1
|
Manero-Azua A, Vado Y, Gonzàlez Morlà J, Mogas E, Pereda A, Perez de Nanclares G. Heterodisomy in the GNAS locus is also a cause of pseudohypoparathyroidism type 1B (iPPSD3). Front Endocrinol (Lausanne) 2024; 15:1505244. [PMID: 39736869 PMCID: PMC11682883 DOI: 10.3389/fendo.2024.1505244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/18/2024] [Indexed: 01/01/2025] Open
Abstract
Objective To identify the genetic cause underlying the methylation defect in a patient with clinical suspicion of PHP1B/iPPSD3. Design Imprinting is an epigenetic mechanism that allows the regulation of gene expression. The GNAS locus is one of the loci within the genome that is imprinted. When the methylation pattern is affected, it causes pseudohypoparathyroidism type 1B (PHP1B) or inactivating PTH/PTHrP signaling disorder 3 (iPPSD3). Paternal uniparental isodisomy (iUPDpat) of the chromosomal region comprising the GNAS locus has been described as one of the possible underlying genetic causes of the methylation alteration. Methods We present the case of a patient clinically diagnosed with iPPSD3. We performed a commercial methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA), single-nucleotide polymorphism (SNP) array, and microsatellite study. In addition, we designed a custom MS-MLPA to analyze GNAS and nearby differentially methylated regions (DMRs). Results A methylation defect at the four GNAS-DMRs was detected, confirming the clinical diagnosis. Complementary techniques revealed the presence of a mixed isodisomy and heterodisomy of chromosome 20. Surprisingly, the GNAS locus was located on the heterodisomic zone. Conclusions Paternal uniparental heterodisomy (hUPD) at the GNAS locus is also a genetic defect associated with iPPSD3. In the absence of parental samples, our custom MS-MLPA allows for the detection of a methylation defect at the GNAS locus and flanking DMRs, suggestive of uniparental disomy (UPD). We also suggest updating the actual guidelines to include hUPD at the GNAS locus as a cause of iPPSD3.
Collapse
Affiliation(s)
- Africa Manero-Azua
- Rare Disease Research Group, Molecular (Epi) Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital, Vitoria-Gasteiz, Spain
| | - Yerai Vado
- Rare Disease Research Group, Molecular (Epi) Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital, Vitoria-Gasteiz, Spain
| | | | - Eduard Mogas
- Pediatric Endocrinology Section, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Arrate Pereda
- Rare Disease Research Group, Molecular (Epi) Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital, Vitoria-Gasteiz, Spain
| | - Guiomar Perez de Nanclares
- Rare Disease Research Group, Molecular (Epi) Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital, Vitoria-Gasteiz, Spain
| |
Collapse
|
2
|
Sippelli F, Briuglia S, Ferraloro C, Capra AP, Agolini E, Abbate T, Pepe G, Aversa T, Wasniewska M, Corica D. Identification of a novel GNAS mutation in a family with pseudohypoparathyroidism type 1A. BMC Pediatr 2024; 24:271. [PMID: 38664677 PMCID: PMC11044326 DOI: 10.1186/s12887-024-04761-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 04/12/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Pseudohypoparathyroidism (PHP) is caused by loss-of-function mutations at the GNAS gene (as in the PHP type 1A; PHP1A), de novo or inherited at heterozygous state, or by epigenetic alterations at the GNAS locus (as in the PHP1B). The condition of PHP refers to a heterogeneous group of disorders that share common clinical and biological features of PTH resistance. Manifestations related to resistance to other hormones are also reported in many patients with PHP, in association with the phenotypic picture of Albright hereditary osteodystrophy characterized by short stature, round facies, subcutaneous ossifications, brachydactyly, mental retardation and, in some subtypes, obesity. The purpose of our study is to report a new mutation in the GNAS gene and to describe the significant phenotypic variability of three sisters with PHP1A bearing the same mutation. CASE PRESENTATION We describe the cases of three sisters with PHP1A bearing the same mutation but characterized by a significantly different phenotypic picture at onset and during follow-up in terms of clinical features, auxological pattern and biochemical changes. Clinical exome sequencing revealed a never before described heterozygote mutation in the GNAS gene (NM_000516.5 c.118_139 + 51del) of autosomal dominant maternal transmission in the three siblings, confirming the diagnosis of PHP1A. CONCLUSIONS This study reported on a novel mutation of GNAS gene and highlighted the clinical heterogeneity of PHP1A characterized by wide genotype-phenotype variability. The appropriate diagnosis has crucial implications for patient care and long-term multidisciplinary follow-up.
Collapse
Affiliation(s)
- Fabio Sippelli
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Silvana Briuglia
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Chiara Ferraloro
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Messina, Italy
| | - Emanuele Agolini
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Tiziana Abbate
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Giorgia Pepe
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Tommaso Aversa
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Malgorzata Wasniewska
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Domenico Corica
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy.
| |
Collapse
|
3
|
Ludar H, Levy-Shraga Y, Admoni O, Majdoub H, Aronovitch KM, Koren I, Rath S, Elias-Assad G, Almashanu S, Mantovani G, Hamiel OP, Tenenbaum-Rakover Y. Clinical and Molecular Characteristics and Long-term Follow-up of Children With Pseudohypoparathyroidism Type IA. J Clin Endocrinol Metab 2024; 109:424-438. [PMID: 37669316 DOI: 10.1210/clinem/dgad524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023]
Abstract
CONTEXT Pseudohypoparathyroidism type IA (PHPIA) is a rare genetic disorder characterized by hormone resistance and a typical phenotype named Albright hereditary osteodystrophy. Unawareness of this rare disease leads to delays in diagnosis. OBJECTIVE The aims of this study were to describe the clinical and molecular characteristics of patients with genetically confirmed GNAS mutations and to evaluate their long-term outcomes. METHODS A retrospective search for all patients diagnosed with PHPIA in 2 referral centers in Israel was conducted. RESULTS Nine children (8 females) belonging to 6 families were included in the study. Five patients had GNAS missense mutations, 2 had deletions, and 2 had frameshift mutations. Four mutations were novel. Patients were referred at a mean age of 2.4 years due to congenital hypothyroidism (5 patients), short stature (2 patients), or obesity (2 patients), with a follow-up duration of up to 20 years. Early obesity was observed in the majority of patients. Elevated parathyroid hormone was documented at a mean age of 3 years; however, hypocalcemia became evident at a mean age of 5.9 years, about 3 years later. All subjects were diagnosed with mild to moderate mental retardation. Female adult height was very short (mean -2.5 SD) and 5 females had primary or secondary amenorrhea. CONCLUSION Long-term follow-up of newborns with a combination of congenital hypothyroidism, early-onset obesity, and minor dysmorphic features associated with PHPIA is warranted and molecular analysis is recommended since the complete clinical phenotype may develop a long time after initial presentation.
Collapse
Affiliation(s)
- Hanna Ludar
- Pediatric Endocrinology and Diabetes Unit, Clalit Health Services, 35024 Haifa and Western Galilee District, Israel
| | - Yael Levy-Shraga
- Pediatric Endocrinology and Diabetes Unit, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, 52620 Ramat-Gan, Israel
- Sackler School of Medicine, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | - Osnat Admoni
- Pediatric Endocrine Clinic, Clalit Health Services, 17673 Northern Region, Israel
| | - Hussein Majdoub
- Pediatric Endocrinology and Diabetes Unit, Clalit Health Services, 35024 Haifa and Western Galilee District, Israel
| | - Kineret Mazor Aronovitch
- Pediatric Endocrinology and Diabetes Unit, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, 52620 Ramat-Gan, Israel
- Sackler School of Medicine, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | - Ilana Koren
- Pediatric Endocrinology and Diabetes Unit, Clalit Health Services, 35024 Haifa and Western Galilee District, Israel
- The Rappaport Faculty of Medicine, Technion, Institute of Technology, 32000 Haifa, Israel
| | - Shoshana Rath
- Pediatric Endocrine Clinic, Clalit Health Services, 17673 Northern Region, Israel
- Endocrinology and Diabetes Service, Tzafon Medical Center, 15208 Teveria, Israel
| | - Ghadir Elias-Assad
- Pediatric Endocrine Clinic, Clalit Health Services, 17673 Northern Region, Israel
- Pediatric Endocrine Institute, Saint Vincent Hospital, 16511 Nazareth, Israel
| | - Shlomo Almashanu
- The National Newborn Screening Program, Ministry of Health, Tel Hashomer, 52620 Ramat Gan, Israel
| | - Giovanna Mantovani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrinology Unit, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Orit Pinhas Hamiel
- Pediatric Endocrinology and Diabetes Unit, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, 52620 Ramat-Gan, Israel
- Sackler School of Medicine, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | - Yardena Tenenbaum-Rakover
- The Rappaport Faculty of Medicine, Technion, Institute of Technology, 32000 Haifa, Israel
- Consulting Medicine in Pediatric Endocrinology, Clalit Health Services, 18343 Afula, Israel
| |
Collapse
|
4
|
Vado Y, Manero-Azua A, Pereda A, Perez de Nanclares G. Choosing the Best Tissue and Technique to Detect Mosaicism in Fibrous Dysplasia/McCune-Albright Syndrome (FD/MAS). Genes (Basel) 2024; 15:120. [PMID: 38255009 PMCID: PMC10815810 DOI: 10.3390/genes15010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
GNAS-activating somatic mutations give rise to Fibrous Dysplasia/McCune-Albright syndrome (FD/MAS). The low specificity of extra-skeletal signs of MAS and the mosaic status of the mutations generate some difficulties for a proper diagnosis. We studied the clinical and molecular statuses of 40 patients referred with a clinical suspicion of FD/MAS to provide some clues. GNAS was sequenced using both Sanger and Next-Generation Sequencing (NGS). We were able to identify the pathogenic variants in 25% of the patients. Most of them were identified in the affected tissue, but not in blood. Additionally, NGS demonstrated the ability to detect more patients with mosaicism (8/34) than Sanger sequencing (4/39). Even if in some cases, the clinical information was not complete, we confirmed that, as in previous works, when the patients were young children with a single manifestation, such as hyperpigmented skin macules or precocious puberty, the molecular diagnosis was usually negative. In conclusion, as FD/MAS is caused by mosaic variants, it is essential to use sensitive techniques that allow for the detection of low percentages and to choose the right tissue to study. When not possible, and due to the low positive genetic rate, patients with FD/MAS should only be genetically tested when the clinical diagnosis is really uncertain.
Collapse
Affiliation(s)
| | | | | | - Guiomar Perez de Nanclares
- Rare Disease Research Group, Molecular (Epi) Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital, 01009 Vitoria-Gasteiz, Spain; (Y.V.); (A.M.-A.); (A.P.)
| |
Collapse
|
5
|
Abbas A, Hammad AS, Al-Shafai M. The role of genetic and epigenetic GNAS alterations in the development of early-onset obesity. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 793:108487. [PMID: 38103632 DOI: 10.1016/j.mrrev.2023.108487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND GNAS (guanine nucleotide-binding protein, alpha stimulating) is an imprinted gene that encodes Gsα, the α subunit of the heterotrimeric stimulatory G protein. This subunit mediates the signalling of a diverse array of G protein-coupled receptors (GPCRs), including the melanocortin 4 receptor (MC4R) that serves a pivotal role in regulating food intake, energy homoeostasis, and body weight. Genetic or epigenetic alterations in GNAS are known to cause pseudohypoparathyroidism in its different subtypes and have been recently associated with isolated, early-onset, severe obesity. Given the diverse biological functions that Gsα serves, multiple molecular mechanisms involving various GPCRs, such as MC4R, β2- and β3-adrenoceptors, and corticotropin-releasing hormone receptor, have been implicated in the pathophysiology of severe, early-onset obesity that results from genetic or epigenetic GNAS changes. SCOPE OF REVIEW This review examines the structure and function of GNAS and provides an overview of the disorders that are caused by defects in this gene and may feature early-onset obesity. Moreover, it elucidates the potential molecular mechanisms underlying Gsα deficiency-induced early-onset obesity, highlighting some of their implications for the diagnosis, management, and treatment of this complex condition. MAJOR CONCLUSIONS Gsα deficiency is an underappreciated cause of early-onset, severe obesity. Therefore, screening children with unexplained, severe obesity for GNAS defects is recommended, to enhance the molecular diagnosis and management of this condition.
