the indicated times. Cell viability was detected by the MTT assay. Cell cycle distribution and induction of apoptosis were detected by flow cytometry. The expression of cyclin D1, P27, (P)-ERK1/2 was evaluated by Western blotting. The effect of vemurafenib or AZD6244 or their combination on the growth of 8505C cells was examined in orthotopic xenograft mouse models in vivo. Results Vemurafenib alone did not increase cell apoptosis, whereas it decreased cell viability by promoting cell cycle arrest in BCPAP and 8505C cells. AZD6244 alone increased cell apoptosis by inducing cell cycle arrest in BCPAP and 8505C cells. Combination treatment with AZD6244 and vemurafenib significantly decreased cell viability and increased apoptosis in both BCPAP and 8505C cells compared with the effects of each drug alone. AZD6244 alone abolished phospho-ERK1/2 (pERK1/2) expression at 48 h, whereas vemurafenib alone downregulated pERK1/2 at 4–6 h, with rapid recovery of expression, reaching the highest level at 24–48 h. Combined treatment for 48 h completely inhibited pERK1/2 expression. Combination treatment with vemurafenib and AZD6244 inhibited cell growth and induced apoptosis by causing cell-cycle arrest, with the corresponding changes in the expression of the cell cycle regulators p27Kip1 and cyclin D1. Co-administration of vemurafenib and AZD6244 in vivo had a significant synergistic antitumor effect in a nude mouse model. Conclusions Vemurafenib activated pERK1/2 and induced vemurafenib resistance in thyroid cancer cells. Combination treatment with vemurafenib and AZD6244 inhibited ERK signaling and caused cell cycle arrest, resulting in cell growth inhibition. Combination treatment in patients with thyroid cancer harboring the BRAFV600E mutation may overcome vemurafenib resistance and enhance the therapeutic effect.
Collapse
Affiliation(s)
- Hao Song
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Jinna Zhang
- Department of Thyroid Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Liang Ning
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Honglai Zhang
- Department of Thyroid Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Dong Chen
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Xuelong Jiao
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Kejun Zhang
- Department of Thyroid Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| |
Collapse
|
11
|
Kim A, Pratilas CA. The promise of signal transduction in genetically driven sarcomas of the nerve. Exp Neurol 2017; 299:317-325. [PMID: 28859862 DOI: 10.1016/j.expneurol.2017.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 12/28/2022]
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant tumor predisposition syndrome. Malignant peripheral nerve sheath tumors (MPNST) are aggressive soft tissue sarcomas arising from peripheral nerve sheaths, and the most commonly lethal feature associated with NF1. The hallmark of NF1 and NF1-related MPNST is the loss of neurofibromin expression. Loss of neurofibromin is considered a tumor-promoting event, and leads to constitutive activation of RAS and its downstream effectors. However, RAS activation alone is not sufficient for MPNST formation, and additional tumor suppressors and signaling pathways have been implicated in tumorigenesis of MPNST. Taking advantage of the rapid development of novel therapeutics targeting key molecular pathways across all cancer types, the best-in-class modulators of these pathways can be assessed in pre-clinical models and translated into clinical trials for patients with MPNST. Here, we describe the genetic changes and molecular pathways that drive MPNST formation and highlight the promise of signal transduction to identify therapies that may treat these tumors more effectively.
Collapse
Affiliation(s)
- AeRang Kim
- Children's National Medical Center, Washington, D.C., United States
| | - Christine A Pratilas
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States.
| |
Collapse
|
12
|
Azouzi N, Cailloux J, Cazarin JM, Knauf JA, Cracchiolo J, Al Ghuzlan A, Hartl D, Polak M, Carré A, El Mzibri M, Filali-Maltouf A, Al Bouzidi A, Schlumberger M, Fagin JA, Ameziane-El-Hassani R, Dupuy C. NADPH Oxidase NOX4 Is a Critical Mediator of BRAF V600E-Induced Downregulation of the Sodium/Iodide Symporter in Papillary Thyroid Carcinomas. Antioxid Redox Signal 2017; 26:864-877. [PMID: 27401113 PMCID: PMC5444494 DOI: 10.1089/ars.2015.6616] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AIMS The BRAFV600E oncogene, reported in 40%-60% of papillary thyroid cancer (PTC), has an important role in the pathogenesis of PTC. It is associated with the loss of thyroid iodide-metabolizing genes, such as sodium/iodide symporter (NIS), and therefore with radioiodine refractoriness. Inhibition of mitogen-activated protein kinase (MAPK) pathway, constitutively activated by BRAFV600E, is not always efficient in resistant tumors suggesting that other compensatory mechanisms contribute to a BRAFV600E adaptive resistance. Recent studies pointed to a key role of transforming growth factor β (TGF-β) in BRAFV600E-induced effects. The reactive oxygen species (ROS)-generating NADPH oxidase NOX4, which is increased in PTC, has been identified as a new key effector of TGF-β in cancer, suggestive of a potential role in BRAFV600E-induced thyroid tumors. RESULTS Here, using two human BRAFV600E-mutated thyroid cell lines and a rat thyroid cell line expressing BRAFV600E in a conditional manner, we show that NOX4 upregulation is controlled at the transcriptional level by the oncogene via the TGF-β/Smad3 signaling pathway. Importantly, treatment of cells with NOX4-targeted siRNA downregulates BRAFV600E-induced NIS repression. Innovation and Conclusion: Our results establish a link between BRAFV600E and NOX4, which is confirmed by a comparative analysis of NOX4 expression in human (TCGA) and mouse thyroid cancers. Remarkably, analysis of human and murine BRAFV600E-mutated thyroid tumors highlights that the level of NOX4 expression is inversely correlated to thyroid differentiation suggesting that other genes involved in thyroid differentiation in addition to NIS might be silenced by a mechanism controlled by NOX4-derived ROS. This study opens a new opportunity to optimize thyroid cancer therapy. Antioxid. Redox Signal. 26, 864-877.
Collapse
Affiliation(s)
- Naïma Azouzi
- 1 UMR 8200 CNRS , Villejuif, France .,2 Institut Gustave Roussy , Villejuif, France .,3 Université Paris-Saclay , Orsay, France .,4 Unité de Biologie et Recherche Médicale, Centre National de l'Energie , des Sciences et des Techniques Nucléaires, Rabat, Morocco
| | - Jérémy Cailloux
- 1 UMR 8200 CNRS , Villejuif, France .,2 Institut Gustave Roussy , Villejuif, France .,3 Université Paris-Saclay , Orsay, France
| | - Juliana M Cazarin
- 1 UMR 8200 CNRS , Villejuif, France .,2 Institut Gustave Roussy , Villejuif, France .,3 Université Paris-Saclay , Orsay, France .,5 Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Brazil
| | - Jeffrey A Knauf
- 6 Department of Medicine and Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center , New York, New York
| | - Jennifer Cracchiolo
- 6 Department of Medicine and Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center , New York, New York
| | - Abir Al Ghuzlan
- 1 UMR 8200 CNRS , Villejuif, France .,2 Institut Gustave Roussy , Villejuif, France .,3 Université Paris-Saclay , Orsay, France
| | - Dana Hartl
- 2 Institut Gustave Roussy , Villejuif, France
| | - Michel Polak
- 7 INSERM U1016 , Paris, France .,8 Imagine Institute , Paris, France .,9 Pediatric Endocrinology, Gynaecology and Diabetology Unit, Hôpital Universitaire Necker-Enfants Malades , AP-HP, Paris, France .,10 Université Paris Descartes-Sorbonne Paris Cité , Paris, France
| | - Aurore Carré
- 7 INSERM U1016 , Paris, France .,8 Imagine Institute , Paris, France
| | - Mohammed El Mzibri
- 4 Unité de Biologie et Recherche Médicale, Centre National de l'Energie , des Sciences et des Techniques Nucléaires, Rabat, Morocco
| | - Abdelkarim Filali-Maltouf
- 11 Laboratoire de Microbiologie et Biologie Moléculaire, Faculté des Sciences, Université Mohammed V , Rabat, Morocco
| | - Abderrahmane Al Bouzidi
- 12 Equipe de recherche en pathologie tumorale, Faculté de Médecine et de Pharmacie, Université Mohammed V , Rabat, Morocco
| | - Martin Schlumberger
- 1 UMR 8200 CNRS , Villejuif, France .,2 Institut Gustave Roussy , Villejuif, France .,3 Université Paris-Saclay , Orsay, France
| | - James A Fagin
- 6 Department of Medicine and Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center , New York, New York
| | - Rabii Ameziane-El-Hassani
- 1 UMR 8200 CNRS , Villejuif, France .,2 Institut Gustave Roussy , Villejuif, France .,4 Unité de Biologie et Recherche Médicale, Centre National de l'Energie , des Sciences et des Techniques Nucléaires, Rabat, Morocco
| | - Corinne Dupuy
- 1 UMR 8200 CNRS , Villejuif, France .,2 Institut Gustave Roussy , Villejuif, France .,3 Université Paris-Saclay , Orsay, France
| |
Collapse
|
13
|
Senescent tumor cells lead the collective invasion in thyroid cancer. Nat Commun 2017; 8:15208. [PMID: 28489070 PMCID: PMC5436223 DOI: 10.1038/ncomms15208] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 03/09/2017] [Indexed: 12/13/2022] Open
Abstract
Cellular senescence has been perceived as a barrier against carcinogenesis. However, the senescence-associated secretory phenotype (SASP) of senescent cells can promote tumorigenesis. Here, we show senescent tumour cells are frequently present in the front region of collective invasion of papillary thyroid carcinoma (PTC), as well as lymphatic channels and metastatic foci of lymph nodes. In in vitro invasion analysis, senescent tumour cells exhibit high invasion ability as compared with non-senescent tumour cells through SASP expression. Collective invasion in PTC is led by senescent tumour cells characterized by generation of a C-X-C-motif ligand (CXCL)12 chemokine gradient in the front region. Furthermore, senescent cells increase the survival of cancer cells via CXCL12/CXCR4 signalling. An orthotopic xenograft in vivo model also shows higher lymphatic vessels involvement in the group co-transplanted with senescent cells and cancer cells. These findings suggest that senescent cells are actively involved in the collective invasion and metastasis of PTC. The senescence-associated secretory phenotype of stromal cells can promote tumorigenesis. Here, the authors show that senescent cancer cells are localized at the invasive front in human papillary thyroid carcinoma, and that senescent cancer cells drive collective invasion via CXCL12 in mouse models.
