1
|
Read JE, Vasile-Tudorache A, Newsome A, Lorente MJ, Pavón CA, Howard SR. Disorders of puberty and neurodevelopment: A shared etiology? Ann N Y Acad Sci 2024. [PMID: 39431640 DOI: 10.1111/nyas.15246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
The neuroendocrine control of puberty and reproduction is fascinatingly complex, with up- and down-regulation of key reproductive hormones during fetal, infantile, and later childhood periods that determine the correct function of the hypothalamic-pituitary-gonadal axis and the timing of puberty. Neuronal development is a vital element of these processes, and multiple conditions of disordered puberty and reproduction have their etiology in abnormal neuronal migration or function. Although there are numerous documented cases across multiple conditions wherein patients have both neurodevelopmental disorders and pubertal abnormalities, this has mostly been described ad hoc and the associations are not clearly documented. In this review, we aim to describe the overlap between these two groups of conditions and to increase awareness to ensure that puberty and reproductive function are carefully monitored in patients with neurodevelopmental conditions, and vice versa. Moreover, this commonality can be explored for clues about the disease mechanisms in these patient groups and provide new avenues for therapeutic interventions for affected individuals.
Collapse
Affiliation(s)
- Jordan E Read
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Alexandru Vasile-Tudorache
- Department of Cell Biology, Functional Biology and Physical Anthropology, Faculty of Biological Sciences, University of Valencia, Valencia, Spain
| | - Angel Newsome
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - María José Lorente
- Department of Cell Biology, Functional Biology and Physical Anthropology, Faculty of Biological Sciences, University of Valencia, Valencia, Spain
| | - Carmen Agustín Pavón
- Department of Cell Biology, Functional Biology and Physical Anthropology, Faculty of Biological Sciences, University of Valencia, Valencia, Spain
| | - Sasha R Howard
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK
- Department of Paediatric Endocrinology, Barts Health NHS Trust, London, UK
| |
Collapse
|
2
|
Griffing E, Halpin K, Lee BR, Paprocki E. Premature pubarche in Prader-Willi syndrome: Risk factors and consequences. Clin Endocrinol (Oxf) 2024; 101:162-169. [PMID: 38935853 DOI: 10.1111/cen.15108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/23/2024] [Accepted: 06/09/2024] [Indexed: 06/29/2024]
Abstract
OBJECTIVES Children with Prader-Willi Syndrome (PWS) may develop premature pubarche (PP). We investigated the frequency of PP, and its potential precursors and sequelae, in PWS. DESIGN, PATIENTS AND MEASUREMENTS A chart review of children with PWS treated at our institution between 1990 and 2021 was performed. PP was defined as Tanner stage 2 (TS2) pubic hair in girls <8 and boys <9 years old. Demographic, anthropometric, and laboratory data were collected to assess predisposing factors and consequences of PP in comparison to patients with PWS who had normal pubarche (NP). RESULTS Analysis included 43 children with PWS, 23 (53.5%) with PP and 20 (46.5%) with NP. Median age at pubarche was 7.0 years in PP group and 10.0 years in NP group. Age at pubarche was not correlated with age of recombinant human growth hormone (rhGH) initiation, body mass index (BMI) z-score, or homeostasis model assessment of insulin resistance (HOMA-IR) at pubarche. BMI z-score at pubarche was modestly correlated with degree of pubarchal BA advancement (p = 0.033). Those with PP were more likely to have a lower high-density lipoprotein (HDL) (1.05 mmol/L vs. 1.41 mmol/L in the NP group, p = 0.041). The difference between target and final height did not differ between groups (p = 0.507). CONCLUSION PP is common in PWS but does not compromise final height in comparison to the NP group. Obesity and insulin resistance were not associated with PP in children with PWS, contrary to what has been seen in obese children without PWS.
Collapse
Affiliation(s)
- Emily Griffing
- Division of Pediatric Endocrinology and Diabetes, Children's Mercy Kansas City, Kansas City, Missouri, USA
| | - Kelsee Halpin
- Division of Pediatric Endocrinology and Diabetes, Children's Mercy Kansas City, Kansas City, Missouri, USA
- School of Medicine, University of Missouri Kansas City, Kansas City, Missouri, USA
| | - Brian R Lee
- School of Medicine, University of Missouri Kansas City, Kansas City, Missouri, USA
| | - Emily Paprocki
- Division of Pediatric Endocrinology and Diabetes, Children's Mercy Kansas City, Kansas City, Missouri, USA
- School of Medicine, University of Missouri Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
3
|
Canton APM, Seraphim CE, Montenegro LR, Krepischi ACV, Mendonca BB, Latronico AC, Brito VN. The genetic etiology is a relevant cause of central precocious puberty. Eur J Endocrinol 2024; 190:479-488. [PMID: 38857188 DOI: 10.1093/ejendo/lvae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/14/2024] [Accepted: 06/08/2024] [Indexed: 06/12/2024]
Abstract
OBJECTIVES The etiology of central precocious puberty (CPP) has expanded with identification of new genetic causes, including the monogenic deficiency of Makorin-Ring-Finger-Protein-3 (MKRN3). We aimed to assess the prevalence of CPP causes and the predictors of genetic involvement in this phenotype. DESIGN A retrospective cohort study for an etiological survey of patients with CPP from a single academic center. METHODS All patients with CPP had detailed medical history, phenotyping, and brain magnetic resonance imaging (MRI); those with negative brain MRI (apparently idiopathic) were submitted to genetic studies, mainly DNA sequencing studies, genomic microarray, and methylation analysis. RESULTS We assessed 270 patients with CPP: 50 (18.5%) had CPP-related brain lesions (34 [68%] congenital lesions), whereas 220 had negative brain MRI. Of the latter, 174 (165 girls) were included for genetic studies. Genetic etiologies were identified in 22 patients (20 girls), indicating an overall frequency of genetic CPP of 12.6% (22.2% in boys and 12.1% in girls). The most common genetic defects were MKRN3, Delta-Like-Non-Canonical-Notch-Ligand-1 (DLK1), and Methyl-CpG-Binding-Protein-2 (MECP2) loss-of-function mutations, followed by 14q32.2 defects (Temple syndrome). Univariate logistic regression identified family history (odds ratio [OR] 3.3; 95% CI 1.3-8.3; P = .01) and neurodevelopmental disorders (OR 4.1; 95% CI 1.3-13.5; P = .02) as potential clinical predictors of genetic CPP. CONCLUSIONS Distinct genetic causes were identified in 12.6% patients with apparently idiopathic CPP, revealing the genetic etiology as a relevant cause of CPP in both sexes. Family history and neurodevelopmental disorders were suggested as predictors of genetic CPP. We originally proposed an algorithm to investigate the etiology of CPP including genetic studies.
Collapse
Affiliation(s)
- Ana Pinheiro Machado Canton
- Developmental Endocrinology Unit, Hormones and Molecular Genetics Laboratory LIM/42, Clinicas Hospital, Discipline of Endocrinology and Metabolism, School of Medicine, University of Sao Paulo, 05403-000 Sao Paulo, Brazil
- Cellular and Molecular Endocrinology Laboratory LIM/25, Clinicas Hospital, Discipline of Endocrinology and Metabolism, School of Medicine, University of Sao Paulo, 01246-903 Sao Paulo, Brazil
| | - Carlos Eduardo Seraphim
- Developmental Endocrinology Unit, Hormones and Molecular Genetics Laboratory LIM/42, Clinicas Hospital, Discipline of Endocrinology and Metabolism, School of Medicine, University of Sao Paulo, 05403-000 Sao Paulo, Brazil
- Cellular and Molecular Endocrinology Laboratory LIM/25, Clinicas Hospital, Discipline of Endocrinology and Metabolism, School of Medicine, University of Sao Paulo, 01246-903 Sao Paulo, Brazil
| | - Luciana Ribeiro Montenegro
- Developmental Endocrinology Unit, Hormones and Molecular Genetics Laboratory LIM/42, Clinicas Hospital, Discipline of Endocrinology and Metabolism, School of Medicine, University of Sao Paulo, 05403-000 Sao Paulo, Brazil
- Cellular and Molecular Endocrinology Laboratory LIM/25, Clinicas Hospital, Discipline of Endocrinology and Metabolism, School of Medicine, University of Sao Paulo, 01246-903 Sao Paulo, Brazil
| | | | - Berenice Bilharinho Mendonca
- Developmental Endocrinology Unit, Hormones and Molecular Genetics Laboratory LIM/42, Clinicas Hospital, Discipline of Endocrinology and Metabolism, School of Medicine, University of Sao Paulo, 05403-000 Sao Paulo, Brazil
- Laboratório de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina da Universidade de São Paulo, 01246-903 Sao Paulo, Brazil
| | - Ana Claudia Latronico
- Developmental Endocrinology Unit, Hormones and Molecular Genetics Laboratory LIM/42, Clinicas Hospital, Discipline of Endocrinology and Metabolism, School of Medicine, University of Sao Paulo, 05403-000 Sao Paulo, Brazil
- Cellular and Molecular Endocrinology Laboratory LIM/25, Clinicas Hospital, Discipline of Endocrinology and Metabolism, School of Medicine, University of Sao Paulo, 01246-903 Sao Paulo, Brazil
| | - Vinicius Nahime Brito
- Developmental Endocrinology Unit, Hormones and Molecular Genetics Laboratory LIM/42, Clinicas Hospital, Discipline of Endocrinology and Metabolism, School of Medicine, University of Sao Paulo, 05403-000 Sao Paulo, Brazil
| |
Collapse
|
4
|
Aiello F, Palumbo S, Cirillo G, Tornese G, Fava D, Wasniewska M, Faienza MF, Bozzola M, Luongo C, Festa A, Miraglia Del Giudice E, Grandone A. MKRN3 circulating levels in girls with central precocious puberty caused by MKRN3 gene mutations. J Endocrinol Invest 2024; 47:1477-1485. [PMID: 38112911 DOI: 10.1007/s40618-023-02255-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023]
Abstract
PURPOSE MKNR3 is a paternally expressed gene whose mutations are the main cause of central precocious puberty (CPP). Protein circulating levels can be easily measured, as demonstrated in idiopathic CPP and healthy controls. No data are available for patients harboring an MKRN3 mutation. Our aim was to perform MKRN3 mutation screening and to investigate if circulating protein levels could be a screening tool to identify MKRN3 mutation in CPP patients. METHODS We enrolled 140 CPP girls and performed MKRN3 mutation analysis. Patients were stratified into two groups: idiopathic CPP (iCPP) and MKRN3 mutation-related CPP (MKRN3-CPP). Clinical characteristics were collected. Serum MKRN3 values were measured by a commercially available ELISA assay kit in MKRN3-CPP and a subgroup of 15 iCPP patients. RESULTS We identified 5 patients with MKRN3 mutations: one was a novel mutation (p.Gln352Arg) while the others were previously reported (p.Arg328Cys, p.Arg345Cys, p.Pro160Cysfs*14, p.Cys410Ter). There was a significant difference in circulating MKRN3 values in MKRN3-CPP compared to iCPP (p < 0.001). In MKRN3-CPP, the subject harboring Pro160Cysfs*14 presented undetectable levels. Subjects carrying the missense mutations p.Arg328Cys and p.Gln352Arg showed divergent circulating protein levels, respectively 40.56 pg/mL and undetectable. The patient with the non-sense mutation reported low but measurable MKRN3 levels (12.72 pg/mL). CONCLUSIONS MKRN3 defect in patients with CPP cannot be predicted by MKRN3 circulating levels, although those patients presented lower protein levels than iCPP. Due to the great inter-individual variability of the assay and the lack of reference values, no precise cut-off can be identified to suspect MKRN3 defect.
Collapse
Affiliation(s)
- F Aiello
- Department of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 2, 80138, Napoli, Italy
| | - S Palumbo
- Department of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 2, 80138, Napoli, Italy.
| | - G Cirillo
- Department of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 2, 80138, Napoli, Italy
| | - G Tornese
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy
| | - D Fava
- Pediatric Endocrinology Unit, Department of Pediatrics, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16147, Genoa, Italy
| | - M Wasniewska
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - M F Faienza
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", Bari, Italy
- Unit of Endocrinology and Rare Endocrine Diseases, Giovanni XXIII Pediatric Hospital, Bari, Italy
| | - M Bozzola
- Pediatric and Adolescent Unit, Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Onlus, Il Bambino e Il Suo Pediatra, Novara, Galliate, Italy
| | - C Luongo
- Department of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 2, 80138, Napoli, Italy
| | - A Festa
- Department of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 2, 80138, Napoli, Italy
| | - E Miraglia Del Giudice
- Department of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 2, 80138, Napoli, Italy
| | - A Grandone
- Department of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 2, 80138, Napoli, Italy
| |
Collapse
|
5
|
Zevin EL, Eugster EA. Central precocious puberty: a review of diagnosis, treatment, and outcomes. THE LANCET. CHILD & ADOLESCENT HEALTH 2023; 7:886-896. [PMID: 37973253 DOI: 10.1016/s2352-4642(23)00237-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/23/2023] [Accepted: 09/08/2023] [Indexed: 11/19/2023]
Abstract
Central precocious puberty (CPP) refers to early activation of the hypothalamic-pituitary-gonadal (HPG) axis and is manifested by breast development in girls or testicular enlargement in boys before the normal physiological age ranges. CPP can be precipitated by intracranial pathology, exposure to high levels of sex steroids, or environmental risk factors, but most cases are idiopathic. Monogenic causes have also been identified. In this Review, we summarise pathophysiology, risk factors, diagnosis, and management of CPP. Concern for CPP should prompt referral to paediatric endocrinology where diagnosis is confirmed by clinical, biochemical, radiological, and genetic testing. CPP is treated with a gonadotropin-releasing hormone analogue, the primary aims of which are to increase adult height and postpone development of secondary sexual characteristics to an age that is more commensurate with peers. Although long-term outcomes of treatment with gonadotropin-releasing hormone analogues are reassuring, additional research on the psychological effect of CPP is needed.