Collapse
Affiliation(s)
- Alaa Abbas
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Ayat S Hammad
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Biomedical Research Center, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mashael Al-Shafai
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Biomedical Research Center, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
6
|
Urakawa T, Sano S, Kawashima S, Nakamura A, Shima H, Ohta M, Yamada Y, Nishida A, Narusawa H, Ohtsu Y, Matsubara K, Dateki S, Maruo Y, Fukami M, Ogata T, Kagami M. (Epi)genetic and clinical characteristics in 84 patients with pseudohypoparathyroidism type 1B. Eur J Endocrinol 2023; 189:590-600. [PMID: 38039118 DOI: 10.1093/ejendo/lvad163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/03/2023]
Abstract
OBJECTIVE Pseudohypoparathyroidism type 1B (PHP1B) caused by methylation defects of differentially methylated regions (DMRs) on the GNAS locus can be categorized into groups according to etiologies and methylation defect patterns of the DMRs. The aim of this study was to clarify the clinical characteristics of each group. DESIGN Comprehensive molecular analyses consisting of methylation, copy number, and microsatellite analyses. METHODS Eighty-four patients with PHP1B were included in this study. We classified them into 5 groups, namely, autosomal dominant inheritance-PHP1B (Group 1, G1), sporadic-PHP1B (G2), and atypical-PHP1B (G3-G5), based on the methylation defect patterns in 4 DMRs on the GNAS locus and etiologies and evaluated the clinical findings in each group and compared them among the groups. RESULTS G2 had the youngest age and the highest serum intact parathyroid hormone levels among the 5 groups at the time of diagnosis. The most common symptoms at the time of diagnosis were tetany in G1, and seizures or loss of consciousness in G2. Albright's hereditary osteodystrophy and PHP-suggestive features were most frequently observed in the G2 proband. Nine patients had neurodevelopmental disorders (NDs) consisting of mild to borderline intellectual disability and/or developmental delay. There were no significant correlations between the average methylation ratios of 7 CpG sites in the GNAS-A/B:TSS-DMR and hormonal and biochemical findings. CONCLUSION This study revealed the differences in some clinical characteristics, particularly clinical features, and ages at the time of diagnosis between G2 and other groups and detailed NDs observed in some patients with PHP1B.
Collapse
Affiliation(s)
- Tatsuki Urakawa
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
- Department of Pediatrics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8102, Japan
| | - Shinichiro Sano
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
- Department of Endocrinology and Metabolism, Shizuoka Children's Hospital, Shizuoka 420-8660, Japan
| | - Sayaka Kawashima
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Akie Nakamura
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan
| | - Hirohito Shima
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Motoki Ohta
- Department of Pediatrics, Saiseikai Shigaken Hospital, Ritto 520-3046, Japan
| | - Yuki Yamada
- Division of Pediatric Endocrinology and Metabolism, Children's Medical Center, Osaka City General Hospital, Osaka 534-0021, Japan
| | - Ai Nishida
- Diabetes and Endocrinology, Kameda Medical Center, Kamogawa 296-0041, Japan
| | - Hiromune Narusawa
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Yoshiaki Ohtsu
- Department of Pediatrics, Gunma University Graduate School of Medicine, Maebashi 371-0034, Japan
| | - Keiko Matsubara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Sumito Dateki
- Department of Pediatrics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8102, Japan
| | - Yoshihiro Maruo
- Department of Pediatrics, Shiga University of Medical Sciences, Otsu 520-2192, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Tsutomu Ogata
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Department of Pediatrics, Hamamatsu Medical Center, Hamamatsu 432-8580, Japan
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| |
Collapse
|
7
|
Ferrari D, Pandozzi C, Filice A, Nardi C, Cozzolino A, Melcarne R, Giacomelli L, Biffoni M, Di Gioia C, Merenda E, Del Sindaco G, Pagnano A, Pofi R, Giannetta E. C-Cell Hyperplasia and Cystic Papillary Thyroid Carcinoma in a Patient with Type 1B Pseudohypoparathyroidism and Hypercalcitoninaemia: Case Report and Review of the Literature. J Clin Med 2023; 12:7525. [PMID: 38137593 PMCID: PMC10744305 DOI: 10.3390/jcm12247525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Hypercalcitoninaemia has been described in patients with pseudohypoparathyroidism (PHP) type 1A and 1B. Elevated calcitonin levels are thought to result from impaired Gsα receptor signaling, leading to multiple hormone resistance. Evidence on the risk of medullary thyroid carcinoma (MTC) or C-cell hyperplasia in PHP patients with hypercalcitoninaemia is lacking. A 43-year-old Caucasian man was referred to our endocrinology clinic for chronic hypocalcemia associated with elevated serum parathormone levels and a single cystic thyroid nodule. The patient did not show skeletal deformities, and screening for concomitant hormone resistances was negative, except for the presence of elevated serum calcitonin levels. The workup led to a molecular diagnosis of sporadic PHP1B. Fine needle aspiration of the thyroid nodule was not diagnostic. The calcium stimulation test yielded an abnormal calcitonin response. Given the scarcity of data on the risk of thyroid malignancy in PHP and calcium stimulation test results, total thyroidectomy was performed. Histological examination revealed cystic papillary thyroid cancer in a background of diffuse C-cell hyperplasia. To our knowledge, we are the first to describe a rare form of thyroid cancer combined with C-cell hyperplasia in a patient with PHP and hypercalcitoninaemia. In the present case, a mere receptor resistance might not fully explain the elevated calcitonin levels, suggesting that hypercalcitoninaemia should be carefully evaluated in PHP patients, especially in the case of concomitant thyroid nodules. Further studies on larger cohorts are needed to elucidate this topic.
Collapse
Affiliation(s)
- Davide Ferrari
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (D.F.); (C.P.); (A.F.); (C.N.); (A.C.); (E.G.)
| | - Carla Pandozzi
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (D.F.); (C.P.); (A.F.); (C.N.); (A.C.); (E.G.)
| | - Alessia Filice
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (D.F.); (C.P.); (A.F.); (C.N.); (A.C.); (E.G.)
| | - Christopher Nardi
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (D.F.); (C.P.); (A.F.); (C.N.); (A.C.); (E.G.)
| | - Alessia Cozzolino
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (D.F.); (C.P.); (A.F.); (C.N.); (A.C.); (E.G.)
| | - Rossella Melcarne
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy;
| | - Laura Giacomelli
- Department of General and Specialized Surgery, Sapienza University of Rome, 00185 Rome, Italy; (L.G.); (M.B.)
| | - Marco Biffoni
- Department of General and Specialized Surgery, Sapienza University of Rome, 00185 Rome, Italy; (L.G.); (M.B.)
| | - Cira Di Gioia
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, 00185 Rome, Italy; (C.D.G.); (E.M.)
| | - Elisabetta Merenda
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, 00185 Rome, Italy; (C.D.G.); (E.M.)
| | - Giulia Del Sindaco
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.D.S.); (A.P.)
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Angela Pagnano
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.D.S.); (A.P.)
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Riccardo Pofi
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX1 2JD, UK
| | - Elisa Giannetta
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (D.F.); (C.P.); (A.F.); (C.N.); (A.C.); (E.G.)
| |
Collapse
|
8
|
Del Sindaco G, Berkenou J, Pagnano A, Rothenbuhler A, Arosio M, Mantovani G, Linglart A. Neonatal and Early Infancy Features of Patients With Inactivating PTH/PTHrP Signaling Disorders/Pseudohypoparathyroidism. J Clin Endocrinol Metab 2023; 108:2961-2969. [PMID: 37098127 PMCID: PMC10583975 DOI: 10.1210/clinem/dgad236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/04/2023] [Accepted: 04/21/2023] [Indexed: 04/27/2023]
Abstract
BACKGROUND Pseudohypoparathyroidism (PHP) and related disorders newly referred to as inactivating PTH/PTHrP signaling disorders (iPPSD) are rare endocrine diseases. Many clinical features including obesity, neurocognitive impairment, brachydactyly, short stature, parathyroid hormone (PTH) resistance, and resistance to other hormones such as thyroid-stimulating hormone (TSH) have been well described, yet they refer mainly to the full development of the disease during late childhood and adulthood. OBJECTIVE A significant delay in diagnosis has been reported; therefore, our objective is to increase awareness on neonatal and early infancy presentation of the diseases. To do so, we analyzed a large cohort of iPPSD/PHP patients. METHODS We included 136 patients diagnosed with iPPSD/PHP. We retrospectively collected data on birth and investigated the rate of neonatal complications occurring in each iPPSD/PHP category within the first month of life. RESULTS Overall 36% of patients presented at least one neonatal complication, far more than the general population; when considering only the patients with iPPSD2/PHP1A, it reached 47% of the patients. Neonatal hypoglycemia and transient respiratory distress appeared significantly frequent in this latter group, ie, 10.5% and 18.4%, respectively. The presence of neonatal features was associated with earlier resistance to TSH (P < 0.001) and with the development of neurocognitive impairment (P = 0.02) or constipation (P = 0.04) later in life. CONCLUSION Our findings suggest that iPPSD/PHP and especially iPPSD2/PHP1A newborns require specific care at birth because of an increased risk of neonatal complications. These complications may predict a more severe course of the disease; however, they are unspecific which likely explains the diagnostic delay.
Collapse
Affiliation(s)
- Giulia Del Sindaco
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan 20122, Italy
| | - Jugurtha Berkenou
- AP-HP, Service d’endocrinologie et diabète de l’enfant, Hôpital Bicêtre Paris-Saclay, Le Kremlin-Bicêtre 94270, France
- AP-HP, Centre de Référence des maladies rares du métabolisme du Calcium et du Phosphate, filière OSCAR, ERN BOND, ERN for rare endocrine disorders, Plateforme d’expertise des maladies rares de Paris Saclay, Paris, France
| | - Angela Pagnano
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan 20122, Italy
| | - Anya Rothenbuhler
- AP-HP, Service d’endocrinologie et diabète de l’enfant, Hôpital Bicêtre Paris-Saclay, Le Kremlin-Bicêtre 94270, France
- AP-HP, Centre de Référence des maladies rares du métabolisme du Calcium et du Phosphate, filière OSCAR, ERN BOND, ERN for rare endocrine disorders, Plateforme d’expertise des maladies rares de Paris Saclay, Paris, France
| | - Maura Arosio
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan 20122, Italy
| | - Giovanna Mantovani
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan 20122, Italy
| | - Agnès Linglart
- AP-HP, Service d’endocrinologie et diabète de l’enfant, Hôpital Bicêtre Paris-Saclay, Le Kremlin-Bicêtre 94270, France
- AP-HP, Centre de Référence des maladies rares du métabolisme du Calcium et du Phosphate, filière OSCAR, ERN BOND, ERN for rare endocrine disorders, Plateforme d’expertise des maladies rares de Paris Saclay, Paris, France
- Université Paris Saclay, INSERM U1185, Le Kremlin-Bicêtre 94270, France
| |
Collapse
|
9
|
Yang W, Zuo Y, Zhang N, Wang K, Zhang R, Chen Z, He Q. GNAS locus: bone related diseases and mouse models. Front Endocrinol (Lausanne) 2023; 14:1255864. [PMID: 37920253 PMCID: PMC10619756 DOI: 10.3389/fendo.2023.1255864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/29/2023] [Indexed: 11/04/2023] Open
Abstract
GNASis a complex locus characterized by multiple transcripts and an imprinting effect. It orchestrates a variety of physiological processes via numerous signaling pathways. Human diseases associated with the GNAS gene encompass fibrous dysplasia (FD), Albright's Hereditary Osteodystrophy (AHO), parathyroid hormone(PTH) resistance, and Progressive Osseous Heteroplasia (POH), among others. To facilitate the study of the GNAS locus and its associated diseases, researchers have developed a range of mouse models. In this review, we will systematically explore the GNAS locus, its related signaling pathways, the bone diseases associated with it, and the mouse models pertinent to these bone diseases.
Collapse
Affiliation(s)
- Wan Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yiyi Zuo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Nuo Zhang
- School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Kangning Wang
- School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Runze Zhang
- School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ziyi Chen
- School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Qing He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Vado Y, Pereda A, Manero-Azua A, Perez de Nanclares G. Frequency of de novo variants and parental mosaicism in families with inactivating PTH/PTHrP signaling disorder type 2. Front Endocrinol (Lausanne) 2023; 13:1055431. [PMID: 36686455 PMCID: PMC9846528 DOI: 10.3389/fendo.2022.1055431] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Objective iPPSD2 (which includes PHP1A and PPHP/POH) is a rare inherited autosomal dominant endocrine disorder caused by inactivating GNAS pathogenic variants. A high percentage of de novo cases has been suggested. In rare cases, parental mosaicism has been described, but its real frequency is unknown. Design A retrospective study including a series of 95 genetically confirmed iPPSD2 probands. Methods The frequency of de novo cases was evaluated and the distribution of the type of variants was compared according to the type of inheritance. The putative involved allele was determined by reverse transcriptase PCR (RT-PCR) or allele specific oligonucleotide RT-PCR (ASO-RT-PCR). The possibility of GNAS mosaicism was studied by next-generation sequencing (NGS) on the corresponding parental DNA. Results In 41 patients the variant was of de novo origin and in 24 the origin could not be established. In both cases 66.67% of variants generated a truncated or absent protein whereas the rest of the variants were missense or in-frame deletion/duplication. Parental origin was studied in 45 of those patients and determined in 35. Curiously, the percentage of de novo variants at the paternal allele was higher than when paternally inherited (31.1% vs 6.67%). NGS detected mosaicism in three independent families: one from paternal DNA (allelic ratio 10%) and two from maternal DNA (allelic ratio 10% and 2%). Conclusion De novo pathogenic variants are frequent in iPPSD2 (around 45%). Parental mosaicism is infrequent (8.11%) but should be analyzed with NGS, taking into account its importance in genetic counselling.