Collapse
|
14
|
Lake D, Corrêa SAL, Müller J. Negative feedback regulation of the ERK1/2 MAPK pathway. Cell Mol Life Sci 2016; 73:4397-4413. [PMID: 27342992 PMCID: PMC5075022 DOI: 10.1007/s00018-016-2297-8] [Citation(s) in RCA: 364] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 01/04/2023]
Abstract
The extracellular signal-regulated kinase 1/2 (ERK1/2) mitogen-activated protein kinase (MAPK) signalling pathway regulates many cellular functions, including proliferation, differentiation, and transformation. To reliably convert external stimuli into specific cellular responses and to adapt to environmental circumstances, the pathway must be integrated into the overall signalling activity of the cell. Multiple mechanisms have evolved to perform this role. In this review, we will focus on negative feedback mechanisms and examine how they shape ERK1/2 MAPK signalling. We will first discuss the extensive number of negative feedback loops targeting the different components of the ERK1/2 MAPK cascade, specifically the direct posttranslational modification of pathway components by downstream protein kinases and the induction of de novo gene synthesis of specific pathway inhibitors. We will then evaluate how negative feedback modulates the spatiotemporal signalling dynamics of the ERK1/2 pathway regarding signalling amplitude and duration as well as subcellular localisation. Aberrant ERK1/2 activation results in deregulated proliferation and malignant transformation in model systems and is commonly observed in human tumours. Inhibition of the ERK1/2 pathway thus represents an attractive target for the treatment of malignant tumours with increased ERK1/2 activity. We will, therefore, discuss the effect of ERK1/2 MAPK feedback regulation on cancer treatment and how it contributes to reduced clinical efficacy of therapeutic agents and the development of drug resistance.
Collapse
Affiliation(s)
- David Lake
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Sonia A L Corrêa
- School of Life Sciences, University of Warwick, Coventry, UK
- Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Jürgen Müller
- Warwick Medical School, University of Warwick, Coventry, UK.
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, B4 7ET, UK.
| |
Collapse
|
15
|
Jiang L, Chu H, Zheng H. B-Raf mutation and papillary thyroid carcinoma patients. Oncol Lett 2016; 11:2699-2705. [PMID: 27073540 PMCID: PMC4812206 DOI: 10.3892/ol.2016.4298] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 12/11/2015] [Indexed: 02/02/2023] Open
Abstract
Thyroid carcinoma is the most prevalent endocrine neoplasm globally. In the majority of thyroid carcinoma cases, a positive prognosis is predicted following administration of the appropriate treatment. A wide range of genetic alterations present in thyroid carcinoma exert their oncogenic actions partially through the activation of the mitogen-activated protein kinase pathway, with the B-Raf mutation in particular being focused on by experts for decades. The B-Raf gene has numerous mutations, however, V600E presents with the highest frequency. It is believed that the existence of the V600E mutation may demonstrate an association with the clinicopathological characteristics of patients, however, inconsistencies remain in the literature. A number of explanatory theories have been presented in order to resolve these discrepancies. Recently, it has been suggested that the V600E mutation may function as a target in a novel approach that may aid the diagnosis and prognosis of thyroid carcinoma, with a number of vying methods put forward to that effect. The current review aims to assist researchers in further understanding the possible association between B-Raf mutations and thyroid carcinoma.
Collapse
Affiliation(s)
- Lixin Jiang
- Department of General Surgery, Affiliated Hospital of Qingdao University, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Haidi Chu
- Department of General Surgery, Affiliated Hospital of Qingdao University, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Haitao Zheng
- Department of General Surgery, Affiliated Hospital of Qingdao University, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
16
|
Affolter A, Muller MF, Sommer K, Stenzinger A, Zaoui K, Lorenz K, Wolf T, Sharma S, Wolf J, Perner S, Weber KJ, Freier K, Plinkert PK, Hess J, Weichert W. Targeting irradiation-induced mitogen-activated protein kinase activation in vitro and in an ex vivo model for human head and neck cancer. Head Neck 2016; 38 Suppl 1:E2049-61. [PMID: 26918677 DOI: 10.1002/hed.24376] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/28/2015] [Accepted: 12/04/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Despite new radiotherapeutic strategies, radioresistance in head and neck squamous cell carcinoma (HNSCC) remains a major problem. Preclinical model systems are needed to identify resistance mechanisms in this heterogeneous entity. METHODS We elucidated the interplay among mitogen-activated protein kinase (MAPK)-inhibition, radiation, and p53 mutations in vitro and in a novel ex vivo model derived from vital human HNSCC samples. HNSCC cell lines (p53WT/mut) were treated with the mitogen-activated protein kinase (MEK)-inhibitor PD-0325901 and subsequently irradiated. Radiosensitization was functionally assessed and evaluated in the ex vivo model. RESULTS We observed a pronounced irradiation-induced extracellular signal-regulated kinase (ERK) phosphorylation in 2 cell lines, which was independent of their p53 mutation status and associated with PD-0325901-related radiosensitization in a clonogenic assay. Heterogeneity in irradiation-induced ERK phosphorylation and in radiosensitization after MEK-inhibition was also reflected in the ex vivo model. CONCLUSION We provide experimental evidence for radiosensitizing effects of PD-0325901 in HNSCC. The ex vivo culture technology might offer a promising tool for individualized drug efficacy testing. © 2016 Wiley Periodicals, Inc. Head Neck 38: E2049-E2061, 2016.
Collapse
Affiliation(s)
- Annette Affolter
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.,Department of Otorhinolaryngology, Head and Neck Surgery, Experimental Head and Neck Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Marie-France Muller
- Department of Otorhinolaryngology, Head and Neck Surgery, Experimental Head and Neck Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Katharina Sommer
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Karim Zaoui
- Department of Otorhinolaryngology, Head and Neck Surgery, Experimental Head and Neck Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Katja Lorenz
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Wolf
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg University Hospital, Heidelberg, Germany
| | - Sarika Sharma
- Department of Otorhinolaryngology, Head and Neck Surgery, Experimental Head and Neck Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Janina Wolf
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sven Perner
- Pathology of the University Hospital of Luebeck and Leibniz Research Center Borstel, Luebeck and Borstel, Germany
| | | | - Kolja Freier
- Department of Oral and Maxillofacial Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Peter K Plinkert
- Department of Otorhinolaryngology, Head and Neck Surgery, Experimental Head and Neck Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jochen Hess
- Department of Otorhinolaryngology, Head and Neck Surgery, Experimental Head and Neck Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Molecular Mechanisms of Head and Neck Tumors, German Cancer Research Center (DKFZ), Heidelberg University Hospital, Heidelberg, Germany
| | - Wilko Weichert
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.,Institute of Pathology, Technical University Munich (TUM), Munich, Germany
| |
Collapse
|
17
|
Dorris ER, Blackshields G, Sommerville G, Alhashemi M, Dias A, McEneaney V, Smyth P, O'Leary JJ, Sheils O. Pluripotency markers are differentially induced by MEK inhibition in thyroid and melanoma BRAFV600E cell lines. Cancer Biol Ther 2016; 17:526-42. [PMID: 26828826 PMCID: PMC4910922 DOI: 10.1080/15384047.2016.1139230] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Oncogenic mutations in BRAF are common in melanoma and thyroid carcinoma and drive constitutive activation of the MAPK pathway. Molecularly targeted therapies of this pathway improves survival compared to chemotherapy; however, responses tend to be short-lived as resistance invariably occursCell line models of melanoma and thyroid carcinoma, +/− BRAFV600E activating mutation, were treated with the MEK inhibitor PD0325901. Treated and naive samples were assayed for expression of key members of the MAPK pathway. Global microRNA expression profiling of naive and resistant cells was performed via next generation sequencingand indicated pluripotency pathways in resistance. Parental cell lines were progressed to holoclones to confirm the miRNA stemness profileMembers of the MIR302/373/374/520 family of embryonic stem cell specific cell cycle regulating (ESCC) microRNAs were identified as differentially expressed between resistant BRAFV600E melanoma and thyroid cell lines. Upregulated expression of gene and protein stemness markers, upregulated expression of MAPK pathway genes and downregulation of the ESCC MIR302 cluster in BRAFV600E melanoma indicated an increased stem-like phenotype in resistant BRAFV600E melanoma. Conversely, downregulated expression of gene and protein stemness markers, downregulated expression of MAPK pathway genes, upregulation of the ESCC MIR520 cluster, reeexpression of cell surface receptors, and induced differentiation-associated morphology in resistant BRAFV600E indicate a differentiated phenotype associated with MEK inhibitor resistance in BRAFV600E thyroid cellsThe differential patterns of resistance observed between BRAFV600E melanoma and thyroid cell lines may reflect tissue type or de novo differentiation, but could have significant impact on the response of primary and metastatic cells to MEK inhibitor treatment. This study provides a basis for the investigation of the cellular differentiation/self-renewal access and its role in resistance to MEK inhibition.
