1
|
Arjunan D, Minisola S, Rao SD, Bhadada SK. Changing trends in clinical presentation of primary hyperparathyroidism across countries over time. Best Pract Res Clin Endocrinol Metab 2025; 39:101980. [PMID: 39920032 DOI: 10.1016/j.beem.2025.101980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Primary hyperparathyroidism (PHPT), the third most common endocrine disorder, was so eloquently described first by Fuller Albright as a polymorphic condition in his classic paper and monograph as early as 1934. Over the decades, the clinical presentation of PHPT in developed countries has shifted significantly from a disease primarily affecting the bones and kidneys to an asymptomatic condition often discovered incidentally. In developing countries, the high prevalence of vitamin D deficiency is one of the main factors influencing the clinical presentation of PHPT. In Europe and North America, PHPT is predominantly asymptomatic. In South America, China, and Eastern parts of Europe, such as Turkey, Bulgaria, and Russia, there is an ongoing transition from symptomatic to asymptomatic cases. Asia shows variability: symptomatic cases dominate in the Indian subcontinent, Middle East, and Southeast Asia, while transitional patterns with predominant asymptomatic cases have now been reported in China, and Japan reports mostly asymptomatic cases. Factors influencing these changes include advancements in diagnostic technologies, detection of incidental parathyroid adenomas during thyroid ultrasonography, regional differences in vitamin D deficiency, dietary habits, and genetic polymorphisms in vitamin D and calcium-sensing receptors. A higher prevalence of nephrolithiasis in certain climates contributes to regional variations. This review examines the dynamic nature of PHPT's clinical presentation, shaped by geographic, genetic, and environmental influences. Also, this review highlights the importance of addressing global disparities in an attempt to optimize patient outcomes.
Collapse
Affiliation(s)
| | - Salvatore Minisola
- Department of Clinical, Internal, Anaesthesiologic and Cardiovascular Sciences, "Sapienza" University of Rome, Viale del Policlinico 155, Rome 00161, Italy.
| | - Sudhaker D Rao
- Bone & Mineral Research Laboratory, Henry Ford Hospital, United States.
| | | |
Collapse
|
2
|
Arya AK, Kumari P, Singh P, Bhadada SK. Molecular basis of symptomatic sporadic primary hyperparathyroidism: New frontiers in pathogenesis. Best Pract Res Clin Endocrinol Metab 2025; 39:101985. [PMID: 40057423 DOI: 10.1016/j.beem.2025.101985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
Primary hyperparathyroidism is a common endocrine disorder characterized by inappropriate elevation of parathyroid hormone and hypercalcemia. While predominantly an asymptomatic disease in Western populations, symptomatic presentations are more prevalent in Eastern countries. The molecular pathogenesis of sporadic PHPT primarily involves genetic and epigenetic alterations leading to abnormal parathyroid cell proliferation and altered calcium sensing mechanism. To date, MEN1 and cyclin D1 are the only established drivers of sporadic PHPT. Somatic MEN1 gene mutations occur in 30-40 % of sporadic parathyroid adenomas (PA), with a recent study on symptomatic cases reporting germline variants.Cyclin D1 overexpression in sporadic PA has been observed in 20-40 % of cases in Western populations and 80 % of cases in Eastern populations, with an inverse association with cyclin-dependent kinase inhibitors CDKN2A and CDKN2B expression. The calcium-sensing receptor expression was significantly lower in symptomatic compared to asymptomatic PHPT, strongly supported by epigenetic deregulation (promoter hypermethylation and histone methylation). Recent studies have highlighted the potential involvement of EZH2, a histone methyltransferase, in parathyroid tumorigenesis. Additionally, parathyroid-specific transcription factors like GCM2, PAX1, and GATA3 are emerging as putative tumor suppressors, especially from the symptomatic PHPT. Next-generation sequencing has identified novel potential drivers such as PIK3CA, MTOR, and NF1 in sporadic PC, alongside CDC73. The molecular landscape of sporadic PHPT appears to differ between Eastern and Western populations. This heterogeneity underscores the need for further large-scale studies, particularly in symptomatic cases from developing nations, to comprehensively elucidate the molecular drivers of parathyroid tumorigenesis.
Collapse
Affiliation(s)
- Ashutosh Kumar Arya
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Poonam Kumari
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India.
| | - Priyanka Singh
- Department of Systems Biology, City of Hope, Monrovia, CA 91016, USA.
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India.
| |
Collapse
|
3
|
Gasperini B, Falvino A, Piccirilli E, Tarantino U, Botta A, Visconti VV. Methylation of the Vitamin D Receptor Gene in Human Disorders. Int J Mol Sci 2023; 25:107. [PMID: 38203278 PMCID: PMC10779104 DOI: 10.3390/ijms25010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The Vitamin D Receptor (VDR) mediates the actions of 1,25-Dihydroxvitamin D3 (1,25(OH)2D3), which has important roles in bone homeostasis, growth/differentiation of cells, immune functions, and reduction of inflammation. Emerging evidences suggest that epigenetic modifications of the VDR gene, particularly DNA methylation, may contribute to the onset and progression of many human disorders. This review aims to summarize the available information on the role of VDR methylation signatures in different pathological contexts, including autoimmune diseases, infectious diseases, cancer, and others. The reversible nature of DNA methylation could enable the development of therapeutic strategies, offering new avenues for the management of these worldwide diseases.
Collapse
Affiliation(s)
- Beatrice Gasperini
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (B.G.); (A.F.); (V.V.V.)
| | - Angela Falvino
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (B.G.); (A.F.); (V.V.V.)
| | - Eleonora Piccirilli
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.P.); (U.T.)
| | - Umberto Tarantino
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.P.); (U.T.)
| | - Annalisa Botta
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (B.G.); (A.F.); (V.V.V.)
| | - Virginia Veronica Visconti
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (B.G.); (A.F.); (V.V.V.)
| |
Collapse
|
4
|
Varshney S, Adela R, Kachhawa G, Dada R, Kulshreshtha V, Kumari R, Agarwal R, Khadgawat R. Disrupted placental vitamin D metabolism and calcium signaling in gestational diabetes and pre-eclampsia patients. Endocrine 2023; 80:191-200. [PMID: 36477942 DOI: 10.1007/s12020-022-03272-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Gestational diabetes (GDM) and pre-eclampsia (PE) represents the unrecognized risk factors for reduced bone content in neonates. The present study is planned to explore the components of vitamin D metabolism and calcium transport in placenta of GDM and PE cases and its effect on the neonatal bone mass determination using bone densitometry system. METHODS We have collected serum and placenta tissues from GDM (n = 20), PE (n = 20), and healthy pregnancies (n = 20). In the present study, we found mRNA expression of oxidative stress markers, vitamin D metabolic components and calcium channels, calcium channel binding proteins, plasma membrane calcium ATPase, ATP synthase and Ca2+ release genes; Ryanodine receptors genes were assessed by quantitative real-time PCR (qRT-PCR) in placental tissue of GDM, PE, and healthy pregnancies. RESULTS We observed high level of oxidative stress in both GDM and PE placenta compared to normal pregnancies. CYP2R1 and VDR mRNA expression was significantly downregulated and upregulation of CYP27B1 and CYP24A1 in GDM and PE compared with healthy cases. Similarly, calcium transporters were downregulated in GDM and PE placental tissues. In addition, CYP24A1, VDR, CaBP28K, TRPV5 and PMCA3 mRNA expression were correlated with BMC of neonates. DISCUSSION Oxidative stress is probably relevant to disrupted vitamin D homeostasis and calcium transport in the placenta of GDM and PE cases. The altered regulatory mechanism of CYP24A1 and VDR could indicates more pronounced serum 25(OH)D reduction. Additionally, reduced BMC in the neonates of these cases might be as consequences of modified CYP24A1, VDR, CaBP28K, TRPV5 and PMCA3 mRNA expression.
