1
|
Stratton P, Giri N, Bhala S, Sklavos MM, Alter BP, Savage SA, Pinto LA. Reduced anti-Müllerian hormone levels in males with inherited bone marrow failure syndromes. Endocr Connect 2024; 13:e230510. [PMID: 39032500 PMCID: PMC11378136 DOI: 10.1530/ec-23-0510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/19/2024] [Indexed: 07/23/2024]
Abstract
Fanconi anemia (FA), dyskeratosis congenita-related telomere biology disorders (DC/TBD), and Diamond-Blackfan anemia (DBA) are inherited bone marrow failure syndromes (IBMFS) with high risks of bone marrow failure, leukemia, and solid tumors. Individuals with FA have reduced fertility. Previously, we showed low levels of anti-Müllerian hormone (AMH), a circulating marker of ovarian reserve, in females with IBMFS. In males, AMH may be a direct marker of Sertoli cell function and an indirect marker of spermatogenesis. In this study, we assessed serum AMH levels in pubertal and postpubertal males with FA, DC/TBD, or DBA and compared this with their unaffected male relatives and unrelated healthy male volunteers. Males with FA had significantly lower levels of AMH (median: 5 ng/mL, range: 1.18-6.75) compared with unaffected male relatives (median: 7.31 ng/mL, range: 3.46-18.82, P = 0.03) or healthy male volunteers (median: 7.66 ng/mL, range: 3.3-14.67, P = 0.008). Males with DC/TBD had lower levels of AMH (median: 3.76 ng/mL, range: 0-8.9) compared with unaffected relatives (median: 5.31 ng/mL, range: 1.2-17.77, P = 0.01) or healthy volunteers (median: 5.995 ng/mL, range: 1.57-14.67, P < 0.001). Males with DBA had similar levels of AMH (median: 3.46 ng/mL, range: 2.32-11.85) as unaffected relatives (median: 4.66 ng/mL, range: 0.09-13.51, P = 0.56) and healthy volunteers (median: 5.81 ng/mL, range: 1.57-14.67, P = 0.10). Our findings suggest a defect in the production of AMH in postpubertal males with FA and DC/TBD, similar to that observed in females. These findings warrant confirmation in larger prospective studies.
Collapse
Affiliation(s)
- Pamela Stratton
- Office of the Clinical Director, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Neelam Giri
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sonia Bhala
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Martha M Sklavos
- Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Blanche P Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ligia A Pinto
- Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| |
Collapse
|
2
|
Tucker EJ, Sharp MF, Lokchine A, Bell KM, Palmer CS, Kline BL, Robevska G, van den Bergen J, Dulon J, Stojanovski D, Ayers KL, Touraine P, Crismani W, Jaillard S, Sinclair AH. Biallelic FANCA variants detected in sisters with isolated premature ovarian insufficiency. Clin Genet 2024; 106:321-335. [PMID: 38779778 DOI: 10.1111/cge.14543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Premature ovarian insufficiency is a common form of female infertility affecting up to 4% of women and characterised by amenorrhea with elevated gonadotropin before the age of 40. Oocytes require controlled DNA breakage and repair for homologous recombination and the maintenance of oocyte integrity. Biallelic disruption of the DNA damage repair gene, Fanconi anemia complementation group A (FANCA), is a common cause of Fanconi anaemia, a syndrome characterised by bone marrow failure, cancer predisposition, physical anomalies and POI. There is ongoing dispute about the role of heterozygous FANCA variants in POI pathogenesis, with insufficient evidence supporting causation. Here, we have identified biallelic FANCA variants in French sisters presenting with POI, including a novel missense variant of uncertain significance and a likely pathogenic deletion that initially evaded detection. Functional studies indicated no discernible effect on DNA damage sensitivity in patient lymphoblasts. These novel FANCA variants add evidence that heterozygous loss of one allele is insufficient to cause DNA damage sensitivity and POI. We propose that intragenic deletions, that are relatively common in FANCA, may be missed without careful analysis, and could explain the presumed causation of heterozygous variants. Accurate variant curation is critical to optimise patient care and outcomes.
Collapse
Affiliation(s)
- Elena J Tucker
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael F Sharp
- DNA Repair and Recombination Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
- The Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Victoria, Australia
| | - Anna Lokchine
- CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S1085, Univ Rennes, Rennes, France
- Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
| | - Katrina M Bell
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Bioinformatics, Murdoch Children's Research Institute, Victoria, Australia
| | - Catherine S Palmer
- Department of Biochemistry and Pharmacology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Brianna L Kline
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Gorjana Robevska
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Jocelyn van den Bergen
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Jérôme Dulon
- Department of Endocrinology and Reproductive Medicine, AP-HP, Sorbonne University, Paris, France
| | - Diana Stojanovski
- Department of Biochemistry and Pharmacology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Katie L Ayers
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Philippe Touraine
- Department of Endocrinology and Reproductive Medicine, AP-HP, Sorbonne University, Paris, France
| | - Wayne Crismani
- DNA Repair and Recombination Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Sylvie Jaillard
- CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S1085, Univ Rennes, Rennes, France
- Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
| | - Andrew H Sinclair
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Corredor B, Solís I, Zubicaray J, Sevilla J, Argente J. Small pituitary volume and central nervous system anomalies in Fanconi Anemia. Front Endocrinol (Lausanne) 2024; 15:1385650. [PMID: 39224124 PMCID: PMC11366589 DOI: 10.3389/fendo.2024.1385650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Fanconi anemia (FA) is a genomic instability disorder associated with congenital abnormalities, including short stature and the presence of central nervous system anomalies, especially in the hypothalamic-pituitary area. Thus, differences in pituitary size could associate with the short stature observed in these patients. Our aim was to evaluate whether central nervous system abnormalities and pituitary gland volume correlate with height and hormone deficiencies in these patients. Methods In this cross-sectional exploratory study 21 patients diagnosed with FA between 2017 and 2022 in a Spanish Reference Center were investigated. Magnetic resonance imaging (MRI) was performed and pituitary volume calculated and corelated with height and other endocrine parameters. Results The percentage of abnormalities in our series was 81%, with a small pituitary (pituitary volume less than 1 SD) being the most frequent, followed by Chiari malformation type 1. The median value of pituitary volume was -1.03 SD (IQR: -1.56, -0.36). Short stature was found in 66.7% [CI95% 43-85.4]. Total volume (mm3) increases significantly with age and in pubertal stages. There were no differences between volume SD and pubertal stage, or the presence of endocrine deficiencies. No correlations were found between pituitary volume and the presence of short stature. The intraclass correlation index (ICC) average for volume was 0.85 [CI95% 0.61-0.94] indicating a good-to-excellent correlation of measurements. Discussion Central nervous system anomalies are part of the FA phenotype, the most frequent after pituitary hypoplasia being posterior fossa abnormalities, which may have clinical repercussions in the patient. It is therefore necessary to identify those who could be candidates for neurosurgical intervention. The size of the pituitary gland is smaller in these patients, but this does not seem to be related to hormone deficiency and short stature or exposure to a low dose of total body irradiation.
Collapse
Affiliation(s)
- Beatriz Corredor
- Department of Pediatrics, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Department of Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Department of Pediatrics, Hospital Universitario de Toledo, Toledo, Spain
- Department of Pediatric Endocrinology, Hospital Universitario de Toledo, Toledo, Spain
| | - Inés Solís
- Department of Pediatric Radiology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Josune Zubicaray
- Department of Pediatric Hematology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Fundación de Investigación del Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Center for Biomedical Research on Rare Diseases Network (CIBERER), Madrid, Spain
| | - Julián Sevilla
- Department of Pediatric Hematology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Fundación de Investigación del Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Center for Biomedical Research on Rare Diseases Network (CIBERER), Madrid, Spain
| | - Jesús Argente
- Department of Pediatrics, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Department of Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Department of Pediatric Endocrinology, La Princesa Research Institute, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- IMDEA, Food Institute, CEIUAM+CSI, Madrid, Spain
| |
Collapse
|
4
|
Hoover A, Turcotte LM, Phelan R, Barbus C, Rayannavar A, Miller BS, Reardon EE, Theis-Mahon N, MacMillan ML. Longitudinal clinical manifestations of Fanconi anemia: A systematized review. Blood Rev 2024:101225. [PMID: 39107201 DOI: 10.1016/j.blre.2024.101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/09/2024]
Abstract
Fanconi anemia (FA) is a rare and complex inherited genetic disorder characterized by impaired DNA repair mechanisms leading to genomic instability. Individuals with FA have increased susceptibility to congenital anomalies, progressive bone marrow failure, leukemia and malignant tumors, endocrinopathies and other medical issues. In recent decades, steadily improved approaches to hematopoietic cell transplantation (HCT), the only proven curative therapy for the hematologic manifestations of FA, have significantly increased the life expectancy of affected individuals, illuminating the need to understand the long-term consequences and multi-organ ramifications. Utilizing a systematized review approach with narrative synthesis of each primary issue and organ system, we shed light on the challenges and opportunities for optimizing the care and quality of life for individuals with FA and identify knowledge gaps informing future research directions.
