1
|
Maturity-Onset Diabetes of the Young (MODY): Genetic Causes, Clinical Characteristics, Considerations for Testing, and Treatment Options. ENDOCRINES 2021. [DOI: 10.3390/endocrines2040043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Maturity Onset Diabetes of the Young (MODY) encompasses a group of rare monogenic forms of diabetes distinct in etiology and clinical presentation from the more common forms of Type 1 (autoimmune) and Type 2 diabetes. Since its initial description as a clinical entity nearly 50 years ago, the underlying genetic basis for the various forms of MODY has been increasingly better elucidated. Clinically, the diagnosis may be made in childhood or young adulthood and can present as overt hyperglycemia requiring insulin therapy or as a subtle form of slowly progressive glucose impairment. Due to the heterogeneity of clinical symptoms, patients with MODY may be misdiagnosed as possessing another form of diabetes, resulting in potentially inappropriate treatment and delays in screening of affected family members and associated comorbidities. In this review, we highlight the various known genetic mutations associated with MODY, clinical presentation, indications for testing, and the treatment options available.
Collapse
|
2
|
Moalla M, Safi W, Babiker Mansour M, Hadj Kacem M, Mahfood M, Abid M, Kammoun T, Hachicha M, Mnif-Feki M, Hadj Kacem F, Hadj Kacem H. Tunisian Maturity-Onset Diabetes of the Young: A Short Review and a New Molecular and Clinical Investigation. Front Endocrinol (Lausanne) 2021; 12:684018. [PMID: 34393998 PMCID: PMC8358796 DOI: 10.3389/fendo.2021.684018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/05/2021] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION/AIMS Maturity-Onset Diabetes of the Young (MODY) is a monogenic non-autoimmune diabetes with 14 different genetic forms. MODY-related mutations are rarely found in the Tunisian population. Here, we explored MODY related genes sequences among seventeen unrelated Tunisian probands qualifying the MODY clinical criteria. MATERIALS AND METHODS The GCK and HNF1A genes were systematically analyzed by direct sequencing in all probands. Then, clinical exome sequencing of 4,813 genes was performed on three unrelated patients. Among them, 130 genes have been reported to be involved in the regulation of glucose metabolism, β-cell development, differentiation and function. All identified variants were analyzed according to their frequencies in the GnomAD database and validated by direct sequencing. RESULTS We identified the previously reported GCK mutation (rs1085307455) in one patient. The clinical features of the MODY2 proband were similar to previous reports. In this study, we revealed rare and novel alterations in GCK (rs780806456) and ABCC8 (rs201499958) genes with uncertain significance. We also found two likely benign alterations in HNF1A (rs1800574) and KLF11 (rs35927125) genes with minor allele frequencies similar to those depicted in public databases. No pathogenic variants have been identified through clinical exome analysis. CONCLUSIONS The most appropriate patients were selected, following a strict clinical screening approach, for genetic testing. However, the known MODY1-13 genes could not explain most of the Tunisian MODY cases, suggesting the involvement of unidentified genes in the majority of Tunisian affected families.