Collapse
Affiliation(s)
- Emma R Dorris
- a Department of Histopathology , Sir Patrick Dun Research Lab, Trinity College Dublin , Dublin , Ireland
| | - Gordon Blackshields
- a Department of Histopathology , Sir Patrick Dun Research Lab, Trinity College Dublin , Dublin , Ireland
| | - Gary Sommerville
- a Department of Histopathology , Sir Patrick Dun Research Lab, Trinity College Dublin , Dublin , Ireland
| | - Mohsen Alhashemi
- a Department of Histopathology , Sir Patrick Dun Research Lab, Trinity College Dublin , Dublin , Ireland
| | - Andrew Dias
- a Department of Histopathology , Sir Patrick Dun Research Lab, Trinity College Dublin , Dublin , Ireland
| | - Victoria McEneaney
- a Department of Histopathology , Sir Patrick Dun Research Lab, Trinity College Dublin , Dublin , Ireland
| | - Paul Smyth
- a Department of Histopathology , Sir Patrick Dun Research Lab, Trinity College Dublin , Dublin , Ireland
| | - John J O'Leary
- a Department of Histopathology , Sir Patrick Dun Research Lab, Trinity College Dublin , Dublin , Ireland
| | - Orla Sheils
- a Department of Histopathology , Sir Patrick Dun Research Lab, Trinity College Dublin , Dublin , Ireland
| |
Collapse
|
18
|
Ingeson-Carlsson C, Martinez-Monleon A, Nilsson M. Differential effects of MAPK pathway inhibitors on migration and invasiveness of BRAF(V600E) mutant thyroid cancer cells in 2D and 3D culture. Exp Cell Res 2015; 338:127-35. [PMID: 26384551 DOI: 10.1016/j.yexcr.2015.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 07/11/2015] [Accepted: 08/06/2015] [Indexed: 11/26/2022]
Abstract
Tumor microenvironment influences targeted drug therapy. In this study we compared drug responses to RAF and MEK inhibitors on tumor cell migration in 2D and 3D culture of BRAF(V600E) mutant cell lines derived from human papillary (BCPAP) and anaplastic (SW1736) thyroid carcinomas. Scratch wounding was compared to a double-layered collagen gel model developed for analysis of directed tumor cell invasion during prolonged culture. In BCPAP both PLX4720 and U0126 inhibited growth and migration in 2D and decreased tumor cell survival in 3D. In SW1736 drugs had no effect on migration in 2D but decreased invasion in 3D, however this related to reduced growth. Dual inhibition of BRAF(V600E) and MEK reduced but did not prevent SW1736 invasion although rebound phosphorylation of ERK in response to PLX4720 was blocked by U0126. These findings indicate that anti-tumor drug effects in vitro differ depending on culture conditions (2D vs. 3D) and that the invasive features of anaplastic thyroid cancer depend on non-MEK mechanism(s).
Collapse
Affiliation(s)
- Camilla Ingeson-Carlsson
- Sahlgrenska Cancer Center, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden.
| | - Angela Martinez-Monleon
- Sahlgrenska Cancer Center, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden.
| | - Mikael Nilsson
- Sahlgrenska Cancer Center, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden.
| |
Collapse
|
19
|
Ball DW, Jin N, Xue P, Bhan S, Ahmed SR, Rosen DM, Schayowitz A, Clark DP, Nelkin BD. Trametinib with and without pazopanib has potent preclinical activity in thyroid cancer. Oncol Rep 2015; 34:2319-24. [PMID: 26324075 PMCID: PMC4583528 DOI: 10.3892/or.2015.4225] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/12/2014] [Indexed: 12/19/2022] Open
Abstract
Multikinase inhibitors (MKIs) targeting VEGF receptors and other receptor tyrosine kinases have shown considerable activity in clinical trials of thyroid cancer. Thyroid cancer frequently exhibits activation of the RAS/RAF/MEK/ERK pathway. In other types of cancer, paradoxical ERK activation has emerged as a potential resistance mechanism to RAF-inhibiting drugs including MKIs such as sorafenib and pazopanib. We therefore queried whether the MEK inhibitor trametinib, could augment the activity of pazopanib in thyroid cancer cell lines. Trametinib potently inhibited growth in vitro (GI50 1.1–4.8 nM), whereas pazopanib had more limited in vitro activity, as anticipated (GI50 1.4–7.1 µM). We observed progressive upregulation of ERK activity with pazopanib treatment, an effect abrogated by trametinib. For xenografts (bearing either KRASG12R or BRAFV600E mutations), the combination of trametinib and pazopanib led to sustained shrinkage in tumor volume by 50% or more, compared to pre-treatment baseline. Trametinib also was highly effective as a single agent, compared to pazopanib alone. These preclinical findings support the evaluation of trametinib, alone or in combination with pazopanib or other kinase inhibitors, in thyroid cancer clinical trials. We highlight the importance of pharmacodynamic assessment of the ERK pathway for patients enrolled in trials involving MKIs.
Collapse
Affiliation(s)
- Douglas W Ball
- Cancer Biology Division, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21287, USA
| | - Ning Jin
- Cancer Biology Division, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21287, USA
| | - Ping Xue
- Cancer Biology Division, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21287, USA
| | - Sheetal Bhan
- Cancer Biology Division, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21287, USA
| | - Shabina R Ahmed
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - D Marc Rosen
- Cancer Biology Division, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21287, USA
| | | | | | - Barry D Nelkin
- Cancer Biology Division, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21287, USA
| |
Collapse
|
20
|
Luke JJ, Ott PA, Shapiro GI. The biology and clinical development of MEK inhibitors for cancer. Drugs 2015; 74:2111-28. [PMID: 25414119 DOI: 10.1007/s40265-014-0315-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The mitogen-activated protein kinase kinases (MAPKK) MEK1 and MEK2 are integral members of the MAPK/ERK signaling pathway and are of interest in the development of anti-cancer therapeutics. The MAPK/ERK pathway is dysregulated in more than 30 % of cancers, predominately by mutations in RAS and BRAF proteins, and MEK serves as a potential downstream target for both of these. The biology of MEK inhibition is complex, as the molecule is differentially regulated by upstream RAS or RAF. This has impacted on the past development of MEK inhibitors as treatments for cancer and may be exploited in more rational, molecularly selected drug development plans in the future. The role of MEK in cancer and the mechanism of action of MEK inhibitors is reviewed. Furthermore, MEK inhibitors that are available in standard practice, as well as those most advanced in clinical development, are discussed. Finally, next steps in the development of MEK inhibitors are considered.
Collapse
Affiliation(s)
- Jason J Luke
- Melanoma and Developmental Therapeutics Clinics, University of Chicago Cancer Center, University of Chicago, 5841 S. Maryland Ave., MC2115, Chicago, IL, 60637, USA,
| | | | | |
Collapse
|
21
|
Alonso-Gordoa T, Díez JJ, Durán M, Grande E. Advances in thyroid cancer treatment: latest evidence and clinical potential. Ther Adv Med Oncol 2015; 7:22-38. [PMID: 25553081 PMCID: PMC4265091 DOI: 10.1177/1758834014551936] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Advanced thyroid carcinoma is an infrequent tumor entity with limited treatment possibilities until recently. The extraordinary improvement in the comprehension of genetic and molecular alterations involving the RAS/RAF/mitogen-activated protein kinase and phosphatidylinositide 3-kinase/Akt/mammalian target of rapamycin signaling and interacting pathways that are involved in tumor survival, proliferation, differentiation, motility and angiogenesis have been the rationale for the development of new effective targeted therapies. Data coming from phase II clinical trials have confirmed the efficacy of those targeted agents against receptors in cell membrane and cytoplasmic molecules. Moreover, four of those investigational drugs, vandetanib, cabozantinib, sorafenib and lenvatinib, have reached a phase III clinical trial with favorable results in progression-free survival and overall survival in medullary thyroid carcinoma and differentiated thyroid carcinoma. Further analysis for an optimal approach has been conducted according to mutational profile and tumor subtypes. However, consistent results are still awaited and the research for adequate prognostic and predictive biomarkers is ongoing. The following report offers a comprehensive review from the rationale to the basis of targeted agents in the treatment of thyroid carcinoma. In addition, current and future therapeutic developments by the inhibition of further molecular targets are discussed in this setting.
Collapse
Affiliation(s)
- T Alonso-Gordoa
- Medical Oncology Department, Ramon y Cajal University Hospital, Madrid, Spain
| | - J J Díez
- Endocrinology Department, Ramon y Cajal University Hospital, Madrid, Spain
| | - M Durán
- Surgery Department, Rey Juan Carlos University Hospital, Mostoles, Spain
| | - Enrique Grande
- Servicio de Oncología Médica, Hospital Universitario Ramón y Cajal, Carretera de Colmenar Km 9100, 28034 Madrid, Spain
| |
Collapse
|
22
|
Abstract
Introduction: The MAPK pathway is essential for regulation of cellular proliferation, differentiation and survival. Multiple human cancers have demonstrated activation of Raf-mitogen-activated kinase kinase (MEK)-extracellular signal-related kinase signaling, a hallmark of these tumors. Efforts to inhibit various protein kinases in this pathway have led to the development of MEK inhibitors. Selumetinib is one such drug, functioning as an oral, selective non-ATP-competitive MEK1/2 inhibitor. Areas covered: In this article, the authors discuss the underlying biology of MEK inhibition and its rationale in cancer treatment. Furthermore, the authors summarize the clinical development of selumetinib in various tumor types, from initial Phase I studies to randomized Phase II studies, both as monotherapy or in combination with other chemotherapeutics. Expert opinion: Given the frequency of activated MAPK signaling in multiple tumor types, the potent MEK inhibitor selumetinib had strong preclinical and early clinical rationale, particularly in those tumors harboring KRAS or BRAF mutations. While efficacy signals have been seen in various tumor types treated with selumetinib, better biomarkers are needed to select patients most likely to respond favorably to this agent. Furthermore, combinatorial therapy with selumetinib and other targeted agents can likely be optimized to maximize the antitumor effect of inhibiting RAS/MAPK signaling.