Collapse
Affiliation(s)
- Alex Hoover
- Division of Blood and Marrow Transplantation & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
| | - Lucie M Turcotte
- Division of Hematology and Oncology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Rachel Phelan
- Division of Hematology, Oncology, and Blood and Marrow Transplant, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Crystal Barbus
- Division of Endocrinology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Arpana Rayannavar
- Division of Endocrinology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Bradley S Miller
- Division of Endocrinology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Erin E Reardon
- Woodruff Health Sciences Center Library, Emory University, Atlanta, GA, USA
| | | | - Margaret L MacMillan
- Division of Blood and Marrow Transplantation & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
5
|
Zhao J, Zhang Y, Li W, Yao M, Liu C, Zhang Z, Wang C, Wang X, Meng K. Research progress of the Fanconi anemia pathway and premature ovarian insufficiency†. Biol Reprod 2023; 109:570-585. [PMID: 37669135 DOI: 10.1093/biolre/ioad110] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/25/2023] [Accepted: 09/02/2023] [Indexed: 09/07/2023] Open
Abstract
The Fanconi anemia pathway is a key pathway involved in the repair of deoxyribonucleic acidinterstrand crosslinking damage, which chiefly includes the following four modules: lesion recognition, Fanconi anemia core complex recruitment, FANCD2-FANCI complex monoubiquitination, and downstream events (nucleolytic incision, translesion synthesis, and homologous recombination). Mutations or deletions of multiple Fanconi anemia genes in this pathway can damage the interstrand crosslinking repair pathway and disrupt primordial germ cell development and oocyte meiosis, thereby leading to abnormal follicular development. Premature ovarian insufficiency is a gynecological clinical syndrome characterized by amenorrhea and decreased fertility due to decreased oocyte pool, accelerated follicle atresia, and loss of ovarian function in women <40 years old. Furthermore, in recent years, several studies have detected mutations in the Fanconi anemia gene in patients with premature ovarian insufficiency. In addition, some patients with Fanconi anemia exhibit symptoms of premature ovarian insufficiency and infertility. The Fanconi anemia pathway and premature ovarian insufficiency are closely associated.
Collapse
Affiliation(s)
- Jingyu Zhao
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Yixin Zhang
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Wenbo Li
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Mengmeng Yao
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Chuqi Liu
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Zihan Zhang
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Caiqin Wang
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Xiaomei Wang
- College of Basic Medicine, Jining Medical University, Jining, China
| | - Kai Meng
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| |
Collapse
|
6
|
Koo J, Grom-Mansencal I, Howell JC, Rios JM, Mehta PA, Davies SM, Myers KC. Gonadal function in pediatric Fanconi anemia patients treated with hematopoietic stem cell transplant. Haematologica 2023; 108:2358-2368. [PMID: 36891729 PMCID: PMC10483354 DOI: 10.3324/haematol.2022.282094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/24/2023] [Indexed: 03/10/2023] Open
Abstract
Gonadal dysfunction and reduced fertility are clinical manifestations well described in patients with Fanconi anemia (FA) and following hematopoietic stem cell transplantation (HSCT). It is difficult to differentiate gonadal dysfunction from the primary disease itself or from HSCT procedures. Therefore, it is important to manage expectations about gonadal failure and infertility for all patients with FA, regardless of the HSCT status. We performed a retrospective analysis of 98 pediatric patients with FA who were transplanted between July 1990 and June 2020 to evaluate the incidence of gonadal dysfunction in female and male patients with FA. New-onset premature ovarian insufficiency (POI) was diagnosed in a total of 30 (52.6%) patients. Follicle-stimulating hormone and luteinizing hormone levels were increased in patients diagnosed with POI. Anti- Mullerian hormone levels declined in POI patients after HSCT (r2=0.21; P=0.001). Twenty (48.8%) male patients were diagnosed with testicular failure. Follicle-stimulating hormone levels increased after HSCT even in patients without testicular failure (r2=0.17; P=0.005). Inhibin B levels decreased over time after HSCT in patients with testicular failure (r2=0.14; P=0.001). These data indicate brisk decline in already impaired gonadal function in transplanted children with FA.
Collapse
Affiliation(s)
- Jane Koo
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH.
| | | | - Jonathan C Howell
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Julie M Rios
- Division of Reproductive Endocrinology and Infertility, University of Pittsburgh, Pittsburgh, PA
| | - Parinda A Mehta
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Stella M Davies
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Kasiani C Myers
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
7
|
Elias KM, Ng NW, Dam KU, Milne A, Disler ER, Gockley A, Holub N, Seshan ML, Church GM, Ginsburg ES, Anchan RM. Fertility restoration in mice with chemotherapy induced ovarian failure using differentiated iPSCs. EBioMedicine 2023; 94:104715. [PMID: 37482511 PMCID: PMC10435842 DOI: 10.1016/j.ebiom.2023.104715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND Treatment options for premature ovarian insufficiency (POI) are limited to hormone replacement and donor oocytes. A novel induced pluripotent stem cell (iPSC) transplant paradigm in a mouse model has potential translational applications for management of POI. METHODS Mouse ovarian granulosa cell derived-iPSCS were labelled with green fluorescent protein (GFP) reporter and differentiated in vitro into oocytes. Differentiated cells were assayed for estradiol and progesterone secretion by enzyme-linked immunosorbent assays. After Fluorescence-Activated Cell Sorting (FACS) for the cell surface marker anti-Mullerian hormone receptor (AMHR2), enriched populations of differentiated cells were surgically transplanted into ovaries of mice that had POI secondary to gonadotoxic pre-treatment with alkylating agents. A total of 100 mice were used in these studies in five separate experiments with 56 animals receiving orthotopic ovarian injections of either FACS sorted or unsorted differentiated iPSCSs and the remaining animals receiving sham injections of PBS diluent. Following transplantation surgery, mice were stimulated with gonadotropins inducing oocyte development and underwent oocyte retrieval. Nine transplanted mice were cross bred with wild-type mice to assess fertility. Lineage tracing of resultant oocytes, F1 (30 pups), and F2 (42 pups) litters was interrogated by GFP expression and validation by short tandem repeat (STR) lineage tracing. FINDINGS [1] iPSCs differentiate into functional oocytes and steroidogenic ovarian cells which [2] express an ovarian (GJA1) and germ cell (ZP1) markers. [3] Endocrine function and fertility were restored in mice pretreated with gonadotoxic alkylating agents via orthotopic transplantation of differentiated iPSCS, thus generating viable, fertile mouse pups. INTERPRETATION iPSC-derived ovarian tissue can reverse endocrine and reproductive sequelae of POI. FUNDING Center for Infertility and Reproductive Surgery Research Award, Siezen Foundation award (RMA). Reproductive Scientist Development Program, Marriott Foundation, Saltonstall Foundation, Brigham Ovarian Cancer Research Fund (K.E).
Collapse
Affiliation(s)
- Kevin M Elias
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Nicholas W Ng
- Division of Reproductive Endocrinology and Infertility, Center for Infertility and Reproductive Surgery, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Kh U Dam
- Division of Reproductive Endocrinology and Infertility, Center for Infertility and Reproductive Surgery, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Ankrish Milne
- Division of Reproductive Endocrinology and Infertility, Center for Infertility and Reproductive Surgery, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Emily R Disler
- Division of Reproductive Endocrinology and Infertility, Center for Infertility and Reproductive Surgery, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Alison Gockley
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Nicole Holub
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Maya L Seshan
- Division of Reproductive Endocrinology and Infertility, Center for Infertility and Reproductive Surgery, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Elizabeth S Ginsburg
- Division of Reproductive Endocrinology and Infertility, Center for Infertility and Reproductive Surgery, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Raymond M Anchan
- Division of Reproductive Endocrinology and Infertility, Center for Infertility and Reproductive Surgery, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA.
| |
Collapse
|
8
|
He R, Fan Q, Li Y, Zhu Q, Hu D, Du J, Xing Y, Li H, Liang X, Yang Y. Identification of Common and Specific Genes Involved in Mouse Models of Age-Related and Cyclophosphamide-Induced Diminished Ovarian Reserve. Reprod Sci 2022; 30:1965-1978. [PMID: 36587055 DOI: 10.1007/s43032-022-01161-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/22/2022] [Indexed: 01/02/2023]
Abstract
Diminished ovarian reserve (DOR) is an etiologically heterogeneous disorder that usually leads to poor reproductive outcomes. Does a specific or common pathogenesis exist for DOR subtypes with different etiologies? Two frequently used mouse models, age-related DOR (AR-DOR) and cyclophosphamide (CTX)-induced DOR (CTX-DOR), were successfully established, and RNA sequencing was performed on ovarian tissue samples. Differentially expressed genes (DEGs) in each subtype and common DEGs (co-DEGs) in the two subtypes were identified. Subsequently, we performed comprehensive bioinformatics analyses, including an evaluation of immune cell infiltration. Finally, the genes of interest were further validated by performing RT-qPCR and immunohistochemistry. In AR-DOR mice, functional enrichment analyses showed that upregulated DEGs were mainly involved in the inflammatory/immune response, while downregulated DEGs were involved in DNA damage repair. In CTX-DOR mice, the inflammatory/immune response and cell apoptosis played significant roles. Meanwhile, 406 co-DEGs were identified from the two models. The biological functions of these co-DEGs were associated with inflammatory/immune responses. The analysis of immune cell infiltration showed reduced infiltration of Treg cells, as well as increased infiltration of M0 macrophages, NK resting, and T cells CD4 follicular in both DOR subtypes. The results of the validation experiments were consistent with the RNA sequencing data. In conclusion, the inflammatory/immune response might be the common pathogenesis for the two DOR subtypes, while DNA repair and cell apoptosis may have different roles in the two subtypes. These results may provide potential insights for mechanistic research and therapeutic targets of DOR.