Collapse
Affiliation(s)
- Shweta Varshney
- Department of Endocrinology & Metabolism, All India Institute of Medical Science, New Delhi, India
| | - Ramu Adela
- Department of Endocrinology & Metabolism, All India Institute of Medical Science, New Delhi, India
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research-Guwahati, Guwahati, Assam, India
| | - Garima Kachhawa
- Department of Obstetrics & Gynecology, All India Institute of Medical Science, New Delhi, India
| | - Reema Dada
- Department of Anatomy, All India Institute of Medical Science, New Delhi, India
| | - Vidushi Kulshreshtha
- Department of Obstetrics & Gynecology, All India Institute of Medical Science, New Delhi, India
| | - Rajesh Kumari
- Department of Obstetrics & Gynecology, All India Institute of Medical Science, New Delhi, India
| | - Ramesh Agarwal
- Department of Neonatology, All India Institute of Medical Science, New Delhi, India
| | - Rajesh Khadgawat
- Department of Endocrinology & Metabolism, All India Institute of Medical Science, New Delhi, India.
| |
Collapse
|
5
|
Bhan A, Athimulam S, Kumari P, Pal R, Bhadada SK, Cook BC, Qiu S, Rao SD. Large parathyroid adenomas: Potential mechanisms to reconcile adenoma size and disease phenotype. Front Endocrinol (Lausanne) 2023; 14:1009516. [PMID: 36817587 PMCID: PMC9931720 DOI: 10.3389/fendo.2023.1009516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023] Open
Abstract
Parathyroid adenomas weighing more than 3.5 g are reported variously as "atypical", "large" or "giant" parathyroid adenomas. All such adenomas are rare variants accounting for no more than 1.5% of all parathyroid adenomas. Large parathyroid adenomas are often associated with more severe form of the disease, including osteitis fibrosa cystica (OFC) and share many biochemical, histological, and molecular features of both benign and malignant parathyroid neoplasms, and are considered a distinct clinical entity. However, the pathogenesis of oversized parathyroid adenomas and the often-associated skeletal phenotype remains unclear. We present 5 cases of primary hyperparathyroidism (PHPT) with OFC, an uncommon manifestation of contemporary PHPT, associated with larger parathyroid adenomas, seen in the Bone and Mineral Disorders Clinic of the Henry Ford Health in the last 30 years to illustrate the critical role of vitamin D nutrition in the pathogenesis of both the OFC and adenoma size. The estimated prevalence of OFC was very low 0.2%, 5 of the >3000 surgically confirmed cases of PHPT seen during this time. The mean ± SD values were: age: 36.8 ± 22.1 years (4 of the 5 <36years), serum calcium 11.6 ± 1.1 mg/dl, alkaline phosphatase 799 ± 487 IU/L, PTH 1440 ± 477 pg/ml, 25-hydroxyvitamin D 13.0 ± 8.9 ng/ml, 1,25-dihyroxyvitamin D 26.5 ± 13.7 pg/ml, urine calcium 562 ± 274 mg/day, and parathyroid adenoma weight 4.53 ± 2.2 g. Parathyroidectomy led to the resolution of both the biochemical indices and OFC in each patient without recurrence over >10 years of follow-up. Because OFC is a very rare in the West, but very common areas of endemic vitamin D deficiency, we also examined the relationship between vitamin D nutrition, as assessed by serum 25-hydroxyvitamin D level, and parathyroid adenoma weight as well as prevalence of OFC in two large secularly diverse cohorts of patients with PHPT (Detroit, USA and Chandigarh, India). Based on this relationship and the relative prevalence of OFC in these two large cohorts, we propose that vitamin D nutrition (and perhaps calcium nutrition) best explains both the adenoma size and prevalence of OFC.
Collapse
Affiliation(s)
- Arti Bhan
- Division of Endocrinology, Metabolism and Bone and Mineral Disorders, Henry Ford Health, Detroit, MI, United States
| | - Shobana Athimulam
- Division of Endocrinology, Metabolism and Bone and Mineral Disorders, Henry Ford Health, Detroit, MI, United States
| | - Poonam Kumari
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Rimesh Pal
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Bernard C. Cook
- Department of Pathology and Laboratory Medicine, Henry Ford Health, Detroit, MI, United States
| | - Shijing Qiu
- Bone and Mineral Research Laboratory, Henry Ford Health, Detroit, MI, United States
| | - Sudhaker D. Rao
- Division of Endocrinology, Metabolism and Bone and Mineral Disorders, Henry Ford Health, Detroit, MI, United States
- Bone and Mineral Research Laboratory, Henry Ford Health, Detroit, MI, United States
- *Correspondence: Sudhaker D. Rao,
| |
Collapse
|
6
|
Histone Modification on Parathyroid Tumors: A Review of Epigenetics. Int J Mol Sci 2022; 23:ijms23105378. [PMID: 35628190 PMCID: PMC9140881 DOI: 10.3390/ijms23105378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/02/2022] [Accepted: 05/07/2022] [Indexed: 01/27/2023] Open
Abstract
Parathyroid tumors are very prevalent conditions among endocrine tumors, being the second most common behind thyroid tumors. Secondary hyperplasia can occur beyond benign and malignant neoplasia in parathyroid glands. Adenomas are the leading cause of hyperparathyroidism, while carcinomas represent less than 1% of the cases. Tumor suppressor gene mutations such as MEN1 and CDC73 were demonstrated to be involved in tumor development in both familiar and sporadic types; however, the epigenetic features of the parathyroid tumors are still a little-explored subject. We present a review of epigenetic mechanisms related to parathyroid tumors, emphasizing advances in histone modification and its perspective of becoming a promising area in parathyroid tumor research.
Collapse
|
7
|
Singh P, Bhadada SK, Arya AK, Saikia UN, Sachdeva N, Dahiya D, Kaur J, Brandi ML, Rao SD. Aberrant Epigenetic Alteration of PAX1 Expression Contributes to Parathyroid Tumorigenesis. J Clin Endocrinol Metab 2022; 107:e783-e792. [PMID: 34453169 PMCID: PMC8764231 DOI: 10.1210/clinem/dgab626] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Indexed: 12/22/2022]
Abstract
CONTEXT Primary hyperparathyroidism (PHPT) results from the hypersecretion of parathyroid hormone from parathyroid tumors. A transcription factor, namely Paired box1 (PAX1), is active in parathyroid gland development. OBJECTIVE We aimed to study potential epigenetic-mediated mechanism of PAX1 gene in sporadic parathyroid adenomas. METHODS In parathyroid adenomas tissues, we analyzed the DNA methylation via bisulfite-specific polymerase chain reaction (BSP) and histone modifications via chromatin immunoprecipitation in regulating the differential expression of PAX1. RESULTS The results showed that mRNA and protein expression of PAX1 was significantly reduced in parathyroid adenomas. Bisulfite sequencing demonstrated hypermethylation in the promoter region of PAX1 (35%; 14/40) and lower levels of histone 3 lysine 9 acetylation (H3K9ac) were observed on the promoter region of PAX1 (6-fold; P < .004) in parathyroid adenomas. Furthermore, upon treatment with a pharmacologic inhibitor, namely 5'aza-2 deoxycytidine, in rat parathyroid continuous cells, we found re-expression of PAX1 gene. CONCLUSION Our study not only reveals expression of PAX1 is epigenetically deregulated but also paves a way for clinical and therapeutic implications in patients with PHPT.
Collapse
Affiliation(s)
- Priyanka Singh
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Ashutosh Kumar Arya
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Uma Nahar Saikia
- Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Naresh Sachdeva
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Divya Dahiya
- Department of General Surgery, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Jyotdeep Kaur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Maria Luisa Brandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50121, Italy
| | | |
Collapse
|
8
|
Gossain VV, Rao SD. Endocrinologists of Indian Origin: A Global Force that can (and should) Collaborate. Indian J Endocrinol Metab 2022; 26:26-29. [PMID: 35662752 PMCID: PMC9162261 DOI: 10.4103/2230-8210.343878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Ved V. Gossain
- Professor of Medicine and Chief, Division of Endocrinology (Emeritus), Michigan State University, East Lansing, Michigan, USA
| | - Sudhaker D. Rao
- Bone and Mineral Disorders, Division of Endocrinology, Diabetes, and Bone and Mineral Disorders, Director, Bone and Mineral Research Laboratory, Henry Ford Health System, Detroit, Michigan, USA
| |
Collapse
|
9
|
Shah R, Gosavi V, Mahajan A, Sonawane S, Hira P, Kurki V, Bal M, Sathe P, Pai P, D'Cruz A, Uchino S, Garale MN, Patil V, Lila A, Shah N, Bandgar T. Preoperative prediction of parathyroid carcinoma in an Asian Indian cohort. Head Neck 2021; 43:2069-2080. [PMID: 33751728 DOI: 10.1002/hed.26677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/08/2021] [Accepted: 02/26/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Parathyroid carcinoma (PC) requires preoperative prediction for appropriate surgical management. Differentiation from symptomatic primary hyperparathyroidism (sPHPT) cohort is difficult. METHODS Patients with sPHPT from a tertiary-care center, Western India, including Cohort-A (n = 19 [10/M; 9/F]) with PC and Cohort-B (n = 93 [33/M; 60/F] with benign parathyroid lesions) were compared to derive predictors for differential diagnosis. RESULTS There were no differences in clinical or biochemical parameters between the two cohorts. Comparison of CECT parameters showed that irregular shape, tumor heterogeneity, infiltration, short/long-axis ratio >0.76, and long-diameter >30 mm had high negative-predictive value and intratumoral calcification had 100% positive-predictive value to diagnose PC; whereas there were no differences in contrast-enhancement patterns. Long diameter, short/long-axis ratio, and heterogeneity were significant predictors on multivariate analysis. CONCLUSION It is difficult to predict diagnosis of PC in an Indian sPHPT cohort based on clinical and biochemical parameters, whereas CECT parathyroid-based parameters can aid in diagnosis.