Collapse
Affiliation(s)
| | | | | | | | - Guiomar Perez de Nanclares
- Rare Diseases Research Group, Molecular (Epi)Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital-Txagorritxu, Vitoria-Gasteiz, Araba, Spain
| |
Collapse
|
11
|
Mackay D, Bliek J, Kagami M, Tenorio-Castano J, Pereda A, Brioude F, Netchine I, Papingi D, de Franco E, Lever M, Sillibourne J, Lombardi P, Gaston V, Tauber M, Diene G, Bieth E, Fernandez L, Nevado J, Tümer Z, Riccio A, Maher ER, Beygo J, Tannorella P, Russo S, de Nanclares GP, Temple IK, Ogata T, Lapunzina P, Eggermann T. First step towards a consensus strategy for multi-locus diagnostic testing of imprinting disorders. Clin Epigenetics 2022; 14:143. [PMID: 36345041 DOI: 10.1186/s13148-022-01358-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Background
Imprinting disorders, which affect growth, development, metabolism and neoplasia risk, are caused by genetic or epigenetic changes to genes that are expressed from only one parental allele. Disease may result from changes in coding sequences, copy number changes, uniparental disomy or imprinting defects. Some imprinting disorders are clinically heterogeneous, some are associated with more than one imprinted locus, and some patients have alterations affecting multiple loci. Most imprinting disorders are diagnosed by stepwise analysis of gene dosage and methylation of single loci, but some laboratories assay a panel of loci associated with different imprinting disorders. We looked into the experience of several laboratories using single-locus and/or multi-locus diagnostic testing to explore how different testing strategies affect diagnostic outcomes and whether multi-locus testing has the potential to increase the diagnostic efficiency or reveal unforeseen diagnoses.
Results
We collected data from 11 laboratories in seven countries, involving 16,364 individuals and eight imprinting disorders. Among the 4721 individuals tested for the growth restriction disorder Silver–Russell syndrome, 731 had changes on chromosomes 7 and 11 classically associated with the disorder, but 115 had unexpected diagnoses that involved atypical molecular changes, imprinted loci on chromosomes other than 7 or 11 or multi-locus imprinting disorder. In a similar way, the molecular changes detected in Beckwith–Wiedemann syndrome and other imprinting disorders depended on the testing strategies employed by the different laboratories.
Conclusions
Based on our findings, we discuss how multi-locus testing might optimise diagnosis for patients with classical and less familiar clinical imprinting disorders. Additionally, our compiled data reflect the daily life experiences of diagnostic laboratories, with a lower diagnostic yield than in clinically well-characterised cohorts, and illustrate the need for systematising clinical and molecular data.
Collapse
|
12
|
Ohata Y, Kakimoto H, Seki Y, Ishihara Y, Nakano Y, Yamamoto K, Takeyari S, Fujiwara M, Kitaoka T, Takakuwa S, Kubota T, Ozono K. Pathogenic variants of the GNAS gene introduce an abnormal amino acid sequence in the β6 strand/α5 helix of Gsα, causing pseudohypoparathyroidism type 1A and pseudopseudohypoparathyroidism in two unrelated Japanese families. Bone Rep 2022; 17:101637. [PMID: 36407415 PMCID: PMC9668531 DOI: 10.1016/j.bonr.2022.101637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/11/2022] Open
Abstract
Pseudohypoparathyroidism 1A (PHP1A) and pseudopseudohypoparathyroidism (PPHP) are caused by loss-of-function variants of GNAS, which encodes Gsα. We present two unrelated Japanese families with PHP1A and PPHP harboring unreported pathogenic variants of GNAS (c.1141delG, p.Asp381Thrfs*23 and c.1117delC, p.Arg373Alafs*31). These variants introduce abnormal amino acids in the β6 strand/α5 helix of Gsα, which interact with G protein coupling receptor (GPCR). We conclude that these variants alter the association of Gsα with GPCR and cause PHP1A or PPHP. Reports of GNAS variants causing extra amino acid sequences are limited. Two cases with extended Gsα mutants showed clinical characteristics of PHP1A/PPHP. No change was found in the affinity between mutant Gsα and GDP using I-TASSER. I-TASSER and AlphaFold2 suggested the Gsα mutants caused dysfunction with GPCR. Prediction by I-TASSER and AlphaFold2 are useful in determination of pathogenicity.
Collapse
Affiliation(s)
- Yasuhisa Ohata
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Haruna Kakimoto
- Department of Pediatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yuko Seki
- Department of Pediatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yasuki Ishihara
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
- The first Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Suita, Japan
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yukako Nakano
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kenichi Yamamoto
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shinji Takeyari
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Makoto Fujiwara
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
- The first Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Taichi Kitaoka
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Satoshi Takakuwa
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Pediatrics, Hyogo Prefectural Nishinomiya Hospital, Japan
| | - Takuo Kubota
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
13
|
Mannens MMAM, Lombardi MP, Alders M, Henneman P, Bliek J. Further Introduction of DNA Methylation (DNAm) Arrays in Regular Diagnostics. Front Genet 2022; 13:831452. [PMID: 35860466 PMCID: PMC9289263 DOI: 10.3389/fgene.2022.831452] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/08/2022] [Indexed: 12/01/2022] Open
Abstract
Methylation tests have been used for decades in regular DNA diagnostics focusing primarily on Imprinting disorders or specific loci annotated to specific disease associated gene promotors. With the introduction of DNA methylation (DNAm) arrays such as the Illumina Infinium HumanMethylation450 Beadchip array or the Illumina Infinium Methylation EPIC Beadchip array (850 k), it has become feasible to study the epigenome in a timely and cost-effective way. This has led to new insights regarding the complexity of well-studied imprinting disorders such as the Beckwith Wiedemann syndrome, but it has also led to the introduction of tests such as EpiSign, implemented as a diagnostic test in which a single array experiment can be compared to databases with known episignatures of multiple genetic disorders, especially neurodevelopmental disorders. The successful use of such DNAm tests is rapidly expanding. More and more disorders are found to be associated with discrete episignatures which enables fast and definite diagnoses, as we have shown. The first examples of environmentally induced clinical disorders characterized by discrete aberrant DNAm are discussed underlining the broad application of DNAm testing in regular diagnostics. Here we discuss exemplary findings in our laboratory covering this broad range of applications and we discuss further use of DNAm tests in the near future.
Collapse
|
14
|
Itoh M, Okajima M, Kittaka Y, Yachie A, Wada T, Saikawa Y. Tertiary hyperparathyroidism in patients with pseudohypoparathyroidism type 1a. Bone Rep 2022; 16:101569. [PMID: 35497370 PMCID: PMC9043659 DOI: 10.1016/j.bonr.2022.101569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/02/2022] Open
Abstract
Pseudohypoparathyroidism type 1a (PHP1a) is a genetic disorder caused by heterozygous loss-of-function mutations on the maternal allele of the GNAS gene. Patients with PHP1a predominantly exhibit parathyroid hormone (PTH) resistance and physical features of Albright's hereditary osteodystrophy. We report two unrelated cases with PHP1a who developed tertiary hyperparathyroidism (HPT). Molecular analyses of the GNAS gene identified a previously known heterozygous 4-bp deletion (c. 565_568delGACT) in exon 7 in case 1 and a novel heterozygous missense mutation (p.Lys233Glu) in exon 9 in case 2. Both patients developed tertiary HPT associated with hyperfunctioning parathyroid glands during long-term treatment of hypocalcemia. Case 1 had severe osteoporosis and underwent parathyroidectomy. Case 2 was asymptomatic with no evidence of bone diseases associated with tertiary HPT. PHP1a patients are at risk of developing tertiary HPT and should be treated with sufficient doses of calcium and vitamin D to achieve serum PTH levels within the mid - normal to double the upper limit of the normal range, regardless of serum calcium levels. Pseudohypoparathyroidism type 1a induces tertiary hyperparathyroidism. Tertiary hyperparathyroidism can be complicated by hungry bone syndrome. Serum PTH levels should be within doubled the upper limit of normal.
Collapse
|
15
|
Pignata L, Cecere F, Verma A, Hay Mele B, Monticelli M, Acurzio B, Giaccari C, Sparago A, Hernandez Mora JR, Monteagudo-Sánchez A, Esteller M, Pereda A, Tenorio-Castano J, Palumbo O, Carella M, Prontera P, Piscopo C, Accadia M, Lapunzina P, Cubellis MV, de Nanclares GP, Monk D, Riccio A, Cerrato F. Novel genetic variants of KHDC3L and other members of the subcortical maternal complex associated with Beckwith-Wiedemann syndrome or Pseudohypoparathyroidism 1B and multi-locus imprinting disturbances. Clin Epigenetics 2022; 14:71. [PMID: 35643636 PMCID: PMC9148495 DOI: 10.1186/s13148-022-01292-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/16/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Beckwith-Wiedemann syndrome (BWS) and Pseudohypoparathyroidism type 1B (PHP1B) are imprinting disorders (ID) caused by deregulation of the imprinted gene clusters located at 11p15.5 and 20q13.32, respectively. In both of these diseases a subset of the patients is affected by multi-locus imprinting disturbances (MLID). In several families, MLID is associated with damaging variants of maternal-effect genes encoding protein components of the subcortical maternal complex (SCMC). However, frequency, penetrance and recurrence risks of these variants are still undefined. In this study, we screened two cohorts of BWS patients and one cohort of PHP1B patients for the presence of MLID, and analysed the positive cases for the presence of maternal variants in the SCMC genes by whole exome-sequencing and in silico functional studies. RESULTS We identified 10 new cases of MLID associated with the clinical features of either BWS or PHP1B, in which segregate 13 maternal putatively damaging missense variants of the SCMC genes. The affected genes also included KHDC3L that has not been associated with MLID to date. Moreover, we highlight the possible relevance of relatively common variants in the aetiology of MLID. CONCLUSION Our data further add to the list of the SCMC components and maternal variants that are involved in MLID, as well as of the associated clinical phenotypes. Also, we propose that in addition to rare variants, common variants may play a role in the aetiology of MLID and imprinting disorders by exerting an additive effect in combination with rarer putatively damaging variants. These findings provide useful information for the molecular diagnosis and recurrence risk evaluation of MLID-associated IDs in genetic counselling.
Collapse
Affiliation(s)
- Laura Pignata
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università Degli Studi Della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Francesco Cecere
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università Degli Studi Della Campania "Luigi Vanvitelli", Caserta, Italy
- Institute of Genetics and Biophysics (IGB), "Adriano Buzzati-Traverso", Consiglio Nazionale Delle Ricerche (CNR), Naples, Italy
| | - Ankit Verma
- Institute of Genetics and Biophysics (IGB), "Adriano Buzzati-Traverso", Consiglio Nazionale Delle Ricerche (CNR), Naples, Italy
| | - Bruno Hay Mele
- Department of Biology, Università Degli Studi Di Napoli "Federico II", Naples, Italy
| | - Maria Monticelli
- Department of Biology, Università Degli Studi Di Napoli "Federico II", Naples, Italy
| | - Basilia Acurzio
- Institute of Genetics and Biophysics (IGB), "Adriano Buzzati-Traverso", Consiglio Nazionale Delle Ricerche (CNR), Naples, Italy
| | - Carlo Giaccari
- Institute of Genetics and Biophysics (IGB), "Adriano Buzzati-Traverso", Consiglio Nazionale Delle Ricerche (CNR), Naples, Italy
| | - Angela Sparago
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università Degli Studi Della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Jose Ramon Hernandez Mora
- Cancer Epigenetic and Biology Program (PEBC), Imprinting and Cancer Group, Institut d'Investigació Biomedica de Bellvitge (IDIBELL), Avinguda Granvia, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ana Monteagudo-Sánchez
- Cancer Epigenetic and Biology Program (PEBC), Imprinting and Cancer Group, Institut d'Investigació Biomedica de Bellvitge (IDIBELL), Avinguda Granvia, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Manel Esteller
- Josep Carreras Leukeamia Research Institute, Can Ruti, Cami de les Escoles, Badalona, Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Institucio Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Arrate Pereda
- Molecular (Epi)Genetics Laboratory, Rare Diseases Research Group, Bioaraba Health Research Institute, Araba University Hospital-Txagorritxu, C/Jose Atxotegi s/n, 01009, Vitoria-Gasteiz, Spain
| | - Jair Tenorio-Castano
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- Institute of Medical and Molecular Genetics, INGEMM-Idipaz, Madrid, Spain
- ITHACA, European Reference Network, Brussels, Belgium
| | - Orazio Palumbo
- Division of Medical Genetics, Fondazione IRCCS "Casa Sollievo Della Sofferenza", 71013, San Giovanni Rotondo, FG, Italy
| | - Massimo Carella
- Division of Medical Genetics, Fondazione IRCCS "Casa Sollievo Della Sofferenza", 71013, San Giovanni Rotondo, FG, Italy
| | - Paolo Prontera
- Medical Genetics Unit, University and Hospital of Perugia, Perugia, Italy
| | - Carmelo Piscopo
- Medical and Laboratory Genetics Unit, "Antonio Cardarelli" Hospital, 80131, Naples, Italy
| | - Maria Accadia
- Medical Genetics Service, Hospital "Cardinale G. Panico", 73039, Tricase, Lecce, Italy
| | - Pablo Lapunzina
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- Institute of Medical and Molecular Genetics, INGEMM-Idipaz, Madrid, Spain
- ITHACA, European Reference Network, Brussels, Belgium
| | | | - Guiomar Perez de Nanclares
- Molecular (Epi)Genetics Laboratory, Rare Diseases Research Group, Bioaraba Health Research Institute, Araba University Hospital-Txagorritxu, C/Jose Atxotegi s/n, 01009, Vitoria-Gasteiz, Spain
| | - David Monk
- Cancer Epigenetic and Biology Program (PEBC), Imprinting and Cancer Group, Institut d'Investigació Biomedica de Bellvitge (IDIBELL), Avinguda Granvia, L'Hospitalet de Llobregat, Barcelona, Spain
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TG, UK
| | - Andrea Riccio
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università Degli Studi Della Campania "Luigi Vanvitelli", Caserta, Italy.