Collapse
Affiliation(s)
- Ruifen He
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Qigang Fan
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Yi Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Qinying Zhu
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Dan Hu
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Junhong Du
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Yijuan Xing
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Hongli Li
- Department of Obstetrics and Gynecology, Key Laboratory for Gynecologic Oncology Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaolei Liang
- Department of Obstetrics and Gynecology, Key Laboratory for Gynecologic Oncology Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China.
| | - Yongxiu Yang
- Department of Obstetrics and Gynecology, Key Laboratory for Gynecologic Oncology Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China.
| |
Collapse
|
9
|
Fiesco-Roa MÓ, García-de Teresa B, Leal-Anaya P, van ‘t Hek R, Wegman-Ostrosky T, Frías S, Rodríguez A. Fanconi anemia and dyskeratosis congenita/telomere biology disorders: Two inherited bone marrow failure syndromes with genomic instability. Front Oncol 2022; 12:949435. [PMID: 36091172 PMCID: PMC9453478 DOI: 10.3389/fonc.2022.949435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Inherited bone marrow failure syndromes (IBMFS) are a complex and heterogeneous group of genetic diseases. To date, at least 13 IBMFS have been characterized. Their pathophysiology is associated with germline pathogenic variants in genes that affect hematopoiesis. A couple of these diseases also have genomic instability, Fanconi anemia due to DNA damage repair deficiency and dyskeratosis congenita/telomere biology disorders as a result of an alteration in telomere maintenance. Patients can have extramedullary manifestations, including cancer and functional or structural physical abnormalities. Furthermore, the phenotypic spectrum varies from cryptic features to patients with significantly evident manifestations. These diseases require a high index of suspicion and should be considered in any patient with abnormal hematopoiesis, even if extramedullary manifestations are not evident. This review describes the disrupted cellular processes that lead to the affected maintenance of the genome structure, contrasting the dysmorphological and oncological phenotypes of Fanconi anemia and dyskeratosis congenita/telomere biology disorders. Through a dysmorphological analysis, we describe the phenotypic features that allow to make the differential diagnosis and the early identification of patients, even before the onset of hematological or oncological manifestations. From the oncological perspective, we analyzed the spectrum and risks of cancers in patients and carriers.
Collapse
Affiliation(s)
- Moisés Ó. Fiesco-Roa
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México, Mexico
- Maestría y Doctorado en Ciencias Médicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Ciudad de México, Mexico
| | | | - Paula Leal-Anaya
- Departamento de Genética Humana, Instituto Nacional de Pediatría, Ciudad de México, Mexico
| | - Renée van ‘t Hek
- Facultad de Medicina, Universidad Nacional Autoínoma de Meíxico (UNAM), Ciudad Universitaria, Ciudad de México, Mexico
| | - Talia Wegman-Ostrosky
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| | - Sara Frías
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México, Mexico
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- *Correspondence: Alfredo Rodríguez, ; Sara Frías,
| | - Alfredo Rodríguez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Unidad de Genética de la Nutrición, Instituto Nacional de Pediatría, Ciudad de México, Mexico
- *Correspondence: Alfredo Rodríguez, ; Sara Frías,
| |
Collapse
|
10
|
Sun H, Jiao J, Tian F, Liu Q, Bian J, Xu R, Li D, Wang X, Shu H. Ovarian reserve and IVF outcomes in patients with inflammatory bowel disease: A systematic review and meta-analysis. EClinicalMedicine 2022; 50:101517. [PMID: 35812999 PMCID: PMC9257324 DOI: 10.1016/j.eclinm.2022.101517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 11/22/2022] Open
Abstract
Background Inflammatory bowel disease (IBD) mainly affects people during reproductive age. However, it is unclear whether IBD might be associated with impaired ovarian reserve in female patients or with in vitro fertilization (IVF) outcomes. Methods This systematic review and meta-analysis included articles from inception to May, 2022. Random-effect model was applied to calculate the standardized mean differences (SMDs) and odds ratios (ORs) and their 95% confidence intervals (95%CIs). Studies comparing the ovarian reserve or IVF outcomes of patients with IBD with the population were considered. To be included in this study, necessary measurements such as OR, relative risk (RR), SMD or hazard ratio (HR) or any necessary information to calculate them were provided in the articles. Letters, case reports, review articles including meta-analyses and expert opinions were excluded. For different articles studying the same population, the article with larger scale was selected. Findings We included in our analysis 9 studies and data from 2386 IBD records and matched controls. Comparing with women without IBD, women with IBD had lower anti-mullerian hormone (AMH) levels (SMD = -0.38, 95%CI: -0.67, -0.09); (I2 = 79.0%, p = 0.000). Patients with IBD of different ages showed distinct ovarian reserves, with patients below 30 years old not showing any decline in ovarian reserve compared to the control group (SMD = -0.56, 95%CI: -2.28, 1.16); (I2 = 96.3%; p = 0.000), while patients with IBD over 30 years old (SMD = -0.75, 95%CI: -1.07, -0.43); (I2 = 0.0%; p = 0.608) showed a decline compared to control group. Patients with IBD in remission stage had similar ovarian reserves to population (SMD = -0.10, 95%CI: -0.32, 0.12); (I2 = 0.0%; p = 0.667), while patients in active stage showed an impaired ovarian reserve (SMD = -1.30, 95%CI: -1.64, -0.96); (I2 = 0.0%; p = 0.318). Patients with IBD showed a pregnancy rate after receiving IVF treatment comparable to the control population (OR = 0.87, 95%CI: 0.55, 1.37); (I2 = 70.1%, p = 0.035). Interpretation The result of this study suggest that IBD may reduce reproductive age women's ovarian reserve and IVF treatment might help pregnancy outcomes in patients with impaired fertility. These results should be further validated in additional studies given the heterogeneity and quality of the studies included. Funding This study was supported by the National Natural Science Foundation of China (No. 81671423), National Key Research and Development Program of China (No. 2016YFC1000603), 2020 Shenyang Science and Technology Plan Program (No. 20-205-4-006), Scientific and Technological Talents Applied Technology Research Program of Shenyang (No. 18-014-4-56).
Collapse
Affiliation(s)
- Honghao Sun
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Shenyang Reproductive Health Clinical Medicine Research Center, Shenyang, China
| | - Jiao Jiao
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Shenyang Reproductive Health Clinical Medicine Research Center, Shenyang, China
| | - Feng Tian
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jiansu Bian
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Shenyang Reproductive Health Clinical Medicine Research Center, Shenyang, China
| | - Rongmin Xu
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Da Li
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Shenyang Reproductive Health Clinical Medicine Research Center, Shenyang, China
| | - Xiuxia Wang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Shenyang Reproductive Health Clinical Medicine Research Center, Shenyang, China
| | - Hong Shu
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
11
|
Vanni VS, Campo G, Cioffi R, Papaleo E, Salonia A, Viganò P, Lambertini M, Candiani M, Meirow D, Orvieto R. The neglected members of the family: non-BRCA mutations in the Fanconi anemia/BRCA pathway and reproduction. Hum Reprod Update 2022; 28:296-311. [PMID: 35043201 DOI: 10.1093/humupd/dmab045] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/27/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND BReast CAncer (BRCA) genes are extensively studied in the context of fertility and reproductive aging. BRCA proteins are part of the DNA repair Fanconi anemia (FA)/BRCA pathway, in which more than 20 proteins are implicated. According to which gene is mutated and which interactions are lost owing to the mutation, carriers and patients with monoallelic or biallelic FA/BRCA mutations exhibit very different phenotypes, from overt FA to cancer predisposition or no pathological implications. The effect of the so far neglected non-BRCA FA mutations on fertility also deserves consideration. OBJECTIVE AND RATIONALE As improved treatments allow a longer life expectancy in patients with biallelic FA mutations and overt FA, infertility is emerging as a predominant feature. We thus reviewed the mechanisms for such a manifestation, as well as whether they also occur in monoallelic carriers of FA non-BRCA mutations. SEARCH METHODS Electronic databases PUBMED, EMBASE and CENTRAL were searched using the following term: 'fanconi' OR 'FANC' OR 'AND' 'fertility' OR 'pregnancy' OR 'ovarian reserve' OR 'spermatogenesis' OR 'hypogonadism'. All pertinent reports in the English-language literature were retrieved until May 2021 and the reference lists were systematically searched in order to identify any potential additional studies. OUTCOMES Biallelic FA mutations causing overt FA disease are associated with premature ovarian insufficiency (POI) occurring in the fourth decade in women and with primary non-obstructive azoospermia (NOA) in men. Hypogonadism in FA patients seems mainly associated with a defect in primordial germ cell proliferation in fetal life. In recent small, exploratory whole-exome sequencing studies, biallelic clinically occult mutations in the FA complementation group A (Fanca) and M (Fancm) genes were found in otherwise healthy patients with isolated NOA or POI, and also monoallelic carrier status for a loss-of-function mutation in Fanca has been implicated as a possible cause for POI. In those patients with known monoallelic FA mutations undergoing pre-implantation genetic testing, poor assisted reproduction outcomes are reported. However, the mechanisms underlying the repeated failures and the high miscarriage rates observed are not fully known. WIDER IMPLICATIONS The so far 'neglected' members of the FA/BRCA family will likely emerge as a relevant focus of investigation in the genetics of reproduction. Several (rather than a single) non-BRCA genes might be implicated. State-of-the-art methods, such as whole-genome/exome sequencing, and further exploratory studies are required to understand the prevalence and mechanisms for occult FA mutations in infertility and recurrent miscarriage.
Collapse
Affiliation(s)
- Valeria Stella Vanni
- Università Vita-Salute San Raffaele, Milan, Italy.,Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Raffaella Cioffi
- Università Vita-Salute San Raffaele, Milan, Italy.,Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Enrico Papaleo
- Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Salonia
- Università Vita-Salute San Raffaele, Milan, Italy.,Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paola Viganò
- Reproductive Sciences Laboratory, Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Lambertini
- Department of Medical Oncology, U.O.C Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genova, Italy
| | - Massimo Candiani
- Università Vita-Salute San Raffaele, Milan, Italy.,Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Dror Meirow
- Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
| | - Raoul Orvieto
- Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| |
Collapse
|
12
|
Giri N, Alter BP, Savage SA, Stratton P. Gynaecological and reproductive health of women with telomere biology disorders. Br J Haematol 2021; 193:1238-1246. [PMID: 34019708 DOI: 10.1111/bjh.17545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/18/2021] [Indexed: 12/19/2022]
Abstract
Reproductive health may be adversely impacted in women with dyskeratosis congenita (DC) and related telomere biology disorders (TBD). We evaluated gynaecological problems, fertility, and pregnancy outcomes in 39 females aged 10-81 years who were followed longitudinally in our DC/TBD cohort. Twenty-six had bone marrow failure and 12 underwent haematopoietic cell transplantation. All attained menarche at a normal age. Thirteen women reported menorrhagia; ten used hormonal contraception to reduce bleeding. Nine experienced natural normal-aged menopause. Gynaecological problems (endometriosis = 3, pelvic varicosities = 1, cervical intraepithelial neoplasia = 1, and uterine prolapse = 2) resulted in surgical menopause in seven. Twenty-five of 26 women attempting fertility carried 80 pregnancies with 49 (61%) resulting in livebirths. Ten (38%) women experienced 28 (35%) miscarriages, notably recurrent pregnancy loss in five (19%). Preeclampsia (n = 6, 24%) and progressive cytopenias (n = 10, 40%) resulted in maternal-fetal compromise, including preterm (n = 5) and caesarean deliveries (n = 18, 37%). Gynaecological/reproductive problems were noted mainly in women with autosomal-dominant inheritance; others were still young or died early. Although women with TBDs had normal menarche, fertility, and menopause, gynaecological problems and pregnancy complications leading to caesarean section, preterm delivery, or transfusion support were frequent. Women with TBDs will benefit from multidisciplinary, coordinated care by haematology, gynaecology and maternal-fetal medicine.