Collapse
Affiliation(s)
- Erika L Zevin
- Division of Pediatric Endocrinology, Department of Pediatrics, Riley Hospital for Children at Indiana University Health, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Erica A Eugster
- Division of Pediatric Endocrinology, Department of Pediatrics, Riley Hospital for Children at Indiana University Health, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
6
|
Hoyos Sanchez MC, Bayat T, Gee RRF, Fon Tacer K. Hormonal Imbalances in Prader-Willi and Schaaf-Yang Syndromes Imply the Evolution of Specific Regulation of Hypothalamic Neuroendocrine Function in Mammals. Int J Mol Sci 2023; 24:13109. [PMID: 37685915 PMCID: PMC10487939 DOI: 10.3390/ijms241713109] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
The hypothalamus regulates fundamental aspects of physiological homeostasis and behavior, including stress response, reproduction, growth, sleep, and feeding, several of which are affected in patients with Prader-Willi (PWS) and Schaaf-Yang syndrome (SYS). PWS is caused by paternal deletion, maternal uniparental disomy, or imprinting defects that lead to loss of expression of a maternally imprinted region of chromosome 15 encompassing non-coding RNAs and five protein-coding genes; SYS patients have a mutation in one of them, MAGEL2. Throughout life, PWS and SYS patients suffer from musculoskeletal deficiencies, intellectual disabilities, and hormonal abnormalities, which lead to compulsive behaviors like hyperphagia and temper outbursts. Management of PWS and SYS is mostly symptomatic and cures for these debilitating disorders do not exist, highlighting a clear, unmet medical need. Research over several decades into the molecular and cellular roles of PWS genes has uncovered that several impinge on the neuroendocrine system. In this review, we will discuss the expression and molecular functions of PWS genes, connecting them with hormonal imbalances in patients and animal models. Besides the observed hormonal imbalances, we will describe the recent findings about how the loss of individual genes, particularly MAGEL2, affects the molecular mechanisms of hormone secretion. These results suggest that MAGEL2 evolved as a mammalian-specific regulator of hypothalamic neuroendocrine function.
Collapse
Affiliation(s)
- Maria Camila Hoyos Sanchez
- School of Veterinary Medicine, Texas Tech University, 7671 Evans Dr., Amarillo, TX 79106, USA
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX 79106, USA
| | - Tara Bayat
- School of Veterinary Medicine, Texas Tech University, 7671 Evans Dr., Amarillo, TX 79106, USA
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX 79106, USA
| | - Rebecca R. Florke Gee
- School of Veterinary Medicine, Texas Tech University, 7671 Evans Dr., Amarillo, TX 79106, USA
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX 79106, USA
| | - Klementina Fon Tacer
- School of Veterinary Medicine, Texas Tech University, 7671 Evans Dr., Amarillo, TX 79106, USA
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX 79106, USA
| |
Collapse
|
7
|
Magnotto JC, Mancini A, Bird K, Montenegro L, Tütüncüler F, Pereira SA, Simas V, Garcia L, Roberts SA, Macedo D, Magnuson M, Gagliardi P, Mauras N, Witchel SF, Carroll RS, Latronico AC, Kaiser UB, Abreu AP. Novel MKRN3 Missense Mutations Associated With Central Precocious Puberty Reveal Distinct Effects on Ubiquitination. J Clin Endocrinol Metab 2023; 108:1646-1656. [PMID: 36916482 PMCID: PMC10653150 DOI: 10.1210/clinem/dgad151] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/02/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023]
Abstract
CONTEXT Loss-of-function mutations in the maternally imprinted genes, MKRN3 and DLK1, are associated with central precocious puberty (CPP). Mutations in MKRN3 are the most common known genetic etiology of CPP. OBJECTIVE This work aimed to screen patients with CPP for MKRN3 and DLK1 mutations and analyze the effects of identified mutations on protein function in vitro. METHODS Participants included 84 unrelated children with CPP (79 girls, 5 boys) and, when available, their first-degree relatives. Five academic medical institutions participated. Sanger sequencing of MKRN3 and DLK1 5' upstream flanking and coding regions was performed on DNA extracted from peripheral blood leukocytes. Western blot analysis was performed to assess protein ubiquitination profiles. RESULTS Eight heterozygous MKRN3 mutations were identified in 9 unrelated girls with CPP. Five are novel missense mutations, 2 were previously identified in patients with CPP, and 1 is a frameshift variant not previously associated with CPP. No pathogenic variants were identified in DLK1. Girls with MKRN3 mutations had an earlier age of initial pubertal signs and higher basal serum luteinizing hormone and follicle-stimulating hormone compared to girls with CPP without MRKN3 mutations. Western blot analysis revealed that compared to wild-type MKRN3, mutations within the RING finger domain reduced ubiquitination whereas the mutations outside this domain increased ubiquitination. CONCLUSION MKRN3 mutations were present in 10.7% of our CPP cohort, consistent with previous studies. The novel identified mutations in different domains of MKRN3 revealed different patterns of ubiquitination, suggesting distinct molecular mechanisms by which the loss of MRKN3 results in early pubertal onset.
Collapse
Affiliation(s)
- John C Magnotto
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alessandra Mancini
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Keisha Bird
- Division of Endocrinology, Diabetes, and Metabolism, Nemours Children's Health, Jacksonville, FL 32207, USA
| | - Luciana Montenegro
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Filiz Tütüncüler
- Department of Pediatrics and Pediatric Endocrinology Unit, Trakya University Faculty of Medicine, Edirne 22030, Turkey
| | - Sidney A Pereira
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vitoria Simas
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Leonardo Garcia
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Stephanie A Roberts
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Delanie Macedo
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Melissa Magnuson
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Priscila Gagliardi
- Division of Endocrinology, Diabetes, and Metabolism, Nemours Children's Health, Jacksonville, FL 32207, USA
| | - Nelly Mauras
- Division of Endocrinology, Diabetes, and Metabolism, Nemours Children's Health, Jacksonville, FL 32207, USA
| | - Selma F Witchel
- Pediatric Endocrinology, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Rona S Carroll
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ana Claudia Latronico
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ana Paula Abreu
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
8
|
Tinano FR, Canton APM, Montenegro LR, de Castro Leal A, Faria AG, Seraphim CE, Brauner R, Jorge AA, Mendonca BB, Argente J, Brito VN, Latronico AC. Clinical and Genetic Characterization of Familial Central Precocious Puberty. J Clin Endocrinol Metab 2023; 108:1758-1767. [PMID: 36611250 DOI: 10.1210/clinem/dgac763] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023]
Abstract
CONTEXT Central precocious puberty (CPP) can have a familial form in approximately one-quarter of the children. The recognition of this inherited condition increased after the identification of autosomal dominant CPP with paternal transmission caused by mutations in the MKRN3 and DLK1 genes. OBJECTIVE We aimed to characterize the inheritance and estimate the prevalence of familial CPP in a large multiethnic cohort; to compare clinical and hormonal features, as well as treatment response to GnRH analogs (GnRHa), in children with distinct modes of transmission; and to investigate the genetic basis of familial CPP. METHODS We retrospectively studied 586 children with a diagnosis of CPP. Patients with familial CPP (n = 276) were selected for clinical and genetic analysis. Data from previous studies were grouped, encompassing sequencing of MKRN3 and DLK1 genes in 204 patients. Large-scale parallel sequencing was performed in 48 individuals from 34 families. RESULTS The prevalence of familial CPP was estimated at 22%, with a similar frequency of maternal and paternal transmission. Pedigree analyses of families with maternal transmission suggested an autosomal dominant inheritance. Clinical and hormonal features, as well as treatment response to GnRHa, were similar among patients with different forms of transmission of familial CPP. MKRN3 loss-of-function mutations were the most prevalent cause of familial CPP, followed by DLK1 loss-of-function mutations, affecting, respectively, 22% and 4% of the studied families; both affected exclusively families with paternal transmission. Rare variants of uncertain significance were identified in CPP families with maternal transmission. CONCLUSION We demonstrated a similar prevalence of familial CPP with maternal and paternal transmission. MKRN3 and DLK1 loss-of-function mutations were the major causes of familial CPP with paternal transmission.
Collapse
Affiliation(s)
- Flávia Rezende Tinano
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 05403-900 São Paulo, Brasil
| | - Ana Pinheiro Machado Canton
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 05403-900 São Paulo, Brasil
| | - Luciana R Montenegro
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 05403-900 São Paulo, Brasil
| | - Andrea de Castro Leal
- Departamento de Saúde Integrada, Universidade do Estado do Pará (UEPA), Santarém, 68040-090 Pará, Brasil
| | - Aline G Faria
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 05403-900 São Paulo, Brasil
| | - Carlos E Seraphim
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 05403-900 São Paulo, Brasil
| | - Raja Brauner
- Pediatric Endocrinology Unit, Fondation Ophtalmologique Adolphe de Rothschild and Université Paris Descartes, 75019 Paris, France
| | - Alexander A Jorge
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 05403-900 São Paulo, Brasil
- Unidade de Endocrinologia Genética, Laboratório de Endocrinologia Celular e Molecular LIM/25, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 05403-900 São Paulo, Brasil
| | - Berenice B Mendonca
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 05403-900 São Paulo, Brasil
| | - Jesús Argente
- Department of Pediatrics, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Departments of Paediatrics and Paediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain
- Instituto de Investigación La Princesa, 28009 Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- IMDEA Food Institute, CEIUAM+CSIC, 28049 Madrid, Spain
| | - Vinicius N Brito
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 05403-900 São Paulo, Brasil
| | - Ana Claudia Latronico
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 05403-900 São Paulo, Brasil
| |
Collapse
|
9
|
Kırkgöz T, Kaygusuz SB, Alavanda C, Helvacıoğlu D, Abalı ZY, Tosun BG, Eltan M, Menevşe TS, Guran T, Arman A, Turan S, Bereket A. Molecular analysis of MKRN3 gene in Turkish girls with sporadic and familial idiopathic central precocious puberty. J Pediatr Endocrinol Metab 2023; 36:401-408. [PMID: 36883204 DOI: 10.1515/jpem-2022-0645] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/20/2023] [Indexed: 03/09/2023]
Abstract
OBJECTIVES Central precocious puberty (CPP) develops as a result of early stimulation of the hypothalamic-pituitary-gonadal (HPG) axis. The loss-of-function mutations in the Makorin-ring-finger3 (MKRN3) gene appear to be the most common molecular cause of familial CPP. We aimed to identify MKRN3 gene mutations in our CPP cohort and to investigate the frequency of MKRN3 mutations. METHODS 102 patients with CPP included. 53 of them had family history of CPP in the first and/or second-degree relatives. MKRN3 gene was analyzed by next-generation sequencing. RESULTS Possible pathogenic variants were found in 2/53 patients with family history of CPP (3.8%) and 1/49 patient without family history (2%). A novel heterozygous c.1A>G (p.Met1Val) mutation, a novel heterozygous c.683_684delCA (p.Ser228*) and a previously reported c.482dupC (Ala162Glyfs*) frameshift variations were detected. The two novel variants are predicted to be pathogenic in silico analyses. CONCLUSIONS In our cohort, possible pathogenic variants in MKRN3 gene were detected in 2.9% of the total cohort, 3.8% of the familial and 2% of the nonfamilial cases, slightly lower than that reported in the literature. Two novel variants detected contribute to the molecular repertoire of MKRN3 defects in CPP. Classical pattern of paternal inheritance has been demonstrated in all three cases. However, the father of the patient 3 did not have history of CPP suggesting that the father inherited this variant from his mother and had phenotype skipping. Therefore, we emphasize that the absence of history of CPP in the father does not exclude the possibility of a MKRN3 mutation.
Collapse
Affiliation(s)
- Tarık Kırkgöz
- Department of Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Türkiye
| | - Sare Betül Kaygusuz
- Department of Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Türkiye
| | - Ceren Alavanda
- Department of Medical Genetics, Marmara University School of Medicine, Istanbul, Türkiye
| | - Didem Helvacıoğlu
- Department of Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Türkiye
| | - Zehra Yavaş Abalı
- Department of Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Türkiye
| | - Büşra Gürpınar Tosun
- Department of Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Türkiye
| | - Mehmet Eltan
- Department of Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Türkiye
| | - Tuba Seven Menevşe
- Department of Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Türkiye
| | - Tulay Guran
- Department of Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Türkiye
| | - Ahmet Arman
- Department of Medical Genetics, Marmara University School of Medicine, Istanbul, Türkiye
| | - Serap Turan
- Department of Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Türkiye
| | - Abdullah Bereket
- Department of Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Türkiye
| |
Collapse
|
10
|
Brito VN, Canton APM, Seraphim CE, Abreu AP, Macedo DB, Mendonca BB, Kaiser UB, Argente J, Latronico AC. The Congenital and Acquired Mechanisms Implicated in the Etiology of Central Precocious Puberty. Endocr Rev 2023; 44:193-221. [PMID: 35930274 PMCID: PMC9985412 DOI: 10.1210/endrev/bnac020] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 01/20/2023]
Abstract
The etiology of central precocious puberty (CPP) is multiple and heterogeneous, including congenital and acquired causes that can be associated with structural or functional brain alterations. All causes of CPP culminate in the premature pulsatile secretion of hypothalamic GnRH and, consequently, in the premature reactivation of hypothalamic-pituitary-gonadal axis. The activation of excitatory factors or suppression of inhibitory factors during childhood represent the 2 major mechanisms of CPP, revealing a delicate balance of these opposing neuronal pathways. Hypothalamic hamartoma (HH) is the most well-known congenital cause of CPP with central nervous system abnormalities. Several mechanisms by which hamartoma causes CPP have been proposed, including an anatomical connection to the anterior hypothalamus, autonomous neuroendocrine activity in GnRH neurons, trophic factors secreted by HH, and mechanical pressure applied to the hypothalamus. The importance of genetic and/or epigenetic factors in the underlying mechanisms of CPP has grown significantly in the last decade, as demonstrated by the evidence of genetic abnormalities in hypothalamic structural lesions (eg, hamartomas, gliomas), syndromic disorders associated with CPP (Temple, Prader-Willi, Silver-Russell, and Rett syndromes), and isolated CPP from monogenic defects (MKRN3 and DLK1 loss-of-function mutations). Genetic and epigenetic discoveries involving the etiology of CPP have had influence on the diagnosis and familial counseling providing bases for potential prevention of premature sexual development and new treatment targets in the future. Global preventive actions inducing healthy lifestyle habits and less exposure to endocrine-disrupting chemicals during the lifespan are desirable because they are potentially associated with CPP.