- Institute of Genetics and Biophysics (IGB), "Adriano Buzzati-Traverso", Consiglio Nazionale Delle Ricerche (CNR), Naples, Italy.
| | - Flavia Cerrato
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università Degli Studi Della Campania "Luigi Vanvitelli", Caserta, Italy.
| |
Collapse
|
16
|
Goode E, Montoya L, Graham E, Pruniski B, Simmons C, Ngwube A, Hoffman LM, Tiwari N, Aldape K, Price HN, Paulson V, Mangum R. Diagnostic and Prognostic Implications of GNAS Inactivation in Sonic Hedgehog-Activated Medulloblastoma: Case Report with Comprehensive Molecular Profiling and Review of Literature. JCO Precis Oncol 2022; 6:e2100403. [PMID: 35357904 PMCID: PMC9848563 DOI: 10.1200/po.21.00403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
SHH medulloblastoma from GNAS mutation (molecular profiling confirmation) with osteoma cutis & syndromic features.![]()
Collapse
Affiliation(s)
- Erin Goode
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, AZ
| | - Liliana Montoya
- Division of Dermatology, Phoenix Children's Hospital, Phoenix, AZ
| | - Eric Graham
- Department of Radiology, Phoenix Children's Hospital, Phoenix, AZ
| | - Brianna Pruniski
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, AZ,Department of Genetics, Phoenix Children's Hospital, Phoenix, AZ
| | - Curtis Simmons
- Department of Radiology, Phoenix Children's Hospital, Phoenix, AZ
| | - Alexander Ngwube
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, AZ
| | - Lindsey M. Hoffman
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, AZ
| | - Nishant Tiwari
- Department of Pathology, Phoenix Children's Hospital, Phoenix, AZ
| | | | - Harper N. Price
- Division of Dermatology, Phoenix Children's Hospital, Phoenix, AZ
| | - Vera Paulson
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Ross Mangum
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, AZ,Ross Mangum, MD, Phoenix Children's Hospital, 1919 East Thomas Rd, Phoenix, AZ 85016; e-mail:
| |
Collapse
|
17
|
Chang G, Li Q, Li N, Li G, Li J, Ding Y, Huang X, Shen Y, Wang J, Wang X. Evaluating the variety of GNAS inactivation disorders and their clinical manifestations in 11 Chinese children. BMC Endocr Disord 2022; 22:70. [PMID: 35296306 PMCID: PMC8928694 DOI: 10.1186/s12902-022-00941-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/30/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The GNAS gene on chromosome 20q13.3, encodes the alpha-subunit of the stimulatory G protein, which is expressed in most tissues and regulated through reciprocal genomic imprinting. Disorders of GNAS inactivation produce several different clinical phenotypes including pseudohypoparathyroidism (PHP), pseudopseudohypoparathyroidism (PPHP), progressive osseous heteroplasia (POH), and osteoma cutis (OC). The clinical and biochemical characteristics overlap of PHP subtypes and other related disorders presents challenges for differential diagnosis. METHODS We enrolled a total of 11 Chinese children with PHP in our study and analyzed their clinical characteristics, laboratory results, and genetic mutations. RESULTS Among these 11 patients, nine of them (9/11) presented with resistance to parathyroid hormone (PTH); and nine (9/11) presented with an Albright's hereditary osteodystrophy (AHO) phenotype. GNAS abnormalities were detected in all 11 patients, including nine cases with GNAS gene variations and two cases with GNAS methylation defects. These GNAS variations included an intronic mutation (c.212 + 3_212 + 6delAAGT), three missense mutations (c.314C > T, c.308 T > C, c.1123G > T), two deletion mutations (c.565_568delGACT*2, c.74delA), and two splicing mutations (c.721 + 1G > A, c.432 + 1G > A). Three of these mutations, namely, c.314C > T, c.1123G > T, and c.721 + 1G > A, were found to be novel. This data was then used to assign a GNAS subtype to each of these patients with six cases diagnosed as PHP1a, two cases as PHP1b, one as PPHP, and two as POH. CONCLUSIONS Evaluating patients with PTH resistance and AHO phenotype improved the genetic diagnosis of GNAS mutations significantly. In addition, our results suggest that when GNAS gene sequencing is negative, GNAS methylation study should be performed. Early genetic detection is required for the differential diagnosis of GNAS disorders and is critical to the clinician's ability to distinguish between heterotopic ossification in the POH and AHO phenotype.
Collapse
MESH Headings
- Adolescent
- Bone Diseases, Metabolic/diagnosis
- Bone Diseases, Metabolic/genetics
- Bone Diseases, Metabolic/pathology
- Child
- Child, Preschool
- China
- Chromogranins/genetics
- Female
- GTP-Binding Protein alpha Subunits, Gs/genetics
- Humans
- Infant
- Male
- Ossification, Heterotopic/diagnosis
- Ossification, Heterotopic/genetics
- Ossification, Heterotopic/pathology
- Pseudohypoparathyroidism/diagnosis
- Pseudohypoparathyroidism/genetics
- Pseudohypoparathyroidism/pathology
- Pseudopseudohypoparathyroidism/diagnosis
- Pseudopseudohypoparathyroidism/genetics
- Pseudopseudohypoparathyroidism/pathology
- Skin Diseases, Genetic/diagnosis
- Skin Diseases, Genetic/genetics
- Skin Diseases, Genetic/pathology
Collapse
Affiliation(s)
- Guoying Chang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127, China
| | - Qun Li
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127, China
| | - Niu Li
- Department of Medical Genetics and Molecular Diagnostics Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127, China
| | - Guoqiang Li
- Department of Medical Genetics and Molecular Diagnostics Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127, China
| | - Juan Li
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127, China
| | - Yu Ding
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127, China
| | - Xiaodong Huang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127, China
| | - Yongnian Shen
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127, China
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostics Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127, China.
| | - Xiumin Wang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127, China.
| |
Collapse
|
18
|
Antoun J, Williamson D, Hubler M, Shoemaker AH. Calcitriol and Levothyroxine Dosing for Patients With Pseudohypoparathyroidism. J Endocr Soc 2021; 5:bvab161. [PMID: 34765856 PMCID: PMC8579912 DOI: 10.1210/jendso/bvab161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 11/29/2022] Open
Abstract
Pseudohypoparathyroidism (PHP) is a rare hormone resistance syndrome caused by mutations in GNAS. This cross-sectional study investigated whether PHP patients with parathyroid hormone (PTH), thyrotropin (thyroid stimulating hormone; TSH), and free thyroxine (T4) levels at goal required higher doses of levothyroxine and calcitriol than recommended by current guidelines to overcome mineral ion abnormalities due to hormone resistance. Baseline demographic and clinical data of participants enrolled in PHP research studies between 2012-2021 were collected via retrospective chart review. Longitudinally, data were recorded at a maximum frequency of once a year starting at 1 year of age. The PTH at goal (PAG) group was defined as PTH < 150 pg/mL and calcium ≥ 8.4 mg/dL, and the TSH and free T4 at goal (TAG) group was defined as TSH < 5 mIU/L and free T4 ≥ 0.8 ng/dL. The PAG group (n = 74) was prescribed higher calcitriol doses than the PTH not at goal (PNAG) group (n = 50) (0.9 ± 1.1 vs 0.5 ± 0.9 mcg/day, P = 0.04) and 21% of individual patients were prescribed ≥ 1.5 mcg of calcitriol daily. This remained true after normalization for body weight (0.013 ± 0.015 vs 0.0067 ± 0.0095 mcg/kg/day, P = 0.008). There was no statistically significant difference in levothyroxine dosing between the TAG group (n = 122) and TSH and free T4 not at goal (TNAG) group (n = 45) when normalized for weight (2.0 ± 0.7 vs 1.8 ± 0.7 mcg/kg/day, P = 0.2). More than one-third of patients with PHP had PTH levels not at goal and some patients required calcitriol doses ≥ 1.5 mcg/day to meet current treatment goals.
Collapse
Affiliation(s)
| | - Dylan Williamson
- Division of Pediatric Endocrinology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Merla Hubler
- Department of Pediatrics, University of Tennessee Health Science Center, Chattanooga, TN 37403, USA
| | - Ashley H Shoemaker
- Division of Pediatric Endocrinology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| |
Collapse
|
19
|
Ramalho E Silva JD, da Rocha GFMA, Oliveira MJM. An intricate case of sporadic pseudohypoparathyroidism type 1B with a review of literature. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2021; 65:112-116. [PMID: 33320452 PMCID: PMC10528691 DOI: 10.20945/2359-3997000000316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/17/2020] [Indexed: 11/23/2022]
Abstract
Pseudohypoparathyroidism comprehends an assorted group of genetically rare disorders that share end-organ resistance to parathyroid hormone. Genetic and epigenetic modifications on guanine nucleotide-binding protein alpha-stimulating gene locus are the most common underlying mechanisms associated with pseudohypoparathyroidism. Biochemical and molecular analysis stratify pseudohypoparathyroidism into types 1A, 1B, 1C, and 2. We describe an unusual case of sporadic pseudohypoparathyroidism type 1B. A 34-year-old Caucasian woman was admitted to the emergency department, with persistent asthenia, limb paresthesias, and tactile hyposensitivity. Her physical examination, previous personal and family histories were unsuspicious, except for mild, intermittent and self-limited complaints of paresthesia during her two pregnancies, but no detailed workup was done. No typical features of Albright hereditary osteodystrophy were observed. The initial laboratory investigation showed elevated parathyroid hormone level (311.2 pg/mL), hypocalcemia (albumin-corrected serum calcium 4.3 mg/dL), hypocalciuria, hyperphosphatemia, hypophosphaturia, and vitamin D deficiency. Combined calcium, vitamin D, and magnesium supplementation was commenced, with symptomatic and analytical improvement. Albeit resolution of vitamin D deficiency, the patient relapsed with mild and intermittent lower limb paresthesias. Pseudohypoparathyroidism was confirmed by molecular identification of the 3-kb STX16 deletion. The treatment was readjusted, and one year later, symptomatic remission was attained. Clinical and biochemical features, and their respective course, along with lack of distinctive features of Albright hereditary osteodystrophy pointed to pseudohypoparathyroidism type 1B. A careful follow-up is needed to avoid complications and recurrence. Once correction of hypocalcemia and hyperphosphatemia is achieved, with no reported complications and recurrence, a good prognosis is anticipated, comparable to the general population.
Collapse
Affiliation(s)
- José Diogo Ramalho E Silva
- Departamento de Endocrinologia e Nutrição, Centro Hospitalar de Vila Nova de Gaia/Espinho (CHVNG/E), Vila Nova de Gaia, Portugal,
| | | | - Maria João Martins Oliveira
- Departamento de Endocrinologia e Nutrição, Centro Hospitalar de Vila Nova de Gaia/Espinho (CHVNG/E), Vila Nova de Gaia, Portugal
| |
Collapse
|
20
|
Danzig J, Li D, Jan de Beur S, Levine MA. High-throughput Molecular Analysis of Pseudohypoparathyroidism 1b Patients Reveals Novel Genetic and Epigenetic Defects. J Clin Endocrinol Metab 2021; 106:e4603-e4620. [PMID: 34157100 PMCID: PMC8677598 DOI: 10.1210/clinem/dgab460] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Patients with pseudohypoparathyroidism type 1b (PHP1b) show disordered imprinting of the maternal GNAS allele or paternal uniparental disomy (UPD). Genetic deletions in STX16 or in upstream exons of GNAS are present in many familial but not sporadic cases. OBJECTIVE Characterization of epigenetic and genetic defects in patients with PHP1b. DESIGN AND PATIENTS DNA from 84 subjects, including 26 subjects with sporadic PHP1b, 27 affected subjects and 17 unaffected and/or obligate gene carriers from 12 PHP1b families, 11 healthy individuals, and 3 subjects with PHP1a was subjected to quantitative pyrosequencing of GNAS differentially methylated regions (DMRs), microarray analysis, and microsatellite haplotype analysis. SETTING Academic medical center. MAIN OUTCOME MEASUREMENTS Molecular pathology of PHP1b. RESULTS Healthy subjects, unaffected family members and obligate carriers of paternal PHP1b alleles, and subjects with PHP1a showed normal methylation of all DMRs. All PHP1b subjects showed loss of methylation (LOM) at the exon A/B DMR. Affected members of 9 PHP1b kindreds showed LOM only at the exon A/B DMR, which was associated with a 3-kb deletion of STX16 exons 4 through 6 in 7 families and a novel deletion of STX16 and adjacent NEPEPL1 in 1 family. A novel NESP deletion was found in 1 of 2 other families with more extensive methylation defects. One sporadic PHP1b had UPD of 20q, 2 had 3-kb STX16 deletions, and 5 had apparent epigenetic mosaicism. CONCLUSIONS We found diverse patterns of defective methylation and identified novel or previously known mutations in 9 of 12 PHP1b families.