Collapse
Affiliation(s)
- Neelam Giri
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Blanche P Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Pamela Stratton
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.,Program in Reproductive and Adult Endocrinology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
13
|
Matar CF, Bou-Fakhredin R, Russo R, Andolfo I, Iolascon A, Taher AT. Recommendations for pregnancy in Fanconi anemia. Expert Opin Biol Ther 2021; 21:1403-1409. [PMID: 33798394 DOI: 10.1080/14712598.2021.1913119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Fanconi anemia (FA) is a rare congenital disease that belongs to the family of congenital trilinear bone marrow failure. Most FA patients will suffer bone marrow failure and the main treatment relies on supportive measures or more recently on the use of hematopoietic stem cell transplant. The improvements seen in the management of FA has led women to reach childbearing age and have successful pregnancies. However, these pregnancies are associated with increased complications such as preterm delivery, cesarean delivery, eclampsia and others.Areas covered: This review highlights on the outcome of pregnancies in FA patients reported in the literature along with practical recommendations.Expert opinion: Multidisciplinary efforts are required to optimize the management of pregnancy in FA patients. Moreover, the development of a set of recommendations to optimize the treatment is highly necessary.
Collapse
Affiliation(s)
- Charbel F Matar
- Division of Hematology and Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Rayan Bou-Fakhredin
- Division of Hematology and Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Roberta Russo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,CEINGE Advanced Biotechnology, Naples, Italy
| | - Immacolata Andolfo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,CEINGE Advanced Biotechnology, Naples, Italy
| | - Achille Iolascon
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,CEINGE Advanced Biotechnology, Naples, Italy
| | - Ali T Taher
- Division of Hematology and Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
14
|
Rizza ERH, DiGiovanna JJ, Khan SG, Tamura D, Jeskey JD, Kraemer KH. Xeroderma Pigmentosum: A Model for Human Premature Aging. J Invest Dermatol 2021; 141:976-984. [PMID: 33436302 DOI: 10.1016/j.jid.2020.11.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 12/19/2022]
Abstract
Aging results from intrinsic changes (chronologic) and damage from external exposures (extrinsic) on the human body. The skin is ideal to visually differentiate their unique features. Inherited diseases of DNA repair, such as xeroderma pigmentosum (XP), provide an excellent model for human aging due to the accelerated accumulation of DNA damage. Poikiloderma, atypical lentigines, and skin cancers, the primary cutaneous features of XP, occur in the general population but at a much older age. Patients with XP also exhibit ocular changes secondary to premature photoaging, including ocular surface tumors and pterygium. Internal manifestations of premature aging, including peripheral neuropathy, progressive sensorineural hearing loss, and neurodegeneration, are reported in 25% of patients with XP. Internal malignancies, such as lung cancer, CNS tumors, and leukemia and/or lymphoma, occur at a younger age in patients with XP, as do thyroid nodules. Premature ovarian failure is overrepresented among females with XP, occurring 20 years earlier than in the general population. Taken together, these clinical findings highlight the importance of DNA repair in maintaining genomic integrity. XP is a unique model of human premature aging, which is revealing new insights into aging mechanisms.
Collapse
Affiliation(s)
- Elizabeth R H Rizza
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - John J DiGiovanna
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sikandar G Khan
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Deborah Tamura
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jack D Jeskey
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; Medical Research Scholar Program, National Institutes of Health, Bethesda, Maryland, USA
| | - Kenneth H Kraemer
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
15
|
García-de-Teresa B, Rodríguez A, Frias S. Chromosome Instability in Fanconi Anemia: From Breaks to Phenotypic Consequences. Genes (Basel) 2020; 11:E1528. [PMID: 33371494 PMCID: PMC7767525 DOI: 10.3390/genes11121528] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022] Open
Abstract
Fanconi anemia (FA), a chromosomal instability syndrome, is caused by inherited pathogenic variants in any of 22 FANC genes, which cooperate in the FA/BRCA pathway. This pathway regulates the repair of DNA interstrand crosslinks (ICLs) through homologous recombination. In FA proper repair of ICLs is impaired and accumulation of toxic DNA double strand breaks occurs. To repair this type of DNA damage, FA cells activate alternative error-prone DNA repair pathways, which may lead to the formation of gross structural chromosome aberrations of which radial figures are the hallmark of FA, and their segregation during cell division are the origin of subsequent aberrations such as translocations, dicentrics and acentric fragments. The deficiency in DNA repair has pleiotropic consequences in the phenotype of patients with FA, including developmental alterations, bone marrow failure and an extreme risk to develop cancer. The mechanisms leading to the physical abnormalities during embryonic development have not been clearly elucidated, however FA has features of premature aging with chronic inflammation mediated by pro-inflammatory cytokines, which results in tissue attrition, selection of malignant clones and cancer onset. Moreover, chromosomal instability and cell death are not exclusive of the somatic compartment, they also affect germinal cells, as evidenced by the infertility observed in patients with FA.
Collapse
Affiliation(s)
- Benilde García-de-Teresa
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico;
- Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Alfredo Rodríguez
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico;
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Sara Frias
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico;
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
16
|
Yan Y, Chen W, Wang J, Huang J, Lv J, Zhao H, Guo L. Serum anti-Müllerian hormone levels are associated with low bone mineral density in premenopausal women. Biomarkers 2020; 25:693-700. [PMID: 33025829 DOI: 10.1080/1354750x.2020.1833083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To investigate the associations between anti-Müllerian hormone (AMH) and bone mineral density (BMD) induced by ovarian insufficiency in premenopausal women. METHODS Subjects were consecutively enrolled from January 2015 to December 2018. Dual energy X-ray absorptiometry (DXA) examination was set as the gold standard, with T-scores less than -2.5/1 as thresholds for the definition of osteoporosis (OP)/osteopenia. RESULTS A total of 87 subjects were included in the low BMD group, and 39 subjects were included in the control group. Serum AMH levels were decreased significantly in the low BMD group (p < 0.05) with a negative correlation between AMH and age. Strong positive correlations between AMH and BMD/T-score existed in all subjects and subjects with low BMD, and remained even after age adjustment. An exploratory multivariate regression model indicated that age and AMH remained predictive and might be independent risk factors with adjusted odds ratios (ORs) of 0.9 (p = 0.009) and 36 (p < 0.001), respectively. The receiver operating characteristic (ROC) curve analysis estimated that the sensitivity and specificity were 78.2 and 76.9%, respectively, for identifying low BMD subjects from controls when the cut-off value for AMH was set to 0.800 ng/mL. CONCLUSIONS Serum AMH levels are associated with low BMD in premenopausal women with suspected ovarian insufficiency.
Collapse
Affiliation(s)
- Yuzhu Yan
- Department of Clinical Laboratory, Honghui Hospital, Xi'an Jiaotong University, Xi'an, PR China
| | - Wei Chen
- Department of Clinical Laboratory, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Jihan Wang
- Department of Clinical Laboratory, Honghui Hospital, Xi'an Jiaotong University, Xi'an, PR China
| | - Jing Huang
- Department of Clinical Pharmacy, Honghui Hospital, Xi'an Jiaotong University, Xi'an, PR China
| | - Jing Lv
- Department of Clinical Laboratory, Honghui Hospital, Xi'an Jiaotong University, Xi'an, PR China
| | - Heping Zhao
- Department of Clinical Laboratory, Honghui Hospital, Xi'an Jiaotong University, Xi'an, PR China
| | - Lei Guo
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, PR China
| |
Collapse
|
17
|
Abstract
OBJECTIVE To assess the age at menarche and menopause of women with xeroderma pigmentosum, a DNA repair disease with premature aging, in a longitudinal natural history study. METHODS We conducted a natural history study that reviewed medical records for gynecologic and reproductive health of all female patients with xeroderma pigmentosum aged older than 9 years examined at the National Institutes of Health (NIH). We performed gynecologic and laboratory examinations on a subset of the patients. Women in a second subset, who could not be examined, were interviewed using a questionnaire. Women who were deceased or lost to follow-up formed a third subset. RESULTS Sixty females with xeroderma pigmentosum aged older than 9 years (median 29 years, range 10-61 years) were evaluated at the NIH from 1971 to 2018. Of these 60, 31 had history, questionnaire, record review, and gynecologic evaluation; 14 had record review and questionnaire interview by telephone; and 15 had only NIH record review. Menarche in females with xeroderma pigmentosum occurred at a median age of 12.0 years (range 9-17 years), which was comparable with the U.S. general population. Among the 18 patients with menopause, the median age at menopause of 29.5 years (range 18-49.5 years) was more than 20 years younger than in the U.S. general population (52.9 years). Premature menopause (before age 40 years) occurred in 14 of the 45 (31%) women aged 18 years or older, and primary ovarian insufficiency was documented in nine of them. There were 32 live births among 21 of the women, five of whom subsequently developed premature menopause. CONCLUSION Females with xeroderma pigmentosum in our study had a normal age at menarche and were fertile but had increased incidence of premature menopause. Premature menopause, a symptom of premature aging, should be considered for gynecologic and reproductive health as well as implicating DNA repair in maintaining normal ovarian function. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov, NCT00001813.