Collapse
Affiliation(s)
- Mariam Moalla
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Wajdi Safi
- Endocrinology Department, Hedi Chaker University Hospital, Sfax, Tunisia
| | - Maab Babiker Mansour
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohamed Hadj Kacem
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Mona Mahfood
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohamed Abid
- Endocrinology Department, Hedi Chaker University Hospital, Sfax, Tunisia
| | - Thouraya Kammoun
- Pediatric Department, Hedi Chaker University Hospital, Sfax, Tunisia
| | - Mongia Hachicha
- Pediatric Department, Hedi Chaker University Hospital, Sfax, Tunisia
| | - Mouna Mnif-Feki
- Endocrinology Department, Hedi Chaker University Hospital, Sfax, Tunisia
| | - Faten Hadj Kacem
- Endocrinology Department, Hedi Chaker University Hospital, Sfax, Tunisia
| | - Hassen Hadj Kacem
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
- *Correspondence: Hassen Hadj Kacem,
| |
Collapse
|
3
|
Slieker RC, van der Heijden AAWA, van Leeuwen N, Mei H, Nijpels G, Beulens JWJ, 't Hart LM. HbA 1c is associated with altered expression in blood of cell cycle- and immune response-related genes. Diabetologia 2018; 61:138-146. [PMID: 29159468 PMCID: PMC6448931 DOI: 10.1007/s00125-017-4467-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/01/2017] [Indexed: 12/22/2022]
Abstract
AIMS/HYPOTHESIS Individuals with type 2 diabetes are heterogeneous in their glycaemic control as tracked by blood HbA1c levels. Here, we investigated the extent to which gene expression levels in blood reflect current and future HbA1c levels. METHODS HbA1c levels at baseline and 1 and 2 year follow-up were compared with gene expression levels in 391 individuals with type 2 diabetes from the Hoorn Diabetes Care System Cohort (15,564 genes, RNA sequencing). The functions of associated baseline genes were investigated further using pathway enrichment analysis. Using publicly available data, we investigated whether the genes identified are also associated with HbA1c in the target tissues, muscle and pancreas. RESULTS At baseline, 220 genes (1.4%) were associated with baseline HbA1c. Identified genes were enriched for cell cycle and complement system activation pathways. The association of 15 genes extended to the target tissues, muscle (n = 113) and pancreatic islets (n = 115). At follow-up, expression of 25 genes (0.16%) associated with 1 year HbA1c and nine genes (0.06%) with 2 year HbA1c. Five genes overlapped across all time points, and 18 additional genes between baseline and 1 year follow-up. After adjustment for baseline HbA1c, the number of significant genes at 1 and 2 years markedly decreased, suggesting that gene expression levels in whole blood reflect the current glycaemic state and but not necessarily the future glycaemic state. CONCLUSIONS/INTERPRETATION HbA1c levels in individuals with type 2 diabetes are associated with expression levels of genes that link to the cell cycle and complement system activation.
Collapse
Affiliation(s)
- Roderick C Slieker
- Department of Molecular Cell Biology, Leiden University Medical Center, Postal Box 9600, 2300 RC, Leiden, the Netherlands
- Department of Epidemiology and Biostatistics, Amsterdam Public Health Research Institute, VU University Medical Center, Amsterdam, the Netherlands
| | - Amber A W A van der Heijden
- Department of General Practice and Elderly Care Medicine, Amsterdam Public Health Research Institute, VU University Medical Center, Amsterdam, the Netherlands
| | - Nienke van Leeuwen
- Department of Molecular Cell Biology, Leiden University Medical Center, Postal Box 9600, 2300 RC, Leiden, the Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical Center, Leiden, the Netherlands
| | - Giel Nijpels
- Department of General Practice and Elderly Care Medicine, Amsterdam Public Health Research Institute, VU University Medical Center, Amsterdam, the Netherlands
| | - Joline W J Beulens
- Department of Epidemiology and Biostatistics, Amsterdam Public Health Research Institute, VU University Medical Center, Amsterdam, the Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Leen M 't Hart
- Department of Molecular Cell Biology, Leiden University Medical Center, Postal Box 9600, 2300 RC, Leiden, the Netherlands.
- Department of Epidemiology and Biostatistics, Amsterdam Public Health Research Institute, VU University Medical Center, Amsterdam, the Netherlands.