Collapse
Affiliation(s)
- Vinicius N Brito
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Ana P M Canton
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Carlos Eduardo Seraphim
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Ana Paula Abreu
- Division of Endocrinology, Diabetes and Hypertension, Department of
Medicine, Brigham and Women’s Hospital, Harvard Medical School,
Boston, MA 02115, USA
| | - Delanie B Macedo
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
- Division of Endocrinology, Diabetes and Hypertension, Department of
Medicine, Brigham and Women’s Hospital, Harvard Medical School,
Boston, MA 02115, USA
- Núcleo de Atenção Médica Integrada, Centro de Ciências da Saúde,
Universidade de Fortaleza, Fortaleza 60811 905,
Brazil
| | - Berenice B Mendonca
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Department of
Medicine, Brigham and Women’s Hospital, Harvard Medical School,
Boston, MA 02115, USA
| | - Jesús Argente
- Hospital Infantil Universitario Niño Jesús, Department of Endocrinology and
Department of Pediatrics, Universidad Autónoma de Madrid, Spanish PUBERE Registry,
CIBER of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, IMDEA
Institute, Madrid 28009, Spain
| | - Ana Claudia Latronico
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| |
Collapse
|
11
|
Han XX, Zhao FY, Gu KR, Wang GP, Zhang J, Tao R, Yuan J, Gu J, Yu JQ. Development of precocious puberty in children: Surmised medicinal plant treatment. Biomed Pharmacother 2022; 156:113907. [DOI: 10.1016/j.biopha.2022.113907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 11/29/2022] Open
|
12
|
Mariani M, Fintini D, Cirillo G, Palumbo S, Del Giudice EM, Bocchini S, Manco M, Cappa M, Grandone A. MKRN3 circulating levels in Prader-Willi syndrome: a pilot study. J Endocrinol Invest 2022; 45:2165-2170. [PMID: 35854182 DOI: 10.1007/s40618-022-01860-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 07/03/2022] [Indexed: 10/17/2022]
Abstract
CONTEXT Hypogonadism in Prader-Willi syndrome (PWS) is generally attributed to hypothalamic dysfunction or to primary gonadal defect. MKRN3, a maternal imprinted gene located on 15q11.2-q13 region, encodes makorin ring finger protein 3, whose deficiency causes precocious puberty, an extremely rare symptom in PWS. OBJECTIVE This study aimed to evaluate MKRN3 levels in patients with PWS and to analyze its correlation with sexual hormone levels, insulin resistance and Body Mass Index (BMI). METHODS We performed an observational cross-sectional study and enrolled 80 patients with genetically confirmed diagnosis of PWS with median age of 9.6 years. RESULTS MKRN3 levels were measurable in 49 PWS patients with a geometric mean of 34.9 ± 22 pg/ml (median: 28.4). Unmeasurable levels of MKRN3 were found in 31 patients. No statistically significant differences were found between patients with and without measurable MKRN3 levels for any clinical, biochemical, or genetic characteristics. However, MKRN3 levels were inversely correlated with HOMA-IR index (p: 0.005) and HbA1c (p: 0.046) values. No statistically significant correlations were found between MKRN3 and LH, estradiol and testosterone concentrations, pubertal development and genetic defect, whereas a direct correlation with FSH was found (p: 0.007). CONCLUSIONS The typical genetic defect of PWS should lead to unmeasurable levels of the MKRN3 protein due to the inactivation of the paternal allele. Measurable circulating MKRN3 could suggest the possible involvement of tissue-specific imprinting mechanisms and other regulatory factors in gene expression. Correlations with HOMA-IR index, HbA1c, and FSH suggest peripheral actions of MKRN3, but future studies are warranted to investigate this topic.
Collapse
Affiliation(s)
- M Mariani
- Endocrinology Unit, University Pediatric Department, Bambino Gesù Children's Hospital, Piazza S.Onofrio, 4, 00165, Rome, Italy.
| | - D Fintini
- Endocrinology Unit, University Pediatric Department, Bambino Gesù Children's Hospital, Piazza S.Onofrio, 4, 00165, Rome, Italy
| | - G Cirillo
- Department of Woman, Child, General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - S Palumbo
- Department of Woman, Child, General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - E M Del Giudice
- Department of Woman, Child, General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - S Bocchini
- Endocrinology Unit, University Pediatric Department, Bambino Gesù Children's Hospital, Piazza S.Onofrio, 4, 00165, Rome, Italy
| | - M Manco
- Research Area for Multifactorial Diseases and Complex Phenotypes, Bambino Gesù Children's Hospital, Rome, Italy
| | - M Cappa
- Endocrinology Unit, University Pediatric Department, Bambino Gesù Children's Hospital, Piazza S.Onofrio, 4, 00165, Rome, Italy
| | - A Grandone
- Department of Woman, Child, General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
13
|
Sharma A, Jayasena CN, Dhillo WS. Regulation of the Hypothalamic-Pituitary-Testicular Axis: Pathophysiology of Hypogonadism. Endocrinol Metab Clin North Am 2022; 51:29-45. [PMID: 35216719 DOI: 10.1016/j.ecl.2021.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Male hypogonadism is a clinical syndrome characterized by the diminished functional activity of the testis resulting in low levels of testosterone and/or spermatozoa. Defects at one or more levels of the hypothalamic-pituitary-testicular (HPT) axis can result in either primary or secondary hypogonadism. The changes that occur in the HPT axis from fetal to adult life are fundamental to understanding the pathophysiology of hypogonadism. In this article, we summarize the maturation and neuroendocrine regulation of the HPT axis and discuss the major congenital and acquired causes of male hypogonadism both at the (1) hypothalamic-pituitary (secondary hypogonadism) and (2) testicular (primary hypogonadism) levels.
Collapse
Affiliation(s)
- Aditi Sharma
- Section of Investigative Medicine, Imperial College London, Hammersmith Hospital, 6th Floor, Commonwealth Building, 150 Du Cane Road, London W12 0NN, UK
| | - Channa N Jayasena
- Section of Investigative Medicine, Imperial College London, Hammersmith Hospital, 6th Floor, Commonwealth Building, 150 Du Cane Road, London W12 0NN, UK
| | - Waljit S Dhillo
- Section of Investigative Medicine, Imperial College London, Hammersmith Hospital, 6th Floor, Commonwealth Building, 150 Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
14
|
Palumbo S, Cirillo G, Aiello F, Papparella A, Miraglia del Giudice E, Grandone A. MKRN3 role in regulating pubertal onset: the state of art of functional studies. Front Endocrinol (Lausanne) 2022; 13:991322. [PMID: 36187104 PMCID: PMC9523110 DOI: 10.3389/fendo.2022.991322] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022] Open
Abstract
Puberty is a critical process characterized by several physical and psychological changes that culminate in the achievement of sexual maturation and fertility. The onset of puberty depends on several incompletely understood mechanisms that certainly involve gonadotropin-releasing hormone (GnRH) and its effects on the pituitary gland. The role of makorin ring finger protein 3 (MKRN3) in the regulation of pubertal timing was revealed when loss-of-function mutations were identified in patients with central precocious puberty (CPP), which to date, represent the most commonly known genetic cause of this condition. The MKRN3 gene showed ubiquitous expression in tissues from a broad spectrum of species, suggesting an important cellular role. Its involvement in the initiation of puberty and endocrine functions has just begun to be studied. This review discusses some of the recent approaches developed to predict MKRN3 functions and its involvement in pubertal development.
Collapse
|
15
|
Fanis P, Morrou M, Tomazou M, Michailidou K, Spyrou GM, Toumba M, Skordis N, Neocleous V, Phylactou LA. Methylation status of hypothalamic Mkrn3 promoter across puberty. Front Endocrinol (Lausanne) 2022; 13:1075341. [PMID: 36714607 PMCID: PMC9880154 DOI: 10.3389/fendo.2022.1075341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023] Open
Abstract
Makorin RING finger protein 3 (MKRN3) is an important factor located on chromosome 15 in the imprinting region associated with Prader-Willi syndrome. Imprinted MKRN3 is expressed in hypothalamic regions essential for the onset of puberty and mutations in the gene have been found in patients with central precocious puberty. The pubertal process is largely controlled by epigenetic mechanisms that include, among other things, DNA methylation at CpG dinucleotides of puberty-related genes. In the present study, we investigated the methylation status of the Mkrn3 promoter in the hypothalamus of the female mouse before, during and after puberty. Initially, we mapped the 32 CpG dinucleotides in the promoter, the 5'UTR and the first 50 nucleotides of the coding region of the Mkrn3 gene. Moreover, we identified a short CpG island region (CpG islet) located within the promoter. Methylation analysis using bisulfite sequencing revealed that CpG dinucleotides were methylated regardless of developmental stage, with the lowest levels of methylation being found within the CpG islet region. In addition, the CpG islet region showed significantly lower methylation levels at the pre-pubertal stage when compared with the pubertal or post-pubertal stage. Finally, in silico analysis of transcription factor binding sites on the Mkrn3 CpG islet identified the recruitment of 29 transcriptional regulators of which 14 were transcriptional repressors. Our findings demonstrate the characterization and differential methylation of the CpG dinucleotides located in the Mkrn3 promoter that could influence the transcriptional activity in pre-pubertal compared to pubertal or post-pubertal period. Further studies are needed to clarify the possible mechanisms and effects of differential methylation of the Mkrn3 promoter.
Collapse
Affiliation(s)
- Pavlos Fanis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Maria Morrou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Marios Tomazou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Kyriaki Michailidou
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - George M. Spyrou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Meropi Toumba
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Child Endocrine Care, Department of Pediatrics, Aretaeio Hospital, Nicosia, Cyprus
| | - Nicos Skordis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Division of Pediatric Endocrinology, Paedi Center for Specialized Pediatrics, Nicosia, Cyprus
- Medical School, University of Nicosia, Nicosia, Cyprus
| | - Vassos Neocleous
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Leonidas A. Phylactou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- *Correspondence: Leonidas A. Phylactou,
| |
Collapse
|
16
|
Tajima T. Genetic causes of central precocious puberty. Clin Pediatr Endocrinol 2022; 31:101-109. [PMID: 35928377 PMCID: PMC9297165 DOI: 10.1297/cpe.2022-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/07/2022] [Indexed: 11/12/2022] Open
Abstract
Central precocious puberty (CPP) is a condition in which the
hypothalamus–pituitary–gonadal system is activated earlier than the normal developmental
stage. The etiology includes organic lesions in the brain; however, in the case of
idiopathic diseases, environmental and/or genetic factors are involved in the development
of CPP. A genetic abnormality in KISS1R, that encodes the kisspeptin
receptor, was first reported in 2008 as a cause of idiopathic CPP. Furthermore, genetic
alterations in KISS1, MKRN3, DLK1, and
PROKR2 have been reported in idiopathic and/or familial CPP. Of these,
MKRN3 has the highest frequency of pathological variants associated
with CPP worldwide; but, abnormalities in MKRN3 are rare in patients in
East Asia, including Japan. MKRN3 and DLK1 are maternal
imprinting genes; thus, CPP develops when a pathological variant is inherited from the
father. The mechanism of CPP due to defects in MKRN3 and
DLK1 has not been completely clarified, but it is suggested that both
may negatively control the progression of puberty. CPP due to such a single gene
abnormality is extremely rare, but it is important to understand the mechanisms of puberty
and reproduction. A further development in the genetics of CPP is expected in the
future.
Collapse
Affiliation(s)
- Toshihiro Tajima
- Department of Pediatrics, Jichi Medical University Tochigi Children’ Medical Center, Tochigi, Japan
| |
Collapse
|
17
|
Faienza MF, Urbano F, Moscogiuri LA, Chiarito M, De Santis S, Giordano P. Genetic, epigenetic and enviromental influencing factors on the regulation of precocious and delayed puberty. Front Endocrinol (Lausanne) 2022; 13:1019468. [PMID: 36619551 PMCID: PMC9813382 DOI: 10.3389/fendo.2022.1019468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
The pubertal development onset is controlled by a network of genes that regulate the gonadotropin releasing hormone (GnRH) pulsatile release and the subsequent increase of the circulating levels of pituitary gonadotropins that activate the gonadal function. Although the transition from pre-pubertal condition to puberty occurs physiologically in a delimited age-range, the inception of pubertal development can be anticipated or delayed due to genetic and epigenetic changes or environmental conditions. Most of the genetic and epigenetic alterations concern genes which encode for kisspeptin, GnRH, LH, FSH and their receptor, which represent crucial factors of the hypothalamic-pituitary-gonadal (HPG) axis. Recent data indicate a central role of the epigenome in the regulation of genes in the hypothalamus and pituitary that could mediate the flexibility of pubertal timing. Identification of epigenetically regulated genes, such as Makorin ring finger 3 (MKRN3) and Delta-like 1 homologue (DLK1), respectively responsible for the repression and the activation of pubertal development, provides additional evidence of how epigenetic variations affect pubertal timing. This review aims to investigate genetic, epigenetic, and environmental factors responsible for the regulation of precocious and delayed puberty.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, Bari, Italy
- Giovanni XXIII Pediatric Hospital, Bari, Italy
- *Correspondence: Maria Felicia Faienza,
| | | | | | | | - Stefania De Santis
- Department of Pharmacy-Pharmaceutical Science, University of Bari “Aldo Moro”, Bari, Italy
| | - Paola Giordano
- Giovanni XXIII Pediatric Hospital, Bari, Italy
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| |
Collapse
|
18
|
Chandra K, Banerjee A, Das M. Epigenetic and transcriptional regulation of GnRH gene under altered metabolism and ageing. THE NUCLEUS 2021. [DOI: 10.1007/s13237-021-00374-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
19
|
Maione L, Bouvattier C, Kaiser UB. Central precocious puberty: Recent advances in understanding the aetiology and in the clinical approach. Clin Endocrinol (Oxf) 2021; 95:542-555. [PMID: 33797780 PMCID: PMC8586890 DOI: 10.1111/cen.14475] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022]
Abstract
Central precocious puberty (CPP) results from early activation of the hypothalamic-pituitary-gonadal (HPG) axis. The current state of knowledge of the complex neural network acting at the level of the hypothalamus and the GnRH neuron to control puberty onset has expanded, particularly in the context of molecular interactions. Along with these advances, the knowledge of pubertal physiology and pathophysiology has also increased. This review focuses on regulatory abnormalities occurring at the hypothalamic level of the HPG axis to cause CPP. The clinical approach to diagnosis of puberty and pubertal disorders is also reviewed, with a particular focus on aetiologies of CPP. The recent identification of mutations in MKRN3 and DLK1 in familial as well sporadic forms of CPP has changed the state of the art of the approach to patients with CPP. Genetic advances have also had important repercussions beyond consideration of puberty alone. Syndromic disorders and central nervous system lesions associated with CPP are also discussed. If untreated, these conditions may lead to adverse physical, psychosocial and medical outcomes.