Collapse
|
18
|
Merideth MA, Harney LA, Vyas N, Bachi A, Carr AG, Hill DA, Dehner LP, Schultz KAP, Stewart DR, Stratton P. Gynecologic and reproductive health in patients with pathogenic germline variants in DICER1. Gynecol Oncol 2020; 156:647-653. [PMID: 31952842 DOI: 10.1016/j.ygyno.2019.12.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Germline pathogenic variation in DICER1 underlies a tumor-predisposition disorder with increased risk for cervical embryonal rhabdomyosarcoma and ovarian sex-cord stromal tumors, particularly Sertoli-Leydig cell tumors. The gynecologic and reproductive health of these females has not yet been described. METHODS All female subjects recruited from November 2011 to July 2018 participating in an epidemiologic study of families with pathogenic DICER1 germline variation were included in this cross-sectional analysis. Participant evaluation included obstetric-gynecologic history, physical examination, hormone testing, pelvic ultrasound and record review. RESULTS Of 64 females aged 2-72 years, fifteen underwent treatment for pleuropulmonary blastoma as children and three were treated for cervical embryonal rhabdomyosarcoma. Of nine patients reporting a history of ovarian tumors, all presented with virilization or amenorrhea; eight occurred in adolescence. Post-pubertal females with no history of ovarian tumors experienced normal pubertal development, reported regular menstrual cycles, were fertile and underwent natural menopause at median age of 52 years. Thirty-two of 33 women who tried to conceive successfully delivered liveborn children. Of these 32, 10 experienced pregnancy-related thyroid enlargement resulting in thyroidectomy within one year of pregnancy; nine others had undergone pre-pregnancy thyroidectomy. CONCLUSION In these DICER1-carrier females, DICER1-related gynecological tumors occurred during childhood or adolescence in some after which women generally experienced healthy reproductive lives. Individual education and screening for these tumors is warranted. The high rate of DICER1-related multinodular goiter resulting in pre- and post-pregnancy thyroidectomy underscores the importance of thyroid monitoring during pregnancy to ensure maternal and fetal wellbeing.
Collapse
Affiliation(s)
- Melissa A Merideth
- National Human Genome Research Institute, National Institutes of Health, Dpt. Health & Human Services, Bethesda, MD 20892, USA.
| | | | - Nina Vyas
- Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Averyl Bachi
- Department of Obstetrics and Gynaecology, Royal Surrey County Hospital, Guildford GU2 7XX, United Kingdom
| | | | - D Ashley Hill
- Department of Pathology, Center for Cancer and Immunology Research, Children's National Medical Center, Washington, D.C. 20010, USA; International Pleuropulmonary Blastoma/DICER1 Registry, Children's Minnesota, Minneapolis, MN 55404, USA; International Ovarian and Testicular Stromal Tumor Registry, Children's Minnesota, Minneapolis, MN 55404, USA
| | - Louis P Dehner
- Division of Anatomic and Molecular Pathology, Lauren V. Ackerman Laboratory of Surgical Pathology, Barnes-Jewish and St. Louis Children's Hospitals, Washington University Medical Center, St. Louis, MO 63110, USA
| | - Kris Ann P Schultz
- International Pleuropulmonary Blastoma/DICER1 Registry, Children's Minnesota, Minneapolis, MN 55404, USA; International Ovarian and Testicular Stromal Tumor Registry, Children's Minnesota, Minneapolis, MN 55404, USA; Cancer and Blood Disorders Program, Children's Minnesota, Minneapolis, MN 55404, USA
| | - Douglas R Stewart
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20850, USA
| | - Pamela Stratton
- Office of the Clinical Director, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
19
|
Murphy J, McKenna M, Abdelazim S, Battiwalla M, Stratton P. A Practical Guide to Gynecologic and Reproductive Health in Women Undergoing Hematopoietic Stem Cell Transplant. Biol Blood Marrow Transplant 2019; 25:e331-e343. [PMID: 31394266 DOI: 10.1016/j.bbmt.2019.07.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/15/2019] [Accepted: 07/30/2019] [Indexed: 12/25/2022]
Abstract
Optimum care of female transplant recipients requires gynecologic care at several stages through the allogeneic hematopoietic stem cell transplantation (HCT) process. Sex-based considerations in women post-HCT span gynecologic sequelae of transplant along with assessment and maintenance of optimal sexual and gynecologic health. Pre-HCT, managing menstruation and abnormal uterine or genital bleeding, considering fertility preservation, and assessing for sexually transmitted infections, including human papillomavirus (HPV)-related disease and cervical cancer, enhance women's health. While inpatient during transplant when women are thrombocytopenic, menstrual bleeding requires suppression. Whenever graft-versus-host disease (GVHD) is assessed, screening for genital GVHD merits consideration. After the first 100 days, periodic assessments include obtaining a menstrual history, assessing ovarian function, and reviewing current hormonal use and contraindications to hormonal methods. Regular assessment for primary ovarian insufficiency, dyspareunia, and intimacy guides provision of contraception and hormone replacement options. As part of ongoing screening for genital GVHD and HPV-related disease, including sexually transmitted infections, periodic pelvic examinations are performed. Once successful long-term survival is achieved, planning for fertility may be considered. This article offers a comprehensive approach to these aspects of gynecologic care of patients throughout the trajectory of HCT and beyond into survivorship. We review the effects of HCT treatment on sexual health, ovarian function, and resulting menstrual changes and fertility challenges. Identification, treatment, and prevention of subsequent malignancies, including breast cancer, are discussed, with a focus on regular assessment of genital HPV disease and GVHD in long-term follow-up.
Collapse
Affiliation(s)
- Jeanne Murphy
- George Washington University School of Nursing, Washington, District of Columbia.
| | - Mary McKenna
- Loyola University Medical Center, Maywood, Illinois; NIH Clinical Center, Bethesda, Maryland
| | - Suzanne Abdelazim
- NIH Clinical Center, Bethesda, Maryland; Riverside Regional Medical Center, Newport News, Virginia
| | | | - Pamela Stratton
- Office of the Clinical Director, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
20
|
Hill RJ, Crossan GP. DNA cross-link repair safeguards genomic stability during premeiotic germ cell development. Nat Genet 2019; 51:1283-1294. [PMID: 31367016 PMCID: PMC6675612 DOI: 10.1038/s41588-019-0471-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/24/2019] [Indexed: 11/09/2022]
Abstract
Germline de novo mutations are the basis of evolutionary diversity but also of genetic disease. However, the molecular origin, mechanisms and timing of germline mutagenesis are not fully understood. Here, we define a fundamental role for DNA interstrand cross-link repair in the germline. This repair process is essential for primordial germ cell (PGC) maturation during embryonic development. Inactivation of cross-link repair leads to genetic instability that is restricted to PGCs within the genital ridge during a narrow temporal window. Having successfully activated the PGC transcriptional program, a potent quality control mechanism detects and drives damaged PGCs into apoptosis. Therefore, these findings define a source of DNA damage and the nature of the subsequent DNA repair response in germ cells, which ensures faithful transmission of the genome between generations.
Collapse
Affiliation(s)
- Ross J Hill
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | |
Collapse
|
21
|
Weinberg-Shukron A, Rachmiel M, Renbaum P, Gulsuner S, Walsh T, Lobel O, Dreifuss A, Ben-Moshe A, Zeligson S, Segel R, Shore T, Kalifa R, Goldberg M, King MC, Gerlitz O, Levy-Lahad E, Zangen D. Essential Role of BRCA2 in Ovarian Development and Function. N Engl J Med 2018; 379:1042-1049. [PMID: 30207912 PMCID: PMC6230262 DOI: 10.1056/nejmoa1800024] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The causes of ovarian dysgenesis remain incompletely understood. Two sisters with XX ovarian dysgenesis carried compound heterozygous truncating mutations in the BRCA2 gene that led to reduced BRCA2 protein levels and an impaired response to DNA damage, which resulted in chromosomal breakage and the failure of RAD51 to be recruited to double-stranded DNA breaks. The sisters also had microcephaly, and one sister was in long-term remission from leukemia, which had been diagnosed when she was 5 years old. Drosophila mutants that were null for an orthologue of BRCA2 were sterile, and gonadal dysgenesis was present in both sexes. These results revealed a new role for BRCA2 and highlight the importance to ovarian development of genes that are critical for recombination during meiosis. (Funded by the Israel Science Foundation and others.).