- Molecular Epidemiology Section, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
4
|
Zheng Y, Tabbaa ZM, Khan Z, Schoolmeester JK, El-Nashar S, Famuyide A, Keeney GL, Daftary GS. Epigenetic regulation of uterine biology by transcription factor KLF11 via posttranslational histone deacetylation of cytochrome p450 metabolic enzymes. Endocrinology 2014; 155:4507-20. [PMID: 25076120 DOI: 10.1210/en.2014-1139] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Endocrine regulation of uterine biology is critical for embryo receptivity and human reproduction. Uterine endometrium depends on extrinsic sex steroid input and hence likely has mechanisms that enable adaptation to hormonal variation. Emerging evidence suggests that sex steroid bioavailability in the endometrium is determined by adjusting their metabolic rate and fate via regulation of cytochrome (CYP) p450 enzymes. The CYP enzymes are targeted by ubiquitously expressed Sp/Krüppel-like (Sp/KLF) transcription factors. Specifically, KLF11 is highly expressed in reproductive tissues, regulates an array of endocrine/metabolic pathways via epigenetic histone-based mechanisms and, when aberrantly expressed, is associated with diabetes and reproductive tract diseases, such as leiomyoma and endometriosis. Using KLF11 as a model to investigate epigenetic regulation of endometrial first-pass metabolism, we evaluated the expression of a comprehensive array of metabolic enzymes in Ishikawa cells. KLF11 repressed most endometrial CYP enzymes. To characterize KLF11-recruited epigenetic regulatory mechanisms, we focused on the estrogen-metabolizing enzyme CYP3A4. KLF11 expression declined in secretory phase endometrial epithelium associated with increased CYP3A4 expression. Additionally, KLF11 bound to CYP3A4 promoter GC elements and thereby repressed promoter, message, protein as well as enzymatic function. This repression was epigenetically mediated, because KLF11 colocalized with and recruited the corepressor SIN3A/histone deacetylase resulting in selective deacetylation of the CYP3A4 promoter. Repression was reversed by a mutation in KLF11 that abrogated cofactor recruitment and binding. This repression was also pharmacologically reversible with an histone deacetylase inhibitor. Pharmacological alteration of endometrial metabolism could have long-term translational implications on human reproduction and uterine disease.
Collapse
Affiliation(s)
- Ye Zheng
- Laboratory of Translational Epigenetics in Reproduction (Y.Z., Z.M.T., Z.K., G.S.D.) and Departments of Laboratory Medicine and Pathology (J.K.S., G.L.K.) and Obstetrics and Gynecology (Y.Z., Z.M.T., Z.K., S.E.-N., A.F., G.S.D.), Mayo Clinic, Rochester, Minnesota 55905
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Tang L, Wang L, Liao Q, Wang Q, Xu L, Bu S, Huang Y, Zhang C, Ye H, Xu X, Liu Q, Ye M, Mai Y, Duan S. Genetic associations with diabetes: meta-analyses of 10 candidate polymorphisms. PLoS One 2013; 8:e70301. [PMID: 23922971 PMCID: PMC3726433 DOI: 10.1371/journal.pone.0070301] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 06/17/2013] [Indexed: 11/19/2022] Open
Abstract
Aims The goal of our study is to investigate the combined contribution of 10 genetic variants to diabetes susceptibility. Methods Bibliographic databases were searched from 1970 to Dec 2012 for studies that reported on genetic association study of diabetes. After a comprehensive filtering procedure, 10 candidate gene variants with informative genotype information were collected for the current meta-anlayses. Using the REVMAN software, odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to evaluate the combined contribution of the selected genetic variants to diabetes. Results A total of 37 articles among 37,033 cases and 54,716 controls were involved in the present meta-analyses of 10 genetic variants. Three variants were found to be significantly associated with type 1 diabetes (T1D): NLRP1 rs12150220 (OR = 0.71, 95% CI = 0.55–0.92, P = 0.01), IL2RA rs11594656 (OR = 0.86, 95% CI = 0.82–0.91, P<0.00001), and CLEC16A rs725613 (OR = 0.71, 95% CI = 0.55–0.92, P = 0.01). APOA5 −1131T/C polymorphism was shown to be significantly associated with of type 2 diabetes (T2D, OR = 1.27, 95% CI = 1.03–1.57, P = 0.03). No association with diabetes was showed in the meta-analyses of other six genetic variants, including SLC2A10 rs2335491, ATF6 rs2070150, KLF11 rs35927125, CASQ1 rs2275703, GNB3 C825T, and IL12B 1188A/C. Conclusion Our results demonstrated that IL2RA rs11594656 and CLEC16A rs725613 are protective factors of T1D, while NLRP1 rs12150220 and APOA5 −1131T/C are risky factors of T1D and T2D, respectively.