Collapse
Affiliation(s)
- Kristen Keon Ciombor
- The Ohio State University Comprehensive Cancer Center, Division of Medical Oncology, Department of Medicine , Columbus, OH , USA
| | | |
Collapse
|
23
|
Chang YC, Hsu YC, Liu CL, Huang SY, Hu MC, Cheng SP. Local anesthetics induce apoptosis in human thyroid cancer cells through the mitogen-activated protein kinase pathway. PLoS One 2014; 9:e89563. [PMID: 24586874 PMCID: PMC3931808 DOI: 10.1371/journal.pone.0089563] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 01/22/2014] [Indexed: 11/19/2022] Open
Abstract
Local anesthetics are frequently used in fine-needle aspiration of thyroid lesions and locoregional control of persistent or recurrent thyroid cancer. Recent evidence suggests that local anesthetics have a broad spectrum of effects including inhibition of cell proliferation and induction of apoptosis in neuronal and other types of cells. In this study, we demonstrated that treatment with lidocaine and bupivacaine resulted in decreased cell viability and colony formation of both 8505C and K1 cells in a dose-dependent manner. Lidocaine and bupivacaine induced apoptosis, and necrosis in high concentrations, as determined by flow cytometry. Lidocaine and bupivacaine caused disruption of mitochondrial membrane potential and release of cytochrome c, accompanied by activation of caspase 3 and 7, PARP cleavage, and induction of a higher ratio of Bax/Bcl-2. Based on microarray and pathway analysis, apoptosis is the prominent transcriptional change common to lidocaine and bupivacaine treatment. Furthermore, lidocaine and bupivacaine attenuated extracellular signal-regulated kinase 1/2 (ERK1/2) activity and induced activation of p38 mitogen-activated protein kinase (MAPK) and c-jun N-terminal kinase. Pharmacological inhibitors of MAPK/ERK kinase and p38 MAPK suppressed caspase 3 activation and PARP cleavage. Taken together, our results for the first time demonstrate the cytotoxic effects of local anesthetics on thyroid cancer cells and implicate the MAPK pathways as an important mechanism. Our findings have potential clinical relevance in that the use of local anesthetics may confer previously unrecognized benefits in the management of patients with thyroid cancer.
Collapse
Affiliation(s)
- Yuan-Ching Chang
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Surgery, Mackay Memorial Hospital and Mackay Medical College, Taipei, Taiwan
- Mackay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
| | - Yi-Chiung Hsu
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Chien-Liang Liu
- Department of Surgery, Mackay Memorial Hospital and Mackay Medical College, Taipei, Taiwan
- Mackay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
| | - Shih-Yuan Huang
- Department of Surgery, Mackay Memorial Hospital and Mackay Medical College, Taipei, Taiwan
| | - Meng-Chun Hu
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
- * E-mail: (MCH); (SPC)
| | - Shih-Ping Cheng
- Department of Surgery, Mackay Memorial Hospital and Mackay Medical College, Taipei, Taiwan
- Mackay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
- Graduate Institute of Medical Sciences, Department of Pharmacology, Taipei Medical University, Taipei, Taiwan
- * E-mail: (MCH); (SPC)
| |
Collapse
|
24
|
|
25
|
Orthotopic mouse models for the preclinical and translational study of targeted therapies against metastatic human thyroid carcinoma with BRAF(V600E) or wild-type BRAF. Oncogene 2013; 33:5397-404. [PMID: 24362526 DOI: 10.1038/onc.2013.544] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/15/2013] [Accepted: 11/17/2013] [Indexed: 12/12/2022]
Abstract
Molecular signature of advanced and metastatic thyroid carcinoma involves deregulation of multiple fundamental pathways activated in the tumor microenvironment. They include BRAF(V600E) and AKT that affect tumor initiation, progression and metastasis. Human thyroid cancer orthotopic mouse models are based on human cell lines that generally harbor genetic alterations found in human thyroid cancers. They can reproduce in vivo and in situ (into the thyroid) many features of aggressive and refractory human advanced thyroid carcinomas, including local invasion and metastasis. Humanized orthotopic mouse models seem to be ideal and commonly used for preclinical and translational studies of compounds and therapies not only because they may mimic key aspects of human diseases (e.g. metastasis), but also for their reproducibility. In addition, they might provide the possibility to evaluate systemic effects of treatments. So far, human thyroid cancer in vivo models were mainly used to test single compounds, non selective and selective. Despite the greater antitumor activity and lower toxicity obtained with different selective drugs in respect to non-selective ones, most of them are only able to delay disease progression, which ultimately could restart with similar aggressive behavior. Aggressive thyroid tumors (for example, anaplastic or poorly differentiated thyroid carcinoma) carry several complex genetic alterations that are likely cooperating to promote disease progression and might confer resistance to single-compound approaches. Orthotopic models of human thyroid cancer also hold the potential to be good models for testing novel combinatorial therapies. In this article, we will summarize results on preclinical testing of selective and nonselective single compounds in orthotopic mouse models based on validated human thyroid cancer cell lines harboring the BRAF(V600E) mutation or with wild-type BRAF. Furthermore, we will discuss the potential use of this model also for combinatorial approaches, which are expected to take place in the upcoming human thyroid cancer basic and clinical research.
Collapse
|
26
|
Ingeson-Carlsson C, Nilsson M. Switching from MAPK-dependent to MAPK-independent repression of the sodium-iodide symporter in 2D and 3D cultured normal thyroid cells. Mol Cell Endocrinol 2013; 381:241-54. [PMID: 23969277 DOI: 10.1016/j.mce.2013.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 07/21/2013] [Accepted: 08/10/2013] [Indexed: 12/20/2022]
Abstract
Loss of sodium-iodide symporter (NIS) expression in thyroid tumour cells primarily caused by constitutive MAPK pathway activation is often refractory to small molecule MAPK inhibitors. Suggested mechanisms are rebound MAPK signalling and activation of alternative signalling pathways. Here we provide evidence that failure to recover down-regulated NIS by MEK inhibition is not specific to tumour cells. NIS mRNA levels remained repressed in TSH-stimulated primary thyroid cells co-treated with epidermal growth factor (EGF) and pan-MEK inhibitor U0126 in the presence of 5% fetal bovine serum or, independently of serum, in 3D cultured thyroid follicles. This led to inhibited iodide transport and iodination. In contrast, U0126 restituted thyroglobulin synthesis in EGF-treated follicular cells. Serum potentiated TSH-stimulated NIS expression in 2D culture. U0126 blocked down-regulation of NIS only in serum-starved cells with a diminished TSH response. Together, this suggests that morphogenetic signals modify the expression of NIS and recovery response to MEK inhibition.
Collapse
Affiliation(s)
- Camilla Ingeson-Carlsson
- Sahlgrenska Cancer Center, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden.
| | | |
Collapse
|
27
|
Dultz LA, Dhar S, Ogilvie JB, Heller KS, Bar-Sagi D, Patel KN. Clinical and therapeutic implications of Sprouty2 feedback dysregulation in BRAF V600E-mutation-positive papillary thyroid cancer. Surgery 2013; 154:1239-44; discussion 1244-5. [PMID: 24094449 DOI: 10.1016/j.surg.2013.06.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 06/21/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND The BRAF V600E (BRAF+) mutation activates the mitogen-activated protein kinase (MAPK/ERK) pathway and may confer an aggressive phenotype in papillary thyroid cancer (PTC). Clinically, the behavior of BRAF+ PTC, however, varies from an indolent to an aggressive course. SPRY2 is a negative feedback regulator of the MAPK/ERK pathway. We hypothesize that the level of SPRY2 expression contributes to MAPK/ERK pathway output and accounts for BRAF+ and clinical heterogeneity. METHODS A tissue microarray with BRAF-positive PTCs (BRAF+ PTCs) was constructed and analyzed for SPRY2 expression and MAPK/ERK output. Data were studied in the context of clinicopathologic factors to develop a risk stratification system predictive of tumor biology. SPRY2 function was studied by silencing SPRY2 in BRAF+ PTC cells. These cells were treated with MAPK/ERK pathway inhibitors and assessed for growth effects. RESULTS BRAF+ PTCs with an intact MAPK/ERK feedback pathway do not exhibit lymph node metastases. BRAF+ PTCs with dysregulated feedback pathways have nodal metastasis. When SPRY2 is silenced, the BRAF+ PTC cells are significantly more sensitive to MAPK/ERK inhibition. CONCLUSION PTC behavior likely is dependent on both the driver of the MAPK/ERK pathway and its regulatory feedback. When the feedback pathway is intact, the tumor phenotype seems to be less aggressive. This observation has direct and important clinical implications and may alter our treatment strategies.
Collapse
Affiliation(s)
- Linda A Dultz
- Department of Surgery, Division of Endocrine Surgery, New York University School of Medicine, New York, NY
| | | | | | | | | | | |
Collapse
|
28
|
Gild ML, Landa I, Ryder M, Ghossein RA, Knauf JA, Fagin JA. Targeting mTOR in RET mutant medullary and differentiated thyroid cancer cells. Endocr Relat Cancer 2013; 20:659-67. [PMID: 23828865 PMCID: PMC4375728 DOI: 10.1530/erc-13-0085] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Inhibitors of RET, a tyrosine kinase receptor encoded by a gene that is frequently mutated in medullary thyroid cancer, have emerged as promising novel therapies for the disease. Rapalogs and other mammalian target of rapamycin (mTOR) inhibitors are effective agents in patients with gastroenteropancreatic neuroendocrine tumors, which share lineage properties with medullary thyroid carcinomas. The objective of this study was to investigate the contribution of mTOR activity to RET-induced signaling and cell growth and to establish whether growth suppression is enhanced by co-targeting RET and mTOR kinase activities. Treatment of the RET mutant cell lines TT, TPC-1, and MZ-CRC-1 with AST487, a RET kinase inhibitor, suppressed growth and showed profound and sustained inhibition of mTOR signaling, which was recapitulated by siRNA-mediated RET knockdown. Inhibition of mTOR with INK128, a dual mTORC1 and mTORC2 kinase inhibitor, also resulted in marked growth suppression to levels similar to those seen with RET blockade. Moreover, combined treatment with AST487 and INK128 at low concentrations suppressed growth and induced apoptosis. These data establish mTOR as a key mediator of RET-mediated cell growth in thyroid cancer cells and provide a rationale for combinatorial treatments in thyroid cancers with oncogenic RET mutations.