Collapse
Affiliation(s)
- Ariella Weinberg-Shukron
- From the Medical Genetics Institute, Shaare Zedek Medical Center (A.W.-S., P.R., O.L., S.Z., R.S., E.L.-L.), the Faculty of Medicine, Hebrew University of Jerusalem, Hadassah Medical School (A.W.-S., E.L.-L., D.Z.), the Department of Developmental Biology and Cancer Research, IMRIC (Institute for Medical Research, Israel-Canada), Faculty of Medicine, Hebrew University of Jerusalem (A.D., T.S., R.K., O.G.), the Department of Genetics, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem (A.B.-M., M.G.), and the Division of Pediatric Endocrinology, Hadassah Hebrew University Medical Center (D.Z.), Jerusalem, and the Pediatric Endocrinology Clinic, Assaf Harofeh Medical Center, Zerifin, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (M.R.) - all in Israel; and the Division of Medical Genetics, Department of Medicine and the Department of Genome Sciences, University of Washington, Seattle (S.G., T.W., M.-C.K.)
| | - Mariana Rachmiel
- From the Medical Genetics Institute, Shaare Zedek Medical Center (A.W.-S., P.R., O.L., S.Z., R.S., E.L.-L.), the Faculty of Medicine, Hebrew University of Jerusalem, Hadassah Medical School (A.W.-S., E.L.-L., D.Z.), the Department of Developmental Biology and Cancer Research, IMRIC (Institute for Medical Research, Israel-Canada), Faculty of Medicine, Hebrew University of Jerusalem (A.D., T.S., R.K., O.G.), the Department of Genetics, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem (A.B.-M., M.G.), and the Division of Pediatric Endocrinology, Hadassah Hebrew University Medical Center (D.Z.), Jerusalem, and the Pediatric Endocrinology Clinic, Assaf Harofeh Medical Center, Zerifin, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (M.R.) - all in Israel; and the Division of Medical Genetics, Department of Medicine and the Department of Genome Sciences, University of Washington, Seattle (S.G., T.W., M.-C.K.)
| | - Paul Renbaum
- From the Medical Genetics Institute, Shaare Zedek Medical Center (A.W.-S., P.R., O.L., S.Z., R.S., E.L.-L.), the Faculty of Medicine, Hebrew University of Jerusalem, Hadassah Medical School (A.W.-S., E.L.-L., D.Z.), the Department of Developmental Biology and Cancer Research, IMRIC (Institute for Medical Research, Israel-Canada), Faculty of Medicine, Hebrew University of Jerusalem (A.D., T.S., R.K., O.G.), the Department of Genetics, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem (A.B.-M., M.G.), and the Division of Pediatric Endocrinology, Hadassah Hebrew University Medical Center (D.Z.), Jerusalem, and the Pediatric Endocrinology Clinic, Assaf Harofeh Medical Center, Zerifin, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (M.R.) - all in Israel; and the Division of Medical Genetics, Department of Medicine and the Department of Genome Sciences, University of Washington, Seattle (S.G., T.W., M.-C.K.)
| | - Suleyman Gulsuner
- From the Medical Genetics Institute, Shaare Zedek Medical Center (A.W.-S., P.R., O.L., S.Z., R.S., E.L.-L.), the Faculty of Medicine, Hebrew University of Jerusalem, Hadassah Medical School (A.W.-S., E.L.-L., D.Z.), the Department of Developmental Biology and Cancer Research, IMRIC (Institute for Medical Research, Israel-Canada), Faculty of Medicine, Hebrew University of Jerusalem (A.D., T.S., R.K., O.G.), the Department of Genetics, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem (A.B.-M., M.G.), and the Division of Pediatric Endocrinology, Hadassah Hebrew University Medical Center (D.Z.), Jerusalem, and the Pediatric Endocrinology Clinic, Assaf Harofeh Medical Center, Zerifin, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (M.R.) - all in Israel; and the Division of Medical Genetics, Department of Medicine and the Department of Genome Sciences, University of Washington, Seattle (S.G., T.W., M.-C.K.)
| | - Tom Walsh
- From the Medical Genetics Institute, Shaare Zedek Medical Center (A.W.-S., P.R., O.L., S.Z., R.S., E.L.-L.), the Faculty of Medicine, Hebrew University of Jerusalem, Hadassah Medical School (A.W.-S., E.L.-L., D.Z.), the Department of Developmental Biology and Cancer Research, IMRIC (Institute for Medical Research, Israel-Canada), Faculty of Medicine, Hebrew University of Jerusalem (A.D., T.S., R.K., O.G.), the Department of Genetics, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem (A.B.-M., M.G.), and the Division of Pediatric Endocrinology, Hadassah Hebrew University Medical Center (D.Z.), Jerusalem, and the Pediatric Endocrinology Clinic, Assaf Harofeh Medical Center, Zerifin, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (M.R.) - all in Israel; and the Division of Medical Genetics, Department of Medicine and the Department of Genome Sciences, University of Washington, Seattle (S.G., T.W., M.-C.K.)
| | - Orit Lobel
- From the Medical Genetics Institute, Shaare Zedek Medical Center (A.W.-S., P.R., O.L., S.Z., R.S., E.L.-L.), the Faculty of Medicine, Hebrew University of Jerusalem, Hadassah Medical School (A.W.-S., E.L.-L., D.Z.), the Department of Developmental Biology and Cancer Research, IMRIC (Institute for Medical Research, Israel-Canada), Faculty of Medicine, Hebrew University of Jerusalem (A.D., T.S., R.K., O.G.), the Department of Genetics, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem (A.B.-M., M.G.), and the Division of Pediatric Endocrinology, Hadassah Hebrew University Medical Center (D.Z.), Jerusalem, and the Pediatric Endocrinology Clinic, Assaf Harofeh Medical Center, Zerifin, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (M.R.) - all in Israel; and the Division of Medical Genetics, Department of Medicine and the Department of Genome Sciences, University of Washington, Seattle (S.G., T.W., M.-C.K.)
| | - Amatzia Dreifuss
- From the Medical Genetics Institute, Shaare Zedek Medical Center (A.W.-S., P.R., O.L., S.Z., R.S., E.L.-L.), the Faculty of Medicine, Hebrew University of Jerusalem, Hadassah Medical School (A.W.-S., E.L.-L., D.Z.), the Department of Developmental Biology and Cancer Research, IMRIC (Institute for Medical Research, Israel-Canada), Faculty of Medicine, Hebrew University of Jerusalem (A.D., T.S., R.K., O.G.), the Department of Genetics, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem (A.B.-M., M.G.), and the Division of Pediatric Endocrinology, Hadassah Hebrew University Medical Center (D.Z.), Jerusalem, and the Pediatric Endocrinology Clinic, Assaf Harofeh Medical Center, Zerifin, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (M.R.) - all in Israel; and the Division of Medical Genetics, Department of Medicine and the Department of Genome Sciences, University of Washington, Seattle (S.G., T.W., M.-C.K.)
| | - Avital Ben-Moshe
- From the Medical Genetics Institute, Shaare Zedek Medical Center (A.W.-S., P.R., O.L., S.Z., R.S., E.L.-L.), the Faculty of Medicine, Hebrew University of Jerusalem, Hadassah Medical School (A.W.-S., E.L.-L., D.Z.), the Department of Developmental Biology and Cancer Research, IMRIC (Institute for Medical Research, Israel-Canada), Faculty of Medicine, Hebrew University of Jerusalem (A.D., T.S., R.K., O.G.), the Department of Genetics, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem (A.B.-M., M.G.), and the Division of Pediatric Endocrinology, Hadassah Hebrew University Medical Center (D.Z.), Jerusalem, and the Pediatric Endocrinology Clinic, Assaf Harofeh Medical Center, Zerifin, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (M.R.) - all in Israel; and the Division of Medical Genetics, Department of Medicine and the Department of Genome Sciences, University of Washington, Seattle (S.G., T.W., M.-C.K.)
| | - Sharon Zeligson
- From the Medical Genetics Institute, Shaare Zedek Medical Center (A.W.-S., P.R., O.L., S.Z., R.S., E.L.-L.), the Faculty of Medicine, Hebrew University of Jerusalem, Hadassah Medical School (A.W.-S., E.L.-L., D.Z.), the Department of Developmental Biology and Cancer Research, IMRIC (Institute for Medical Research, Israel-Canada), Faculty of Medicine, Hebrew University of Jerusalem (A.D., T.S., R.K., O.G.), the Department of Genetics, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem (A.B.-M., M.G.), and the Division of Pediatric Endocrinology, Hadassah Hebrew University Medical Center (D.Z.), Jerusalem, and the Pediatric Endocrinology Clinic, Assaf Harofeh Medical Center, Zerifin, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (M.R.) - all in Israel; and the Division of Medical Genetics, Department of Medicine and the Department of Genome Sciences, University of Washington, Seattle (S.G., T.W., M.-C.K.)
| | - Reeval Segel
- From the Medical Genetics Institute, Shaare Zedek Medical Center (A.W.-S., P.R., O.L., S.Z., R.S., E.L.-L.), the Faculty of Medicine, Hebrew University of Jerusalem, Hadassah Medical School (A.W.-S., E.L.-L., D.Z.), the Department of Developmental Biology and Cancer Research, IMRIC (Institute for Medical Research, Israel-Canada), Faculty of Medicine, Hebrew University of Jerusalem (A.D., T.S., R.K., O.G.), the Department of Genetics, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem (A.B.-M., M.G.), and the Division of Pediatric Endocrinology, Hadassah Hebrew University Medical Center (D.Z.), Jerusalem, and the Pediatric Endocrinology Clinic, Assaf Harofeh Medical Center, Zerifin, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (M.R.) - all in Israel; and the Division of Medical Genetics, Department of Medicine and the Department of Genome Sciences, University of Washington, Seattle (S.G., T.W., M.-C.K.)
| | - Tikva Shore
- From the Medical Genetics Institute, Shaare Zedek Medical Center (A.W.-S., P.R., O.L., S.Z., R.S., E.L.-L.), the Faculty of Medicine, Hebrew University of Jerusalem, Hadassah Medical School (A.W.-S., E.L.-L., D.Z.), the Department of Developmental Biology and Cancer Research, IMRIC (Institute for Medical Research, Israel-Canada), Faculty of Medicine, Hebrew University of Jerusalem (A.D., T.S., R.K., O.G.), the Department of Genetics, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem (A.B.-M., M.G.), and the Division of Pediatric Endocrinology, Hadassah Hebrew University Medical Center (D.Z.), Jerusalem, and the Pediatric Endocrinology Clinic, Assaf Harofeh Medical Center, Zerifin, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (M.R.) - all in Israel; and the Division of Medical Genetics, Department of Medicine and the Department of Genome Sciences, University of Washington, Seattle (S.G., T.W., M.-C.K.)