Collapse
Affiliation(s)
- Linlin Tang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
- The Affiliated Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Lingyan Wang
- Bank of Blood Products, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Qi Liao
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Qinwen Wang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Leiting Xu
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Shizhong Bu
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Yi Huang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Cheng Zhang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Huadan Ye
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Xuting Xu
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Qiong Liu
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Meng Ye
- The Affiliated Hospital, Ningbo University, Ningbo, Zhejiang, China
- * E-mail: (SD); (YM); (MY)
| | - Yifeng Mai
- The Affiliated Hospital, Ningbo University, Ningbo, Zhejiang, China
- * E-mail: (SD); (YM); (MY)
| | - Shiwei Duan
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
- * E-mail: (SD); (YM); (MY)
| |
Collapse
|
6
|
Perakakis N, Danassi D, Alt M, Tsaroucha E, Mehana AE, Rimmer N, Laubner K, Wang H, Wollheim CB, Seufert J, Päth G. Human Krüppel-like factor 11 differentially regulates human insulin promoter activity in β-cells and non-β-cells via p300 and PDX1 through the regulatory sites A3 and CACCC box. Mol Cell Endocrinol 2012; 363:20-6. [PMID: 22801105 DOI: 10.1016/j.mce.2012.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 06/12/2012] [Accepted: 07/07/2012] [Indexed: 11/29/2022]
Abstract
Human Krüppel-like factor 11 (hKLF11) has been characterised to both activate and inhibit human insulin promoter (hInsP) activity. Since KLF11 is capable to differentially regulate genes dependent on recruited cofactors, we investigated the effects of hKLF11 on cotransfected hInsP in both β-cells and non-β-cells. hKLF11 protein interacts with hp300 but not with hPDX1. Overexpressed hKLF11 stimulates PDX1-transactivation of hInsP in HEK293 non-β-cells, but confers inhibition in INS-1E β-cells. Both hKLF11 functions can be neutralised by the p300 inhibitor E1A, increased hp300 levels (INS-1E), dominant negative (DN)-PDX1 and by mutation of the PDX1 binding site A3 or the CACCC box. In summary, hKLF11 differentially regulates hInsP activity depending on the molecular context via modulation of p300:PDX1 interactions with the A3 element and CACCC box. We postulate that KLF11 has a role in fine-tuning insulin transcription in certain cellular situations rather than representing a major transcriptional activator or repressor of the insulin gene.
Collapse
Affiliation(s)
- Nikolaos Perakakis
- Division of Endocrinology and Diabetology, Department of Internal Medicine II, University Hospital of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Fan Y, Guo Y, Zhang J, Subramaniam M, Song CZ, Urrutia R, Chen YE. Krüppel-like factor-11, a transcription factor involved in diabetes mellitus, suppresses endothelial cell activation via the nuclear factor-κB signaling pathway. Arterioscler Thromb Vasc Biol 2012; 32:2981-8. [PMID: 23042817 DOI: 10.1161/atvbaha.112.300349] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Endothelial cell (EC) inflammatory status is critical to many vascular diseases. Emerging data demonstrate that mutations of Krüppel-like factor-11 (KLF11), a gene coding maturity-onset diabetes mellitus of the young type 7 (MODY7), contribute to the development of neonatal diabetes mellitus. However, the function of KLF11 in the cardiovascular system still remains to be uncovered. In this study, we aimed to investigate the role of KLF11 in vascular endothelial inflammation. METHODS AND RESULTS KLF11 is highly expressed in vascular ECs and induced by proinflammatory stimuli. Adenovirus-mediated KLF11 overexpression inhibits expression of tumor necrosis factors-α-induced adhesion molecules. Moreover, small interfering RNA-mediated KLF11 knockdown augments the proinflammatory status in ECs. KLF11 inhibits promoter activity of adhesion molecules induced by tumor necrosis factor-α and nuclear factor-κB p65 overexpression. Mechanistically, KLF11 potently inhibits nuclear factor-κB signaling pathway via physical interaction with p65. Furthermore, KLF11 knockdown results in increased binding of p65 to vascular cell adhesion molecule-1 and E-selectin promoters. At the whole organism level, KLF11(-/-) mice exhibit a significant increase in leukocyte recruitment to ECs after lipopolysaccharide administration. CONCLUSIONS Taken together, our data demonstrate for the first time that KLF11 is a suppressor of EC inflammatory activation, suggesting that KLF11 constitutes a novel potential molecular target for inhibition of vascular inflammatory diseases.