Collapse
Affiliation(s)
- Luigi Maione
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Inserm, Physiologie et Physiopathologie Endocriniennes, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service d’Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l’Hypophyse, Université Paris-Saclay, Paris-Saclay University, Le Kremlin-Bicêtre, France
| | - Claire Bouvattier
- Inserm, Physiologie et Physiopathologie Endocriniennes, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service d’Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l’Hypophyse, Université Paris-Saclay, Paris-Saclay University, Le Kremlin-Bicêtre, France
| | - Ursula B. Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
20
|
Cheuiche AV, da Silveira LG, de Paula LCP, Lucena IRS, Silveiro SP. Diagnosis and management of precocious sexual maturation: an updated review. Eur J Pediatr 2021; 180:3073-3087. [PMID: 33745030 DOI: 10.1007/s00431-021-04022-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/17/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Abstract
The classic definition of precocious sexual maturation is the development of secondary sexual characteristics before 8 years of age in girls and before 9 years of age in boys. It is classified as central precocious puberty when premature maturation of the hypothalamic-pituitary-gonadal axis occurs, and as peripheral precocious puberty when there is excessive secretion of sex hormones, independent of gonadotropin secretion. Precocious sexual maturation is more common in girls, generally central precocious puberty of idiopathic origin. In boys, it tends to be linked to central nervous system abnormalities. Clinical evaluation should include a detailed history and physical examination, including anthropometric measurements, calculation of growth velocity, and evaluation of secondary sexual characteristics. The main sign to suspect the onset of puberty is breast tissue development (thelarche) in girls and testicular enlargement (≥4 mL) in boys. Hormonal assessment and imaging are required for diagnosis and identification of the etiology. Genetic testing should be considered if there is a family history of precocious puberty or other clinical features suggestive of a genetic syndrome. Long-acting gonadotropin-releasing hormone analogs are the standard of care for central precocious puberty management, while peripheral precocious puberty management depends on the etiology.Conclusion: The aim of this review is to address the epidemiology, etiology, clinical assessment, and management of precocious sexual maturation. What is Known: • The main sign to suspect the onset of puberty is breast tissue development (thelarche) in girls and testicular enlargement (≥4 mL) in boys. The classic definition of precocious sexual maturation is the development of secondary sexual characteristics before 8 years of age in girls and before 9 years of age in boys. • Long-acting gonadotropin-releasing hormone agonist (GnRHa) is the standard of care for CPP management, and adequate hormone suppression results in the stabilization of pubertal progression, a decline in growth velocity, and a decrease in bone age advancement. What is New: • Most cases of precocious sexual maturation are gonadotropin-dependent and currently assumed to be idiopathic, but mutations in genes involved in pubertal development have been identified, such as MKRN3 and DLK1. • A different preparation of long-acting GnRHa is now available: 6-month subcutaneous injection.
Collapse
Affiliation(s)
- Amanda Veiga Cheuiche
- Post-graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Leticia Guimarães da Silveira
- Post-graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Leila Cristina Pedroso de Paula
- Post-graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | | | - Sandra Pinho Silveiro
- Post-graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. .,Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
| |
Collapse
|
21
|
Abstract
Puberty is the process through which reproductive competence is achieved and comprises gonadarche and adrenarche. Breast development is the initial physical finding of pubertal onset in girls and typically occurs between 8 and 13 years. Menarche normally occurs 2 to 3 years after the onset of breast development. Pubertal onset is controlled by the gonadotropin-releasing hormone pulse generator in the hypothalamus; however, environmental factors such as alterations in energy balance and exposure to endocrine-disrupting chemicals can alter the timing of pubertal onset. Improvement in nutritional and socioeconomic conditions over the past two centuries has been associated with a secular trend in earlier pubertal onset. Precocious puberty is defined as onset of breast development prior to 8 years and can be central or peripheral. Delayed puberty can be hypogonadotropic or hypergonadotropic and is defined as lack of breast development by 13 years or lack of menarche by 16 years. Both precocious and delayed puberty may have negative effects on self-esteem, potentially leading to psychosocial stress. Patients who present with pubertal differences require a comprehensive assessment to determine the underlying etiology and to devise an effective treatment plan.
Collapse
Affiliation(s)
- Aviva B Sopher
- Division of Endocrinology, Diabetes and Metabolism, Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Sharon E Oberfield
- Division of Endocrinology, Diabetes and Metabolism, Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Selma F Witchel
- Division of Endocrinology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
22
|
Neocleous V, Fanis P, Toumba M, Gorka B, Kousiappa I, Tanteles GA, Iasonides M, Nicolaides NC, Christou YP, Michailidou K, Nicolaou S, Papacostas SS, Christoforidis A, Kyriakou A, Vlachakis D, Skordis N, Phylactou LA. Pathogenic and Low-Frequency Variants in Children With Central Precocious Puberty. Front Endocrinol (Lausanne) 2021; 12:745048. [PMID: 34630334 PMCID: PMC8498594 DOI: 10.3389/fendo.2021.745048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/03/2021] [Indexed: 12/18/2022] Open
Abstract
Background Central precocious puberty (CPP) due to premature activation of GnRH secretion results in early epiphyseal fusion and to a significant compromise in the achieved final adult height. Currently, few genetic determinants of children with CPP have been described. In this translational study, rare sequence variants in MKRN3, DLK1, KISS1, and KISS1R genes were investigated in patients with CPP. Methods Fifty-four index girls and two index boys with CPP were first tested by Sanger sequencing for the MKRN3 gene. All children found negative (n = 44) for the MKRN3 gene were further investigated by whole exome sequencing (WES). In the latter analysis, the status of variants in genes known to be related with pubertal timing was compared with an in-house Cypriot control cohort (n = 43). The identified rare variants were initially examined by in silico computational algorithms and confirmed by Sanger sequencing. Additionally, a genetic network for the MKRN3 gene, mimicking a holistic regulatory depiction of the crosstalk between MKRN3 and other genes was designed. Results Three previously described pathogenic MKRN3 variants located in the coding region of the gene were identified in 12 index girls with CPP. The most prevalent pathogenic MKRN3 variant p.Gly312Asp was exclusively found among the Cypriot CPP cohort, indicating a founder effect phenomenon. Seven other CPP girls harbored rare likely pathogenic upstream variants in the MKRN3. Among the 44 CPP patients submitted to WES, nine rare DLK1 variants were identified in 11 girls, two rare KISS1 variants in six girls, and two rare MAGEL2 variants in five girls. Interestingly, the frequent variant rs10407968 (p.Gly8Ter) of the KISS1R gene appeared to be less frequent in the cohort of patients with CPP. Conclusion The results of the present study confirm the importance of the MKRN3-imprinted gene in genetics of CPP and its key role in pubertal timing. Overall, the results of the present study have emphasized the importance of an approach that aligns genetics and clinical aspects, which is necessary for the management and treatment of CPP.
Collapse
Affiliation(s)
- Vassos Neocleous
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Pavlos Fanis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Meropi Toumba
- Child Endocrine Care, Department of Pediatrics, Aretaeio Hospital, Nicosia, Cyprus
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Barbara Gorka
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Ioanna Kousiappa
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Department of Neurobiology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - George A Tanteles
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Department of Clinical Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Michalis Iasonides
- Department of Pediatrics, Iliaktida Paediatric & Adolescent Medical Centre, Limassol, Cyprus
- University of Nicosia Medical School, Nicosia, Cyprus
| | - Nicolas C Nicolaides
- Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece
- Division of Endocrinology and Metabolism, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Yiolanda P Christou
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Department of Neurobiology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Kyriaki Michailidou
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Stella Nicolaou
- Division of Pediatric Endocrinology, Archbishop Makarios III Hospital, Nicosia, Cyprus
| | - Savvas S Papacostas
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Department of Neurobiology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- University of Nicosia Medical School, Nicosia, Cyprus
- Centre for Neuroscience and Integrative Brain Research (CENIBRE), University of Nicosia, Nicosia, Cyprus
| | - Athanasios Christoforidis
- First Pediatric Department, School of Medicine, Faculty of Medical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andreas Kyriakou
- Division of Pediatric Endocrinology, Archbishop Makarios III Hospital, Nicosia, Cyprus
- Developmental Endocrinology Research Group, School of Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
- Lab of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London, United Kingdom
| | - Nicos Skordis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- St George's, University of London Medical School, University of Nicosia, Nicosia, Cyprus
- Division of Pediatric Endocrinology, Paedi Center for specialized Pediatrics, Nicosia, Cyprus
| | - Leonidas A Phylactou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
| |
Collapse
|
23
|
Varimo T, Iivonen AP, Känsäkoski J, Wehkalampi K, Hero M, Vaaralahti K, Miettinen PJ, Niedziela M, Raivio T. Familial central precocious puberty: two novel MKRN3 mutations. Pediatr Res 2021; 90:431-435. [PMID: 33214675 DOI: 10.1038/s41390-020-01270-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 10/12/2020] [Accepted: 10/18/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND Paternally inherited loss-of-function mutations in MKRN3 underlie central precocious puberty (CPP). We describe clinical and genetic features of CPP patients with paternally inherited MKRN3 mutations in two independent families. METHODS The single coding exon of MKRN3 was analyzed in three patients with CPP and their family members, followed by segregation analyses. Additionally, we report the patients' responses to GnRH analog treatment. RESULTS A paternally inherited novel heterozygous c.939C>G, p.(Ile313Met) missense mutation affecting the RING finger domain of MKRN3 was found in a Finnish girl with CPP (age at presentation 6 years). Two Polish siblings (a girl presenting with B2 at the age of 4 years and a boy with adult size testes at the age of 9 years) had inherited a novel heterozygous MKRN3 mutation c.1237_1252delGGAGACACATGCTTTT p.(Gly413Thrfs*63) from their father. The girls were treated with GnRH analogs, which exhibited suppression of the hypothalamic-pituitary-gonadal axis. In contrast, the male patient was not treated, yet he reached his target height. CONCLUSIONS We describe two novel MKRN3 mutations in three CPP patients. The first long-term data on a boy with CPP due to an MKRN3 mutation questions the role of GnRH analog treatment in augmenting adult height in males with this condition. IMPACT We describe the genetic cause for central precocious puberty (CPP) in two families. This report adds two novel MKRN3 mutations to the existing literature. One of the mutations, p.(Ile313Met) affects the RING finger domain of MKRN3, which has been shown to be important for repressing the promoter activity of KISS1 and TAC3. We describe the first long-term observation of a male patient with CPP due to a paternally inherited MKRN3 loss-of-function mutation. Without GnRH analog treatment, he achieved an adult height that was in accordance with his mid-parental target height.
Collapse
Affiliation(s)
- Tero Varimo
- New Children's Hospital, Pediatric Research Center, Helsinki University Hospital, Helsinki, Finland
| | - Anna-Pauliina Iivonen
- Stem Cells and Metabolism Research Program, Research Program Unit, University of Helsinki, Helsinki, Finland
| | - Johanna Känsäkoski
- Stem Cells and Metabolism Research Program, Research Program Unit, University of Helsinki, Helsinki, Finland
| | - Karoliina Wehkalampi
- New Children's Hospital, Pediatric Research Center, Helsinki University Hospital, Helsinki, Finland
| | - Matti Hero
- New Children's Hospital, Pediatric Research Center, Helsinki University Hospital, Helsinki, Finland
| | - Kirsi Vaaralahti
- Stem Cells and Metabolism Research Program, Research Program Unit, University of Helsinki, Helsinki, Finland
| | - Päivi J Miettinen
- New Children's Hospital, Pediatric Research Center, Helsinki University Hospital, Helsinki, Finland
| | - Marek Niedziela
- Department of Pediatric Endocrinology and Rheumatology, Karol Jonscher's Clinical Hospital, Poznan University of Medical Sciences, Poznan, Poland
| | - Taneli Raivio
- New Children's Hospital, Pediatric Research Center, Helsinki University Hospital, Helsinki, Finland. .,Stem Cells and Metabolism Research Program, Research Program Unit, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
24
|
Correa‐da‐Silva F, Fliers E, Swaab DF, Yi C. Hypothalamic neuropeptides and neurocircuitries in Prader Willi syndrome. J Neuroendocrinol 2021; 33:e12994. [PMID: 34156126 PMCID: PMC8365683 DOI: 10.1111/jne.12994] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/19/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023]
Abstract
Prader-Willi Syndrome (PWS) is a rare and incurable congenital neurodevelopmental disorder, resulting from the absence of expression of a group of genes on the paternally acquired chromosome 15q11-q13. Phenotypical characteristics of PWS include infantile hypotonia, short stature, incomplete pubertal development, hyperphagia and morbid obesity. Hypothalamic dysfunction in controlling body weight and food intake is a hallmark of PWS. Neuroimaging studies have demonstrated that PWS subjects have abnormal neurocircuitry engaged in the hedonic and physiological control of feeding behavior. This is translated into diminished production of hypothalamic effector peptides which are responsible for the coordination of energy homeostasis and satiety. So far, studies with animal models for PWS and with human post-mortem hypothalamic specimens demonstrated changes particularly in the infundibular and the paraventricular nuclei of the hypothalamus, both in orexigenic and anorexigenic neural populations. Moreover, many PWS patients have a severe endocrine dysfunction, e.g. central hypogonadism and/or growth hormone deficiency, which may contribute to the development of increased fat mass, especially if left untreated. Additionally, the role of non-neuronal cells, such as astrocytes and microglia in the hypothalamic dysregulation in PWS is yet to be determined. Notably, microglial activation is persistently present in non-genetic obesity. To what extent microglia, and other glial cells, are affected in PWS is poorly understood. The elucidation of the hypothalamic dysfunction in PWS could prove to be a key feature of rational therapeutic management in this syndrome. This review aims to examine the evidence for hypothalamic dysfunction, both at the neuropeptidergic and circuitry levels, and its correlation with the pathophysiology of PWS.