Collapse
Affiliation(s)
- Matti L Gild
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | | | | | | | | | | |
Collapse
|
29
|
Kandil E, Tsumagari K, Ma J, Abd Elmageed ZY, Li X, Slakey D, Mondal D, Abdel-Mageed AB. Synergistic inhibition of thyroid cancer by suppressing MAPK/PI3K/AKT pathways. J Surg Res 2013; 184:898-906. [DOI: 10.1016/j.jss.2013.03.052] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 03/11/2013] [Accepted: 03/14/2013] [Indexed: 12/12/2022]
|
30
|
Abstract
PURPOSE OF REVIEW Paediatric thyroid cancer is a rare disease, but its incidence is rising in recent reports. This review aims at integrating recent findings into the current optimal diagnostic and therapeutic approach. RECENT FINDINGS The causal relationship of differentiated thyroid cancer (DTC) to radiation exposure is increasingly unravelled. Research progressively uncovers the genetic basis, such as RET (rearranged during transfection)/papillary thyroid cancer (PTC) rearrangement and RET-mutations. Knowledge of oncogenic signalling pathways nowadays starts to help finetuning diagnosis, prognosis and treatment. This knowledge complements the current state-of-the-art of paediatric thyroid cancer treatment. In childhood, DTC presents at a more advanced stage and implies higher recurrence rates, recurrences often occurring decades later. Treatment should minimize not only these recurrences but also long-term treatment sequelae. Total thyroidectomy and central compartment dissection by a high-volume surgeon and radioactive iodine is the preferred approach for most children with DTC. For children with medullary thyroid cancer within the MEN2 framework, when possible, prophylactic thyroidectomy is performed. Unfortunately, frequently, the diagnosis is still made at a later stage, and then requires total thyroidectomy with dissection of the central compartment and the lateral neck, when involved. SUMMARY The management complexity, the essential long-term follow-up and the lifetime burden of eventual complications demands management of paediatric thyroid cancer by physicians with the highest expertise. In such hands, excellent results can be obtained.
Collapse
|
31
|
Yasui K, Shimamura M, Mitsutake N, Nagayama Y. SNAIL induces epithelial-to-mesenchymal transition and cancer stem cell-like properties in aldehyde dehydroghenase-negative thyroid cancer cells. Thyroid 2013; 23:989-96. [PMID: 23432420 DOI: 10.1089/thy.2012.0319] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Epithelial-to-mesenchymal transition (EMT) is thought to play a critical role in the invasion and metastasis of cancer and to be associated with cancer stem cell (CSC) properties. It is not clear if there is a link between EMT and CSCs in thyroid cancers. We therefore investigated the CSC properties of thyroid cancers that underwent EMT. METHOD To induce EMT (spindle-like cell morphology, loss and acquisition of expression of an epithelial marker E-cadherin and a mesenchymal marker vimentin respectively) in an epithelial-type thyroid cancer cell line ACT-1, we used transforming growth factor-β (TGF-β), BRAF(V600E), and/or Snail homolog 1 (SNAI1, also known as SNAIL). CSC properties were analyzed with assays for cell proliferation, chemosensitivity, in vitro and in vivo tumor formation ability, cell surface antigens, and intracellular aldehyde dehydrogenase (ALDH; a known CSC marker) activities. RESULTS EMT was induced most efficiently by SNAIL (ACT-SNAIL cells), whereas TGF-β and BRAF(V600E) were less efficient. ACT-SNAIL cells showed slightly but significantly enhanced tumor formation ability in an in vitro sphere assay (approximately 3-fold) but not an in vivo subcutaneous tumor growth assay, and showed comparable chemosensitivity compared with the parental ACT-1 cells. However, of interest, although the in vitro sphere-formation ability of ALDH(+) cells was almost unchanged after SNAIL induction, SNAIL overexpression induced much higher (approximately 14-fold) spheres in ALDH(-) cells. Thus, ALDH was no longer a CSC marker in ACT-SNAIL cells. CONCLUSIONS All these data indicate that EMT confers CSC properties in ALDH(-) cells and appears to influence the ability of ALDH to enrich CSCs.
Collapse
Affiliation(s)
- Kazuaki Yasui
- Department of Molecular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | | |
Collapse
|
32
|
Abstract
Advanced differentiated thyroid cancer (DTC), defined by clinical characteristics including gross extrathyroidal invasion, distant metastases, radioiodine (RAI) resistance, and avidity for 18-fluorodeoxyglucose (positron emission tomography-positive), is found in approximately 10-20% of patients with DTC. Standard therapy (surgery, RAI, TSH suppression with levothyroxine) is ineffective for many of these patients, as is standard chemotherapy. Our understanding of the molecular mechanisms leading to DTC and the transformation to advanced DTC has rapidly evolved over the past 15-20 years. Newer targeted therapy, specifically inhibitors of intracellular kinase signaling pathways, and cooperative multicenter clinical trials have dramatically changed the therapeutic landscape for patients with advanced DTC. In this review focusing on morbidities, molecules, and medicinals, we present a patient with advanced DTC, explore the genetics and molecular biology of advanced DTC, and review evolving therapies for these patients including multikinase inhibitors, selective kinase inhibitors, and combination therapies.
Collapse
Affiliation(s)
- Bryan R Haugen
- University of Colorado School of Medicine, University of Colorado Cancer Center, Aurora, Colorado 80045, USA.
| | | |
Collapse
|
33
|
Frasca F, Vella V, Nicolosi ML, Messina RL, Gianì F, Lotta S, Vigneri P, Regalbuto C, Vigneri R. Thyroid cancer cell resistance to gefitinib depends on the constitutive oncogenic activation of the ERK pathway. J Clin Endocrinol Metab 2013; 98:2502-12. [PMID: 23559083 DOI: 10.1210/jc.2012-3623] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
CONTEXT Poorly differentiated thyroid carcinomas are refractory to common anticancer therapies, and novel inhibitors are being tested in these deadly malignancies. The epidermal growth factor receptor (EGFR) tyrosine kinase represents an attractive target for treatment because it is up-regulated in thyroid cancer and plays a role in cancer progression. However, EGFR inhibitors have provided poor results in thyroid carcinomas. OBJECTIVE We evaluated the possible mechanism underlying the resistance of thyroid cancer cells to EGFR inhibitors. DESIGN We tested the effect of the EGFR tyrosine kinase inhibitor gefitinib in a panel of thyroid cancer cell lines. RESULTS We found that in most of the cell lines, although gefitinib inhibited EGFR phosphorylation, it was poorly effective in reducing cell viability. gefitinib, however, was able to inhibit epidermal growth factor-induced cell migration and matrix invasion. In most thyroid cancer cell lines, gefitinib significantly inhibited Akt phosphorylation by inhibiting EGFR activation, but it had limited or no effect on ERK phosphorylation. The poor cell response to gefitinib was associated with genetic alterations, leading to constitutive activation of the ERK pathway, including BRAF(V600E) and HRAS(G12A/Q61R) mutations and RET/PTC1 rearrangement. When BRAF(V600E)-positive thyroid cancer cells were incubated with the specific BRAF inhibitor PLX4032, sensitivity to gefitinib was restored. Similar results were obtained with rat sarcoma and RET/papillary thyroid cancer inhibitors. CONCLUSIONS These results indicate that thyroid cancer resistance to gefitinib is due to the constitutive activation of the mitogenic pathway by either signals downstream of EGFR or other tyrosine kinase receptors. This resistance can be overcome by the combined use of selective inhibitors.
Collapse
Affiliation(s)
- Francesco Frasca
- Endocrinology Unit, Department of Clinical and Molecular Bio-Medicine, University of Catania, Garibaldi-Nesima Medical Center, Via Palermo 636, 95122 Catania, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Chung EJ, Urick ME, Kurshan N, Shield W, Asano H, Smith PD, Scroggins BS, Burkeen J, Citrin DE. MEK1/2 inhibition enhances the radiosensitivity of cancer cells by downregulating survival and growth signals mediated by EGFR ligands. Int J Oncol 2013; 42:2028-36. [PMID: 23588995 PMCID: PMC3699614 DOI: 10.3892/ijo.2013.1890] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 11/12/2012] [Indexed: 12/31/2022] Open
Abstract
The inhibition of the Ras/mitogen-activated protein kinase (Ras/MAPK) pathway through the suppression of mutated Ras or MAPK/extracellular signal-regulated kinase 1/2 (MEK1/2) has been shown to sensitize tumor cells to ionizing radiation (IR). The molecular mechanisms of this sensitization however, are not yet fully understood. In this study, we investigated the role of transforming growth factor-α (TGF-α) in the radiosensitizing effects of selumetinib, a selective inhibitor of MEK1/2. The expression of epidermal growth factor receptor (EGFR) ligands was assessed by ELISA in both Ras wild-type and Ras mutant cells that were exposed to radiation with or without selumetinib. The effects of selumetinib on the TGF-α/EGFR signaling cascade in response to radiation were examined by western blot analysis, clonogenic assay and by determing the yield of mitotic catastrophe. The treatment of cells with selumetinib reduced the basal and IR-induced secretion of TGF-α in both Ras wild-type and Ras mutant cell lines in vitro and in vivo. The reduction of TGF-α secretion was accompanied with a reduction in phosphorylated tumor necrosis factor-α converting enzyme (TACE) in the cells treated with selumetinib with or without IR. The treatment of cells with selumetinib with or without IR inhibited the phosphorylation of EGFR and check-point kinase 2 (Chk2), and reduced the expression of survivin. Supplementation with exogenous TGF-α partially rescued the selumetinib-treated cells from IR-induced cell death, restored EGFR and Chk2 phosphorylation and increased survivin expression. These data suggest that the inhibition of MEK1/2 with selumetinib may provide a mechanism to sensitize tumor cells to IR in a fashion that prevents the activation of the TGF-α autocrine loop following IR.