Collapse
Affiliation(s)
- Yanbo Fan
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
The Krüppel-like factor (KLF) family of transcription factors regulates diverse biological processes that include proliferation, differentiation, growth, development, survival, and responses to external stress. Seventeen mammalian KLFs have been identified, and numerous studies have been published that describe their basic biology and contribution to human diseases. KLF proteins have received much attention because of their involvement in the development and homeostasis of numerous organ systems. KLFs are critical regulators of physiological systems that include the cardiovascular, digestive, respiratory, hematological, and immune systems and are involved in disorders such as obesity, cardiovascular disease, cancer, and inflammatory conditions. Furthermore, KLFs play an important role in reprogramming somatic cells into induced pluripotent stem (iPS) cells and maintaining the pluripotent state of embryonic stem cells. As research on KLF proteins progresses, additional KLF functions and associations with disease are likely to be discovered. Here, we review the current knowledge of KLF proteins and describe common attributes of their biochemical and physiological functions and their pathophysiological roles.
Collapse
Affiliation(s)
- Beth B McConnell
- Departments of Medicine and of Hematology and Medical Oncology, Emory University School of Medicine,Atlanta, Georgia 30322, USA
| | | |
Collapse
|
9
|
Rouchka EC, Krushkal J. Proceedings of the Eighth Annual UT-ORNL-KBRIN Bioinformatics Summit 2009. BMC Bioinformatics 2009. [PMCID: PMC3313273 DOI: 10.1186/1471-2105-10-s7-i1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
10
|
Kuroda E, Horikawa Y, Enya M, Oda N, Suzuki E, Iizuka K, Takeda J. Identification of minimal promoter and genetic variants of Kruppel-like factor 11 gene and association analysis with type 2 diabetes in Japanese. Endocr J 2009; 56:275-86. [PMID: 19122346 DOI: 10.1507/endocrj.k08e-302] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Genetic analysis of the KLF11 gene revealed two rare variants, A347S and T220M, segregating in families with early-onset type 2 diabetes, and one frequent polymorphic Q62R variant significantly associated with type 2 diabetes in Northern Europeans. Furthermore, it has been reported that over-expression of KLF11 has a deleterious effect on insulin promoter activity. Thus, an altered expression level of KLF11 may contribute to the occurrence of type 2 diabetes. To investigate the contribution of KLF11 to type 2 diabetes in Japanese, we surveyed the 5' flanking region of KLF11 by reporter assay and identified the minimal promoter region of the gene. The promoter region from -250 to +162 bp including five Sp1 binding sites showed basal promoter activity both in MIN6-m9 and HepG2 cells. We also examined the entire region of KLF11 to detect genetic variants. A total of 19 polymorphisms, six of which are novel, were identified, but none of them showed association with the occurrence of type 2 diabetes. Two of the identified polymorphisms, R29Q and S124F, are novel coding variants. Functional analyses of these variants were performed, and similarly reduced effects on transcriptional activities of insulin, catalase1, and the Smad7 gene were found. We conclude that variants of KLF11 are not a major factor in the occurrence of type 2 diabetes in Japanese. The promoter region of KLF11 identified in the present study should be useful in further elucidation of the transcriptional regulation mechanism of the gene and genetic analyses of type 2 diabetes.
Collapse
Affiliation(s)
- Eiji Kuroda
- Department of Diabetes and Endocrinology, Division of Molecule and Structure, Gifu University School of Medicine, Gifu, Japan
| | | | | | | | | | | | | |
Collapse
|