Collapse
Affiliation(s)
- Felipe Correa‐da‐Silva
- Department of Endocrinology and MetabolismAmsterdam Gastroenterology Endocrinology and MetabolismAmsterdam University Medical Center (UMC)University of AmsterdamAmsterdamThe Netherlands
- Laboratory of EndocrinologyAmsterdam University Medical Center (UMC)University of AmsterdamAmsterdamThe Netherlands
- Department of Neuropsychiatric DisordersNetherlands Institute for NeuroscienceAn Institute of the Royal Netherlands Academy of Arts and SciencesAmsterdamThe Netherlands
| | - Eric Fliers
- Department of Endocrinology and MetabolismAmsterdam Gastroenterology Endocrinology and MetabolismAmsterdam University Medical Center (UMC)University of AmsterdamAmsterdamThe Netherlands
| | - Dick F. Swaab
- Department of Neuropsychiatric DisordersNetherlands Institute for NeuroscienceAn Institute of the Royal Netherlands Academy of Arts and SciencesAmsterdamThe Netherlands
| | - Chun‐Xia Yi
- Department of Endocrinology and MetabolismAmsterdam Gastroenterology Endocrinology and MetabolismAmsterdam University Medical Center (UMC)University of AmsterdamAmsterdamThe Netherlands
- Laboratory of EndocrinologyAmsterdam University Medical Center (UMC)University of AmsterdamAmsterdamThe Netherlands
- Department of Neuropsychiatric DisordersNetherlands Institute for NeuroscienceAn Institute of the Royal Netherlands Academy of Arts and SciencesAmsterdamThe Netherlands
| |
Collapse
|
25
|
Seraphim CE, Canton APM, Montenegro L, Piovesan MR, Macedo DB, Cunha M, Guimaraes A, Ramos CO, Benedetti AFF, de Castro Leal A, Gagliardi PC, Antonini SR, Gryngarten M, Arcari AJ, Abreu AP, Kaiser UB, Soriano-Guillén L, Escribano-Muñoz A, Corripio R, Labarta JI, Travieso-Suárez L, Ortiz-Cabrera NV, Argente J, Mendonca BB, Brito VN, Latronico AC. Genotype-Phenotype Correlations in Central Precocious Puberty Caused by MKRN3 Mutations. J Clin Endocrinol Metab 2021; 106:1041-1050. [PMID: 33383582 PMCID: PMC7993586 DOI: 10.1210/clinem/dgaa955] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Indexed: 12/12/2022]
Abstract
CONTEXT Loss-of-function mutations of makorin RING finger protein 3 (MKRN3) are the most common monogenic cause of familial central precocious puberty (CPP). OBJECTIVE To describe the clinical and hormonal features of a large cohort of patients with CPP due to MKRN3 mutations and compare the characteristics of different types of genetic defects. METHODS Multiethnic cohort of 716 patients with familial or idiopathic CPP screened for MKRN3 mutations using Sanger sequencing. A group of 156 Brazilian girls with idiopathic CPP (ICPP) was used as control group. RESULTS Seventy-one patients (45 girls and 26 boys from 36 families) had 18 different loss-of-function MKRN3 mutations. Eight mutations were classified as severe (70% of patients). Among the 71 patients, first pubertal signs occurred at 6.2 ± 1.2 years in girls and 7.1 ± 1.5 years in boys. Girls with MKRN3 mutations had a shorter delay between puberty onset and first evaluation and higher follicle-stimulating hormone levels than ICPP. Patients with severe MKRN3 mutations had a greater bone age advancement than patients with missense mutations (2.3 ± 1.6 vs 1.6 ± 1.4 years, P = .048), and had higher basal luteinizing hormone levels (2.2 ± 1.8 vs 1.1 ± 1.1 UI/L, P = .018) at the time of presentation. Computational protein modeling revealed that 60% of the missense mutations were predicted to cause protein destabilization. CONCLUSION Inherited premature activation of the reproductive axis caused by loss-of-function mutations of MKRN3 is clinically indistinct from ICPP. However, the type of genetic defect may affect bone age maturation and gonadotropin levels.
Collapse
Affiliation(s)
- Carlos Eduardo Seraphim
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Correspondence: Ana Claudia Latronico, MD, PhD, Hospital das Clínicas da FMUSP, Divisão de Endocrinologia e Metabologia, Av. Dr. Enéas de Carvalho Aguiar, 255, 7o andar, sala 7037—CEP: 05403-900—Cerqueira César—São Paulo, SP, Brazil. and
| | - Ana Pinheiro Machado Canton
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Luciana Montenegro
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Maiara Ribeiro Piovesan
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Delanie B Macedo
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Marina Cunha
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Aline Guimaraes
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Carolina Oliveira Ramos
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Anna Flavia Figueiredo Benedetti
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Andrea de Castro Leal
- Departamento de Saúde Integrada da Universidade do Estado do Pará (UEPA), Santarém, Pará, Brazil
| | - Priscila C Gagliardi
- Division of Endocrinology, Diabetes, and Metabolism, Nemours Children’s Clinic, Jacksonville, FL, USA
| | - Sonir R Antonini
- Department of Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo, Brazil
| | - Mirta Gryngarten
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (Consejo Nacional de Investigaciones Científicas y Técnicas – FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez), Buenos Aires, Argentina
| | - Andrea J Arcari
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (Consejo Nacional de Investigaciones Científicas y Técnicas – FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez), Buenos Aires, Argentina
| | - Ana Paula Abreu
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Leandro Soriano-Guillén
- Department of Pediatrics, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Spanish PUBERE Registry, Madrid, Spain
| | - Arancha Escribano-Muñoz
- Endocrinology Unit, Department of Pediatrics, University Hospital Virgen of Arrixaca, Spanish PUBERE Registry, Murcia, Spain
| | - Raquel Corripio
- Pediatric Endocrinology Department, Corporació Parc Taulí Hospital Universitari. Institut d’Investigació i Innovació Parc Taulí I3PT. Universitat Autònoma de Barcelona. Spanish PUBERE Registry, Sabadell, Spain
| | - José I Labarta
- Pediatric Endocrinology Unit, Department of Pediatrics, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria de Aragón, Spanish PUBERE Registry, Zaragoza, Spain
| | - Lourdes Travieso-Suárez
- Hospital Infantil Universitario Niño Jesús, Department of Endocrinology and Department of Pediatrics, Universidad Autónoma de Madrid, Spanish PUBERE Registry, CIBER of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, IMDEA Institute, Madrid, Spain
| | - Nelmar Valentina Ortiz-Cabrera
- Hospital Infantil Universitario Niño Jesús, Department of Endocrinology and Department of Pediatrics, Universidad Autónoma de Madrid, Spanish PUBERE Registry, CIBER of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, IMDEA Institute, Madrid, Spain
| | - Jesús Argente
- Hospital Infantil Universitario Niño Jesús, Department of Endocrinology and Department of Pediatrics, Universidad Autónoma de Madrid, Spanish PUBERE Registry, CIBER of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, IMDEA Institute, Madrid, Spain
| | - Berenice B Mendonca
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Vinicius N Brito
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Ana Claudia Latronico
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
26
|
Hypogonadism in Patients with Prader Willi Syndrome: A Narrative Review. Int J Mol Sci 2021; 22:ijms22041993. [PMID: 33671467 PMCID: PMC7922674 DOI: 10.3390/ijms22041993] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 12/20/2022] Open
Abstract
Prader-Willi syndrome (PWS) is a multisystemic complex genetic disorder related to the lack of a functional paternal copy of chromosome 15q11-q13. Several clinical manifestations are reported, such as short stature, cognitive and behavioral disability, temperature instability, hypotonia, hypersomnia, hyperphagia, and multiple endocrine abnormalities, including growth hormone deficiency and hypogonadism. The hypogonadism in PWS is due to central and peripheral mechanisms involving the hypothalamus-pituitary-gonadal axis. The early diagnosis and management of hypogonadism in PWS are both important for physicians in order to reach a better quality of life for these patients. The aim of this study is to summarize and investigate causes and possible therapies for hypogonadism in PWS. Additional studies are further needed to clarify the role of different genes related to hypogonadism and to establish a common and evidence-based therapy.
Collapse
|
27
|
Jeong HR, Yoon JS, Lee HJ, Shim YS, Kang MJ, Hwang IT. Serum level of NPTX1 is independent of serum MKRN3 in central precocious puberty. J Pediatr Endocrinol Metab 2021; 34:59-63. [PMID: 33180049 DOI: 10.1515/jpem-2020-0402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/31/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Makorin ring finger protein 3 (MKRN3) is associated with the initiation of puberty, and loss of function mutation of MKRN3 is the most common genetic cause of central precocious puberty (CPP). A recent study reported that MKRN3 interacts with and suppresses neural pentraxin-1 precursor (NPTX1) activity via polyubiquitination during early puberty in the mouse hypothalamus. This study investigated the correlation between serum NPTX1 and MKRN3 in CPP girls and predicted the potential role of NPTX1 in pubertal progression. METHODS In this case-control study, we examined 34 girls diagnosed with CPP and 34 healthy prepubertal girls. Anthropometric and hormonal parameters were measured and serum levels of NPTX1 and MKRN3 were evaluated with commercial enzyme-linked immunosorbent assay kits. RESULTS Serum MKRN3 level decreased significantly in CPP patients compared to controls (344.48 ± 333.77 and 1295.21 ± 780.80 pg/mL, respectively, p<0.001). Serum MKRN3 tended to decrease as Tanner breast stage increased. However, no significant difference was observed in serum NPTX1 levels between patients and controls (20.14 ± 31.75 ng/mL and 12.93 ± 8.28 ng/mL, respectively, p=0.248). The serum level of NPTX1 did not change significantly with the Tanner breast stage. Serum NPTX1 was correlated with the height standard deviation score (r=0.255; p<0.05), but was not correlated with serum MKRN3 level or the others. Conclusion: Although serum NPTX1 level was independent of serum MKRN3 level, the possibility they might be involved in the progression of puberty or CPP remains. Further research is needed to determine their role in the hypothalamus.
Collapse
Affiliation(s)
- Hwal Rim Jeong
- Department of Pediatrics, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Jong Seo Yoon
- Department of Pediatrics, Hallym University, College of Medicine, Gangdong-gu, Seoul, Korea
| | - Hye Jin Lee
- Department of Pediatrics, Hallym University, College of Medicine, Gangdong-gu, Seoul, Korea
| | - Yeong Suk Shim
- Department of Pediatrics, Hallym University, College of Medicine, Gangdong-gu, Seoul, Korea
| | - Min Jae Kang
- Department of Pediatrics, Hallym University, College of Medicine, Gangdong-gu, Seoul, Korea
| | - Il Tae Hwang
- Department of Pediatrics, Hallym University, College of Medicine, Gangdong-gu, Seoul, Korea
| |
Collapse
|
28
|
Shalev D, Melamed P. The role of the hypothalamus and pituitary epigenomes in central activation of the reproductive axis at puberty. Mol Cell Endocrinol 2020; 518:111031. [PMID: 32956708 DOI: 10.1016/j.mce.2020.111031] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/02/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022]
Abstract
Puberty is programmed through a multifactorial gene network which works to activate the pulsatile secretion of the gonadotropin releasing hormone (GnRH), and subsequently elevate circulating levels of the pituitary gonadotropins that stimulate gonadal activity. Although this developmental transition normally occurs at a limited age-range in individuals of the same genetic background and environment, pubertal onset can occur prematurely or be delayed following changes in ambient conditions, or due to genetic variations or mutations, many of which have remained elusive due to their location in distal regulatory elements. Growing evidence is pointing to a pivotal role for the epigenome in regulating key genes in the reproductive hypothalamus and pituitary at this time, which might mediate some of the plasticity of pubertal timing. This review will address epigenetic mechanisms which have been demonstrated in the KNDy neurons that increase the output of pulsatile GnRH, and those involved in activation of the GnRH gene and its receptor, and describes how GnRH utilizes epigenetic mechanisms to stimulate transcription of the pituitary gonadotropin genes in the context of the chromatin landscape.
Collapse
Affiliation(s)
- Dor Shalev
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Philippa Melamed
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel.
| |
Collapse
|
29
|
Gohil A, Eugster EA. Delayed and Precocious Puberty: Genetic Underpinnings and Treatments. Endocrinol Metab Clin North Am 2020; 49:741-757. [PMID: 33153677 PMCID: PMC7705597 DOI: 10.1016/j.ecl.2020.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Delayed puberty may signify a common variation of normal development, or indicate the presence of a pathologic process. Constitutional delay of growth and puberty is a strongly familial type of developmental pattern and accounts for the vast majority of children who are "late bloomers." Individuals with sex chromosomal abnormalities frequently have hypergonadotropic hypogonadism. There are currently 4 known monogenic causes of central precocious puberty. The primary treatment goal in children with hypogonadism is to mimic normal pubertal progression, while the primary aims for the management of precocious puberty are preservation of height potential and prevention of further pubertal development.
Collapse
Affiliation(s)
- Anisha Gohil
- Division of Pediatric Endocrinology, Department of Pediatrics, Riley Hospital for Children at IU Health, Indiana University School of Medicine, 705 Riley Hospital Drive, Room 5960, Indianapolis, IN 46202, USA.
| | - Erica A Eugster
- Division of Pediatric Endocrinology, Department of Pediatrics, Riley Hospital for Children at IU Health, Indiana University School of Medicine, 705 Riley Hospital Drive, Room 5960, Indianapolis, IN 46202, USA
| |
Collapse
|
30
|
Maione L, Naulé L, Kaiser UB. Makorin RING finger protein 3 and central precocious puberty. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2020; 14:152-159. [PMID: 32984644 PMCID: PMC7518508 DOI: 10.1016/j.coemr.2020.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Makorin RING finger protein 3 (MKRN3) is a key inhibitor of the hypothalamic-pituitary-gonadal axis. Loss-of-function mutations in MKRN3 cause familial and sporadic central precocious puberty (CPP), while polymorphisms are associated with age at menarche. To date, 115 patients with CPP carrying MKRN3 mutations have been described, harboring 48 different genetic variants. The prevalence of MKRN3 mutations in genetically screened populations with CPP is estimated at 9.0%. Girls are more commonly and more seriously affected than boys. MKRN3 is expressed in humans and rodents in the central nervous system. Circulating levels in humans and hypothalamic expression in rodents decrease during pubertal progression. Although some MKRN3 regulators have been identified, the precise mechanism by which MKRN3 inhibits the hypothalamic-pituitary-gonadal axis remains elusive. The role of makorins in developmental physiology and organ differentiation and the role of maternal imprinting are discussed herein.
Collapse
Affiliation(s)
- Luigi Maione
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Lydie Naulé
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
31
|
Roberts SA, Kaiser UB. GENETICS IN ENDOCRINOLOGY: Genetic etiologies of central precocious puberty and the role of imprinted genes. Eur J Endocrinol 2020; 183:R107-R117. [PMID: 32698138 PMCID: PMC7682746 DOI: 10.1530/eje-20-0103] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/03/2020] [Indexed: 12/19/2022]
Abstract
Pubertal timing is regulated by the complex interplay of genetic, environmental, nutritional and epigenetic factors. Criteria for determining normal pubertal timing, and thus the definition of precocious puberty, have evolved based on published population studies. The significance of the genetic influence on pubertal timing is supported by familial pubertal timing and twin studies. In contrast to the many monogenic causes associated with hypogonadotropic hypogonadism, only four monogenic causes of central precocious puberty (CPP) have been described. Loss-of-function mutations in Makorin Ring Finger Protein 3(MKRN3), a maternally imprinted gene on chromosome 15 within the Prader-Willi syndrome locus, are the most common identified genetic cause of CPP. More recently, several mutations in a second maternally imprinted gene, Delta-like noncanonical Notch ligand 1 (DLK1), have also been associated with CPP. Polymorphisms in both genes have also been associated with the age of menarche in genome-wide association studies. Mutations in the genes encoding kisspeptin (KISS1) and its receptor (KISS1R), potent activators of GnRH secretion, have also been described in association with CPP, but remain rare monogenic causes. CPP has both short- and long-term health implications for children, highlighting the importance of understanding the mechanisms contributing to early puberty. Additionally, given the role of mutations in the imprinted genes MKRN3 and DLK1 in pubertal timing, other imprinted candidate genes should be considered for a role in puberty initiation.