Collapse
Affiliation(s)
- Jennifer Danzig
- Division of Endocrinology and Diabetes, and The Children’s Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Dong Li
- Center for Applied Genomics, The Children’s Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Suzanne Jan de Beur
- Division of Endocrinology and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael A Levine
- Division of Endocrinology and Diabetes, and The Children’s Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
21
|
Mendes de Oliveira E, Keogh JM, Talbot F, Henning E, Ahmed R, Perdikari A, Bounds R, Wasiluk N, Ayinampudi V, Barroso I, Mokrosiński J, Jyothish D, Lim S, Gupta S, Kershaw M, Matei C, Partha P, Randell T, McAulay A, Wilson LC, Cheetham T, Crowne EC, Clayton P, Farooqi IS. Obesity-Associated GNAS Mutations and the Melanocortin Pathway. N Engl J Med 2021; 385:1581-1592. [PMID: 34614324 DOI: 10.1056/nejmoa2103329] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND GNAS encodes the Gαs (stimulatory G-protein alpha subunit) protein, which mediates G protein-coupled receptor (GPCR) signaling. GNAS mutations cause developmental delay, short stature, and skeletal abnormalities in a syndrome called Albright's hereditary osteodystrophy. Because of imprinting, mutations on the maternal allele also cause obesity and hormone resistance (pseudohypoparathyroidism). METHODS We performed exome sequencing and targeted resequencing in 2548 children who presented with severe obesity, and we unexpectedly identified 22 GNAS mutation carriers. We investigated whether the effect of GNAS mutations on melanocortin 4 receptor (MC4R) signaling explains the obesity and whether the variable clinical spectrum in patients might be explained by the results of molecular assays. RESULTS Almost all GNAS mutations impaired MC4R signaling. A total of 6 of 11 patients who were 12 to 18 years of age had reduced growth. In these patients, mutations disrupted growth hormone-releasing hormone receptor signaling, but growth was unaffected in carriers of mutations that did not affect this signaling pathway (mean standard-deviation score for height, -0.90 vs. 0.75, respectively; P = 0.02). Only 1 of 10 patients who reached final height before or during the study had short stature. GNAS mutations that impaired thyrotropin receptor signaling were associated with developmental delay and with higher thyrotropin levels (mean [±SD], 8.4±4.7 mIU per liter) than those in 340 severely obese children who did not have GNAS mutations (3.9±2.6 mIU per liter; P = 0.004). CONCLUSIONS Because pathogenic mutations may manifest with obesity alone, screening of children with severe obesity for GNAS deficiency may allow early diagnosis, improving clinical outcomes, and melanocortin agonists may aid in weight loss. GNAS mutations that are identified by means of unbiased genetic testing differentially affect GPCR signaling pathways that contribute to clinical heterogeneity. Monogenic diseases are clinically more variable than their classic descriptions suggest. (Funded by Wellcome and others.).
Collapse
Affiliation(s)
- Edson Mendes de Oliveira
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Julia M Keogh
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Fleur Talbot
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Elana Henning
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Rachel Ahmed
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Aliki Perdikari
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Rebecca Bounds
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Natalia Wasiluk
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Vikram Ayinampudi
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Inês Barroso
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Jacek Mokrosiński
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Deepthi Jyothish
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Sharon Lim
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Sanjay Gupta
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Melanie Kershaw
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Cristina Matei
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Praveen Partha
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Tabitha Randell
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Antoinette McAulay
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Louise C Wilson
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Tim Cheetham
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Elizabeth C Crowne
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Peter Clayton
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - I Sadaf Farooqi
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| |
Collapse
|
22
|
Hanna P, Francou B, Delemer B, Jüppner H, Linglart A. A Novel Familial PHP1B Variant With Incomplete Loss of Methylation at GNAS-A/B and Enhanced Methylation at GNAS-AS2. J Clin Endocrinol Metab 2021; 106:2779-2787. [PMID: 33677588 PMCID: PMC8372637 DOI: 10.1210/clinem/dgab136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT Pseudohypoparathyroidism type 1B (PHP1B), also referred to as inactivating PTH/PTHrP signaling disorder (iPPSD), is characterized by proximal renal tubular resistance to parathyroid hormone (PTH) leading to hypocalcemia, hyperphosphatemia, and elevated PTH values. Autosomal dominant PHP1B (AD-PHP1B) with loss of methylation at the maternal GNAS A/B:TSS-DMR (transcription start site-differentially methylated region) alone can be caused by maternal deletions involving STX16. OBJECTIVE Characterize a previously not reported AD-PHP1B family with loss of methylation at GNAS A/B:TSS-DMR, but without evidence for a STX16 deletion on the maternal allele and assess GNAS-AS2:TSS-DMR methylation. METHODS DNA from 24 patients and 10 controls were investigated. AD-PHP1B patients without STX16 deletion from a single family (n = 5), AD-PHP1B patients with STX16 deletion (n = 9), sporPHP1B (n = 10), unaffected controls (n = 10), patUPD20 (n = 1), and matUPD20 (n = 1). Methylation and copy number analyses were performed by pyrosequencing, methylation-sensitive multiplex ligation-dependent probe amplification, and multiplex ligation-dependent probe amplification. RESULTS Molecular cloning of polymerase chain reaction-amplified, bisulfite-treated genomic DNA from healthy controls revealed evidence for 2 distinct GNAS-AS2:TSS-DMR subdomains, named AS2-1 and AS2-2, which showed 16.0 ± 2.3% and 31.0 ± 2.2% methylation, respectively. DNA from affected members of a previously not reported AD-PHP1B family without the known genetic defects revealed incomplete loss of methylation at GNAS A/B:TSS-DMR, normal methylation at the 3 well-established maternal and paternal DMRs, and, surprisingly, increased methylation at AS2-1 (32.9 ± 3.5%), but not at AS2-2 (30.5 ± 2.9%). CONCLUSION The distinct methylation changes at the novel GNAS-AS2:TSS-DMR will help characterize further different PHP1B/iPPSD3 variants and will guide the search for underlying genetic defects, which may provide novel insights into the mechanisms underlying GNAS methylation.
Collapse
Affiliation(s)
- Patrick Hanna
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocrinienne, Le Kremlin-Bicêtre, France
| | - Bruno Francou
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocrinienne, Le Kremlin-Bicêtre, France
- AP-HP, Department of Molecular Genetics, Bicêtre Paris-Saclay Hospital, Le Kremlin Bicêtre, France
| | - Brigitte Delemer
- Endocrinology, Diabetes and Nutrition, Reims University Hospital and University of Reims Champagne Ardenne, Reims, France
| | - Harald Jüppner
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Pediatric Nephrology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Agnès Linglart
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocrinienne, Le Kremlin-Bicêtre, France
- AP-HP, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Filière OSCAR and Platform of Expertise for Rare Diseases Paris-Saclay, Bicêtre Paris-Saclay Hospital, Le Kremlin-Bicêtre, France
- AP-HP, Endocrinology and Diabetes for Children, Bicêtre Paris-Saclay Hospital, Le Kremlin Bicêtre, France
| |
Collapse
|
23
|
Abstract
Pseudohypoparathyroidism (PHP) and pseudopseudohypoparathyroidism (PPHP) are caused by mutations and/or epigenetic changes at the complex GNAS locus on chromosome 20q13.3 that undergoes parent-specific methylation changes at several differentially methylated regions (DMRs). GNAS encodes the alpha-subunit of the stimulatory G protein (Gsα) and several splice variants thereof. PHP type Ia (PHP1A) is caused by heterozygous inactivating mutations involving the maternal exons 1-13. Heterozygosity of these maternal GNAS mutations cause PTH-resistant hypocalcemia and hyperphosphatemia because paternal Gsα expression is suppressed in certain organs thus leading to little or no Gsα protein in the proximal renal tubules and other tissues. Besides biochemical abnormalities, PHP1A patients show developmental abnormalities, referred to as Albright's hereditary osteodystrophy (AHO). Some, but not all of these AHO features are encountered also in patients affected by PPHP, who carry paternal Gsα-specific mutations and typically show no laboratory abnormalities. Autosomal dominant PHP type Ib (AD-PHP1B) is caused by heterozygous maternal deletions within GNAS or STX16, which are associated with loss of methylation at the A/B DMR alone or at all maternally methylated GNAS exons. Loss of methylation of exon A/B and the resulting biallelic expression of A/B transcript reduces Gsα expression thus leading to hormonal resistance. Epigenetic changes at all differentially methylated GNAS regions are also observed in sporadic PHP1B, which is the most frequent PHP1B variant. However, this disease variant remains unresolved at the molecular level, except for rare cases with paternal uniparental isodisomy or heterodisomy of chromosome 20q (patUPD20q).
Collapse
Affiliation(s)
- Harald Jüppner
- Endocrine Unit, Department of Medicine and Pediatric Nephrology Unit, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Correspondence: Harald Jüppner, MD, Endocrine Unit, Thier 10, 50 Blossom Street, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
24
|
Luo D, Qi X, Liu L, Su Y, Fang L, Guan Q. Genetic and Epigenetic Characteristics of Autosomal Dominant Pseudohypoparathyroidism Type 1B: Case Reports and Literature Review. Horm Metab Res 2021; 53:225-235. [PMID: 33513624 DOI: 10.1055/a-1341-9891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Autosomal dominant pseudohypoparathyroidism 1B (AD-PHP1B) is a rare endocrine and imprinted disorder. The objective of this study is to clarify the imprinted regulation of the guanine nucleotide binding-protein α-stimulating activity polypeptide 1 (GNAS) cluster in the occurrence and development of AD-PHP1B based on animal and clinical patient studies. The methylation-specific multiples ligation-dependent probe amplification (MS-MLPA) was conducted to detect the copy number variation in syntaxin-16 (STX16) gene and methylation status of the GNAS differentially methylated regions (DMRs). Long-range PCR was used to confirm deletion at STX16 gene. In the first family, DNA analysis of the proband and proband's mother revealed an isolated loss of methylation (LOM) at exon A/B and a 3.0 kb STX16 deletion. The patient's healthy grandmother had the 3.0 kb STX16 deletion but no epigenetic abnormality. The patient's healthy maternal aunt showed no genetic or epigenetic abnormality. In the second family, the analysis of long-range PCR revealed the 3.0 kb STX16 deletion for the proband but not her children. In this study, 3.0 kb STX16 deletion causes isolated LOM at exon A/B in two families, which is the most common genetic mutation of AD-PHP1B. The deletion involving NESP55 or AS or genomic rearrangements of GNAS can also result in AD-PHP1B, but it's rare. LOM at exon A/B DMR is prerequisite methylation defect of AD-PHP1B. STX16 and NESP55 directly control the imprinting at exon A/B, while AS controls the imprinting at exon A/B by regulating the transcriptional level of NESP55.
Collapse
Affiliation(s)
- Dandan Luo
- Department of Endocrinology and Metabolism, Shandong University, Jinan, Shandong, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Xiangyu Qi
- Department of Endocrinology and Metabolism, Shandong University, Jinan, Shandong, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Luna Liu
- Department of Endocrinology and Metabolism, Shandong University, Jinan, Shandong, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Yu Su
- Department of Endocrinology and Metabolism, Shandong University, Jinan, Shandong, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Li Fang
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Qingbo Guan
- Department of Endocrinology and Metabolism, Shandong University, Jinan, Shandong, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
25
|
Tessaris D, Bonino E, Weber G, Wasniewska M, Corica D, Pitea M, Scirè G, Caruso-Nicoletti M, Fintini D, de Sanctis L. Pseudohypoparathyroidism: application of the Italian common healthcare-pathway for a homogeneous clinical approach and a shared follow up. Ital J Pediatr 2021; 47:48. [PMID: 33663571 PMCID: PMC7934261 DOI: 10.1186/s13052-021-01000-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pseudohypoparathyroidism (PHP) represents a heterogeneous group of rare endocrine disorders caused by (epi) genetic abnormalities affecting the GNAS locus. It is mainly characterized by resistance to PTH and TSH, and by peculiar clinical features such as short stature, obesity, cognitive impairment, subcutaneous ossifications and brachydactyly. Delayed puberty, GHRH and calcitonin resistances have also been described. The healthcare-pathway recently proposed by the Italian Society of Pediatric Endocrinology and Diabetology (ISPED) has provided a standardized clinical approach to these conditions. The purpose of the present study was to evaluate its application in clinical practice, and to collect data for setting future specific studies. METHODS Through a semi-structured survey, based on the indications of the care-pathway, data on PHP clinical management were collected. The compilation of each data in the survey was read as an index of the adoption of the healthcare-pathway in clinical practice. RESULTS In addition to the proposing Center, 4 Centers joined the study, thus obtaining a large collection of data on 48 PHP patients. Highest rates in the completion of data were obtained for diagnostic history, auxological measurements and subcutaneous ossifications evaluation. As expected, the availability of data for the other investigated fields was lower, coming from recent research studies. More information has been obtained on hormonal resistance classically involved in PHP (PTH, TSH, GHRH and GnRH) and on cognitive impairment, while a few data has been collected on bone mineral status, calcitonin levels and glucolipid metabolism. CONCLUSIONS The presented data show that the ISPED healthcare-pathway could represent a valid tool both to confirm the clinical approach to PHP patients and to allow homogeneous data collection; however, it has not yet been fully adopted. The strengthening of the network among the major Italian Endocrine Centers will contribute to improve its application in clinical practice, optimizing the follow-up of these patients and increasing knowledge on PHP.