| | - Rachel Kalifa
- From the Medical Genetics Institute, Shaare Zedek Medical Center (A.W.-S., P.R., O.L., S.Z., R.S., E.L.-L.), the Faculty of Medicine, Hebrew University of Jerusalem, Hadassah Medical School (A.W.-S., E.L.-L., D.Z.), the Department of Developmental Biology and Cancer Research, IMRIC (Institute for Medical Research, Israel-Canada), Faculty of Medicine, Hebrew University of Jerusalem (A.D., T.S., R.K., O.G.), the Department of Genetics, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem (A.B.-M., M.G.), and the Division of Pediatric Endocrinology, Hadassah Hebrew University Medical Center (D.Z.), Jerusalem, and the Pediatric Endocrinology Clinic, Assaf Harofeh Medical Center, Zerifin, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (M.R.) - all in Israel; and the Division of Medical Genetics, Department of Medicine and the Department of Genome Sciences, University of Washington, Seattle (S.G., T.W., M.-C.K.)
| | - Michal Goldberg
- From the Medical Genetics Institute, Shaare Zedek Medical Center (A.W.-S., P.R., O.L., S.Z., R.S., E.L.-L.), the Faculty of Medicine, Hebrew University of Jerusalem, Hadassah Medical School (A.W.-S., E.L.-L., D.Z.), the Department of Developmental Biology and Cancer Research, IMRIC (Institute for Medical Research, Israel-Canada), Faculty of Medicine, Hebrew University of Jerusalem (A.D., T.S., R.K., O.G.), the Department of Genetics, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem (A.B.-M., M.G.), and the Division of Pediatric Endocrinology, Hadassah Hebrew University Medical Center (D.Z.), Jerusalem, and the Pediatric Endocrinology Clinic, Assaf Harofeh Medical Center, Zerifin, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (M.R.) - all in Israel; and the Division of Medical Genetics, Department of Medicine and the Department of Genome Sciences, University of Washington, Seattle (S.G., T.W., M.-C.K.)
| | - Mary-Claire King
- From the Medical Genetics Institute, Shaare Zedek Medical Center (A.W.-S., P.R., O.L., S.Z., R.S., E.L.-L.), the Faculty of Medicine, Hebrew University of Jerusalem, Hadassah Medical School (A.W.-S., E.L.-L., D.Z.), the Department of Developmental Biology and Cancer Research, IMRIC (Institute for Medical Research, Israel-Canada), Faculty of Medicine, Hebrew University of Jerusalem (A.D., T.S., R.K., O.G.), the Department of Genetics, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem (A.B.-M., M.G.), and the Division of Pediatric Endocrinology, Hadassah Hebrew University Medical Center (D.Z.), Jerusalem, and the Pediatric Endocrinology Clinic, Assaf Harofeh Medical Center, Zerifin, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (M.R.) - all in Israel; and the Division of Medical Genetics, Department of Medicine and the Department of Genome Sciences, University of Washington, Seattle (S.G., T.W., M.-C.K.)
| | - Offer Gerlitz
- From the Medical Genetics Institute, Shaare Zedek Medical Center (A.W.-S., P.R., O.L., S.Z., R.S., E.L.-L.), the Faculty of Medicine, Hebrew University of Jerusalem, Hadassah Medical School (A.W.-S., E.L.-L., D.Z.), the Department of Developmental Biology and Cancer Research, IMRIC (Institute for Medical Research, Israel-Canada), Faculty of Medicine, Hebrew University of Jerusalem (A.D., T.S., R.K., O.G.), the Department of Genetics, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem (A.B.-M., M.G.), and the Division of Pediatric Endocrinology, Hadassah Hebrew University Medical Center (D.Z.), Jerusalem, and the Pediatric Endocrinology Clinic, Assaf Harofeh Medical Center, Zerifin, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (M.R.) - all in Israel; and the Division of Medical Genetics, Department of Medicine and the Department of Genome Sciences, University of Washington, Seattle (S.G., T.W., M.-C.K.)
| | - Ephrat Levy-Lahad
- From the Medical Genetics Institute, Shaare Zedek Medical Center (A.W.-S., P.R., O.L., S.Z., R.S., E.L.-L.), the Faculty of Medicine, Hebrew University of Jerusalem, Hadassah Medical School (A.W.-S., E.L.-L., D.Z.), the Department of Developmental Biology and Cancer Research, IMRIC (Institute for Medical Research, Israel-Canada), Faculty of Medicine, Hebrew University of Jerusalem (A.D., T.S., R.K., O.G.), the Department of Genetics, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem (A.B.-M., M.G.), and the Division of Pediatric Endocrinology, Hadassah Hebrew University Medical Center (D.Z.), Jerusalem, and the Pediatric Endocrinology Clinic, Assaf Harofeh Medical Center, Zerifin, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (M.R.) - all in Israel; and the Division of Medical Genetics, Department of Medicine and the Department of Genome Sciences, University of Washington, Seattle (S.G., T.W., M.-C.K.)
| | - David Zangen
- From the Medical Genetics Institute, Shaare Zedek Medical Center (A.W.-S., P.R., O.L., S.Z., R.S., E.L.-L.), the Faculty of Medicine, Hebrew University of Jerusalem, Hadassah Medical School (A.W.-S., E.L.-L., D.Z.), the Department of Developmental Biology and Cancer Research, IMRIC (Institute for Medical Research, Israel-Canada), Faculty of Medicine, Hebrew University of Jerusalem (A.D., T.S., R.K., O.G.), the Department of Genetics, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem (A.B.-M., M.G.), and the Division of Pediatric Endocrinology, Hadassah Hebrew University Medical Center (D.Z.), Jerusalem, and the Pediatric Endocrinology Clinic, Assaf Harofeh Medical Center, Zerifin, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (M.R.) - all in Israel; and the Division of Medical Genetics, Department of Medicine and the Department of Genome Sciences, University of Washington, Seattle (S.G., T.W., M.-C.K.)
| |
Collapse
|
22
|
Żelaźniewicz A, Bielawski T, Nowak J, Pawłowski B. Body symmetry and reproductive hormone levels in women. Women Health 2018; 59:391-405. [PMID: 29979937 DOI: 10.1080/03630242.2018.1492499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Fluctuating asymmetry (FA), a morphological marker of developmental stability, may be related to an individual's biological condition, e.g., health or fertility. The aim of this study was to test if the level of a woman's FA was related to her fertility and reproductive potential as measured by reproductive hormone levels. Fifty-three healthy, non-pregnant, naturally cycling women (mean age = 23.42, SD = 1.85 years), participated in the study, conducted in Wrocław (Poland) in May 2015. Early-follicular phase serum levels of anti-Müllerian hormone (AMH), follicle-stimulating hormone (FSH), luteinizing hormone (LH), and estradiol (E2) were measured. FA was calculated based on anthropometric measures of six bilateral body traits, and the composite FA index was used in statistical analyses. No relationship was observed between FA and the levels of FSH, LH, and AMH (p > .05), controlled for potential confounders. However, the level of E2 was positively correlated with FA (p < .05). Thus, in young women, FA was not related to hormones levels related to ovarian reserve, but more symmetrical women had lower E2 levels. As FA is an index of developmental stability, environmental, and genetic stress, the results of the study confirm previous research suggesting that developmental conditions may be related to women's endogenous estrogen levels.
Collapse
Affiliation(s)
| | - Tomasz Bielawski
- a Department of Human Biology , University of Wrocław , Wrocław , Poland
| | - Judyta Nowak
- a Department of Human Biology , University of Wrocław , Wrocław , Poland
| | - Bogusław Pawłowski
- a Department of Human Biology , University of Wrocław , Wrocław , Poland
| |
Collapse
|
23
|
Shankar RK, Giri N, Lodish MB, Sinaii N, Reynolds JC, Savage SA, Stratakis CA, Alter BP. Bone mineral density in patients with inherited bone marrow failure syndromes. Pediatr Res 2017; 82:458-464. [PMID: 28486441 PMCID: PMC5570650 DOI: 10.1038/pr.2017.117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/15/2017] [Indexed: 11/09/2022]
Abstract
BackgroundPatients with inherited bone marrow failure syndromes (IBMFS) may have several risk factors for low bone mineral density (BMD). We aimed to evaluate the prevalence of low BMD in IBMFS and determine the associated risk factors.MethodsPatients with IBMFS with at least one dual-energy X-ray absorptiometry (DXA) scan were evaluated. Diagnosis of each IBMFS, Fanconi anemia (FA), dyskeratosis congenita, Diamond-Blackfan anemia, and Shwachman-Diamond syndrome was confirmed by syndrome-specific tests. Data were gathered on age, height, and clinical history. DXA scans were completed at the lumbar spine, femoral neck, and forearm. BMD was adjusted for height (HAZ) in children (age ≤20 years). Low BMD was defined as a BMD Z-score and HAZ ≤-2 in adults and children, respectively, in addition to patients currently on bisphosphonate therapy.ResultsNine of thirty-five adults (26%) and eleven of forty children (27%) had low BMD. Adults with FA had significantly lower BMD Z-scores than those with other diagnoses; however, HAZ did not vary significantly in children by diagnosis. Risk factors included hypogonadism, iron overload, and glucocorticoid use.ConclusionsAdults and children with IBMFS have high prevalence of low BMD. Prompt recognition of risk factors and management are essential to optimize bone health.