Collapse
Affiliation(s)
- Stephanie A. Roberts
- Division of Endocrinology, Boston Children’s Hospital, Boston, Massachusetts
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Ursula B. Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
32
|
Montenegro L, Labarta JI, Piovesan M, Canton APM, Corripio R, Soriano-Guillén L, Travieso-Suárez L, Martín-Rivada Á, Barrios V, Seraphim CE, Brito VN, Latronico AC, Argente J. Novel Genetic and Biochemical Findings of DLK1 in Children with Central Precocious Puberty: A Brazilian-Spanish Study. J Clin Endocrinol Metab 2020; 105:5872717. [PMID: 32676665 DOI: 10.1210/clinem/dgaa461] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/14/2020] [Indexed: 02/13/2023]
Abstract
BACKGROUND Central precocious puberty (CPP) has been associated with loss-of-function mutations in 2 paternally expressed genes (MKRN3 and DLK1). Rare defects in the DLk1 were also associated with poor metabolic phenotype at adulthood. OBJECTIVE Our aim was to investigate genetic and biochemical aspects of DLK1 in a Spanish cohort of children with CPP without MKRN3 mutations. PATIENTS A large cohort of children with idiopathic CPP (Spanish PUBERE Registry) was studied. Genomic deoxyribonucleic acid was obtained from 444 individuals (168 index cases) with CPP and their close relatives. Automatic sequencing of MKRN3 and DLK1 genes were performed. RESULTS Five rare heterozygous mutations of MKRN3 were initially excluded in girls with familial CPP. A rare allelic deletion (c.401_404 + 8del) in the splice site junction of DLK1 was identified in a Spanish girl with sporadic CPP. Pubertal signs started at 5.7 years. Her metabolic profile was normal. Familial segregation analysis showed that the DLK1 deletion was de novo in the affected child. Serum DLK1 levels were undetectable (<0.4 ng/mL), indicating that the deletion led to complete lack of DLK1 production. Three others rare allelic variants of DLK1 were also identified (p.Asn134=; g.-222 C>A and g.-223 G>A) in 2 girls with CPP. However, both had normal DLK1 serum levels. CONCLUSION Loss-of-function mutations of DLK1 represent a rare cause of CPP, reinforcing a significant role of this factor in human pubertal timing.
Collapse
Affiliation(s)
- Luciana Montenegro
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia e Metabologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - José I Labarta
- Pediatric Endocrinology Unit, Department of Pediatrics, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria de Aragón, Zaragoza, Spain
| | - Maira Piovesan
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia e Metabologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Ana P M Canton
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia e Metabologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Raquel Corripio
- Pediatric Endocrinology Department, Corporació Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Leandro Soriano-Guillén
- Pediatric Endocrinology Unit, Institute of Biomedical Research - Hospital Universitario Fundación Jiménez Díaz, Universidad Autónoma de Madrid. Madrid, Spain
| | - Lourdes Travieso-Suárez
- Department of Pediatrics, Universidad Autónoma de Madrid. Departments of Pediatrics and Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, IMDEA Food Institute. Madrid, Spain
| | - Álvaro Martín-Rivada
- Department of Pediatrics, Universidad Autónoma de Madrid. Departments of Pediatrics and Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, IMDEA Food Institute. Madrid, Spain
| | - Vicente Barrios
- Department of Pediatrics, Universidad Autónoma de Madrid. Departments of Pediatrics and Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, IMDEA Food Institute. Madrid, Spain
| | - Carlos E Seraphim
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia e Metabologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Vinicius N Brito
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia e Metabologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Ana Claudia Latronico
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia e Metabologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Jesús Argente
- Department of Pediatrics, Universidad Autónoma de Madrid. Departments of Pediatrics and Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, IMDEA Food Institute. Madrid, Spain
| |
Collapse
|
33
|
Liu M, Fan L, Gong CX. A novel heterozygous MKRN3 nonsense mutation in a Chinese girl with idiopathic central precocious puberty: A case report. Medicine (Baltimore) 2020; 99:e22295. [PMID: 32957387 PMCID: PMC7505322 DOI: 10.1097/md.0000000000022295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
RATIONALE Central precocious puberty (CPP) is caused by the premature activation of the hypothalamic-pituitary-gonadal axis. Recently, the makorin ring finger protein 3 (MKRN3) mutations represent the most common genetic defects associated with CPP. However, the MKRN3 mutation is relatively rare in Asian countries. Here, we identified a novel heterozygous MKRN3 nonsense mutation (p. Gln363) causing CPP in a Chinese girl. PATIENT CONCERNS The index case is a 7-year-old Chinese girl who presented rapidly progressive precocious puberty with the onset of menstrual period 2 months after breast development, the advanced bone age (11 years), and the accelerated growth velocity (10 cm/year). Her basal luteinizing hormone (LH) and follicle-stimulating hormone (FSH) levels, as well as the peak LH/FSH values after the gonadotropin-releasing hormone (GnRH) stimulation test were significantly elevated.Pelvic B ultrasound showed the presence of ovarian follicles with diameters ≥0.4 cm. Uterine length also indicated the onset of puberty. Contrast-enhanced magnetic resonance imaging (MRI) did not disclose any abnormality in the pituitary. Additionally, our present case was obese companies with impaired glucose tolerance (IGT) at the baseline assessment. Genetic analysis revealed a novel heterozygous nonsense mutation (c1087C>T; p. Gln363) in the maternally imprinted MKRN3, which inherited from the girl's father. DIAGNOSIS Combined with the symptoms, hormonal data, and the results of the pelvic B ultrasound, the girl was diagnosed as CPP. INTERVENTIONS The girl has been treated with a GnRH analog (3.75 mg every 4 wks) for 1 year and 5 months. OUTCOMES The puberty signs have since not progressed during the follow-up period, which indicates that the GnRH analogs treatment is effective. LESSONS This case was obese companied with IGT at the baseline assessment and exhibited stronger LH/FSH response to GnRH stimulation test. Therefore, clinicians should highlight the importance of weight management and the long-term follow-up to monitor the adverse health outcomes, especially for the polycystic ovary syndrome in later life.
Collapse
|
34
|
Bar-Sadeh B, Rudnizky S, Pnueli L, Bentley GR, Stöger R, Kaplan A, Melamed P. Unravelling the role of epigenetics in reproductive adaptations to early-life environment. Nat Rev Endocrinol 2020; 16:519-533. [PMID: 32620937 DOI: 10.1038/s41574-020-0370-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/11/2020] [Indexed: 11/08/2022]
Abstract
Reproductive function adjusts in response to environmental conditions in order to optimize success. In humans, this plasticity includes age of pubertal onset, hormone levels and age at menopause. These reproductive characteristics vary across populations with distinct lifestyles and following specific childhood events, and point to a role for the early-life environment in shaping adult reproductive trajectories. Epigenetic mechanisms respond to external signals, exert long-term effects on gene expression and have been shown in animal and cellular studies to regulate normal reproductive function, strongly implicating their role in these adaptations. Moreover, human cohort data have revealed differential DNA methylation signatures in proxy tissues that are associated with reproductive phenotypic variation, although the cause-effect relationships are difficult to discern, calling for additional complementary approaches to establish functionality. In this Review, we summarize how adult reproductive function can be shaped by childhood events. We discuss why the influence of the childhood environment on adult reproductive function is an important consideration in understanding how reproduction is regulated and necessitates consideration by clinicians treating women with diverse life histories. The resolution of the molecular mechanisms responsible for human reproductive plasticity could also lead to new approaches for intervention by targeting these epigenetic modifications.
Collapse
Affiliation(s)
- Ben Bar-Sadeh
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Sergei Rudnizky
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Lilach Pnueli
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Reinhard Stöger
- Department of Biological Sciences, University of Nottingham, Nottingham, UK
| | - Ariel Kaplan
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Philippa Melamed
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
35
|
Abstract
Precocious puberty (PP) is a common reason for referral to pediatric endocrinology clinics, with a strong female predominance. PP is a broad term encompassing benign variants of normal development, gonadotropin-dependent precious puberty (GDPP), and gonadotropin-independent precocious puberty (GIPP). This article reviews the definitions, physiology, clinical presentation, evaluation and treatment of these conditions.
Collapse
Affiliation(s)
- Mariam Gangat
- Unit of Pediatric Endocrinology, Department of Pediatrics, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA -
| | - Sally Radovick
- Unit of Pediatric Endocrinology, Department of Pediatrics, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
36
|
Abreu AP, Toro CA, Song YB, Navarro VM, Bosch MA, Eren A, Liang JN, Carroll RS, Latronico AC, Rønnekleiv OK, Aylwin CF, Lomniczi A, Ojeda S, Kaiser UB. MKRN3 inhibits the reproductive axis through actions in kisspeptin-expressing neurons. J Clin Invest 2020; 130:4486-4500. [PMID: 32407292 PMCID: PMC7410046 DOI: 10.1172/jci136564] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022] Open
Abstract
The identification of loss-of-function mutations in MKRN3 in patients with central precocious puberty in association with the decrease in MKRN3 expression in the medial basal hypothalamus of mice before the initiation of reproductive maturation suggests that MKRN3 is acting as a brake on gonadotropin-releasing hormone (GnRH) secretion during childhood. In the current study, we investigated the mechanism by which MKRN3 prevents premature manifestation of the pubertal process. We showed that, as in mice, MKRN3 expression is high in the hypothalamus of rats and nonhuman primates early in life, decreases as puberty approaches, and is independent of sex steroid hormones. We demonstrated that Mkrn3 is expressed in Kiss1 neurons of the mouse hypothalamic arcuate nucleus and that MKRN3 repressed promoter activity of human KISS1 and TAC3, 2 key stimulators of GnRH secretion. We further showed that MKRN3 has ubiquitinase activity, that this activity is reduced by MKRN3 mutations affecting the RING finger domain, and that these mutations compromised the ability of MKRN3 to repress KISS1 and TAC3 promoter activity. These results indicate that MKRN3 acts to prevent puberty initiation, at least in part, by repressing KISS1 and TAC3 transcription and that this action may involve an MKRN3-directed ubiquitination-mediated mechanism.
Collapse
Affiliation(s)
- Ana Paula Abreu
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Carlos A. Toro
- Division of Neuroscience, Oregon National Primate Research Center–OHSU, Hillsboro, Oregon, USA
| | - Yong Bhum Song
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Victor M. Navarro
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Martha A. Bosch
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Aysegul Eren
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Joy N. Liang
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Rona S. Carroll
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ana Claudia Latronico
- Laboratório de Hormônios e Genética Molecular, Unidade de Endocrinologia do Desenvolvimento, Disciplina de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Oline K. Rønnekleiv
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Carlos F. Aylwin
- Division of Neuroscience, Oregon National Primate Research Center–OHSU, Hillsboro, Oregon, USA
| | - Alejandro Lomniczi
- Division of Neuroscience, Oregon National Primate Research Center–OHSU, Hillsboro, Oregon, USA
| | - Sergio Ojeda
- Division of Neuroscience, Oregon National Primate Research Center–OHSU, Hillsboro, Oregon, USA
| | - Ursula B. Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
37
|
Meader BN, Albano A, Sekizkardes H, Delaney A. Heterozygous Deletions in MKRN3 Cause Central Precocious Puberty Without Prader-Willi Syndrome. J Clin Endocrinol Metab 2020; 105:5850015. [PMID: 32480405 PMCID: PMC7324050 DOI: 10.1210/clinem/dgaa331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/11/2020] [Accepted: 05/26/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT Loss-of-function mutations in the imprinted genes MKRN3 and DLK1 cause central precocious puberty (CPP) but whole gene deletions have not been reported. Larger deletions of the chromosome 15q11-13 imprinted locus, including MKRN3, cause Prader-Willi syndrome (PWS). CPP has been reported in PWS but is not common, and the role of MKRN3 in PWS has not been fully elucidated. OBJECTIVE To identify copy number variants in puberty-related, imprinted genes to determine their role in CPP. METHODS Probands with idiopathic CPP had chromosomal microarray (CMA) and targeted deletion/duplication testing for MKRN3 and DLK1. RESULTS Sixteen female probands without MKRN3 or DLK1 variants identified by Sanger sequencing were studied. Whole gene deletions of MKRN3 were identified in 2 subjects (13%): a complete deletion of MKRN3 in Patient A (pubertal onset at 7 years) and a larger deletion involving MAGEL2, MKRN3, and NDN in Patient B (pubertal onset 5.5 years). Both were paternally inherited. Patient B had no typical features of PWS, other than obesity, which was also present in her unaffected family. CONCLUSIONS We identified 2 cases of whole gene deletions of MKRN3 causing isolated CPP without PWS. This is the first report of complete deletions of MKRN3 in patients with CPP, emphasizing the importance of including copy number variant analysis for MKRN3 mutation testing when a genetic diagnosis is suspected. We speculate that there is a critical region of the PWS locus beyond MKRN3, MAGEL2, and NDN that is responsible for the PWS phenotype.
Collapse
Affiliation(s)
- Brooke N Meader
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Alessandro Albano
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Hilal Sekizkardes
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Angela Delaney
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
- Division of Endocrinology, St. Jude Children’s Research Hospital, Memphis, Tennessee
- Correspondence and Reprint Requests: Angela Delaney, MD, St. Jude Children’s Research Hospital, 262 Danny Thomas Pl, MS 737, Memphis, TN 38105. E-mail:
| |
Collapse
|
38
|
Pagani S, Calcaterra V, Acquafredda G, Montalbano C, Bozzola E, Ferrara P, Gasparri M, Villani A, Bozzola M. MKRN3 and KISS1R mutations in precocious and early puberty. Ital J Pediatr 2020; 46:39. [PMID: 32228714 PMCID: PMC7104496 DOI: 10.1186/s13052-020-0808-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/23/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Pubertal timing is known to be influenced by interactions among various genetic, nutritional, environmental and socio-economic factors, although the ultimate mechanisms underlying the increase in pulsatile GnRH secretion at puberty have yet to be fully elucidated. The aim of our research was to verify the role of KISSR1 (previously named GPR54) and MKRN3 genes on pubertal timing. METHODS We analyzed the DNA sequence of these genes in 13 girls affected by central precocious puberty (CPP) who showed onset of puberty before 8 years of age, and in 6 girls affected by early puberty (EP) between 8 and 10 years of age. RESULTS Direct sequencing of the KISS1R (GPR54) gene revealed two SNPs. One SNP is a missense variant (rs 350,132) that has been previously reported in connection to CPP in Korean girls. The other variant that we found in the GPR54 gene (rs764046557) was a missense SNP located in exon 5 at position 209 of the aminoacid. We identified this variant in only one CPP patient. Automatic sequencing of MKRN3 in all patients revealed three variants in eight subjects. In 6 out of 19 (31.5%) patients (3/13 CPP patients and 3/6 EP patients) we found the synonymous variant c.663C > T (rs2239669). Another synonymous variant (rs140467331) was found in one of our CPP patients, as well as one missense variant (rs760981395) in another CPP patient. CONCLUSION In conclusion, we identified sequence variations of the KISS1R and MKRN3 genes, two of the most frequent genetic causes of ICPP. Our results suggest that these variants might be inducible factors in the pathogenesis of CPP.