Collapse
Affiliation(s)
- Daniele Tessaris
- Department of Pediatric Endocrinology, Regina Margherita Children's Hospital - Health and Science City, Turin, Italy. .,Department of Public Health and Pediatrics, University of Turin, Piazza Polonia 94, 10126, Torino (TO), Italy.
| | - Elisa Bonino
- Department of Pediatric Endocrinology, Regina Margherita Children's Hospital - Health and Science City, Turin, Italy
| | - Giovanna Weber
- Department of Pediatrics, San Raffaele Hospital, University of Milan, Milan, Italy
| | - Malgorzata Wasniewska
- Department of Pediatrics, Gynecological, Microbiological and Biomedical Sciences, University of Messina, Messina, Italy
| | - Domenico Corica
- Department of Pediatrics, Gynecological, Microbiological and Biomedical Sciences, University of Messina, Messina, Italy
| | - Marco Pitea
- Department of Pediatrics, San Raffaele Hospital, University of Milan, Milan, Italy
| | - Giuseppe Scirè
- Endocrinology Unit, Pediatric University Department, "Bambino Gesù" Children's Hospital-IRCCS, Rome, Italy
| | | | - Danilo Fintini
- Endocrinology Unit, Pediatric University Department, "Bambino Gesù" Children's Hospital-IRCCS, Rome, Italy
| | - Luisa de Sanctis
- Department of Pediatric Endocrinology, Regina Margherita Children's Hospital - Health and Science City, Turin, Italy
| |
Collapse
|
26
|
Kotanidou EP, Tsinopoulou VR, Serbis A, Litou E, Galli-Tsinopoulou A. Pseudohypoparathyroidism Type 1A with Normocalcaemia, due to the Novel C.389A>G Variant of Exon 5 of the Guanine Nucleotide-Binding Protein, α-Stimulating Gene. J Bone Metab 2021; 28:85-89. [PMID: 33730787 PMCID: PMC7973403 DOI: 10.11005/jbm.2021.28.1.85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/28/2020] [Indexed: 11/14/2022] Open
Abstract
Pseudohypoparathyroidism type 1A (PHP1A) is a rare disease caused by molecular defects in the maternally-inherited allele of the guanine nucleotide-binding protein, α-stimulating (GNAS) gene. The GNAS gene encodes the stimulatory G-protein α-subunit that regulates production of the second messenger cyclic adenosine monophosphate. Heterozygous inactivating mutations in these specific loci are responsible for a spectrum of phenotypic characteristics of the disease, including clinical features of the Albright’s hereditary osteodystrophy, due to resistance to parathyroid hormone (PTH). We report a case of PHP1A and explore the underlying novel point mutation of the GNAS gene that leads to an atypical PHP1A phenotype. A male patient with a round face, short stature, and brachydactyly accompanied by normocalcaemia and mild PTH resistance consulted at our center. The GNAS encoding region from the patient and both of his parents were amplified and sequenced directly in a sample of peripheral blood leukocytes. A novel c.389A>G point mutation in exon 5 of the GNAS gene, resulting in a p.Tyr130Cys peptidic chain change of the Gsα protein, detected in the proband, in heterozygous state. Sequencing of the GNAS gene from his parents did not reveal the c.389A>G mutation, confirming a de novo proband genotype. The maternal origin of the affected GNAS allele, along with mild PTH resistance, confirmed the PHP1A diagnosis. PHP1A, caused by inactivating GNAS mutations, presents a range of complex clinical phenotypes. The novel c.389A>G GNAS mutation presented in this case expands the spectrum of known PHP1A molecular defects and describes the associated phenotype.
Collapse
Affiliation(s)
- Eleni P Kotanidou
- Unit of Paediatric Endocrinology and Metabolism, Second Department of Paediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University General Hospital, Thessaloniki, Greece
| | - Vasiliki-Rengina Tsinopoulou
- Unit of Paediatric Endocrinology and Metabolism, Second Department of Paediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University General Hospital, Thessaloniki, Greece
| | - Anastasios Serbis
- Unit of Paediatric Endocrinology and Metabolism, Second Department of Paediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University General Hospital, Thessaloniki, Greece
| | - Eleni Litou
- Unit of Paediatric Endocrinology and Metabolism, Second Department of Paediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University General Hospital, Thessaloniki, Greece
| | - Assimina Galli-Tsinopoulou
- Unit of Paediatric Endocrinology and Metabolism, Second Department of Paediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University General Hospital, Thessaloniki, Greece
| |
Collapse
|
27
|
Choufani S, Ko JM, Lou Y, Shuman C, Fishman L, Weksberg R. Paternal Uniparental Disomy of the Entire Chromosome 20 in a Child with Beckwith-Wiedemann Syndrome. Genes (Basel) 2021; 12:genes12020172. [PMID: 33513760 PMCID: PMC7911624 DOI: 10.3390/genes12020172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
Epigenetic alterations at imprinted genes on different chromosomes have been linked to several imprinting disorders (IDs) such as Beckwith-Wiedemann syndrome (BWS) and pseudohypoparathyroidism type 1b (PHP1b). Here, we present a male patient with these two distinct IDs caused by two independent mechanisms-loss of methylation (LOM) at chromosome 11p15.5 associated with multi-locus imprinting disturbances (MLID and paternal uniparental disomy of chromosome 20 (patUPD20). A clinical diagnosis of BWS was made based on the clinical features of macrosomia, macroglossia, and umbilical hernia. The diagnosis of PHP1b was supported by the presence of reduced growth velocity and mild learning disability as well as hypocalcemia and hyperphosphatemia at 14 years of age. Molecular analyses, including genome-wide DNA methylation (Illumina 450k array), bisulfite pyrosequencing, single nucleotide polymorphism (SNP) array and microsatellite analysis, demonstrated loss of methylation (LOM) at IC2 on chromosome 11p15.5, and paternal isodisomy of the entire chromosome 20. In addition, imprinting disturbances were noted at the differentially methylated regions (DMRs) associated with DIRAS3 on chromosome 1 and PLAGL1 on chromosome 6. This is the first case report of PHP1b due to patUPD20 diagnosed in a BWS patient with LOM at IC2 demonstrating etiologic heterogeneity for multiple imprinting disorders in a single individual.
Collapse
Affiliation(s)
- Sanaa Choufani
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (S.C.); (J.M.K.); (Y.L.)
| | - Jung Min Ko
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (S.C.); (J.M.K.); (Y.L.)
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Youliang Lou
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (S.C.); (J.M.K.); (Y.L.)
| | - Cheryl Shuman
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X8, Canada;
| | - Leona Fishman
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada;
- Department of Pediatrics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Rosanna Weksberg
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (S.C.); (J.M.K.); (Y.L.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X8, Canada;
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada;
- Department of Pediatrics, University of Toronto, Toronto, ON M5S 1A1, Canada
- Correspondence:
| |
Collapse
|
28
|
Reyes M, Silve C, Jüppner H. Shortened Fingers and Toes: GNAS Abnormalities are Not the Only Cause. Exp Clin Endocrinol Diabetes 2020; 128:681-686. [PMID: 31860119 PMCID: PMC7950720 DOI: 10.1055/a-1047-0334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The PTH/PTHrP receptor (PTHR1) mediates the actions of parathyroid hormone (PTH) and PTH-related peptide (PTHrP) by coupling this G protein-coupled receptor (GPCR) to the alpha-subunit of the heterotrimeric stimulatory G protein (Gsα) and thereby to the formation of cAMP. In growth plates, PTHrP-dependent activation of the cAMP/PKA second messenger pathway prevents the premature differentiation of chondrocytes into hypertrophic cells resulting in delayed growth plate closure. Heterozygous mutations in GNAS, the gene encoding Gsα, lead to a reduction in cAMP levels in growth plate chondrocytes that is sufficient to cause shortening of metacarpals and/or -tarsals, i. e. typical skeletal aspects of Albright's Hereditary Osteodystrophy (AHO). However, heterozygous mutations in other genes, including those encoding PTHrP, PRKAR1A, PDE4D, and PDE3A, can lead to similar or even more pronounced acceleration of skeletal maturation that is particularly obvious in hands and feet, and reduces final adult height. Genetic mutations other than those resulting in Gsα haploinsufficiency thus reduce intracellular cAMP levels in growth plate chondrocytes to a similar extent and thereby accelerate skeletal maturation.
Collapse
Affiliation(s)
- Monica Reyes
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Caroline Silve
- INSERM équipe “Génomiques et épigénétique des tumeurs rares”, Institut Cochin, Paris, France
- Centre de Référence des Maladies rares du Calcium et du Phosphore and Filière de Santé Maladies Rares OSCAR, AP-HP, Paris, France
- Service de Biochimie et Génétique Moléculaires, Hôpital Cochin, AP- HP, Paris, France
| | - Harald Jüppner
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Pediatric Nephrology Unit, MassGeneral Hospital for Children Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
29
|
Snanoudj S, Molin A, Colson C, Coudray N, Paulien S, Mittre H, Gérard M, Schaefer E, Goldenberg A, Bacchetta J, Odent S, Naudion S, Demeer B, Faivre L, Gruchy N, Kottler ML, Richard N. Maternal Transmission Ratio Distortion of GNAS Loss-of-Function Mutations. J Bone Miner Res 2020; 35:913-919. [PMID: 31886927 DOI: 10.1002/jbmr.3948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 12/09/2019] [Accepted: 12/14/2019] [Indexed: 12/14/2022]
Abstract
Pseudohypoparathyroidism type 1A (PHP1A) and pseudopseudohypoparathyroidism (PPHP) are two rare autosomal dominant disorders caused by loss-of-function mutations in the imprinted Guanine Nucleotide Binding Protein, Alpha Stimulating Activity (GNAS) gene, coding Gs α. PHP1A is caused by mutations in the maternal allele and results in Albright's hereditary osteodystrophy (AHO) and hormonal resistance, mainly to the parathormone (PTH), whereas PPHP, with AHO features and no hormonal resistance, is linked to mutations in the paternal allele. This study sought to investigate parental transmission of GNAS mutations. We conducted a retrospective study in a population of 204 families with 361 patients harboring GNAS mutations. To prevent ascertainment bias toward a higher proportion of affected children due to the way in which data were collected, we excluded from transmission analysis all probands in the ascertained sibships. After bias correction, the distribution ratio of the mutated alleles was calculated from the observed genotypes of the offspring of nuclear families and was compared to the expected ratio of 50% according to Mendelian inheritance (one-sample Z-test). Sex ratio, phenotype of the transmitting parent, and transmission depending on the severity of the mutation were also analyzed. Transmission analysis was performed in 114 nuclear families and included 250 descendants. The fertility rates were similar between male and female patients. We showed an excess of transmission from mother to offspring of mutated alleles (59%, p = .022), which was greater when the mutations were severe (61.7%, p = .023). Similarly, an excess of transmission was found when the mother had a PHP1A phenotype (64.7%, p = .036). By contrast, a Mendelian distribution was observed when the mutations were paternally inherited. Higher numbers of females within the carriers, but not in noncarriers, were also observed. The mother-specific transmission ratio distortion (TRD) and the sex-ratio imbalance associated to PHP1A point to a role of Gs α in oocyte biology or embryogenesis, with implications for genetic counseling. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Sarah Snanoudj
- Normandie Université, UNICAEN, CHU de Caen Normandie, Department of Genetics, Reference Center for Rare Diseases of Calcium and Phosphorus Metabolism, EA7450 BioTARGen, Caen, France
| | - Arnaud Molin
- Normandie Université, UNICAEN, CHU de Caen Normandie, Department of Genetics, Reference Center for Rare Diseases of Calcium and Phosphorus Metabolism, EA7450 BioTARGen, Caen, France
| | - Cindy Colson
- Normandie Université, UNICAEN, CHU de Caen Normandie, Department of Genetics, Reference Center for Rare Diseases of Calcium and Phosphorus Metabolism, EA7450 BioTARGen, Caen, France
| | - Nadia Coudray
- Normandie Université, UNICAEN, CHU de Caen Normandie, Department of Genetics, Reference Center for Rare Diseases of Calcium and Phosphorus Metabolism, EA7450 BioTARGen, Caen, France
| | - Sylvie Paulien
- Normandie Université, UNICAEN, CHU de Caen Normandie, Department of Genetics, Reference Center for Rare Diseases of Calcium and Phosphorus Metabolism, EA7450 BioTARGen, Caen, France
| | - Hervé Mittre
- Normandie Université, UNICAEN, CHU de Caen Normandie, Department of Genetics, Reference Center for Rare Diseases of Calcium and Phosphorus Metabolism, EA7450 BioTARGen, Caen, France
| | - Marion Gérard
- Normandie Université, UNICAEN, CHU de Caen Normandie, Department of Genetics, Reference Center for Rare Diseases of Calcium and Phosphorus Metabolism, EA7450 BioTARGen, Caen, France
| | - Elise Schaefer
- Department of Genetics, CHU de Strasbourg, Strasbourg, France
| | | | - Justine Bacchetta
- Department of Pediatric Nephrology, Rheumatology and Dermatology, CHU de Lyon, Bron, France
| | - Sylvie Odent
- Department of Genetics, CHU de Rennes, Rennes, France
| | - Sophie Naudion
- Department of Genetics, CHU de Bordeaux, Bordeaux, France
| | | | | | - Nicolas Gruchy
- Normandie Université, UNICAEN, CHU de Caen Normandie, Department of Genetics, Reference Center for Rare Diseases of Calcium and Phosphorus Metabolism, EA7450 BioTARGen, Caen, France
| | - Marie-Laure Kottler
- Normandie Université, UNICAEN, CHU de Caen Normandie, Department of Genetics, Reference Center for Rare Diseases of Calcium and Phosphorus Metabolism, EA7450 BioTARGen, Caen, France
| | - Nicolas Richard
- Normandie Université, UNICAEN, CHU de Caen Normandie, Department of Genetics, Reference Center for Rare Diseases of Calcium and Phosphorus Metabolism, EA7450 BioTARGen, Caen, France
| |
Collapse
|
30
|
Abstract
Imprinting disorders are a group of congenital diseases caused by dysregulation of genomic imprinting, affecting prenatal and postnatal growth, neurocognitive development, metabolism and cancer predisposition. Aberrant expression of imprinted genes can be achieved through different mechanisms, classified into epigenetic - if not involving DNA sequence change - or genetic in the case of altered genomic sequence. Despite the underlying mechanism, the phenotype depends on the parental allele affected and opposite phenotypes may result depending on the involvement of the maternal or the paternal chromosome. Imprinting disorders are largely underdiagnosed because of the broad range of clinical signs, the overlap of presentation among different disorders, the presence of mild phenotypes, the mitigation of the phenotype with age and the limited availability of molecular techniques employed for diagnosis. This review briefly illustrates the currently known human imprinting disorders, highlighting endocrinological aspects of pediatric interest.