Collapse
Affiliation(s)
- Roopa Kanakatti Shankar
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD,Children’s Hospital of Richmond at Virginia Commonwealth University, Richmond, VA
| | - Neelam Giri
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, MD,Corresponding Author: Neelam Giri, MD, 9609 Medical Center Drive, Room 6E-538, MSC 9772, Bethesda, MD 20892-9779. ; Telephone: 240-276-7256; FAX: 240-276-7836
| | - Maya B. Lodish
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD
| | - Ninet Sinaii
- Biostatistics and Clinical Epidemiology Service, Clinical Center, NIH, Bethesda, MD
| | | | - Sharon A. Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, MD
| | - Constantine A. Stratakis
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD
| | - Blanche P. Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, MD
| |
Collapse
|
24
|
Pregnancies in patients with inherited bone marrow failure syndromes in the NCI cohort. Blood 2017; 130:1674-1676. [PMID: 28838890 DOI: 10.1182/blood-2017-08-802991] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
25
|
|
26
|
Bonfim C, Ribeiro L, Nichele S, Bitencourt M, Loth G, Koliski A, Funke VAM, Pilonetto DV, Pereira NF, Flowers MED, Velleuer E, Dietrich R, Fasth A, Torres-Pereira CC, Pedruzzi P, Eapen M, Pasquini R. Long-term Survival, Organ Function, and Malignancy after Hematopoietic Stem Cell Transplantation for Fanconi Anemia. Biol Blood Marrow Transplant 2016; 22:1257-1263. [PMID: 26976241 DOI: 10.1016/j.bbmt.2016.03.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 03/03/2016] [Indexed: 11/27/2022]
Abstract
We report on long-term survival in 157 patients with Fanconi anemia (FA) who survived 2 years or longer after their first transplantation with a median follow-up of 9 years. Marrow failure (80%) was the most common indication for transplantation. There were 20 deaths beyond 2 years after transplantation, with 12 of the deaths occurring beyond 5 years after transplantation. Donor chimerism was available for 149 patients: 112 (76%) reported > 95% chimerism, 27 (18%) reported 90% to 95% chimerism, and 8 (5%) reported 20% to 89% donor chimerism. Two patients have < 20% donor chimerism. The 10- and 15-year probabilities of survival were 90% and 79%, respectively. Results of multivariate analysis showed higher mortality risks for transplantations before 2003 (hazard ratio [HR], 7.87; P = .001), chronic graft-versus-host disease (GVHD) (HR, 3.80; P = .004) and squamous cell carcinoma after transplantation (HR, 38.17; P < .0001). The predominant cause of late mortality was squamous cell carcinoma, with an incidence of 8% and 14% at 10 and 15 years after transplantation, respectively, and was more likely to occur in those with chronic GVHD. Other causes of late mortality included chronic GVHD, infection, graft failure, other cancers, and hemorrhage. Although most patients are disease free and functional long term, our data support aggressive surveillance for long periods to identify those at risk for late mortality.
Collapse
Affiliation(s)
- Carmem Bonfim
- Bone Marrow Transplantation Unit, Federal University of Paraná, Curitiba, Brazil.
| | - Lisandro Ribeiro
- Bone Marrow Transplantation Unit, Federal University of Paraná, Curitiba, Brazil
| | - Samantha Nichele
- Bone Marrow Transplantation Unit, Federal University of Paraná, Curitiba, Brazil
| | - Marco Bitencourt
- Bone Marrow Transplantation Unit, Federal University of Paraná, Curitiba, Brazil
| | - Gisele Loth
- Bone Marrow Transplantation Unit, Federal University of Paraná, Curitiba, Brazil
| | - Adriana Koliski
- Bone Marrow Transplantation Unit, Federal University of Paraná, Curitiba, Brazil
| | - Vaneuza A M Funke
- Bone Marrow Transplantation Unit, Federal University of Paraná, Curitiba, Brazil
| | | | - Noemi F Pereira
- Immunogenetics Laboratory, Federal University of Paraná, Curitiba, Brazil
| | - Mary E D Flowers
- Clinical Research Divisions, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Eunike Velleuer
- Clinic for Pediatric Oncology, Hematology and Clinical Immunology, Children's Hospital, University Hospital of Düsseldorf, Germany
| | - Ralf Dietrich
- Deutsche Fanconi-Anämie-Hilfe, Unna-Siddinghausen, Germany
| | - Anders Fasth
- Department of Pediatrics, University of Gothenburg, Gothenburg, Sweden
| | | | - Paola Pedruzzi
- Oncology Department, Hospital Erasto Gaertner, Curitiba, Brazil
| | - Mary Eapen
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ricardo Pasquini
- Bone Marrow Transplantation Unit, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
27
|
Fu C, Begum K, Overbeek PA. Primary Ovarian Insufficiency Induced by Fanconi Anemia E Mutation in a Mouse Model. PLoS One 2016; 11:e0144285. [PMID: 26939056 PMCID: PMC4777492 DOI: 10.1371/journal.pone.0144285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 01/18/2016] [Indexed: 01/18/2023] Open
Abstract
In most cases of primary ovarian insufficiency (POI), the cause of the depletion of ovarian follicles is unknown. Fanconi anemia (FA) proteins are known to play important roles in follicular development. Using random insertional mutagenesis with a lentiviral transgene, we identified a family with reduced fertility in the homozygous transgenic mice. We identified the integration site and found that the lentivirus had integrated into intron 8 of the Fanconi E gene (Fance). By RT-PCR and in situ hybridization, we found that Fance transcript levels were significantly reduced. The Fance homozygous mutant mice were assayed for changes in ovarian development, follicle numbers and estrous cycle. Ovarian dysplasias and a severe lack of follicles were seen in the mutant mice. In addition, the estrous cycle was disrupted in adult females. Our results suggest that POI has been induced by the Fance mutation in this new mouse model.
Collapse
Affiliation(s)
- Chun Fu
- Department of Obstetrics and Gynecology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| | - Khurshida Begum
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Paul A. Overbeek
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
28
|
Petryk A, Kanakatti Shankar R, Giri N, Hollenberg AN, Rutter MM, Nathan B, Lodish M, Alter BP, Stratakis CA, Rose SR. Endocrine disorders in Fanconi anemia: recommendations for screening and treatment. J Clin Endocrinol Metab 2015; 100:803-11. [PMID: 25575015 PMCID: PMC4333044 DOI: 10.1210/jc.2014-4357] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CONTEXT Endocrine problems are common in patients with Fanconi anemia (FA). About 80% of children and adults with FA have at least one endocrine abnormality, including short stature, GH deficiency, abnormal glucose or insulin metabolism, dyslipidemia, hypothyroidism, pubertal delay, hypogonadism, or impaired fertility. The goal of this report is to provide an overview of endocrine abnormalities and guidelines for routine screening and treatment to allow early diagnosis and timely intervention. EVIDENCE ACQUISITION This work is based on a comprehensive literature review, including relevant articles published between 1971 and 2014, and proceedings of a Consensus Conference held by the Fanconi Anemia Research Fund in 2013. EVIDENCE SYNTHESIS The panel of experts collected published evidence and discussed its relevance to reflect current information about the endocrine care of children and adults with FA before the Consensus Conference and through subsequent deliberations that led to the consensus. CONCLUSIONS Individuals with FA should be routinely screened for endocrine abnormalities, including evaluation of growth; glucose, insulin, and lipid metabolism; thyroid function; puberty; gonadal function; and bone mineral metabolism. Inclusion of an endocrinologist as part of the multidisciplinary patient care team is key to providing comprehensive care for patients with FA.
Collapse
Affiliation(s)
- Anna Petryk
- Division of Pediatric Endocrinology (A.P., B.N.), University of Minnesota Masonic Children's Hospital, Minneapolis, Minnesota 55454; Department of Pediatrics (R.K.S.), Children's Hospital of Richmond at Virginia Commonwealth University, Richmond, Virginia 23229; Clinical Genetics Branch (N.G., B.P.A.), Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland 20850; Division of Endocrinology, Diabetes and Metabolism (A.N.H.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215; Division of Endocrinology (M.M.R., S.R.R.), Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229; Pediatric Endocrinology Inter-Institute Training Program (M.L.), National Institutes of Health, Bethesda, Maryland 20892; and Section on Endocrinology and Genetics (M.L., C.A.S.), Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sklavos MM, Stratton P, Giri N, Alter BP, Savage SA, Pinto LA. Reduced serum levels of anti-Müllerian hormone in females with inherited bone marrow failure syndromes. J Clin Endocrinol Metab 2015; 100:E197-203. [PMID: 25405500 PMCID: PMC4318906 DOI: 10.1210/jc.2014-2838] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 11/13/2014] [Indexed: 11/19/2022]
Abstract
CONTEXT Previously, reduced levels of anti-Müllerian hormone (AMH), a circulating marker of ovarian reserve, were found in females with Fanconi anemia (FA). FA, dyskeratosis congenita (DC), and Diamond-Blackfan anemia (DBA) are inherited bone marrow failure syndromes (IBMFS) associated with high risks of bone marrow failure, leukemia, and solid tumors. OBJECTIVE The objective of the study was to assess AMH levels in females with DC or DBA. DESIGN AND SETTING This observational study used the National Cancer Institute's inherited bone marrow failure syndrome cohort at the National Institutes of Health Clinical Center. PARTICIPANTS The study included females with DC, unaffected female relatives of patients with DC, females with DBA, unaffected female relatives of patients with DBA, and unrelated healthy female volunteers younger than 41 years of age. MAIN OUTCOME MEASURE Serum AMH levels were measured. RESULTS Females with DC had significantly lower levels of AMH (median 0.55 ng/mL) compared with unaffected relatives (median 2.28 ng/mL, P = .004) or unrelated healthy volunteers (median 2.69 ng/mL, P = .005). Females with DBA showed a nonsignificant trend for lower levels of AMH (median 0.89 ng/mL) compared with unaffected relatives (median 1.71 ng/mL, P = .21) or unrelated healthy volunteers (P = .11). Patients with DC and DBA had significantly higher levels of AMH (P = .013, P = .003) compared with FA (median 0.05 ng/mL). CONCLUSIONS Our findings suggest that women with IBMFS have lower levels of AMH than unaffected women. This AMH deficiency could be a primary ovarian defect or a consequence of the pathophysiology of the syndromes. Additional studies of AMH and ovarian function in women with IBMFS are warranted to better understand the underlying biology.
Collapse
Affiliation(s)
- Martha M Sklavos
- Human Papillomavirus Immunology Laboratory (M.M.S., L.A.P.), Leidos Biomedical Research, Incorporated, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702; Program in Reproductive and Adult Endocrinology (P.S.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; and Clinical Genetics Branch (N.G., B.P.A., S.A.S.), Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland 20852
| | | | | | | | | | | |
Collapse
|
30
|
|