Collapse
Affiliation(s)
- Ravikumar Shah
- Department of Endocrinology, Seth GS Medical College & KEM Hospital, Mumbai, India
| | - Vikrant Gosavi
- Department of Endocrinology, Seth GS Medical College & KEM Hospital, Mumbai, India
| | - Abhishek Mahajan
- Department of Radiodiagnosis and Imaging, Tata Memorial Center, Mumbai, India
| | - Sushil Sonawane
- Department of Endocrinology, Seth GS Medical College & KEM Hospital, Mumbai, India
| | - Priya Hira
- Department of Radiology, Seth GS Medical College & KEM Hospital, Mumbai, India
| | - Vineeth Kurki
- Department of Radiodiagnosis and Imaging, Tata Memorial Center, Mumbai, India
| | - Munita Bal
- Department of Pathology, Tata Memorial Center, Mumbai, India
| | - Pragati Sathe
- Department of Pathology, Seth GS Medical College & KEM Hospital, Mumbai, India
| | - Prathamesh Pai
- Department of Head & Neck Surgical Oncology, Tata Memorial Center, Mumbai, India
| | - Anil D'Cruz
- Department of Head & Neck Surgical Oncology, Apollo Hospital, Navi Mumbai, India
| | - Shinya Uchino
- Noguchi Thyroid Clinic and Hospital Foundation, Beppu, Oita, Japan
| | - Mahadeo Namdeo Garale
- Department of General Surgery, Seth GS Medical College & KEM Hospital, Mumbai, India
| | - Virendra Patil
- Department of Endocrinology, Seth GS Medical College & KEM Hospital, Mumbai, India
| | - Anurag Lila
- Department of Endocrinology, Seth GS Medical College & KEM Hospital, Mumbai, India
| | - Nalini Shah
- Department of Endocrinology, Seth GS Medical College & KEM Hospital, Mumbai, India
| | - Tushar Bandgar
- Department of Endocrinology, Seth GS Medical College & KEM Hospital, Mumbai, India
| |
Collapse
|
10
|
Tuffour A, Kosiba AA, Zhang Y, Peprah FA, Gu J, Shi H. Role of the calcium-sensing receptor (CaSR) in cancer metastasis to bone: Identifying a potential therapeutic target. Biochim Biophys Acta Rev Cancer 2021; 1875:188528. [PMID: 33640382 DOI: 10.1016/j.bbcan.2021.188528] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 02/16/2021] [Accepted: 02/20/2021] [Indexed: 12/20/2022]
Abstract
Cancer is a major cause of morbidity and mortality worldwide due to its ability to evade immune surveillance and metastasize from its origin to a secondary point of contact. Though several treatment techniques have been developed to suppress or manage cancer spread, a strategy for total control over the disease continues to evade researchers. In considering ways to control or prevent cancer from metastasizing to the bone, we analyze the impact of the calcium-sensing receptor (CaSR), whose primary role is to maintain calcium (Ca2+) homeostasis in cellular and systemic physiological processes. CaSR is a pleiotropic receptor capable of enhancing the proliferation of some cancers such as breast, lung, prostate and kidney cancers at its primary site(s) and stimulating bone metastasis, while exerting a suppressive effect in others such as colon cancer. The activity of CaSR not only increases cancer cell proliferation, migration and suppression of apoptosis in the organs indicated, but also increases the secretion of parathyroid hormone-related protein (PTHrP) and epiregulin, which induce osteolytic activity and osteoblastic suppression. In addition, released cytokines and Ca2+ from bone resorption are critical factors that further promote cancer proliferation. In this review, we seek to highlight previous viewpoints on CaSR, discuss its role in a new context, and consider its potential clinical application in cancer treatment.
Collapse
Affiliation(s)
- Alex Tuffour
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | | | - Yao Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Frank Addai Peprah
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jie Gu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Haifeng Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
11
|
Singh P, Bhadada SK, Dahiya D, Arya AK, Saikia UN, Sachdeva N, Kaur J, Brandi ML, Rao SD. Reduced Calcium Sensing Receptor (CaSR) Expression Is Epigenetically Deregulated in Parathyroid Adenomas. J Clin Endocrinol Metab 2020; 105:3015-3024. [PMID: 32609827 PMCID: PMC7500582 DOI: 10.1210/clinem/dgaa419] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022]
Abstract
AIM Reduced calcium sensing receptor (CaSR) expression has been implicated in parathyroid tumorigenesis, but the underlying mechanism remains elusive. Accordingly, we aimed to explore the epigenetic changes (DNA methylation and histone modifications) involved in CaSR regulation in sporadic parathyroid adenomas and correlate epigenetic state with disease indices. EXPERIMENTAL DESIGN Forty sporadic parathyroid adenomas and 10 control parathyroid tissues were studied. Real-time quantitative PCR (qPCR) for mRNA and immunohistochemistry for protein expression of CaSR were performed. The methylation status of the CaSR promoter 2 was determined by bisulphite sequencing analysis of sodium bisulphite-converted DNA. To determine the role of histone modifications in the CaSR regulation, chromatin immunoprecipitation-qPCR assay was performed. RESULTS Real-time qPCR revealed reduced CaSR mRNA expression with a fold reduction of 0.12 (P < 0.0001) in parathyroid adenomas. Immunohistochemistry revealed reduced protein expression of CaSR in 90% (36/40) of adenomas. The promoter 2 region of CaSR displayed significant hypermethylation in 45% (18/40) of the adenomas compared with the controls (6.7%; 1 of 10) (P < 0.002). Bisulphite sequencing analysis revealed maximum methylated CpG at glial cell missing 2 binding site on the CaSR promoter 2 compared to other CpG sites. The methylation status of CaSR correlated directly with plasma intact parathyroid hormone levels in patients with parathyroid adenoma. With chromatin immunoprecipitation-qPCR analysis, H3K9me3 levels showed increased enrichment by 10-fold in adenomas and correlated with CaSR-mRNA expression (r = 0.61; P < 0.003). Treatment with 5-aza-2'deoxycytidine restored the expression of CaSR in a parathyroid cell line. CONCLUSION Our data suggest that hypermethylation and increased H3K9me3 of the CaSR promoter 2 are involved in silencing CaSR expression in sporadic parathyroid adenoma.
Collapse
Affiliation(s)
- Priyanka Singh
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Divya Dahiya
- Department of General Surgery, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ashutosh Kumar Arya
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Uma Nahar Saikia
- Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Naresh Sachdeva
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Jyotdeep Kaur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Maria Luisa Brandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | | |
Collapse
|
12
|
Shirvani SS, Nouri M, Sakhinia E, Babaloo Z, jadideslam G, Shahriar A, Farhadi J, khabbazi A. The expression and methylation status of vitamin D receptor gene in Behcet's disease. Immun Inflamm Dis 2019; 7:308-317. [PMID: 31709782 PMCID: PMC6842822 DOI: 10.1002/iid3.275] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 09/02/2019] [Accepted: 10/07/2019] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Vitamin D has important roles as a natural immune modulator via regulating the expression of genes which have been implicated in the pathophysiology of autoimmune diseases. Vitamin D function and its deficiency have been linked to a wide range of metabolic disorders including disorders of calcium metabolism, malignant, cardiovascular, infectious, neuromuscular, and inflammatory diseases. Environmental factors, genetic factors, and epigenetic changes contribute to Behcet's disease (BD) development. The aim of our study was to analyze the expression level and methylation status of the vitamin D receptor (VDR) gene promoter in the peripheral blood mononuclear cells (PBMCs) of patients with BD. METHODS In a case-control study, 48 Iranian Azeri patients with BD and 60 age-, sex- and ethnically-matched healthy controls were included. Venous blood samples were collected and PBMCs were isolated by Ficoll protocol. The DNA and RNA were subsequently extracted. Promoter methylation levels were evaluated by MeDIP-quantitative polymerase chain reaction (qPCR). The expression of VDR was evaluated by real-time PCR. RESULTS The results of quantitative real-time PCR analysis showed that the level of VDR expression in patients with BD was significantly lower than the control group (P = .013). There was no significant difference in the level of DNA methylation in the BD and control groups (P > .05). As the results show, the expression level of VDR gene was significantly different between female and male in the patient group (P = .001). VDR gene expression was significantly higher in subjects with phlebitis. No correlation was observed between VDR gene expression rate and BD activity. CONCLUSION VDR gene expression decreased in patients with BD. However, there is no suggestion evidence that the expression level of VDR is regulated by a unique DNA methylation mechanism. No correlation exists between VDR gene expression and BD activity.