Collapse
Affiliation(s)
- Diana Carli
- University of Torino, Department of Pediatric and Public Health Sciences, Torino, Italy
| | - Evelise Riberi
- University of Torino, Department of Pediatric and Public Health Sciences, Torino, Italy
| | | | - Alessandro Mussa
- University of Torino, Department of Pediatric and Public Health Sciences, Torino, Italy,* Address for Correspondence: University of Torino, Department of Pediatric and Public Health Sciences, Torino, Italy Phone: +39-011-313-1985 E-mail:
| |
Collapse
|
31
|
Mantovani G, Bastepe M, Monk D, de Sanctis L, Thiele S, Ahmed SF, Bufo R, Choplin T, De Filippo G, Devernois G, Eggermann T, Elli FM, Ramirez AG, Germain-Lee EL, Groussin L, Hamdy NA, Hanna P, Hiort O, Jüppner H, Kamenický P, Knight N, Le Norcy E, Lecumberri B, Levine MA, Mäkitie O, Martin R, Martos-Moreno GÁ, Minagawa M, Murray P, Pereda A, Pignolo R, Rejnmark L, Rodado R, Rothenbuhler A, Saraff V, Shoemaker AH, Shore EM, Silve C, Turan S, Woods P, Zillikens MC, de Nanclares GP, Linglart A. Recommendations for Diagnosis and Treatment of Pseudohypoparathyroidism and Related Disorders: An Updated Practical Tool for Physicians and Patients. Horm Res Paediatr 2020; 93:182-196. [PMID: 32756064 PMCID: PMC8140671 DOI: 10.1159/000508985] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/21/2020] [Indexed: 12/12/2022] Open
Abstract
Patients affected by pseudohypoparathyroidism (PHP) or related disorders are characterized by physical findings that may include brachydactyly, a short stature, a stocky build, early-onset obesity, ectopic ossifications, and neurodevelopmental deficits, as well as hormonal resistance most prominently to parathyroid hormone (PTH). In addition to these alterations, patients may develop other hormonal resistances, leading to overt or subclinical hypothyroidism, hypogonadism and growth hormone (GH) deficiency, impaired growth without measurable evidence for hormonal abnormalities, type 2 diabetes, and skeletal issues with potentially severe limitation of mobility. PHP and related disorders are primarily clinical diagnoses. Given the variability of the clinical, radiological, and biochemical presentation, establishment of the molecular diagnosis is of critical importance for patients. It facilitates management, including prevention of complications, screening and treatment of endocrine deficits, supportive measures, and appropriate genetic counselling. Based on the first international consensus statement for these disorders, this article provides an updated and ready-to-use tool to help physicians and patients outlining relevant interventions and their timing. A life-long coordinated and multidisciplinary approach is recommended, starting as far as possible in early infancy and continuing throughout adulthood with an appropriate and timely transition from pediatric to adult care.
Collapse
Affiliation(s)
- Giovanna Mantovani
- Endocrinology Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Murat Bastepe
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - David Monk
- Biomedical Research Centre, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Luisa de Sanctis
- Pediatric Endocrinology Unit, Department of Public Health and Pediatric Sciences, University of Torino, Torino, Italy
| | - Susanne Thiele
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University of Lübeck, Lübeck, Germany
| | - S. Faisal Ahmed
- Developmental Endocrinology Research Group, School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, UK
| | - Roberto Bufo
- Italian Progressive Osseous Heteroplasia Association (IPOHA), Foggia, Italy
| | - Timothée Choplin
- K20, French PHP and Related Disorders Patient Association, Jouars-Pontchartrain, France
| | - Gianpaolo De Filippo
- APHP, Department of Medicine for Adolescents, Bicêtre Paris Saclay Hospital (HUPS), Le Kremlin-Bicetre, France
| | - Guillemette Devernois
- K20, French PHP and Related Disorders Patient Association, Jouars-Pontchartrain, France
| | - Thomas Eggermann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Francesca M. Elli
- Endocrinology Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | | | - Emily L. Germain-Lee
- Albright Center and Center for Rare Bone Disorders, Division of Pediatric Endocrinology and Diabetes, Connecticut Children’s Medical Center, Farmington, CT, USA,Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Lionel Groussin
- APHP, Department of Endocrinology, Cochin Hospital (HUPC), Paris, France,University of Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Neveen A.T. Hamdy
- Division of Endocrinology and Centre for Bone Quality, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Patrick Hanna
- INSERM U1185, Bicêtre Paris Sud – Paris Saclay University, Le Kremlin-Bicêtre, France
| | - Olaf Hiort
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University of Lübeck, Lübeck, Germany
| | - Harald Jüppner
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter Kamenický
- INSERM U1185, Bicêtre Paris Sud – Paris Saclay University, Le Kremlin-Bicêtre, France,APHP, Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, Platform of Expertise Paris-Saclay for Rare Diseases and Filière OSCAR, Bicêtre Paris Saclay Hospital (HUPS), Le Kremlin-Bicêtre, France,APHP, Department of Endocrinology and Reproductive Diseases, Bicêtre Paris Saclay Hospital (HUPS), Le Kremlin-Bicêtre, France
| | - Nina Knight
- Acrodysostosis Support and Research patients’ group, London, UK
| | - Elvire Le Norcy
- University of Paris Descartes, Sorbonne Paris Cité, Paris, France,APHP, Department of Odontology, Bretonneau Hospital (PNVS), Paris, France
| | - Beatriz Lecumberri
- Department of Endocrinology and Nutrition, La Paz University Hospital, Madrid, Spain,Department of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain,Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Michael A. Levine
- Division of Endocrinology and Diabetes and Center for Bone Health, Children’s Hospital of Philadelphia, Philadelphia, PA, USA,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Outi Mäkitie
- Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Regina Martin
- Osteometabolic Disorders Unit, Hormone and Molecular Genetics Laboratory (LIM/42), Endocrinology Division, Hospital das Clínicas HCFMUSP, Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Gabriel Ángel Martos-Moreno
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Hospital La Princesa Institute for Health Research (IIS La Princesa), Madrid, Spain,Department of Pediatrics, Autonomous University of Madrid (UAM), Madrid, Spain,CIBERobn, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Philip Murray
- Department of Paediatric Endocrinology, Royal Manchester Children’s Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Arrate Pereda
- Molecular (Epi)Genetics Laboratory, BioAraba Research Health Institute, Araba University Hospital-Txagorritxu, Vitoria-Gasteiz, Spain
| | | | - Lars Rejnmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Rebeca Rodado
- AEPHP, Spanish PHP and Related Disorders Patient Association, Almeria, Spain
| | - Anya Rothenbuhler
- APHP, Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, Platform of Expertise Paris-Saclay for Rare Diseases and Filière OSCAR, Bicêtre Paris Saclay Hospital (HUPS), Le Kremlin-Bicêtre, France,APHP, Endocrinology and Diabetes for Children, Bicêtre Paris Saclay Hospital (HUPS), Le Kremlin-Bicêtre, France
| | - Vrinda Saraff
- Department of Endocrinology and Diabetes, Birmingham Children’s Hospital, Birmingham, UK
| | - Ashley H. Shoemaker
- Pediatric Endocrinology and Diabetes, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eileen M. Shore
- Departments of Orthopedic Surgery and Genetics, Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Caroline Silve
- APHP, Service de Biochimie et Génétique Moléculaires, Hôpital Cochin, Paris, France
| | - Serap Turan
- Department of Pediatrics, Division of Endocrinology and Diabetes, Marmara University, Istanbul, Turkey
| | - Philip Woods
- Acrodysostosis Support and Research patients’ group, London, UK
| | - M. Carola Zillikens
- Department of Internal Medicine, Bone Center Erasmus MC – University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Guiomar Perez de Nanclares
- Molecular (Epi)Genetics Laboratory, BioAraba Research Health Institute, Araba University Hospital-Txagorritxu, Vitoria-Gasteiz, Spain
| | - Agnès Linglart
- INSERM U1185, Bicêtre Paris Sud – Paris Saclay University, Le Kremlin-Bicêtre, France,APHP, Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, Platform of Expertise Paris-Saclay for Rare Diseases and Filière OSCAR, Bicêtre Paris Saclay Hospital (HUPS), Le Kremlin-Bicêtre, France,APHP, Endocrinology and Diabetes for Children, Bicêtre Paris Saclay Hospital (HUPS), Le Kremlin-Bicêtre, France
| |
Collapse
|
32
|
Han SR, Lee YA, Shin CH, Yang SW, Lim BC, Cho TJ, Ko JM. Clinical and Molecular Characteristics of GNAS Inactivation Disorders Observed in 18 Korean Patients. Exp Clin Endocrinol Diabetes 2019; 129:118-125. [DOI: 10.1055/a-1001-3575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abstract
Background The GNAS gene on chromosome 20q13.3 is a complex, imprinted locus regulated in a tissue-specific manner. GNAS inactivation disorders are a heterogeneous group of rare disorders caused by mutations and methylation defects. These are divided into pseudohypoparathyroidism (PHP) types 1A and 1B, pseudo-pseudohypoparathyroidism (PPHP), and progressive osseous heteroplasia (POH), depending on the presence or absence of hormone resistance, Albright’s hereditary osteodystrophy (AHO), and ectopic ossification.
Methods This study analyzed the clinical characteristics and molecular genetic backgrounds of 18 Korean patients from 16 families with a genetically confirmed GNAS defect. Auxological parameters, AHO phenotypes, types of hormonal resistance, family history, and molecular genetic disturbances were reviewed retrospectively.
Results Nine (90%) patients with PHP1A showed resistance to parathyroid hormone (PTH) and all patients showed elevated thyroid-stimulating hormone (TSH) levels at diagnosis. Eight (80%) patients were managed with levothyroxine supplementation. Three of six patients with PHP1B had elevated TSH levels, but none of whom needed levothyroxine medication. AHO features were absent in PHP1B. Patients with PPHP and POH did not show any hormone resistance, and both of them were born as small for gestational age. Among the 11 families with PHP1A, PPHP, and POH, eight different (three novel) mutations in the GNAS gene were identified. Among the six patients with PHP1B, two were sporadic cases and four showed isolated loss of methylation at GNAS A/B:TSS-DMR.
Conclusions Clinical and molecular characteristics of Korean patients with GNAS inactivation disorders were described in this study. Also, we reaffirmed heterogeneity of PHP, contributing to further accumulation and expansion of current knowledge of this complex disease.
Collapse
Affiliation(s)
- Sa Ra Han
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children’s Hospital, Seoul, Korea
| | - Young Ah Lee
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children’s Hospital, Seoul, Korea
| | - Choong-Ho Shin
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children’s Hospital, Seoul, Korea
| | - Sei-Won Yang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children’s Hospital, Seoul, Korea
| | - Byung Chan Lim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children’s Hospital, Seoul, Korea
| | - Tae-Joon Cho
- Department of Orthopaedics, Seoul National University College of Medicine, Seoul National University Children’s Hospital, Seoul, Korea
| | - Jung Min Ko
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children’s Hospital, Seoul, Korea
| |
Collapse
|
33
|
Colson C, Decamp M, Gruchy N, Coudray N, Ballandonne C, Bracquemart C, Molin A, Mittre H, Takatani R, Jüppner H, Kottler ML, Richard N. High frequency of paternal iso or heterodisomy at chromosome 20 associated with sporadic pseudohypoparathyroidism 1B. Bone 2019; 123:145-152. [PMID: 30905746 PMCID: PMC6637416 DOI: 10.1016/j.bone.2019.03.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/04/2019] [Accepted: 03/18/2019] [Indexed: 12/20/2022]
Abstract
Pseudohypoparathyroidism 1B (PHP1B) is caused by maternal epigenetic defects in the imprinted GNAS cluster. PHP1B can follow an autosomal dominant mode of inheritance or occur sporadically (spor-PHP1B). These latter patients present broad methylation changes of two or more differentially methylated regions (DMR) that, when mimicking the paternal allele, raises the suspicious of the occurrence of paternal uniparental disomy of chromosome 20 (upd(20)pat). A cohort of 33 spor-PHP1B patients was screened for upd(20)pat using comparative genomic hybridization with SNP-chip. Methylation analyses were assessed by methylation specific-multiplex ligation-dependent probe amplification. Upd(20)pat was identified in 6 patients, all exhibiting typical paternal methylation pattern compared to normal controls, namely a complete loss of methylation of GNAS A/B:TSS-DMR, negligible methylation at GNAS-AS1:TSS-DMR and GNAS-XL:Ex1-DMR and complete gain of methylation at GNAS-NESP:TSS-DMR. The overall frequency of upd(20) is 18% in our cohort when searched considering both severe and partial loss of imprinting. However, twenty five patients displayed severe methylation pattern and the upd(20)pat frequency reaches 24% when searching in this group. Consequently, up to day, upd(20)pat is the most common anomaly than other genetic alterations in spor-PHP1B patients. Upd(20)pat occurrence is not linked to the parental age in contrast to upd(20)mat, strongly associated with an advanced maternal childbearing age. This study provides criteria to guide further investigations for upd(20)pat needed for an adequate genetic counseling.