Collapse
Affiliation(s)
- Sara Pagani
- Department of Internal Medicine and Therapeutics, Pediatrics and Adolescent Care Unit, University of Pavia, Via Aselli 43, 27100, Pavia, Italy
| | - Valeria Calcaterra
- Department of Internal Medicine and Therapeutics, Pediatrics and Adolescent Care Unit, University of Pavia, Via Aselli 43, 27100, Pavia, Italy
| | - Gloria Acquafredda
- Immunology and Transplantation Laboratory, Pediatric Hematology and Oncology, Fondazione IRCCS San Matteo, Pavia, Italy
| | - Chiara Montalbano
- Department of Internal Medicine and Therapeutics, Pediatrics and Adolescent Care Unit, University of Pavia, Via Aselli 43, 27100, Pavia, Italy
| | - Elena Bozzola
- Department of Pediatrics, Bambino Gesù Children's Hospital, Rome, Italy
| | - Pietro Ferrara
- Institute of Pediatrics, Catholic University, Rome, Italy
| | | | - Alberto Villani
- Department of Pediatrics, Bambino Gesù Children's Hospital, Rome, Italy
| | - Mauro Bozzola
- Department of Internal Medicine and Therapeutics, Pediatrics and Adolescent Care Unit, University of Pavia, Via Aselli 43, 27100, Pavia, Italy.
| |
Collapse
|
39
|
Abstract
Imprinting disorders are a group of congenital diseases caused by dysregulation of genomic imprinting, affecting prenatal and postnatal growth, neurocognitive development, metabolism and cancer predisposition. Aberrant expression of imprinted genes can be achieved through different mechanisms, classified into epigenetic - if not involving DNA sequence change - or genetic in the case of altered genomic sequence. Despite the underlying mechanism, the phenotype depends on the parental allele affected and opposite phenotypes may result depending on the involvement of the maternal or the paternal chromosome. Imprinting disorders are largely underdiagnosed because of the broad range of clinical signs, the overlap of presentation among different disorders, the presence of mild phenotypes, the mitigation of the phenotype with age and the limited availability of molecular techniques employed for diagnosis. This review briefly illustrates the currently known human imprinting disorders, highlighting endocrinological aspects of pediatric interest.
Collapse
Affiliation(s)
- Diana Carli
- University of Torino, Department of Pediatric and Public Health Sciences, Torino, Italy
| | - Evelise Riberi
- University of Torino, Department of Pediatric and Public Health Sciences, Torino, Italy
| | | | - Alessandro Mussa
- University of Torino, Department of Pediatric and Public Health Sciences, Torino, Italy,* Address for Correspondence: University of Torino, Department of Pediatric and Public Health Sciences, Torino, Italy Phone: +39-011-313-1985 E-mail:
| |
Collapse
|
40
|
GE W, WANG HL, SHAO HJ, LIU HW, XU RY. Evaluation of Serum Makorin Ring Finger Protein 3 (MKRN3) Levels in Girls With Idiopathic Central Precocious Puberty and Premature Thelarche. Physiol Res 2020; 69:127-133. [PMID: 31852205 DOI: 10.33549/physiolres.934222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
This study aims to investigate serum makorin ring finger protein 3 (MKRN3) levels in girls with idiopathic central precocious puberty (ICPP) and premature thelarche (PT), in order to determine whether circulating MKRN3 level is associated with ICPP and PT. A total of 90 girls were enrolled in the study. 30 age-matched girls were allocated for each group (ICPP, PT and healthy controls [HC], respectively). The base LH (B-LH) and E2 levels were higher in ICPP girls than those in HC and PT girls. The peak LH (P-LH) levels and P-LH/P-FSH values were obviously higher in ICPP girls than those in PT girls, while higher peak FSH (P-FSH) levels were detected in PT girls when compared to those in ICPP girls. Kisspeptin levels were lower in HC girls than those in ICPP and PT girls. MKRN3 levels were the highest in HC girls among the three groups. There were relatively strong negative correlations among MKRN3, kisspeptin and P-LH/P-FSH. Circulating MKRN3 can have an important role in the onset of ICPP and PT. However, this should not be used as an independent diagnostic criterion for diagnosing ICPP or differentiating ICPP from PT, but should be used only as an adjunctive diagnostic biomarker.
Collapse
Affiliation(s)
- W. GE
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, China
| | - H.-L. WANG
- Department of Pediatrics, Second Hospital, Shandong University, Jinan, China
| | - H.-J. SHAO
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, China
| | - H.-W. LIU
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, China
| | - R.-Y. XU
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
41
|
Ramos CDO, Macedo DB, Canton APM, Cunha-Silva M, Antonini SRR, Stecchini MF, Seraphim CE, Rodrigues T, Mendonca BB, Latronico AC, Brito VN. Outcomes of Patients with Central Precocious Puberty Due to Loss-of-Function Mutations in the MKRN3 Gene after Treatment with Gonadotropin-Releasing Hormone Analog. Neuroendocrinology 2020; 110:705-713. [PMID: 31671431 DOI: 10.1159/000504446] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/30/2019] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Loss-of-function mutation of MKRN3 represents the most frequent genetic cause of familial central precocious puberty (CPP). The outcomes of gonadotropin-releasing hormone analog (GnRHa) treatment in CPP patients with MKRN3 defects are unknown. OBJECTIVE To describe the clinical and hormonal features of patients with CPP with or without MKRN3 mutations after GnRHa treatment. Anthropometric, metabolic and reproductive parameters were evaluated. PATIENTS AND METHODS Twenty-nine female patients with CPP due to loss-of-function mutations in the MKRN3 and 43 female patients with idiopathic CPP were included. Their medical records were retrospectively evaluated for clinical, laboratory, and imaging study, before, during, and after GnRHa treatment. All patients with idiopathic CPP and 11 patients with CPP due to MKRN3 defects reached final height (FH). RESULTS At the diagnosis, there were no significant differences between clinical and laboratory features of patients with CPP with or without MKRN3 mutations. A high prevalence of overweight and obesity was observed in patients with CPP with or without MKRN3 mutations (47.3 and 50%, respectively), followed by a significant reduction after GnRHa treatment. No significant differences in the values of mean FH and target height were found between the 2 CPP groups after GnRHa treatment. Menarche occurred at the expected age in patients with or without CPP due to MKRN3 mutations (11.5 ± 1.3 and 12 ± 0.6 years, respectively). The prevalence of polycystic ovarian syndrome was 9.1% in patients with CPP due to MKRN3 mutations and 5.9% in those with idiopathic CPP. CONCLUSION Anthropometric, metabolic, and reproductive outcomes after GnRHa treatment were comparable in CPP patients, with or without MKRN3 mutations, suggesting the absence of deleterious effects of MKRN3 defects in young female adults' life.
Collapse
Affiliation(s)
- Carolina de Oliveira Ramos
- Unidade de Endocrinologia do Desenvolvimento, Disciplina de Endocrinologia e Metabologia da Faculdade de Medicina da Universidade de São Paulo e Laboratório de Hormônios e Genética Molecular LIM 42 do Hospital das Clínicas, São Paulo, Brazil,
| | - Delanie B Macedo
- Unidade de Endocrinologia do Desenvolvimento, Disciplina de Endocrinologia e Metabologia da Faculdade de Medicina da Universidade de São Paulo e Laboratório de Hormônios e Genética Molecular LIM 42 do Hospital das Clínicas, São Paulo, Brazil
| | - Ana Pinheiro M Canton
- Unidade de Endocrinologia do Desenvolvimento, Disciplina de Endocrinologia e Metabologia da Faculdade de Medicina da Universidade de São Paulo e Laboratório de Hormônios e Genética Molecular LIM 42 do Hospital das Clínicas, São Paulo, Brazil
| | - Marina Cunha-Silva
- Unidade de Endocrinologia do Desenvolvimento, Disciplina de Endocrinologia e Metabologia da Faculdade de Medicina da Universidade de São Paulo e Laboratório de Hormônios e Genética Molecular LIM 42 do Hospital das Clínicas, São Paulo, Brazil
| | - Sonir R R Antonini
- Departamento de Pediatria, Escola de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Monica Freire Stecchini
- Departamento de Pediatria, Escola de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Carlos Eduardo Seraphim
- Unidade de Endocrinologia do Desenvolvimento, Disciplina de Endocrinologia e Metabologia da Faculdade de Medicina da Universidade de São Paulo e Laboratório de Hormônios e Genética Molecular LIM 42 do Hospital das Clínicas, São Paulo, Brazil
| | - Tania Rodrigues
- Departamento de Medicina, Universidade Federal de Juiz de Fora- Campus Governador Valadares, Governador Valadares, Brazil
| | - Berenice Bilharinho Mendonca
- Unidade de Endocrinologia do Desenvolvimento, Disciplina de Endocrinologia e Metabologia da Faculdade de Medicina da Universidade de São Paulo e Laboratório de Hormônios e Genética Molecular LIM 42 do Hospital das Clínicas, São Paulo, Brazil
| | - Ana Claudia Latronico
- Unidade de Endocrinologia do Desenvolvimento, Disciplina de Endocrinologia e Metabologia da Faculdade de Medicina da Universidade de São Paulo e Laboratório de Hormônios e Genética Molecular LIM 42 do Hospital das Clínicas, São Paulo, Brazil
| | - Vinicius Nahime Brito
- Unidade de Endocrinologia do Desenvolvimento, Disciplina de Endocrinologia e Metabologia da Faculdade de Medicina da Universidade de São Paulo e Laboratório de Hormônios e Genética Molecular LIM 42 do Hospital das Clínicas, São Paulo, Brazil
| |
Collapse
|
42
|
Howard SR, Dunkel L. Delayed Puberty-Phenotypic Diversity, Molecular Genetic Mechanisms, and Recent Discoveries. Endocr Rev 2019; 40:1285-1317. [PMID: 31220230 PMCID: PMC6736054 DOI: 10.1210/er.2018-00248] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/31/2019] [Indexed: 02/07/2023]
Abstract
This review presents a comprehensive discussion of the clinical condition of delayed puberty, a common presentation to the pediatric endocrinologist, which may present both diagnostic and prognostic challenges. Our understanding of the genetic control of pubertal timing has advanced thanks to active investigation in this field over the last two decades, but it remains in large part a fascinating and mysterious conundrum. The phenotype of delayed puberty is associated with adult health risks and common etiologies, and there is evidence for polygenic control of pubertal timing in the general population, sex-specificity, and epigenetic modulation. Moreover, much has been learned from comprehension of monogenic and digenic etiologies of pubertal delay and associated disorders and, in recent years, knowledge of oligogenic inheritance in conditions of GnRH deficiency. Recently there have been several novel discoveries in the field of self-limited delayed puberty, encompassing exciting developments linking this condition to both GnRH neuronal biology and metabolism and body mass. These data together highlight the fascinating heterogeneity of disorders underlying this phenotype and point to areas of future research where impactful developments can be made.
Collapse
Affiliation(s)
- Sasha R Howard
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Leo Dunkel
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
43
|
Canton APM, Seraphim CE, Brito VN, Latronico AC. Pioneering studies on monogenic central precocious puberty. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2019; 63:438-444. [PMID: 31460623 PMCID: PMC10528652 DOI: 10.20945/2359-3997000000164] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/28/2019] [Indexed: 11/23/2022]
Abstract
Pubertal timing in humans is determined by complex interactions including hormonal, metabolic, environmental, ethnic, and genetic factors. Central precocious puberty (CPP) is defined as the premature reactivation of the hypothalamic-pituitary-gonadal axis, starting before the ages of 8 and 9 years in girls and boys, respectively; familial CPP is defined by the occurrence of CPP in two or more family members. Pioneering studies have evidenced the participation of genetic factors in pubertal timing, mainly identifying genetic causes of CPP in sporadic and familial cases. In this context, rare activating mutations were identified in genes of the kisspeptin excitatory pathway (KISS1R and KISS1 mutations). More recently, loss-of-function mutations in two imprinted genes (MKRN3 and DLK1) have been identified as important causes of familial CPP, describing novel players in the modulation of the hypothalamic-pituitary-gonadal axis in physiological and pathological conditions. MKRN3 mutations are the most common cause of familial CPP, and patients with MKRN3 mutations present clinical features indistinguishable from idiopathic CPP. Meanwhile, adult patients with DLK1 mutations present high frequency of metabolic alterations (overweight/obesity, early onset type 2 diabetes and hyperlipidemia), indicating that DLK1 may be a novel link between reproduction and metabolism. Arch Endocrinol Metab. 2019;63(4):438-44.
Collapse
Affiliation(s)
- Ana Pinheiro Machado Canton
- Universidade de São PauloHospital das ClínicasFaculdade de MedicinaUniversidade de São PauloSão PauloSPBrasil Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42 do Hospital das Clínicas, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Carlos Eduardo Seraphim
- Universidade de São PauloHospital das ClínicasFaculdade de MedicinaUniversidade de São PauloSão PauloSPBrasil Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42 do Hospital das Clínicas, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Vinicius Nahime Brito
- Universidade de São PauloHospital das ClínicasFaculdade de MedicinaUniversidade de São PauloSão PauloSPBrasil Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42 do Hospital das Clínicas, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Ana Claudia Latronico
- Universidade de São PauloHospital das ClínicasFaculdade de MedicinaUniversidade de São PauloSão PauloSPBrasil Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42 do Hospital das Clínicas, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
44
|
Naulé L, Kaiser UB. Evolutionary Conservation of MKRN3 and Other Makorins and Their Roles in Puberty Initiation and Endocrine Functions. Semin Reprod Med 2019; 37:166-173. [PMID: 31972861 PMCID: PMC8603287 DOI: 10.1055/s-0039-3400965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Puberty is a critical period of development regulated by genetic, nutritional, and environmental factors. The role of makorin ring finger protein 3 (MKRN3) in the regulation of pubertal timing was revealed when loss-of-function mutations were identified in patients with central precocious puberty (CPP). To date, MKRN3 mutations are the most common known genetic cause of CPP. MKRN3 is a member of the makorin family of ubiquitin ligases, together with MKRN1 and MKRN2. The Mkrn genes have been identified in both vertebrates and invertebrates and show high evolutionary conservation of their gene and protein structures. While the existence of Mkrn orthologues in a wide spectrum of species suggests a vital cellular role of the makorins, their role in puberty initiation and endocrine functions is just beginning to be investigated. In this review, we discuss recent studies that have shown the involvement of Mkrn3 and other makorins in the regulation of pubertal development and other endocrine functions, including metabolism and fertility, as well as their underlying mechanisms of action.