Collapse
Affiliation(s)
- Sam Seydi Shirvani
- Molecular Medicine Department, Connective Tissue Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - Mohammad Nouri
- Biochemistry DepartmentTabriz University of Medical SciencesTabrizIran
| | - Ebrahim Sakhinia
- Genetic Department, Connective Tissue Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - Zohreh Babaloo
- Immunology Department, Connective Tissue Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - Golamreza jadideslam
- Molecular Medicine Department, Connective Tissue Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - Alipour Shahriar
- Biochemistry DepartmentUrmia University of Medical SciencesUrmiaIran
| | - Jafar Farhadi
- Molecular medicine DepartmentTabriz University of Medical SciencesTabrizIran
| | - Alireza khabbazi
- Connective Tissue Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
13
|
Arya AK, Bhadada SK, Singh P, Dahiya D, Kaur G, Sharma S, Saikia UN, Behera A, Rao SD, Bhasin M. Quantitative proteomics analysis of sporadic parathyroid adenoma tissue samples. J Endocrinol Invest 2019; 42:577-590. [PMID: 30284223 DOI: 10.1007/s40618-018-0958-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 09/19/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Molecular pathogenesis of parathyroid tumors is incompletely understood. Identification of novel molecules and understanding their role in parathyroid tumorigenesis by proteomics approach would be informative with potential clinical implications. METHOD Adenomatous (n = 5) and normal (n = 2) parathyroid tissue lysates were analyzed for protein profile by LC-MS/MS method and the proteins were classified using bioinformatics tools such as PANTHER and toppfun functional enrichment tool. Identified proteins were further validated by western blotting and qRT-PCR (n = 20). RESULT Comparative proteomics analysis revealed that a total of 206 proteins (74 upregulated and 132 downregulated) were differentially expressed (≥ twofold change) in adenomas. Bioinformatics analysis revealed that 48 proteins were associated with plasma membrane, 49 with macromolecular complex, 39 were cytoplasm, 38 were organelle related, 21 were cell junction and 10 were extracellular proteins. These proteins belonged to a diverse protein family such as enzymes, transcription factors, cell signalling, cell adhesion, cytoskeleton proteins, receptors, and calcium-binding proteins. The major biological processes predicted for the proteins were a cellular, metabolic and developmental process, cellular localization, and biological regulation. The differentially expressed proteins were found to be associated with MAPK, phospholipase C (PLC) and phosphatidylinositol (PI) signalling pathways, and with chromatin organization. Western blot and qRT-PCR analysis of three proteins (DNAJC2, ACO2, and PRDX2) validated the LC-MS/MS findings. CONCLUSION This exploratory study demonstrates the feasibility of proteomics approach in finding the dysregulated proteins in benign parathyroid adenomas, and our preliminary results suggest that MAPK, PLC and PI signalling pathways and chromatin organization are involved in parathyroid tumorigenesis.
Collapse
Affiliation(s)
- A K Arya
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Room No. 2, 4th Floor Block-F, Nehru Hospital, PGIMER, Chandigarh, 160012, India
| | - S K Bhadada
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Room No. 2, 4th Floor Block-F, Nehru Hospital, PGIMER, Chandigarh, 160012, India.
| | - P Singh
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Room No. 2, 4th Floor Block-F, Nehru Hospital, PGIMER, Chandigarh, 160012, India
| | - D Dahiya
- Department of General Surgery, PGIMER, Chandigarh, India
| | - G Kaur
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Room No. 2, 4th Floor Block-F, Nehru Hospital, PGIMER, Chandigarh, 160012, India
| | - S Sharma
- Department of Biochemistry, PGIMER, Chandigarh, India
| | - U N Saikia
- Department of Histopathology, PGIMER, Chandigarh, India
| | - A Behera
- Department of General Surgery, PGIMER, Chandigarh, India
| | - S D Rao
- Bone and Mineral Research Laboratory, Henry Ford Hospital, Detroit, USA
| | - M Bhasin
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Hannan FM, Kallay E, Chang W, Brandi ML, Thakker RV. The calcium-sensing receptor in physiology and in calcitropic and noncalcitropic diseases. Nat Rev Endocrinol 2018; 15:33-51. [PMID: 30443043 PMCID: PMC6535143 DOI: 10.1038/s41574-018-0115-0] [Citation(s) in RCA: 238] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Ca2+-sensing receptor (CaSR) is a dimeric family C G protein-coupled receptor that is expressed in calcitropic tissues such as the parathyroid glands and the kidneys and signals via G proteins and β-arrestin. The CaSR has a pivotal role in bone and mineral metabolism, as it regulates parathyroid hormone secretion, urinary Ca2+ excretion, skeletal development and lactation. The importance of the CaSR for these calcitropic processes is highlighted by loss-of-function and gain-of-function CaSR mutations that cause familial hypocalciuric hypercalcaemia and autosomal dominant hypocalcaemia, respectively, and also by the fact that alterations in parathyroid CaSR expression contribute to the pathogenesis of primary and secondary hyperparathyroidism. Moreover, the CaSR is an established therapeutic target for hyperparathyroid disorders. The CaSR is also expressed in organs not involved in Ca2+ homeostasis: it has noncalcitropic roles in lung and neuronal development, vascular tone, gastrointestinal nutrient sensing, wound healing and secretion of insulin and enteroendocrine hormones. Furthermore, the abnormal expression or function of the CaSR is implicated in cardiovascular and neurological diseases, as well as in asthma, and the CaSR is reported to protect against colorectal cancer and neuroblastoma but increase the malignant potential of prostate and breast cancers.
Collapse
Affiliation(s)
- Fadil M Hannan
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Enikö Kallay
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Wenhan Chang
- Endocrine Research Unit, Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, CA, USA
| | - Maria Luisa Brandi
- Metabolic Bone Diseases Unit, Department of Surgery and Translational Medicine, University of Florence, Florence, Italy.
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
15
|
Guarnieri V, Muscarella LA, Verdelli C, Corbetta S. Alterations of DNA methylation in parathyroid tumors. Mol Cell Endocrinol 2018; 469:60-69. [PMID: 28501573 DOI: 10.1016/j.mce.2017.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 05/01/2017] [Accepted: 05/07/2017] [Indexed: 12/11/2022]
Abstract
Parathyroid tumors are common endocrine neoplasias associated with primary hyperparathyroidism, a metabolic disorder characterized by parathormone hypersecretion. Parathyroid neoplasia are frequently benign adenomas or multiple glands hyperplasia, while malignancies are rare. The epigenetic scenario in parathyroid tumors has just begun to be decoded: DNA methylation, histones and chromatin modifiers expression have been investigated so far. The main findings suggest that DNA methylation and chromatin remodeling are active and deregulated in parathyroid tumors, cooperating with genetic alterations to drive the tumor phenotype: the tumor suppressors menin and parafibromin, involved in parathyroid tumorigenesis, interact with chromatin modifiers, defining distinct epigenetic derangements. Many epigenetic alterations identified in parathyroid tumors are common to those in human cancers; moreover, some aspects of the epigenetic profile resemble epigenetic features of embryonic stem cells. Epigenetic profile may contribute to define the heterogeneity of parathyroid tumors and to provide targets for new therapeutic approaches.