Collapse
Affiliation(s)
- Eun Joo Chung
- Section of Translational Radiation Oncology, Radiation Oncology Branch, National Institutes of Health, Bethesda 20892, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Singhal R, Kandel ES. The response to PAK1 inhibitor IPA3 distinguishes between cancer cells with mutations in BRAF and Ras oncogenes. Oncotarget 2013; 3:700-8. [PMID: 22869096 PMCID: PMC3443253 DOI: 10.18632/oncotarget.587] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
While new drugs aimed at BRAF-mutated cancers are entering clinical practice, cells and tumors with activating Ras mutations are relatively resistant to those and quite a few other anti-cancer agents. This inspires the effort to reverse this resistance or to uncover new vulnerabilities in such resistant cancers. IPA3 has been originally identified as a small molecule inhibitor of p21-activated protein kinase 1 (PAK1), a candidate therapeutic target in human malignancies. We have tested a battery of melanoma and colon carcinoma cell lines that carry mutations in BRAF, NRAS and KRAS genes and have observed that those with NRAS and KRAS mutations are more sensitive to killing by IPA3. Genetic manipulations suggest that the differential response depends not just on these oncogenes, but also on additional events that were co-selected during tumor evolution. Furthermore, sublethal doses of IPA3 or ectopic expression of dominant-negative PAK1 sensitized Ras-mutated cells to GDC-0897 and AZD6244, which otherwise have reduced efficiency against cells with activated Ras. Dominant-negative PAK1 also reduced the growth of NRAS-mutated cells in confluent cultures, but, unlike IPA3, caused no significant toxicity. Although it remains to be proven that all the effects of IPA3 are exclusively due to inhibition of PAK1, our findings point to the existence of selective vulnerabilities, which are associated with Ras mutations and could be useful for better understanding and treatment of a large subset of tumors.
Collapse
Affiliation(s)
- Ruchi Singhal
- Roswell Park Cancer Institute, Department of Cell Stress Biology, Elm and Carlton St., Buffalo, NY 142263, USA
| | | |
Collapse
|
36
|
Abstract
Thyroid cancer is a common endocrine malignancy. There has been exciting progress in understanding its molecular pathogenesis in recent years, as best exemplified by the elucidation of the fundamental role of several major signalling pathways and related molecular derangements. Central to these mechanisms are the genetic and epigenetic alterations in these pathways, such as mutation, gene copy-number gain and aberrant gene methylation. Many of these molecular alterations represent novel diagnostic and prognostic molecular markers and therapeutic targets for thyroid cancer, which provide unprecedented opportunities for further research and clinical development of novel treatment strategies for this cancer.
Collapse
Affiliation(s)
- Mingzhao Xing
- Laboratory for Cellular and Molecular Thyroid Research, Division of Endocrinology and Metabolism, Johns Hopkins University School of Medicine, 1830 East Monument Street, Suite 333, Baltimore, Maryland 21287, USA.
| |
Collapse
|
37
|
Kim SW, Kim HK, Lee JI, Jang HW, Choe JH, Kim JH, Kim JS, Hur KY, Kim JH, Chung JH. ERK phosphorylation is not increased in papillary thyroid carcinomas with BRAF(V600E) mutation compared to that of corresponding normal thyroid tissues. Endocr Res 2013; 38:89-97. [PMID: 23544999 DOI: 10.3109/07435800.2012.723292] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND An association between a BRAF(V600E) mutation and upregulation of mitogen-activated protein kinase (MAPK) pathways in human papillary thyroid carcinoma (PTC) tissues has not been demonstrated well outside of in vitro studies. The aims of this study were to evaluate the activation status of extracellular signal-regulated kinase 1/2 (ERK1/2) in human PTCs with BRAF(V600E) mutations compared to that of corresponding normal thyroid tissue and to determine the expressions of Raf kinase inhibitor protein (RKIP) and MAPK phosphatase 3 (MKP-3), possible regulators of ERK1/2 activation. METHODS We analyzed the presence of BRAF(V600E) mutation and the expressions of BRAF, total ERK, p-ERK, RKIP, and MKP-3 in 33 PTCs and corresponding normal thyroid gland tissues using western blot analysis. RESULTS BRAF(V600E) mutation was found in 28 (84.8%) of 33 PTCs, 96.4% (27/28) of which showed decreased p-ERK activity, while 75% (21/28) showed increased MKP-3 expression. There were significant differences in p-ERK and MKP-3 expressions between BRAF(V600E) (+) PTCs and normal thyroid glands (p < 0.001). There were no differences in expressions of BRAF, total ERK, and RKIP between PTCs and normal thyroid tissue, irrespective of the presence of BRAF(V600E) mutation. CONCLUSIONS In human BRAF(V600E) (+) PTCs, ERK phosphorylation is decreased compared to normal thyroid glands and the observed decrease in ERK1/2 MAPK phosphorylation in BRAF(V600E) (+) PTCs may be associated with increased MKP-3 activity.
Collapse
Affiliation(s)
- Sun Wook Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Lito P, Pratilas CA, Joseph EW, Tadi M, Halilovic E, Zubrowski M, Huang A, Wong WL, Callahan MK, Merghoub T, Wolchok JD, de Stanchina E, Chandarlapaty S, Poulikakos PI, Fagin JA, Rosen N. Relief of profound feedback inhibition of mitogenic signaling by RAF inhibitors attenuates their activity in BRAFV600E melanomas. Cancer Cell 2012; 22:668-82. [PMID: 23153539 PMCID: PMC3713778 DOI: 10.1016/j.ccr.2012.10.009] [Citation(s) in RCA: 429] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 08/31/2012] [Accepted: 10/19/2012] [Indexed: 01/07/2023]
Abstract
BRAF(V600E) drives tumors by dysregulating ERK signaling. In these tumors, we show that high levels of ERK-dependent negative feedback potently suppress ligand-dependent mitogenic signaling and Ras function. BRAF(V600E) activation is Ras independent and it signals as a RAF-inhibitor-sensitive monomer. RAF inhibitors potently inhibit RAF monomers and ERK signaling, causing relief of ERK-dependent feedback, reactivation of ligand-dependent signal transduction, increased Ras-GTP, and generation of RAF-inhibitor-resistant RAF dimers. This results in a rebound in ERK activity and culminates in a new steady state, wherein ERK signaling is elevated compared to its initial nadir after RAF inhibition. In this state, ERK signaling is RAF inhibitor resistant, and MEK inhibitor sensitive, and combined inhibition results in enhancement of ERK pathway inhibition and antitumor activity.
Collapse
Affiliation(s)
- Piro Lito
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Christine A. Pratilas
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Eric W. Joseph
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Madhavi Tadi
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Ensar Halilovic
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139
| | | | - Alan Huang
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139
| | - Wai Lin Wong
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Margaret K. Callahan
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Taha Merghoub
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
- Department of Ludwig Center for Cancer Immunotherapy, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Jedd D. Wolchok
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
- Department of Ludwig Center for Cancer Immunotherapy, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Elisa de Stanchina
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Sarat Chandarlapaty
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
- Department of Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Poulikos I. Poulikakos
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - James A. Fagin
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
- Department of Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Neal Rosen
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
- Correspondence:
| |
Collapse
|
39
|
Couto JP, Almeida A, Daly L, Sobrinho-Simões M, Bromberg JF, Soares P. AZD1480 blocks growth and tumorigenesis of RET- activated thyroid cancer cell lines. PLoS One 2012; 7:e46869. [PMID: 23056499 PMCID: PMC3462763 DOI: 10.1371/journal.pone.0046869] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 09/06/2012] [Indexed: 01/06/2023] Open
Abstract
Persistent RET activation is a frequent event in papillary thyroid carcinoma (PTC) and medullary thyroid carcinoma (MTC). In these cancers, RET activates the ERK/MAPK, the PI3K/AKT/mTOR and the JAK/STAT3 pathways. Here, we tested the efficacy of a JAK1/2- inhibitor, AZD1480, in the in vitro and in vivo growth of thyroid cancer cell lines expressing oncogenic RET. Thyroid cancer cell lines harboring RET/PTC1 (TPC-1), RET M918T (MZ-CRC1) and RET C634W (TT) alterations, as well as TPC-1 xenografts, were treated with JAK inhibitor, AZD1480. This inhibitor led to growth inhibition and/or apoptosis of the thyroid cancer cell lines in vitro, as well as to tumor regression of TPC-1 xenografts, where it efficiently blocked STAT3 activation in tumor and stromal cells. This inhibition was associated with decreased proliferation, decreased blood vessel density, coupled with increased necrosis. However, AZD1480 repressed the growth of STAT3- deficient TPC-1 cells in vitro and in vivo, demonstrating that its effects in this cell line were independent of STAT3 in the tumor cells. In all cell lines, the JAK inhibitor reduced phospho-Y1062 RET levels, and mTOR effector phospho-S6, while JAK1/2 downregulation by siRNA did not affect cell growth nor RET and S6 activation. In conclusion, AZD1480 effectively blocks proliferation and tumor growth of activated RET- thyroid cancer cell lines, likely through direct RET inhibition in cancer cells as well as by modulation of the microenvironment (e.g. via JAK/phospho-STAT3 inhibition in endothelial cells). Thus, AZD1480 should be considered as a therapeutic agent for the treatment of RET- activated thyroid cancers.