Collapse
Affiliation(s)
- Lydie Naulé
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ursula B. Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
45
|
Abstract
The factors that trigger human puberty are among the central mysteries of reproductive biology. Several approaches, including mutational analysis of candidate genes, large-scale genome-wide association studies, whole exome sequencing, and whole genome sequencing have been performed in attempts to identify novel genetic factors that modulate the human hypothalamic-pituitary-gonadal axis to result in premature sexual development. Genetic abnormalities involving excitatory and inhibitory pathways regulating gonadotropin-releasing hormone secretion, represented by the kisspeptin (KISS1 and KISS1R) and makorin ring finger 3 (MKRN3) systems, respectively, have been associated with sporadic and familial cases of central precocious puberty (CPP). More recently, paternally inherited genetic defects of DLK1 were identified in four families with nonsyndromic CPP and a metabolic phenotype. DLK1 encodes a transmembrane protein that is important for adipose tissue homeostasis and neurogenesis and is located in the imprinted chromosome 14q32 region associated with Temple syndrome. In this review, we highlight the clinical and genetic features of patients with CPP caused by DLK1 mutations and explore the involvement of Notch signaling and DLK1 in the control of pubertal onset.
Collapse
Affiliation(s)
- Delanie B. Macedo
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ursula B. Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
46
|
Gomes LG, Cunha-Silva M, Crespo RP, Ramos CO, Montenegro LR, Canton A, Lees M, Spoudeas H, Dauber A, Macedo DB, Bessa DS, Maciel GA, Baracat EC, Jorge AAL, Mendonca BB, Brito VN, Latronico AC. DLK1 Is a Novel Link Between Reproduction and Metabolism. J Clin Endocrinol Metab 2019; 104:2112-2120. [PMID: 30462238 DOI: 10.1210/jc.2018-02010] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/14/2018] [Indexed: 02/13/2023]
Abstract
BACKGROUND Delta-like homolog 1 (DLK1), also called preadipocyte factor 1, prevents adipocyte differentiation and has been considered a molecular gatekeeper of adipogenesis. A DLK1 complex genomic defect was identified in five women from a single family with central precocious puberty (CPP) and increased body fat percentage. METHODS We studied 60 female patients with a diagnosis of CPP or history of precocious menarche. Thirty-one of them reported a family history of precocious puberty. DLK1 DNA sequencing was performed in all patients. Serum DLK1 concentrations were measured using an ELISA assay in selected cases. Metabolic and reproductive profiles of adult women with CPP caused by DLK1 defects were compared with those of 20 women with idiopathic CPP. RESULTS We identified three frameshift mutations of DLK1 (p.Gly199Alafs*11, p.Val271Cysfs*14, and p.Pro160Leufs*50) in five women from three families with CPP. Segregation analysis was consistent with the maternal imprinting of DLK1. Serum DLK1 concentrations were undetectable in three affected women. Metabolic abnormalities, such as overweight/obesity, early-onset glucose intolerance/type 2 diabetes mellitus, and hyperlipidemia, were more prevalent in women with the DLK1 mutation than in the idiopathic CPP group. Notably, the human metabolic alterations were similar to the previously described dlk1-null mice phenotype. Two sisters who carried the p.Gly199Alafs*11 mutation also exhibited polycystic ovary syndrome and infertility. CONCLUSIONS Loss-of-function mutations of DLK1 are a definitive cause of familial CPP. The high prevalence of metabolic alterations in adult women who experienced CPP due to DLK1 defects suggests that this antiadipogenic factor represents a link between reproduction and metabolism.
Collapse
Affiliation(s)
- Larissa G Gomes
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia e Metabologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Marina Cunha-Silva
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia e Metabologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Raiane P Crespo
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia e Metabologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Carolina O Ramos
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia e Metabologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Luciana R Montenegro
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia e Metabologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Laboratório de Sequenciamento em Larga Escala, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Ana Canton
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia e Metabologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Melissa Lees
- Clinical Genetics Department, Great Ormond Street Hospital, London, United Kingdom
| | - Helen Spoudeas
- Clinical Genetics Department, Great Ormond Street Hospital, London, United Kingdom
| | - Andrew Dauber
- Division of Endocrinology, Children's National Health System, Washington, DC
| | - Delanie B Macedo
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia e Metabologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Danielle S Bessa
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia e Metabologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Gustavo A Maciel
- Disciplina de Ginecologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Edmund C Baracat
- Disciplina de Ginecologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Alexander A L Jorge
- Unidade de Endocrinologia Genética (LIM 25), Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Berenice B Mendonca
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia e Metabologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Laboratório de Sequenciamento em Larga Escala, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Vinicius N Brito
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia e Metabologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Ana Claudia Latronico
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia e Metabologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
47
|
Valadares LP, Meireles CG, De Toledo IP, Santarem de Oliveira R, Gonçalves de Castro LC, Abreu AP, Carroll RS, Latronico AC, Kaiser UB, Guerra ENS, Lofrano-Porto A. MKRN3 Mutations in Central Precocious Puberty: A Systematic Review and Meta-Analysis. J Endocr Soc 2019; 3:979-995. [PMID: 31041429 PMCID: PMC6483926 DOI: 10.1210/js.2019-00041] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/19/2019] [Indexed: 01/19/2023] Open
Abstract
MKRN3 mutations represent the most common genetic cause of central precocious puberty (CPP) but associations between genotype and clinical features have not been extensively explored. This systematic review and meta-analysis investigated genotype-phenotype associations and prevalence of MKRN3 mutations in CPP. The search was conducted in seven electronic databases (Cochrane, EMBASE, LILACS, LIVIVO, PubMed, Scopus, and Web of Science) for articles published until 4 September 2018. Studies evaluating MKRN3 mutations in patients with CPP were considered eligible. A total of 22 studies, studying 880 subjects with CPP, fulfilled the inclusion criteria. Eighty-nine subjects (76 girls) were identified as harboring MKRN3 mutations. Girls, compared with boys, exhibited earlier age at pubertal onset (median, 6.0 years; range, 3.0 to 7.0 vs 8.5 years; range, 5.9 to 9.0; P < 0.001), and higher basal FSH levels (median, 4.3 IU/L; range, 0.7 to 13.94 IU/L vs 2.45 IU/L; range, 0.8 to 13.70 IU/L; P = 0.003), and bone age advancement (ΔBA; median, 2.3 years; range, -0.9 to 5.2 vs 1.2 years; range, 0.0 to 2.3; P = 0.01). Additional dysmorphisms were uncommon. A total of 14 studies evaluating 857 patients were included for quantitative analysis, with a pooled overall mutation prevalence of 9.0% (95% CI, 0.04 to 0.15). Subgroup analysis showed that prevalence estimates were higher in males, familial cases, and in non-Asian countries. In conclusion, MKRN3 mutations are associated with nonsyndromic CPP and manifest in a sex-dimorphic manner, with girls being affected earlier. They represent a common cause of CPP in western countries, especially in boys and familial cases.
Collapse
Affiliation(s)
- Luciana Pinto Valadares
- Molecular Pharmacology Laboratory, Health Sciences Faculty, University of Brasilia, Brasilia, DF, Brazil
| | - Cinthia Gabriel Meireles
- Molecular Pharmacology Laboratory, Health Sciences Faculty, University of Brasilia, Brasilia, DF, Brazil
| | - Isabela Porto De Toledo
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasilia, Brasilia, DF, Brazil
| | - Renata Santarem de Oliveira
- Gonadal and Adrenal Diseases Clinics, University Hospital of Brasilia, University of Brasilia, Brasilia, DF, Brazil
- Pediatric Endocrinology Unit, Department of Pediatrics, University Hospital of Brasília, Faculty of Medicine, University of Brasilia, DF, Brazil
- Jose Alencar Brasilia Children´s Hospital, State Secretary of Health, Brasilia, DF, Brazil
| | - Luiz Cláudio Gonçalves de Castro
- Pediatric Endocrinology Unit, Department of Pediatrics, University Hospital of Brasília, Faculty of Medicine, University of Brasilia, DF, Brazil
| | - Ana Paula Abreu
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rona S Carroll
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ana Claudia Latronico
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular, LIM42, Hospital das Clínicas, Disciplina Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, SP, Brazil
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Eliete Neves Silva Guerra
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasilia, Brasilia, DF, Brazil
| | - Adriana Lofrano-Porto
- Molecular Pharmacology Laboratory, Health Sciences Faculty, University of Brasilia, Brasilia, DF, Brazil
- Gonadal and Adrenal Diseases Clinics, University Hospital of Brasilia, University of Brasilia, Brasilia, DF, Brazil
| |
Collapse
|
48
|
Cantas-Orsdemir S, Eugster EA. Update on central precocious puberty: from etiologies to outcomes. Expert Rev Endocrinol Metab 2019; 14:123-130. [PMID: 30763521 DOI: 10.1080/17446651.2019.1575726] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/22/2019] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Precocious puberty (PP) is one of the most common reasons for referral to pediatric endocrinologists. Gonadotropin-releasing hormone analogs (GnRHas) are the gold standard for the treatment of central precocious puberty (CPP) and have an impressive record of safety and efficacy. However, ongoing refinements in diagnosis and management continue to lead to important advancements in clinical care. AREAS COVERED The aim of this review is to cover current considerations and controversies regarding the diagnosis of CPP, as well as new findings in regards to etiology and treatment modalities. EXPERT COMMENTARY There is emerging evidence of monogenic etiologies of CPP and significant progress in the expansion of newer formulations of GnRHas. Despite these exciting developments, areas of uncertainty in the diagnosis and treatment of CPP remain. While long-term outcomes of patients treated for CPP are encouraging, only short-term follow-up is available with respect to the newer extended release GnRHa preparations, and how they compare with historically used formulations is unknown. A particular shortage of information exists pertaining to CPP in boys and regarding the psychological implications of PP in girls, and more research is needed. Continued investigation will yield new insights into the underlying genetics and optimal treatment strategies for CPP.
Collapse
Affiliation(s)
- Sena Cantas-Orsdemir
- a Department of Pediatrics/Division of Pediatric Endocrinology , University of California School of Medicine , Orange , CA , USA
| | - Erica A Eugster
- b Department of Pediatrics/Division of Pediatric Endocrinology and Diabetology , Riley Hospital for Children, Indiana University School of Medicine , Indianapolis , IN , USA
| |
Collapse
|
49
|
Grandone A, Cirillo G, Sasso M, Tornese G, Luongo C, Festa A, Marzuillo P, Miraglia Del Giudice E. MKRN3 Levels in Girls with Central Precocious Puberty during GnRHa Treatment: A Longitudinal Study. Horm Res Paediatr 2019; 90:190-195. [PMID: 30269125 DOI: 10.1159/000493134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 08/16/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Recently, mutations of makorin RING finger protein 3 (MKRN3) have been identified in familial central precocious puberty (CPP). Serum levels of this protein decline before the pubertal onset in healthy girls and boys and are lower in patients with CPP compared to prepubertal matched pairs. The aim of our study was to investigate longitudinal changes in circulating MKRN3 levels in patients with CPP before and during GnRH analogs (GnRHa) treatment. METHODS We performed a longitudinal prospective study. We enrolled 15 patients with CPP aged 7.2 years (range: 2-8) with age at breast development onset < 8 years and 12 control girls matched for the time from puberty onset (mean age 11.8 ± 1.2 years). Serum values of MKRN3, gonadotropins, and 17β-estradiol were evaluated before and during treatment with GnRHa (at 6 and 12 months). The MKRN3 gene was genotyped in CPP patients. In the girls from the control group, only basal levels were analyzed. RESULTS No MKRN3 mutations were found among CPP patients. MKRN3 levels declined significantly from baseline to 6 months of GnRHa treatment (p = 0.0007) and from 6 to 12 months of treatment (p = 0.003); MKRN3 levels at 6 months were significantly lower than in the control girls (p < 0.0001). CONCLUSIONS We showed that girls with CPP had a decline in peripheral levels of MKRN3 during GnRHa treatment. Our data suggest a suppression of MKRN3 by continuous pharmacological administration of GnRHa.
Collapse
Affiliation(s)
- Anna Grandone
- Department of Woman, Child, General and Specialized Surgery, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Grazia Cirillo
- Department of Woman, Child, General and Specialized Surgery, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Marcella Sasso
- Department of Woman, Child, General and Specialized Surgery, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Gianluca Tornese
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Caterina Luongo
- Department of Woman, Child, General and Specialized Surgery, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Adalgisa Festa
- Department of Woman, Child, General and Specialized Surgery, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Pierluigi Marzuillo
- Department of Woman, Child, General and Specialized Surgery, Università degli Studi della Campania "Luigi Vanvitelli", Naples,
| | - Emanuele Miraglia Del Giudice
- Department of Woman, Child, General and Specialized Surgery, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
50
|
Suzuki E, Shima H, Kagami M, Soneda S, Tanaka T, Yatsuga S, Nishioka J, Oto Y, Kamiya T, Naiki Y, Ogata T, Fujisawa Y, Nakamura A, Kawashima S, Morikawa S, Horikawa R, Sano S, Fukami M. (Epi)genetic defects of MKRN3 are rare in Asian patients with central precocious puberty. Hum Genome Var 2019; 6:7. [PMID: 30675365 PMCID: PMC6341071 DOI: 10.1038/s41439-019-0039-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/29/2018] [Accepted: 12/10/2018] [Indexed: 12/13/2022] Open
Abstract
We sequenced MKRN3, the major causative gene of central precocious puberty in Western countries, in 24 Japanese or Chinese patients and examined the DNA methylation and copy-number statuses of this gene in 19 patients. We identified no (epi)genetic defects except for one previously reported mutation. These results, together with reports from Korea, indicate that MKRN3 defects are rare in Asian populations. The ethnic differences likely reflect Western country-specific founder mutations and the rarity of de novo mutations.
Collapse
Affiliation(s)
- Erina Suzuki
- 1Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hirohito Shima
- 1Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Masayo Kagami
- 1Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Shun Soneda
- 2Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki, Japan
| | | | - Shuichi Yatsuga
- 4Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| | - Junko Nishioka
- 4Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| | - Yuji Oto
- 5Department of Pediatrics, Saitama Medical Center, Dokkyo Medical University, Saitama, Japan
| | - Toshiya Kamiya
- Department of Pediatrics, JA Mie Kouseiren Matsusaka Central General Hospital, Matsusaka, Japan
| | - Yasuhiro Naiki
- 7Division of Endocrinology and Metabolism, National Center for Child Health and Development, Tokyo, Japan
| | - Tsutomu Ogata
- 8Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yasuko Fujisawa
- 8Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Akie Nakamura
- 1Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Sayaka Kawashima
- 1Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Shuntaro Morikawa
- 9Department of Pediatrics, Hokkaido University School of Medicine, Sapporo, Japan
| | - Reiko Horikawa
- 7Division of Endocrinology and Metabolism, National Center for Child Health and Development, Tokyo, Japan
| | | | - Maki Fukami
- 1Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|