Collapse
Affiliation(s)
- Vito Guarnieri
- Genetic Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Lucia Anna Muscarella
- Laboratory of Oncology, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Chiara Verdelli
- Laboratory of Experimental Endocrinology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Sabrina Corbetta
- Endocrinology Service, Department of Biomedical Sciences for Health, University of Milan, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.
| |
Collapse
|
16
|
Bhadada SK, Arya AK, Mukhopadhyay S, Khadgawat R, Sukumar S, Lodha S, Singh DN, Sathya A, Singh P, Bhansali A. Primary hyperparathyroidism: insights from the Indian PHPT registry. J Bone Miner Metab 2018; 36:238-245. [PMID: 28364324 DOI: 10.1007/s00774-017-0833-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/03/2017] [Indexed: 02/05/2023]
Abstract
The presentation of primary hyperparathyroidism (PHPT) is variable throughout the world. The present study explored retrospective data submitted to the Indian PHPT registry ( http://www.indianphptregistry.com ) between July 2005 and June 2015 from 5 centres covering four different geographical regions. The clinical, biochemical, radiological and histopathological characteristics of PHPT patients across India were analysed for similarity and variability across the centres. A total of 464 subjects (137 men and 327 women) with histopathologically proven PHPT were analysed. The mean age was 41 ± 14 years with a female:male ratio of 2.4:1. The majority (95%) of patients were symptomatic. Common clinical manifestations among all the centres were weakness and fatigability (58.7%), bone pain (56%), renal stone disease (31%), pancreatitis (12.3%) and gallstone disease (11%). Mean serum calcium, parathyroid hormone and inorganic phosphorus levels were 11.9 ± 1.6 mg/dL, 752.4 ± 735.2 pg/mL and 2.8 ± 0.9 mg/dL, respectively. Sestamibi scanning had better sensitivity than ultrasonography in the localisation of parathyroid adenoma; however, when these two modalities were combined, 93% of the cases were correctly localised. Mean parathyroid adenoma weight was 5.6 ± 6.5 g (0.1-54 g). It was concluded that the majority of PHPT patients within India are still mainly symptomatic with >50% of patients presenting with bone disease and one-third with renal impairment. Compared to Western countries, Indian patients with PHPT are younger, biochemical abnormalities are more severe, and adenoma weight is higher. As our observation is largely derived from a tertiary care hospital (no routine screening of serum calcium level), the results do not reflect racial differences in susceptibility to PHPT.
Collapse
Affiliation(s)
- Sanjay Kumar Bhadada
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| | - Ashutosh Kumar Arya
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Satinath Mukhopadhyay
- Department of Endocrinology, Institute of Postgraduate Medical Education and Research (IPGMER), Kolkata, India
| | - Rajesh Khadgawat
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Suja Sukumar
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Sailesh Lodha
- Department of Endocrinology, Fortis Hospital, Jaipur, India
| | | | - Anjali Sathya
- Vijaya Hospital/MMM Hospital, Chennai, Tamilnadu, India
| | - Priyanka Singh
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Anil Bhansali
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| |
Collapse
|
17
|
Vladoiu S, Botezatu A, Anton G, Manda D, Paun D, Oros S, Rosca R, Dinu Draganescu D. THE INVOLVEMENT OF VDR PROMOTER METHYLATION, CDX-2 VDR POLYMORPHISM AND VITAMIN D LEVELS IN MALE INFERTILITY. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2017; 13:294-301. [PMID: 31149190 PMCID: PMC6516584 DOI: 10.4183/aeb.2017.294] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Vitamin D (VD) levels were correlated with different health conditions, including reproductive disorders in males. Vitamin D action is mediated through vitamin D receptor (VDR), which acts as a transcription factor. VDR gene promoter is embedded in a GC-rich island. The VDR gene has been shown to have several polymorphisms that affect the receptor function. AIM To examine the relationship between Cdx-2 polymorphism (rs17883968), the methylation status of VDR's promoter and serum levels of 25-hydroxyvitamin D in male infertility. PATIENTS AND METHODS A total of 69 infertile men and 37 age-matched controls were enrolled in this study. Vitamin D level assessments were detected using the electrochemiluminescent method. Cdx-2 VDR polymorphism identification was performed by PCR on DNA samples from blood, followed by restriction. Methylation of VDR gene promoter was assessed by qMS-PCR using bisulfite-treated DNA from fresh sperm. RESULTS Vitamin D levels was found to be significantly decreased in infertile groups compared the controls (p=0.0279). The GG genotype was found in a higher percentage in controls and the AA genotype was higher in infertile group (p=0.0056). Infertile homozygote (GG) and heterozygote (GA) individuals had significantly higher vitamin D levels than AA homozygote. Methylation is higher in individuals with lower vitamin D levels and AA genotype is characterized by higher methylation values. CONCLUSION The results provide new insights of Cdx-2 polymorphism is involved in vitamin D deficiency, highlighting the important role of epigenetic modification of vitamin D receptor and male infertility along with the genetic context.
Collapse
Affiliation(s)
- S. Vladoiu
- “C.I.Parhon” Institute of Endocrinology, Bucharest, Romania
| | - A. Botezatu
- “Stefan S. Nicolau” Virology Institute, Bucharest, Romania
| | - G. Anton
- “Stefan S. Nicolau” Virology Institute, Bucharest, Romania
| | - D. Manda
- “C.I.Parhon” Institute of Endocrinology, Bucharest, Romania
| | - D.L. Paun
- “Carol Davila” University of Medicine and Pharmacy, Dept. of Endocrinology, Bucharest, Romania
| | - S. Oros
- “C.I.Parhon” Institute of Endocrinology, Bucharest, Romania
- “Carol Davila” University of Medicine and Pharmacy, Dept. of Endocrinology, Bucharest, Romania
| | - R. Rosca
- “C.I.Parhon” Institute of Endocrinology, Bucharest, Romania
- “Carol Davila” University of Medicine and Pharmacy, Dept. of Endocrinology, Bucharest, Romania
| | | |
Collapse
|
18
|
Promoter hypermethylation inactivates CDKN2A, CDKN2B and RASSF1A genes in sporadic parathyroid adenomas. Sci Rep 2017; 7:3123. [PMID: 28600574 PMCID: PMC5466668 DOI: 10.1038/s41598-017-03143-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/24/2017] [Indexed: 12/04/2022] Open
Abstract
Cyclin D1, a G1-S phase regulator, is upregulated in parathyroid adenomas. Since cyclin-dependent kinase (CDK) inhibitors, CDKN2A and CDKN2B, and RASSF1A (Ras-association domain family 1, isoform A) are involved in G1-S phase arrest and act as potential tumor suppressor genes, we aimed to study potential methylation-mediated inactivation of these genes in parathyroid adenomas. Gene expressions of cyclin D1 (CCND1) and regulatory molecules (CDKN2A, CDKN2B and RASSF1A) was analysed in parathyroid adenoma tissues (n = 30). DNA promoter methylation of cyclin D1 regulators were assessed and correlated with clinicopathological features of the patients. Gene expression analysis showed a relative fold reductions of 0.35 for CDKN2A (p = 0.01), 0.45 for CDKN2B (P = 0.02), and 0.39 for RASSF1A (p < 0.01) in adenomatous compared to normal parathyroid tissue. There was an inverse relationship between the expressions of CDKN2A and CDKN2B with CCND1. In addition, the promoter regions of CDKN2A, CDKN2B, and of RASSF1A were significantly hyper-methylated in 50% (n = 15), 47% (n = 14), and 90% (n = 27) of adenomas respectively. In contrast, no such aberrant methylation of these genes was observed in normal parathyroid tissue. So, promoter hypermethylation is associated with down-regulation of CCND1 regulatory genes in sporadic parathyroid adenomas. This dysregulated cell cycle mechanism may contribute to parathyroid tumorigenesis.
Collapse
|
19
|
Chiara V, Sabrina C. Epigenetics of human parathyroid tumors. INTERNATIONAL JOURNAL OF ENDOCRINE ONCOLOGY 2017. [DOI: 10.2217/ije-2017-0002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Parathyroid tumors are common endocrine neoplasia associated with primary hyperparathyroidism, a metabolic disorder sustained by parathormone hypersecretion. The epigenetic scenario in parathyroid tumors is beginning to be decoded. Here, main findings are reviewed: hypermethylation of specific DNA CpG islands has been described, despite global DNA promoter hypomethylation was not detectable; embryonic-related miRNAs, belonging to the C19MC and miR‐371-373 clusters, and miR‐296, are deregulated; expression of histone H1.2 and H2B is increased; expression of histone methyltransferase EZH2, BMI1 and RIZ1 is impaired; the tumor suppressor HIC1, MEN1 and CDC73 gene products, key molecules in parathyroid tumorigenesis, may be involved in epigenetic aberrant changes. Epigenetic changes are more frequent and more consistent in parathyroid malignancies, and positively correlated with severity of primary hyperparathyroidism.