Collapse
Affiliation(s)
- Joana P Couto
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Cancer Biology, Porto, Portugal
| | | | | | | | | | | |
Collapse
|
40
|
Kurt B, Yalçın S, Alagöz E, Karslıoğlu Y, Yigit N, Günal A, Deveci MS. The relationship of the BRAF(V600E) mutation and the established prognostic factors in papillary thyroid carcinomas. Endocr Pathol 2012; 23:135-40. [PMID: 22767446 DOI: 10.1007/s12022-012-9218-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
It has been shown that BRAF(V600E) mutation in papillary thyroid carcinomas (PTC) is associated both with pathogenesis and poor prognosis. In this study, we aimed to investigate the relationship of the BRAF(V600E) mutation and the established prognostic factors in a cohort of Turkish patients with PTC. Forty-six cases of papillary thyroid carcinoma have been evaluated for the presence of BRAF(V600E) mutation. BRAF(V600E) has been examined by restriction fragment length polymorphism. BRAF(V600E) mutation status has been compared with well-known histopathological and clinical prognostic parameters such as invasion of thyroid capsule, extrathyroidal extension, and the presence of lymph node and/or distant metastasis. We have found that BRAF(V600E) mutation was present in the majority of our cases (40/46). Considering the stage of the disease, five of the negative cases were in stage 1 while the remaining one was in stage 2. Only one BRAF(V600E) negative case has shown extrathyroidal extension and lymph node metastasis. All four patients with distant metastasis had BRAF(V600E) mutation. Statistical analyses revealed that there are no significant relationship between the BRAF(V600E) mutation and the established prognostic factors. We found a relatively higher BRAF(V600E) mutation rate in classical type PTC than in other similar studies. We think that the limited number of our cases may either weaken or mask some potentially important relationship between BRAF(V600E) mutation and the established prognostic factors.
Collapse
Affiliation(s)
- Bülent Kurt
- Department of Pathology, Gülhane Military Medical Academy and School of Medicine, Ankara, Turkey.
| | | | | | | | | | | | | |
Collapse
|
41
|
Kojic KL, Kojic SL, Wiseman SM. Differentiated thyroid cancers: a comprehensive review of novel targeted therapies. Expert Rev Anticancer Ther 2012; 12:345-57. [PMID: 22369326 DOI: 10.1586/era.12.8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Differentiated thyroid carcinoma (DTC) accounts for more than 90% of new thyroid cancer diagnoses, and includes papillary, follicular and Hürthle cell carcinoma. The prognosis for the vast majority of individuals diagnosed with DTC is excellent, with current treatment that includes surgery, radioactive iodine ablation and postoperative thyroid-stimulating hormone suppression. Unfortunately, the small proportion of individuals who develop radioactive iodine-resistant recurrent disease have few treatment options, and the vast majority will eventually die from their disease. Recently, several novel targets for anticancer agents have been identified and offer new hope for thyroid cancer patients diagnosed with progressive disease. In addition to targeting genes commonly altered in thyroid cancer, which include mutations in BRAF, RAS and RET, proangiogenic growth factor receptors and the sodium-iodide symporter have also been targeted. Several clinical trials evaluating tyrosine kinase and angiogenesis inhibitors for treatment of individuals diagnosed with metastatic or treatment-refractory DTC are currently underway. The objective of this review is to evaluate recent clinical trials that have studied novel targeted drugs for treatment of DTC.
Collapse
Affiliation(s)
- Katarina L Kojic
- St Paul's Hospital, Department of Surgery, University of British Columbia, C303-1081 Burrard Street, Vancouver, BC, V6Z 1Y6, Canada
| | | | | |
Collapse
|
42
|
Lee ST, Kim SW, Ki CS, Jang JH, Shin JH, Oh YL, Kim JW, Chung JH. Clinical implication of highly sensitive detection of the BRAF V600E mutation in fine-needle aspirations of thyroid nodules: a comparative analysis of three molecular assays in 4585 consecutive cases in a BRAF V600E mutation-prevalent area. J Clin Endocrinol Metab 2012; 97:2299-306. [PMID: 22500044 DOI: 10.1210/jc.2011-3135] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT Detection of the BRAF V600E mutation in fine-needle aspiration cytology (FNAC) specimens may increase the value of FNAC. OBJECTIVE The objectives of the study was to compare the diagnostic performance of BRAF assays that differ in sensitivity and to examine the associations between the BRAF V600E mutation status and the clinicopathological features in papillary thyroid carcinoma (PTC). DESIGN AND SETTING Three molecular assays were performed in all subjects and compared with regard to FNAC and histology results. PARTICIPANTS We evaluated 4585 consecutive patients who were found to have malignant or indeterminate thyroid nodules by ultrasonography. OUTCOME MEASURES All FNAC samples were tested for the BRAF V600E mutation using conventional Sanger sequencing, dual-priming oligonucleotide-PCR, and mutant enrichment with 3'-modified oligonucleotide (MEMO) sequencing. RESULTS The detection sensitivities of the three molecular assays for the BRAF V600E mutation were 20, 2, and 0.1%, respectively. Compared with conventional Sanger sequencing (n = 673), dual-priming oligonucleotide-PCR and MEMO sequencing detected more tumors with the BRAF V600E mutation (n = 919 and n = 1044, respectively), especially tumors with a benign, indeterminate, or nondiagnostic cytology. All BRAF-positive tumors that were histologically examined were shown to be PTC, regardless of cytology results. The clinical sensitivities of the three assays for detecting PTC were 54.8, 74.4, and 79.7%, respectively. BRAF V600E mutations in microcarcinomas (≤ 10 mm) were detected more efficiently as the detection sensitivity of the assay increased (P < 0.001). Tumor size correlated significantly with multifocality, extrathyroidal extension, and lymph node metastasis (P = 0.003, P < 0.001 and P < 0.001, respectively), but the BRAF V600E mutation status was not associated with any of those features. CONCLUSION Highly sensitive and specific molecular assays such as MEMO sequencing are optimal for detecting the BRAF mutations in thyroid FNAC because these techniques can detect PTC that might be missed by cytology or less sensitive molecular assays.
Collapse
Affiliation(s)
- Seung-Tae Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-Dong, Gangnam-Gu, Seoul 135-710 Korea
| | | | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Ambrosini G, Pratilas CA, Qin LX, Tadi M, Surriga O, Carvajal RD, Schwartz GK. Identification of unique MEK-dependent genes in GNAQ mutant uveal melanoma involved in cell growth, tumor cell invasion, and MEK resistance. Clin Cancer Res 2012; 18:3552-61. [PMID: 22550165 DOI: 10.1158/1078-0432.ccr-11-3086] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Metastatic uveal melanoma represents the most common intraocular malignancy with very poor prognosis and no effective treatments. Oncogenic mutations in the G-protein α-subunit q and 11 have been described in about 85% of uveal melanomas and confer constitutive activation. Multiple signaling pathways are induced as a consequence of GNAQ/11 activation, which include the MEK/ERK kinase cascade. We analyzed the transcriptional profile of cell lines treated with a mitogen-activated protein (MAP)/extracellular signal-regulated (ERK) kinase (MEK) inhibitor to identify gene targets of activated GNAQ and to evaluate the biologic importance of these genes in uveal melanoma. EXPERIMENTAL DESIGN We conducted microarray analysis of uveal melanoma cell lines with GNAQ mutations treated with the MEK inhibitor selumetinib. For comparison, we used cells carrying BRAF(V600E) and cells without either mutation. Changes in the expression of selected genes were then confirmed by quantitative real-time PCR and immunoblotting. RESULTS We found that GNAQ mutant cells have a MEK-dependent transcriptional output and identified a unique set of genes that are downregulated by MEK inhibition, including the RNA helicase DDX21 and the cyclin-dependent kinase regulator CDK5R1 whereas Jun was induced. We provide evidence that these genes are involved in cell proliferation, tumor cell invasion, and drug resistance, respectively. Furthermore, we show that selumetinib treatment regulates the expression of these genes in tumor tissues of patients with metastatic GNAQ/11 mutant uveal melanoma. CONCLUSIONS Our findings define a subset of transcriptionally regulated genes by selumetinib in GNAQ mutant cells and provide new insights into understanding the biologic effect of MEK inhibition in this disease.
Collapse
Affiliation(s)
- Grazia Ambrosini
- Laboratory of New Drug Development and Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York 10065, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Hayes DN, Lucas AS, Tanvetyanon T, Krzyzanowska MK, Chung CH, Murphy BA, Gilbert J, Mehra R, Moore DT, Sheikh A, Hoskins J, Hayward MC, Zhao N, O’Connor W, Weck KE, Cohen RB, Cohen EE. Phase II efficacy and pharmacogenomic study of Selumetinib (AZD6244; ARRY-142886) in iodine-131 refractory papillary thyroid carcinoma with or without follicular elements. Clin Cancer Res 2012; 18:2056-65. [PMID: 22241789 PMCID: PMC5157199 DOI: 10.1158/1078-0432.ccr-11-0563] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE A multicenter, open-label, phase II trial was conducted to evaluate the efficacy, safety, and tolerability of selumetinib in iodine-refractory papillary thyroid cancer (IRPTC). EXPERIMENTAL DESIGN Patients with advanced IRPTC with or without follicular elements and documented disease progression within the preceding 12 months were eligible to receive selumetinib at a dose of 100 mg twice daily. The primary endpoint was objective response rate using Response Evaluation Criteria in Solid Tumors. Secondary endpoints were safety, overall survival, and progression-free survival (PFS). Tumor genotype including mutations in BRAF, NRAS, and HRAS was assessed. RESULTS Best responses in 32 evaluable patients out of 39 enrolled were 1 partial response (3%), 21 stable disease (54%), and 11 progressive disease (28%). Disease stability maintenance occurred for 16 weeks in 49%, 24 weeks in 36%. Median PFS was 32 weeks. BRAF V600E mutants (12 of 26 evaluated, 46%) had a longer median PFS compared with patients with BRAF wild-type (WT) tumors (33 versus 11 weeks, respectively, HR = 0.6, not significant, P = 0.3). The most common adverse events and grades 3 to 4 toxicities included rash, fatigue, diarrhea, and peripheral edema. Two pulmonary deaths occurred in the study and were judged unlikely to be related to the study drug. CONCLUSIONS Selumetinib was well tolerated but the study was negative with regard to the primary outcome. Secondary analyses suggest that future studies of selumetinib and other mitogen-activated protein (MAP)/extracellular signal-regulated kinase (ERK; MEK) inhibitors in IRPTC should consider BRAF V600E mutation status in the trial design based on differential trends in outcome.