Collapse
Affiliation(s)
- Verdelli Chiara
- Laboratory of Experimental Endocrinology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Corbetta Sabrina
- Endocrinology Unit, Department of Biomedical Sciences for Health, University of Milan, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
20
|
Singh GB, Khanna S, Raut SK, Sharma S, Sharma R, Khullar M. DUSP-1 gene expression is not regulated by promoter methylation in diabetes-associated cardiac hypertrophy. Ther Adv Cardiovasc Dis 2017; 11:147-154. [PMID: 28413926 DOI: 10.1177/1753944717704590] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The exact mechanism causing decreased expression of the dual specific phosphatase-1 ( DUSP-1) gene in diabetes-associated cardiac hypertrophy is not known. DNA promoter methylation is often associated with decreased gene expression in many diseases including cardiovascular diseases. So, we investigated whether epigenetic silencing via promoter methylation is involved in the decreased expression of DUSP-1 in diabetes-associated cardiac hypertrophy. METHODS Real-time polymerase chain reaction (PCR) and Western blotting confirmed the down regulation of the DUSP-1 gene at transcriptional and translational levels. Bisulfite-converted DNA samples from myocardium of rat model of diabetic cardiomyopathy (DCM), high glucose (HG)-treated neonatal rat cardiomyocytes (NRCMs) and cardiac tissues from archived human myocardial DCM autopsies along with their respective controls were analyzed for methylation in the promoter region of the DUSP-1 gene. RESULTS We observed no methylation in the promoter regions of the DUSP-1 gene in DCM rat hearts, in HG-treated NRCMs (between -355 bp and -174 bp) and in cardiac tissues from archived human myocardial DCM autopsies (between -274 bp and -73 bp). CONCLUSION Methylation-mediated silencing of the DUSP-1 promoter does not appear to be associated with reduced expression, indicating the involvement of other factors in specific suppression of DUSP-1 in diabetes-associated cardiac hypertrophy.
Collapse
Affiliation(s)
- Gurinder Bir Singh
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sanskriti Khanna
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Satish K Raut
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Saurabh Sharma
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajni Sharma
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Madhu Khullar
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh-160012, India
| |
Collapse
|
21
|
Mingione A, Verdelli C, Ferrero S, Vaira V, Guarnieri V, Scillitani A, Vicentini L, Balza G, Beretta E, Terranegra A, Vezzoli G, Soldati L, Corbetta S. Filamin A is reduced and contributes to the CASR sensitivity in human parathyroid tumors. J Mol Endocrinol 2017; 58:91-103. [PMID: 27872158 DOI: 10.1530/jme-16-0184] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 11/21/2016] [Indexed: 11/08/2022]
Abstract
Parathyroid tumors display reduced sensitivity to extracellular calcium ([Ca2+]o). [Ca2+]o activates calcium-sensing receptor (CASR), which interacts with the scaffold protein filamin A (FLNA). The study aimed to investigate: (1) the FLNA expression in human parathyroid tumors, (2) its effects on the CASR mRNA and protein expression, and (3) on ERK signaling activation, (4) the effect of the carboxy-terminal CASR variants and (5) of the treatment with the CASR agonist R568 on FLNA-mediated ERK phosphorylation in HEK293 cells. Full-length FLNA immunostaining was variably reduced in parathyroid tumors. Immunofluorescence showed that FLNA localized in membrane and cytoplasm and co-localized with CASR in parathyroid adenomas (PAds)-derived cells. Cleaved C-terminus FLNA fragment could also be detected in PAds nuclear protein fractions. In HEK293 cells transfected with 990R-CASR or 990G-CASR variants, silencing of endogenous FLNA reduced CASR mRNA levels and total and membrane-associated CASR proteins. In agreement, FLNA mRNA levels positively correlated with CASR expression in a series of 74 PAds; however, any significant correlation with primary hyperparathyroidism severity could be detected and FLNA transcript levels did not differ between PAds harboring 990R or 990G CASR variants. R568 treatment was efficient in restoring 990R-CASR and 990G-CASR sensitivity to [Ca2+]o in the absence of FLNA. In conclusion, FLNA is downregulated in parathyroid tumors and parallels the CASR expression levels. Loss of FLNA reduces CASR mRNA and protein expression levels and the CASR-induced ERK phosphorylation. FLNA is involved in receptor expression, membrane localization and ERK signaling activation of both 990R and 990G CASR variants.
Collapse
Affiliation(s)
| | - Chiara Verdelli
- Laboratory of Experimental EndocrinologyIRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Stefano Ferrero
- Division of PathologyDepartment of Biomedical, Surgical and Dental Sciences, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Vaira
- Division of PathologyDepartment of Pathophysiology and Transplantation, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico and Istituto Nazionale Genetica Molecolare (INGM) Romeo ed Enrica Invernizzi, Milan, Italy
| | - Vito Guarnieri
- Medical GeneticsIRCCS Hospital Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Alfredo Scillitani
- Endocrine UnitIRCCS Hospital Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Leonardo Vicentini
- Endocrine SurgeryIRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gianni Balza
- Internal Medicine UnitA.O. Alessandro Manzoni, Lecco, Italy
| | | | | | - Giuseppe Vezzoli
- Nephrology and Dialysis UnitIRCCS Ospedale San Raffaele, Milan, Italy
| | - Laura Soldati
- Department of Health SciencesUniversity of Milan, Milan, Italy
| | - Sabrina Corbetta
- Endocrinology ServiceDepartment of Biomedical Sciences for Health, University of Milan, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
22
|
Aggarwal A, Kállay E. Cross Talk between the Calcium-Sensing Receptor and the Vitamin D System in Prevention of Cancer. Front Physiol 2016; 7:451. [PMID: 27803671 PMCID: PMC5067519 DOI: 10.3389/fphys.2016.00451] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/21/2016] [Indexed: 12/25/2022] Open
Abstract
There is epidemiological evidence for the cancer preventive effect of dietary calcium (Ca2+) and vitamin D. This effect is strongest in colorectal cancer (CRC). The active vitamin D metabolite, 1,25-dihydroxyvitamin D3 (1,25D3), bound to its receptor, the vitamin D receptor (VDR) regulates the expression of hundreds of different genes in a cell- and tissue-specific manner. While Ca2+ acts through multiple mechanisms and pathways, some of its effects are mediated by the calcium-sensing receptor (CaSR). The joint action of Ca2+ and 1,25D3 is due to the fact that both regulate some of the main processes involved in the development of various cancers, such as proliferation, differentiation, apoptosis, migration, and inflammation. Moreover, 1,25D3, bound to VDR can induce translation of the CaSR, while the amount and activity of the CaSR affects 1,25D3 signaling. However, the complexity of the cross-talk between the CaSR and the vitamin D system goes beyond regulating similar pathways and affecting each other's expression. Our aim was to review some of the mechanisms that drive the cross-talk between the vitamin D system and the CaSR with a special focus on the interaction in CRC cells. We evaluated the molecular evidence that supports the epidemiological observation that both vitamin D and calcium are needed for protection against malignant transformation of the colon and that their effect is modulated by the presence of a functional CaSR.
Collapse
Affiliation(s)
- Abhishek Aggarwal
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of ViennaVienna, Austria; Department of Pediatrics/Endocrinology, School of Medicine, Stanford UniversityStanford, CA, USA
| | - Enikö Kállay
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna Vienna, Austria
| |
Collapse
|
23
|
Hendy GN, Canaff L. Calcium-Sensing Receptor Gene: Regulation of Expression. Front Physiol 2016; 7:394. [PMID: 27679579 PMCID: PMC5020072 DOI: 10.3389/fphys.2016.00394] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/23/2016] [Indexed: 12/13/2022] Open
Abstract
The human calcium-sensing receptor gene (CASR) has 8 exons, and localizes to chromosome 3q. Exons 1A and 1B encode alternative 5′-untranslated regions (UTRs) that splice to exon 2 encoding the AUG initiation codon. Exons 2–7 encode the CaSR protein of 1078 amino acids. Promoter P1 has TATA and CCAAT boxes upstream of exon 1A, and promoter P2 has Sp1/3 motifs at the start site of exon 1B. Exon 1A transcripts from the P1 promoter are reduced in parathyroid tumors and colon carcinomas. Studies of colon carcinomas and neuroblastomas have emphasized the importance of epigenetic changes—promoter methylation of the GC-rich P2 promoter, histone acetylation—as well as involvement of microRNAs in bringing about CASR gene silencing and reduced CaSR expression. Functional cis-elements in the CASR promoters responsive to 1,25-dihydroxyvitamin D [1,25(OH)2D], proinflammatory cytokines, and the transcription factor glial cells missing-2 (GCM2) have been characterized. Reduced levels of CaSR and reduced responsiveness to active vitamin D in parathyroid neoplasia and colon carcinoma may blunt the “tumor suppressor” activity of the CaSR. The hypocalcemia of critically ill patients with burn injury or sepsis is associated with CASR gene upregulation by TNF-alpha and IL-1beta via kappaB elements, and by IL-6 via Stat1/3 and Sp1/3 elements in the CASR gene promoters, respectively. The CASR is transactivated by GCM2—the expression of which is essential for parathyroid gland development. Hyperactive forms of GCM2 may contribute to later parathyroid hyperactivity or tumorigenesis. The expression of the CaSR—the calciostat—is regulated physiologically and pathophysiologically at the gene level.
Collapse
Affiliation(s)
- Geoffrey N Hendy
- Experimental Therapeutics and Metabolism, McGill University Health Centre-Research Institute, Departments of Medicine, Physiology, and Human Genetics, McGill University Montréal, QC, Canada
| | - Lucie Canaff
- Experimental Therapeutics and Metabolism, McGill University Health Centre-Research Institute, Departments of Medicine, Physiology, and Human Genetics, McGill University Montréal, QC, Canada
| |
Collapse
|
24
|
The calcium-sensing receptor and the hallmarks of cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1398-407. [DOI: 10.1016/j.bbamcr.2015.11.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 02/07/2023]
|
25
|
Haglund F, Juhlin CC, Kiss NB, Larsson C, Nilsson IL, Höög A. Diffuse parathyroid hormone expression in parathyroid tumors argues against important functional tumor subclones. Eur J Endocrinol 2016; 174:583-90. [PMID: 26865585 PMCID: PMC5081673 DOI: 10.1530/eje-15-1062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/09/2016] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Primary hyperparathyroidism is usually characterized by a monoclonal parathyroid tumor secreting excess parathyroid hormone (PTH). The main regulator of PTH secretion is calcium and the calcium-PTH set point is shifted in parathyroid tumor cells. We sought to investigate the relationship between tumor PTH and PTH mRNA expression and clinical presentation as well as the regulatory factors including phosphate, vitamin D, and fibroblast growth factor 23. DESIGN A total of 154 parathyroid tumors were analyzed by PTH immunohistochemistry and chromogenic in situ hybridization of PTH mRNA. A subset of samples (n = 34) was analyzed using quantitative real-time PCR. RESULTS Low tumor PTH mRNA level was significantly associated with low tumor PTH immunoreactivity (P = 0.026), but the two did not correlate with regard to histological distribution within individual tumors. Tumors displaying reduced PTH mRNA levels as compared with normal rim were significantly larger (P = 0.013) and showed higher expression of the calcium-sensing receptor (CASR) (P = 0.046). Weaker tumor PTH mRNA level was significantly associated with higher concentration of circulating 25-hydroxyvitamin D (P = 0.005). No significant correlation was seen between PTH immunoreactivity and patient biochemistry. Tumor weight was strongly associated with circulatory concentrations of calcium and PTH. CONCLUSIONS No areas with apparently higher PTH expression were identified, perhaps suggesting that hyper functioning parathyroid tumor subclones should be rare. Circulating 25-hydroxyvitamin D levels may influence tumor PTH expression in vivo. If PTH immunoreactivity reflects the tumor calcium-PTH set point, our data imply that the main determinant of disease severity should be tumor weight.
Collapse
Affiliation(s)
- Felix Haglund
- Department of Oncology-PathologyKarolinska Institutet, Karolinska University Hospital CCK, SE-171 76 Stockholm, Sweden
| | - C Christofer Juhlin
- Department of Oncology-PathologyKarolinska Institutet, Karolinska University Hospital CCK, SE-171 76 Stockholm, Sweden
| | - Nimrod B Kiss
- Department of Oncology-PathologyKarolinska Institutet, Karolinska University Hospital CCK, SE-171 76 Stockholm, Sweden
| | - Catharina Larsson
- Department of Oncology-PathologyKarolinska Institutet, Karolinska University Hospital CCK, SE-171 76 Stockholm, Sweden
| | - Inga-Lena Nilsson
- Department of Molecular Medicine and SurgeryKarolinska Institutet, Karolinska University Hospital CCK, SE-171 76 Stockholm, Sweden
| | - Anders Höög
- Department of Oncology-PathologyKarolinska Institutet, Karolinska University Hospital CCK, SE-171 76 Stockholm, Sweden
| |
Collapse
|
26
|
Abstract
PTH and Vitamin D are two major regulators of mineral metabolism. They play critical roles in the maintenance of calcium and phosphate homeostasis as well as the development and maintenance of bone health. PTH and Vitamin D form a tightly controlled feedback cycle, PTH being a major stimulator of vitamin D synthesis in the kidney while vitamin D exerts negative feedback on PTH secretion. The major function of PTH and major physiologic regulator is circulating ionized calcium. The effects of PTH on gut, kidney, and bone serve to maintain serum calcium within a tight range. PTH has a reciprocal effect on phosphate metabolism. In contrast, vitamin D has a stimulatory effect on both calcium and phosphate homeostasis, playing a key role in providing adequate mineral for normal bone formation. Both hormones act in concert with the more recently discovered FGF23 and klotho, hormones involved predominantly in phosphate metabolism, which also participate in this closely knit feedback circuit. Of great interest are recent studies demonstrating effects of both PTH and vitamin D on the cardiovascular system. Hyperparathyroidism and vitamin D deficiency have been implicated in a variety of cardiovascular disorders including hypertension, atherosclerosis, vascular calcification, and kidney failure. Both hormones have direct effects on the endothelium, heart, and other vascular structures. How these effects of PTH and vitamin D interface with the regulation of bone formation are the subject of intense investigation.
Collapse
Affiliation(s)
- Syed Jalal Khundmiri
- Department of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky, USA
| | - Rebecca D. Murray
- Department of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky, USA
| | - Eleanor Lederer
- Department of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky, USA
- Robley Rex VA Medical Center, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
27
|
Chandel N, Malhotra A, Singhal PC. Vitamin D receptor and epigenetics in HIV infection and drug abuse. Front Microbiol 2015; 6:788. [PMID: 26347716 PMCID: PMC4541325 DOI: 10.3389/fmicb.2015.00788] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/20/2015] [Indexed: 12/22/2022] Open
Abstract
Illicit drug abuse is highly prevalent and serves as a powerful co-factor for HIV exacerbation. Epigenetic alterations in drug abuse and HIV infection determine expression of several critical genes such as vitamin D receptor (VDR), which participates in proliferation, differentiation, cell death under both physiological and pathological conditions. On that account, active vitamin D, the ligand of VDR, is used as an adjuvant therapy to control infection, slow down progression of chronic kidney diseases, and cancer chemotherapy. Interestingly, vitamin D may not be able to augment VDR expression optimally in several instances where epigenetic contributes to down regulation of VDR; however, reversal of epigenetic corruption either by demethylating agents (DACs) or histone deacetylase (HDAC) inhibitors would be able to maximize expression of VDR in these instances.