Collapse
Affiliation(s)
- D. Neil Hayes
- University of North Carolina Lineberger Comprehensive Cancer Center, School of Medicine, Chapel Hill, North Carolina
| | - Amy S. Lucas
- University of North Carolina Lineberger Comprehensive Cancer Center, School of Medicine, Chapel Hill, North Carolina
| | | | | | | | | | | | - Ranee Mehra
- Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Dominic T. Moore
- University of North Carolina Lineberger Comprehensive Cancer Center, School of Medicine, Chapel Hill, North Carolina
| | - Arif Sheikh
- University of North Carolina Lineberger Comprehensive Cancer Center, School of Medicine, Chapel Hill, North Carolina
| | - Janelle Hoskins
- University of North Carolina Lineberger Comprehensive Cancer Center, School of Medicine, Chapel Hill, North Carolina
| | - Michele C. Hayward
- University of North Carolina Lineberger Comprehensive Cancer Center, School of Medicine, Chapel Hill, North Carolina
| | - Ni Zhao
- University of North Carolina Lineberger Comprehensive Cancer Center, School of Medicine, Chapel Hill, North Carolina
| | - Wendi O’Connor
- University of North Carolina Lineberger Comprehensive Cancer Center, School of Medicine, Chapel Hill, North Carolina
| | - Karen E. Weck
- University of North Carolina, Department of Pathology & Laboratory Medicine, Chapel Hill, North Carolina
| | | | | |
Collapse
|
46
|
Abstract
Over the past 5 years, patients with progressive radioactive iodine-refractory thyroid cancer have responded to "targeted" multikinase inhibitors, which inhibit angiogenesis and not the tumor cell. Here, selumetinib targets the mitogen-activated protein kinase pathway in papillary thyroid carcinoma and shows limited single-agent activity in the patients with tumors that harbor the (V600E)BRAF mutation.
Collapse
Affiliation(s)
- Marcia S Brose
- Departments of Medicine and Otorhinolaryngology: Head and Neck Surgery, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19010, USA.
| |
Collapse
|
47
|
Abstract
Thyroid cancer is an uncommon childhood malignancy that presents primarily in young children or adolescent females and may be related to radiation exposure or genetic predisposition. Gene alterations, such as RET mutation or RET/PTC rearrangement, are not uncommon. Recent studies have lead to an increased understanding of the role of these particular gene alterations in the diagnosis, prognosis, and treatment of thyroid cancer. Surgery remains the mainstay of treatment for thyroid cancer followed by radioactive iodine when appropriate. In patients with MEN2, prophylactic thyroidectomy is recommended, although a delay in the initial diagnosis is common. With early aggressive treatment and long-term follow-up, these patients generally have excellent outcomes. Recent research suggests potential usefulness of novel therapies directed at oncogenic signaling pathways, modulators of growth, angiogenesis inhibitors, immunomodulators, and gene therapy.
Collapse
Affiliation(s)
- Diana L Diesen
- Children's Medical Center Dallas, UT Southwestern Medical Center, Dallas, Texas, USA.
| | | |
Collapse
|
48
|
Morandi L, de Biase D, Visani M, Cesari V, De Maglio G, Pizzolitto S, Pession A, Tallini G. Allele specific locked nucleic acid quantitative PCR (ASLNAqPCR): an accurate and cost-effective assay to diagnose and quantify KRAS and BRAF mutation. PLoS One 2012; 7:e36084. [PMID: 22558339 PMCID: PMC3340405 DOI: 10.1371/journal.pone.0036084] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 03/26/2012] [Indexed: 02/05/2023] Open
Abstract
The use of tyrosine kinase inhibitors (TKIs) requires the testing for hot spot mutations of the molecular effectors downstream the membrane-bound tyrosine kinases since their wild type status is expected for response to TKI therapy. We report a novel assay that we have called Allele Specific Locked Nucleic Acid quantitative PCR (ASLNAqPCR). The assay uses LNA-modified allele specific primers and LNA-modified beacon probes to increase sensitivity, specificity and to accurately quantify mutations. We designed primers specific for codon 12/13 KRAS mutations and BRAF V600E, and validated the assay with 300 routine samples from a variety of sources, including cytology specimens. All were analyzed by ASLNAqPCR and Sanger sequencing. Discordant cases were pyrosequenced. ASLNAqPCR correctly identified BRAF and KRAS mutations in all discordant cases and all had a mutated/wild type DNA ratio below the analytical sensitivity of the Sanger method. ASLNAqPCR was 100% specific with greater accuracy, positive and negative predictive values compared with Sanger sequencing. The analytical sensitivity of ASLNAqPCR is 0.1%, allowing quantification of mutated DNA in small neoplastic cell clones. ASLNAqPCR can be performed in any laboratory with real-time PCR equipment, is very cost-effective and can easily be adapted to detect hot spot mutations in other oncogenes.
Collapse
Affiliation(s)
- Luca Morandi
- Dipartimento di Ematologia e Scienze Oncologiche “L e A Seragnoli”, Sezione di Anatomia Istologia e Citologia Patologica "M. Malpighi" Università di Bologna-AUSL Ospedale Bellaria, Bologna, Italy
- * E-mail: (LM); (GT)
| | - Dario de Biase
- Dipartimento di Ematologia e Scienze Oncologiche “L e A Seragnoli”, Sezione di Anatomia Istologia e Citologia Patologica "M. Malpighi" Università di Bologna-AUSL Ospedale Bellaria, Bologna, Italy
- Dipartimento di Patologia Sperimentale Università di Bologna, Bologna, Italy
| | - Michela Visani
- Dipartimento di Ematologia e Scienze Oncologiche “L e A Seragnoli”, Sezione di Anatomia Istologia e Citologia Patologica "M. Malpighi" Università di Bologna-AUSL Ospedale Bellaria, Bologna, Italy
- Dipartimento di Patologia Sperimentale Università di Bologna, Bologna, Italy
| | - Valentina Cesari
- Dipartimento di Ematologia e Scienze Oncologiche “L e A Seragnoli”, Sezione di Anatomia Istologia e Citologia Patologica "M. Malpighi" Università di Bologna-AUSL Ospedale Bellaria, Bologna, Italy
- Dipartimento di Patologia Sperimentale Università di Bologna, Bologna, Italy
| | - Giovanna De Maglio
- SOC Anatomia Patologica Azienda Ospedaliero-Universitaria Santa Maria della Misericordia, Udine, Italy
| | - Stefano Pizzolitto
- SOC Anatomia Patologica Azienda Ospedaliero-Universitaria Santa Maria della Misericordia, Udine, Italy
| | - Annalisa Pession
- Dipartimento di Patologia Sperimentale Università di Bologna, Bologna, Italy
| | - Giovanni Tallini
- Dipartimento di Ematologia e Scienze Oncologiche “L e A Seragnoli”, Sezione di Anatomia Istologia e Citologia Patologica "M. Malpighi" Università di Bologna-AUSL Ospedale Bellaria, Bologna, Italy
- * E-mail: (LM); (GT)
| |
Collapse
|
49
|
Dual inhibition of V600EBRAF and the PI3K/AKT/mTOR pathway cooperates to induce apoptosis in melanoma cells through a MEK-independent mechanism. Cancer Lett 2012; 314:244-55. [DOI: 10.1016/j.canlet.2011.09.037] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/22/2011] [Accepted: 09/27/2011] [Indexed: 12/19/2022]
|
50
|
Schweppe RE. Thyroid cancer cell lines: Critical models to study thyroid cancer biology and new therapeutic targets. Front Endocrinol (Lausanne) 2012; 3:81. [PMID: 22723793 PMCID: PMC3378072 DOI: 10.3389/fendo.2012.00081] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 06/01/2012] [Indexed: 12/11/2022] Open
Abstract
Thyroid cancer is the most common endocrine malignancy and the incidence is rising. Currently, there are no effective treatments for patients with advanced forms of thyroid cancer. Anaplastic thyroid represents the most severe form of the disease with 95% mortality at 6 months. It is therefore critical to better understand the mechanisms involved in thyroid cancer development and progression in order to develop more effective therapeutic strategies. Cell lines derived from thyroid tumors represent a critical tool to understand the oncogenic mechanisms driving thyroid cancer, as well as preclinical tools to study the efficacy of new therapies in vitro and in vivo. For thyroid cancer, the development of new therapies has been hampered by the lack of thyroid cancer cell lines in the widely used NCI-60 panel which has been used to screen over 100,000 anti-cancer drugs. In addition, the recent discovery that ~20 out of 40 existing thyroid cancer cell lines are either redundant or misidentified with cell lines of other tissue lineages has further hampered progress in the field. Of the available cell lines, 23 were identified as unique and presumably of thyroid origin based on the expression of thyroid-specific genes. Thus, there is a great need for validated thyroid cancer cell lines representing different stages of disease in addition to distinct oncogenic mutations. New, authenticated thyroid cancer cell lines are beginning to be developed, adding to the tools available to study genes and pathways important for thyroid cancer pathogenesis. In summary, the use of validated thyroid cancer cell lines that closely recapitulate disease is critical for the discovery of new drug targets and ultimately new therapies.
Collapse
Affiliation(s)
- Rebecca E. Schweppe
- *Correspondence: Rebecca E. Schweppe, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Cancer Center, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue #7103, MS 8106, Aurora, CO 80045, USA. e-mail:
| |
Collapse
|