Collapse
Affiliation(s)
- Nirupama Chandel
- Feinstein Institute for Medical Research, Hofstra North Shore LIJ School of Medicine , New York, NY, USA
| | - Ashwani Malhotra
- Feinstein Institute for Medical Research, Hofstra North Shore LIJ School of Medicine , New York, NY, USA
| | - Pravin C Singhal
- Feinstein Institute for Medical Research, Hofstra North Shore LIJ School of Medicine , New York, NY, USA
| |
Collapse
|
28
|
Duan K, Gomez Hernandez K, Mete O. Clinicopathological correlates of hyperparathyroidism. J Clin Pathol 2015; 68:771-87. [PMID: 26163537 DOI: 10.1136/jclinpath-2015-203186] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 06/20/2015] [Indexed: 12/21/2022]
Abstract
Hyperparathyroidism is a common endocrine disorder with potential complications on the skeletal, renal, neurocognitive and cardiovascular systems. While most cases (95%) occur sporadically, about 5% are associated with a hereditary syndrome: multiple endocrine neoplasia syndromes (MEN-1, MEN-2A, MEN-4), hyperparathyroidism-jaw tumour syndrome (HPT-JT), familial hypocalciuric hypercalcaemia (FHH-1, FHH-2, FHH-3), familial hypercalciuric hypercalcaemia, neonatal severe hyperparathyroidism and isolated familial hyperparathyroidism. Recently, molecular mechanisms underlying possible tumour suppressor genes (MEN1, CDC73/HRPT2, CDKIs, APC, SFRPs, GSK3β, RASSF1A, HIC1, RIZ1, WT1, CaSR, GNA11, AP2S1) and proto-oncogenes (CCND1/PRAD1, RET, ZFX, CTNNB1, EZH2) have been uncovered in the pathogenesis of hyperparathyroidism. While bi-allelic inactivation of CDC73/HRPT2 seems unique to parathyroid malignancy, aberrant activation of cyclin D1 and Wnt/β-catenin signalling has been reported in benign and malignant parathyroid tumours. Clinicopathological correlates of primary hyperparathyroidism include parathyroid adenoma (80-85%), hyperplasia (10-15%) and carcinoma (<1-5%). Secondary hyperparathyroidism generally presents with diffuse parathyroid hyperplasia, whereas tertiary hyperparathyroidism reflects the emergence of autonomous parathyroid hormone (PTH)-producing neoplasm(s) from secondary parathyroid hyperplasia. Surgical resection of abnormal parathyroid tissue remains the only curative treatment in primary hyperparathyroidism, and parathyroidectomy specimens are frequently encountered in this setting. Clinical and biochemical features, including intraoperative PTH levels, number, weight and size of the affected parathyroid gland(s), are crucial parameters to consider when rendering an accurate diagnosis of parathyroid proliferations. This review provides an update on the expanding knowledge of hyperparathyroidism and highlights the clinicopathological correlations of this prevalent disease.
Collapse
Affiliation(s)
- Kai Duan
- Department of Pathology, University Health Network, Toronto, Ontario, Canada Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Karen Gomez Hernandez
- Endocrine Oncology Site Group, Princess Margaret Cancer Centre, Toronto, Ontario, Canada Department of Medicine, University Health Network, Toronto, Ontario, Canada
| | - Ozgur Mete
- Department of Pathology, University Health Network, Toronto, Ontario, Canada Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada Endocrine Oncology Site Group, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Fetahu IS, Höbaus J, Aggarwal A, Hummel DM, Tennakoon S, Mesteri I, Baumgartner-Parzer S, Kállay E. Calcium-sensing receptor silencing in colorectal cancer is associated with promoter hypermethylation and loss of acetylation on histone 3. Int J Cancer 2014; 135:2014-23. [PMID: 24691920 PMCID: PMC4282356 DOI: 10.1002/ijc.28856] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/06/2014] [Indexed: 12/25/2022]
Abstract
The calcium-sensing receptor (CaSR) is suggested to mediate the antiproliferative effects of calcium in colon. However, in colorectal cancer (CRC) the expression of the CaSR is silenced and the underlying mechanisms leading to its loss are poorly understood. We investigated whether loss of the CaSR expression in colorectal tumors is caused by DNA hypermethylation and imbalance of transcriptionally permissive/repressive histone alterations. We observed significantly lower CaSR mRNA expression (n = 65, p < 0.001) in colorectal tumors compared with the adjacent mucosa from the same patient. Immunofluorescence staining confirmed downregulation of the CaSR protein also. The CaSR promoter was methylated to a greater extent in tumors compared with adjacent mucosa as determined by bisulfite sequencing (n = 20, p < 0.01) and by pyrosequencing (n = 45, p < 0.001), and methylation correlated inversely with mRNA expression (n = 20, ρ = -0.310, p < 0.05 and n = 45, ρ = -0.588, p < 0.001). Treatments with 5-aza-2'-deoxycytidine (DAC), a DNA methyltransferase inhibitor and/or with two different histone deacetylase inhibitors, trichostatin A (TSA) or suberoylanilide hydroxamic acid (SAHA) restored the expression of CaSR in colon cancer cells. Restored CaSR expression in Coga1A and HT29 cells was functional. Inhibition of lysine-specific demethylase 1 (LSD1) to prevent demethylation of mono- and dimethylated H3K4, increased CaSR expression only marginally. Our data show that hypermethylation of the CaSR promoter and H3K9 deacetylation, but not H3K4me2 demethylation are important factors that cause silencing of the CaSR in colorectal cancer.
Collapse
Affiliation(s)
- Irfete S Fetahu
- Department of Pathophysiology and Allergy Research, Medical University of ViennaVienna, Austria
| | - Julia Höbaus
- Department of Pathophysiology and Allergy Research, Medical University of ViennaVienna, Austria
| | - Abhishek Aggarwal
- Department of Pathophysiology and Allergy Research, Medical University of ViennaVienna, Austria
| | - Doris M Hummel
- Department of Pathophysiology and Allergy Research, Medical University of ViennaVienna, Austria
| | - Samawansha Tennakoon
- Department of Pathophysiology and Allergy Research, Medical University of ViennaVienna, Austria
| | - Ildiko Mesteri
- Department of Pathology, Medical University of ViennaVienna, Austria
| | | | - Enikő Kállay
- Department of Pathophysiology and Allergy Research, Medical University of ViennaVienna, Austria
| |
Collapse
|
30
|
Varshney S, Bhadada SK, Arya AK, Sharma S, Behera A, Bhansali A, Rao SD. Changes in parathyroid proteome in patients with primary hyperparathyroidism due to sporadic parathyroid adenomas. Clin Endocrinol (Oxf) 2014; 81:614-20. [PMID: 24766412 DOI: 10.1111/cen.12479] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 03/09/2014] [Accepted: 04/20/2014] [Indexed: 11/28/2022]
Abstract
PURPOSE The pathogenesis of parathyroid tumours is only partially understood. A direct approach using proteomics could be a promising tool to increase our understanding of parathyroid tumorigenesis. The aim of the study was to investigate differentially expressed proteins to explore the underlying molecular basis of the disease and identify potential target proteins responsible for the genesis of adenoma. METHODS Proteins were extracted from adenomatous and normal parathyroid tissues. Differentially expressed proteins were separated by two-dimensional gel electrophoresis (2-D) and identified by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry. Statistical analysis was performed using spss 10.01 software. RESULTS Comparative analysis of the 2-D profiles of proteins isolated from adenomatous and normal parathyroid tissues showed 15 differentially expressed proteins, of which 11 were overexpressed. The characterized proteins were associated with diverse cellular functions including regulation of cell organization, programmed cell death, transcription and signal transduction. CONCLUSION The differentially expressed proteins in parathyroid adenomas may potentially serve as new targets to investigate the mechanisms of parathyroid adenoma transformation.
Collapse
Affiliation(s)
- Shweta Varshney
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Epigenetic mechanisms play a crucial role in regulating gene expression. The main mechanisms involve methylation of DNA and covalent modifications of histones by methylation, acetylation, phosphorylation, or ubiquitination. The complex interplay of different epigenetic mechanisms is mediated by enzymes acting in the nucleus. Modifications in DNA methylation are performed mainly by DNA methyltransferases (DNMTs) and ten-eleven translocation (TET) proteins, while a plethora of enzymes, such as histone acetyltransferases (HATs), histone deacetylases (HDACs), histone methyltransferases (HMTs), and histone demethylases (HDMs) regulate covalent histone modifications. In many diseases, such as cancer, the epigenetic regulatory system is often disturbed. Vitamin D interacts with the epigenome on multiple levels. Firstly, critical genes in the vitamin D signaling system, such as those coding for vitamin D receptor (VDR) and the enzymes 25-hydroxylase (CYP2R1), 1α-hydroxylase (CYP27B1), and 24-hydroxylase (CYP24A1) have large CpG islands in their promoter regions and therefore can be silenced by DNA methylation. Secondly, VDR protein physically interacts with coactivator and corepressor proteins, which in turn are in contact with chromatin modifiers, such as HATs, HDACs, HMTs, and with chromatin remodelers. Thirdly, a number of genes encoding for chromatin modifiers and remodelers, such as HDMs of the Jumonji C (JmjC)-domain containing proteins and lysine-specific demethylase (LSD) families are primary targets of VDR and its ligands. Finally, there is evidence that certain VDR ligands have DNA demethylating effects. In this review we will discuss regulation of the vitamin D system by epigenetic modifications and how vitamin D contributes to the maintenance of the epigenome, and evaluate its impact in health and disease.
Collapse
Affiliation(s)
- Irfete S Fetahu
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Comprehensive Cancer Center, Medical University of Vienna Vienna, Austria
| | - Julia Höbaus
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Comprehensive Cancer Center, Medical University of Vienna Vienna, Austria
| | - Enikő Kállay
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Comprehensive Cancer Center, Medical University of Vienna Vienna, Austria
| |
Collapse
|