Collapse
Affiliation(s)
- Cindy Colson
- Normandie Univ, UNICAEN, CHU de Caen Normandie, Department of Genetics, Reference Center fo Rare Diseases of Calcium and Phosphorus Metabolism, EA7450 BioTARGen, 14000 Caen, France
| | - Matthieu Decamp
- Normandie Univ, UNICAEN, CHU de Caen Normandie, Department of Genetics, Reference Center fo Rare Diseases of Calcium and Phosphorus Metabolism, EA7450 BioTARGen, 14000 Caen, France
| | - Nicolas Gruchy
- Normandie Univ, UNICAEN, CHU de Caen Normandie, Department of Genetics, Reference Center fo Rare Diseases of Calcium and Phosphorus Metabolism, EA7450 BioTARGen, 14000 Caen, France
| | - Nadia Coudray
- Normandie Univ, UNICAEN, CHU de Caen Normandie, Department of Genetics, Reference Center fo Rare Diseases of Calcium and Phosphorus Metabolism, EA7450 BioTARGen, 14000 Caen, France
| | - Céline Ballandonne
- Normandie Univ, UNICAEN, CHU de Caen Normandie, Department of Genetics, Reference Center fo Rare Diseases of Calcium and Phosphorus Metabolism, EA7450 BioTARGen, 14000 Caen, France
| | - Claire Bracquemart
- Normandie Univ, UNICAEN, CHU de Caen Normandie, Department of Genetics, Reference Center fo Rare Diseases of Calcium and Phosphorus Metabolism, EA7450 BioTARGen, 14000 Caen, France
| | - Arnaud Molin
- Normandie Univ, UNICAEN, CHU de Caen Normandie, Department of Genetics, Reference Center fo Rare Diseases of Calcium and Phosphorus Metabolism, EA7450 BioTARGen, 14000 Caen, France
| | - Hervé Mittre
- Normandie Univ, UNICAEN, CHU de Caen Normandie, Department of Genetics, Reference Center fo Rare Diseases of Calcium and Phosphorus Metabolism, EA7450 BioTARGen, 14000 Caen, France
| | - Rieko Takatani
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Harald Jüppner
- Endocrine Unit and Pediatric Nephrology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Marie-Laure Kottler
- Normandie Univ, UNICAEN, CHU de Caen Normandie, Department of Genetics, Reference Center fo Rare Diseases of Calcium and Phosphorus Metabolism, EA7450 BioTARGen, 14000 Caen, France
| | - Nicolas Richard
- Normandie Univ, UNICAEN, CHU de Caen Normandie, Department of Genetics, Reference Center fo Rare Diseases of Calcium and Phosphorus Metabolism, EA7450 BioTARGen, 14000 Caen, France.
| |
Collapse
|
34
|
Elli FM, deSanctis L, Maffini MA, Bordogna P, Tessaris D, Pirelli A, Arosio M, Linglart A, Mantovani G. Association of GNAS imprinting defects and deletions of chromosome 2 in two patients: clues explaining phenotypic heterogeneity in pseudohypoparathyroidism type 1B/iPPSD3. Clin Epigenetics 2019; 11:3. [PMID: 30616679 PMCID: PMC6322333 DOI: 10.1186/s13148-018-0607-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 12/26/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The term pseudohypoparathyroidism (PHP) describes disorders derived from resistance to the parathyroid hormone. Albright hereditary osteodystrophy (AHO) is a disorder with several physical features that can occur alone or in association with PHP. The subtype 1B, classically associated with resistance to PTH and TSH, derives from the epigenetic dysregulation of the GNAS locus. Patients showing features of AHO were described, but no explanation for such phenotypic heterogeneity is available. An AHO-like phenotype was associated with the loss of genetic information stored in chromosome 2q37, making this genomic region an interesting object of study as it could contain modifier genes involved in the development of AHO features in patients with GNAS imprinting defects. The present study aimed to screen a series of 65 patients affected with GNAS imprinting defects, with or without signs of AHO, for the presence of 2q37 deletions in order to find genes involved in the clinical variability. RESULTS The molecular investigations performed on our cohort of patients with GNAS imprinting defects identified two overlapping terminal deletions of the long arm of chromosome 2. The smaller deletion was of approximately 3 Mb and contained 38 genes, one or more of which is potentially involved in the clinical presentation. Patients with the deletions were both affected by a combination of the most pathognomic AHO-like features, brachydactyly, cognitive impairment and/or behavioural defects. Our results support the hypothesis that additional genetic factors besides GNAS methylation defects are involved in the development of a complex phenotype in the subgroup of patients showing signs of AHO. CONCLUSIONS For the first time, the present work describes PHP patients with hormone resistance and AHO signs simultaneously affected by GNAS imprinting defects and 2q37 deletions. Although further studies are needed to confirm the cause of these two rare molecular alterations and to identify candidate genes, this finding provides novel interesting clues for the identification of factors involved in the still unexplained clinical variability observed in PHP1B.
Collapse
Affiliation(s)
- F M Elli
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
| | - L deSanctis
- Department of Public Health and Paediatric Sciences, University of Torino, Turin, Italy
| | - M A Maffini
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - P Bordogna
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Milan, Italy
| | - D Tessaris
- Department of Public Health and Paediatric Sciences, University of Torino, Turin, Italy
| | - A Pirelli
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - M Arosio
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - A Linglart
- APHP, Paediatric Endocrinology and Diabetology for Children, Reference Centre for Rare Disorders of Calcium and Phosphate Metabolism, Platform of Expertise Paris-Sud for Rare Diseases and Filière OSCAR, Bicêtre Paris-Sud Hospital, 94270, Le Kremlin-Bicêtre, France
- APHP, Department of Endocrinology and Diabetology, Reference Centre for Rare Disorders of Calcium and Phosphate Metabolism, 94270, Le Kremlin-Bicêtre, France
| | - G Mantovani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
35
|
Abstract
Pseudohypoparathyroidism (PHP) refers to a heterogeneous group of uncommon, yet related metabolic disorders that are characterized by impaired activation of the Gsα/cAMP/PKA signaling pathway by parathyroid hormone (PTH) and other hormones that interact with Gsa-coupled receptors. Proximal renal tubular resistance to PTH and thus hypocalcemia and hyperphosphatemia, frequently in presence of brachydactyly, ectopic ossification, early-onset obesity, or short stature are common features of PHP. Registries and large cohorts of patients are needed to conduct clinical and genetic research, to improve the still limited knowledge regarding the underlying disease mechanisms, and allow the development of novel therapies.
Collapse
Affiliation(s)
- Agnès Linglart
- INSERM-U1185, Paris Sud Paris-Saclay University, Bicêtre Paris Sud Hospital, 64 Gabriel Péri Street, 94270 Le Kremlin Bicêtre, France; APHP, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Network OSCAR and 'Platform of Expertise Paris Sud for Rare Diseases, Bicêtre Paris Sud Hospital, 64 Gabriel Péri Street, 94270 Le Kremlin Bicêtre, France; APHP, Endocrinology and Diabetes for Children, Bicêtre Paris Sud Hospital, 64 Gabriel Péri Street, 94270 Le Kremlin Bicêtre, France.
| | - Michael A Levine
- Division of Endocrinology and Diabetes, Center for Bone Health, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Pediatrics, University of Pennsylvania Perelman, School of Medicine, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Harald Jüppner
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, 50 Blossom street, Boston, MA 02114, USA; Pediatric Nephrology Unit, Massachusetts General Hospital, Harvard Medical School, 50 Blossom street, Boston, MA 02114, USA
| |
Collapse
|
36
|
Lecumberri B, Martos-Moreno GÁ, de Nanclares GP. Wind of change in pseudohypoparathyroidism and related disorders: New classification and first international management consensus. ACTA ACUST UNITED AC 2018; 65:425-427. [PMID: 30243379 DOI: 10.1016/j.endinu.2018.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 08/16/2018] [Indexed: 11/15/2022]
Affiliation(s)
- Beatriz Lecumberri
- Department of Endocrinology and Nutrition, La Paz University Hospital, Madrid, Spain; Department of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain; Endocrine Diseases Research Group, Hospital La Paz Institute for Health Research (IdiPaZ), Madrid, Spain
| | - Gabriel Ángel Martos-Moreno
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Endocrine Diseases Research Group, Hospital La Princesa Institute for Health research (IIS La Princesa), Madrid, Spain; Department of Pediatrics, Universidad Autónoma de Madrid (UAM), Madrid, Spain; CIBERobn, ISCIII, Madrid, Spain
| | - Guiomar Perez de Nanclares
- Molecular (Epi)Genetics Laboratory, Bioaraba National Health Institute, OSI Araba-Txagorritxu, Vitoria-Gasteiz, Alava, Spain.
| |
Collapse
|
37
|
Hanna P, Grybek V, de Nanclares GP, Tran LC, de Sanctis L, Elli F, Errea J, Francou B, Kamenicky P, Linglart L, Pereda A, Rothenbuhler A, Tessaris D, Thiele S, Usardi A, Shoemaker AH, Kottler ML, Jüppner H, Mantovani G, Linglart A. Genetic and Epigenetic Defects at the GNAS Locus Lead to Distinct Patterns of Skeletal Growth but Similar Early-Onset Obesity. J Bone Miner Res 2018; 33:1480-1488. [PMID: 29693731 PMCID: PMC6105438 DOI: 10.1002/jbmr.3450] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/03/2018] [Accepted: 04/10/2018] [Indexed: 01/17/2023]
Abstract
Pseudohypoparathyroidism type 1A (PHP1A), pseudoPHP (PPHP), and PHP type 1B (PHP1B) are caused by maternal and paternal GNAS mutations and abnormal methylation at maternal GNAS promoter(s), respectively. Adult PHP1A patients are reportedly obese and short, whereas most PPHP patients are born small. In addition to parathyroid hormone (PTH) resistance, PHP1A and PHP1B patients may display early-onset obesity. Because early-onset and severe obesity and short stature are daily burdens for PHP1A patients, we aimed at improving knowledge on the contribution of the GNAS transcripts to fetal and postnatal growth and fat storage. Through an international collaboration, we collected growth and weight data from birth until adulthood for 306 PHP1A/PPHP and 220 PHP1B patients. PHP1A/PPHP patients were smaller at birth than healthy controls, especially PPHP (length Z-score: PHP1A -1.1 ± 1.8; PPHP -3.0 ± 1.5). Short stature is observed in 64% and 59% of adult PHP1A and PPHP patients. PHP1B patients displayed early postnatal overgrowth (height Z-score at 1 year: 2.2 ± 1.3 and 1.3 ± 1.5 in autosomal dominant and sporadic PHP1B) followed by a gradual decrease in growth velocity resulting in normal adult height (Z-score for both: -0.4 ± 1.1). Early-onset obesity characterizes GNAS alterations and is associated with significant overweight and obesity in adults (bodey mass index [BMI] Z-score: 1.4 ± 2.6, 2.1 ± 2.0, and 1.4 ± 1.9 in PPHP, PHP1A, and PHP1B, respectively), indicating that reduced Gsα expression is a contributing factor. The growth impairment in PHP1A/PPHP may be due to Gsα haploinsufficiency in the growth plates; the paternal XLαs transcript likely contributes to prenatal growth; for all disease variants, a reduced pubertal growth spurt may be due to accelerated growth plate closure. Consequently, early diagnosis and close follow-up is needed in patients with GNAS defects to screen and intervene in case of early-onset obesity and decreased growth velocity. © 2018 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Patrick Hanna
- INSERM U1169 and Paris Sud Paris-Saclay university, Bicêtre Paris Sud hospital, Le Kremlin Bicêtre, France
| | - Virginie Grybek
- INSERM U1169 and Paris Sud Paris-Saclay university, Bicêtre Paris Sud hospital, Le Kremlin Bicêtre, France
| | - Guiomar Perez de Nanclares
- Molecular (Epi)Genetics LaboratoryBioAraba National Health Institute, OSI Araba University Hospital, Vitoria-Gasteiz, Spain
| | - Léa C. Tran
- Caen University Hospital, Molecular Genetics Laboratory, Université Caen Normandie, Medical School, BioTARGEN, Caen Normandy University, Caen, France
| | - Luisa de Sanctis
- Paediatric Endocrinology Unit and department of Public Health and Pediatric Sciences University of Torino, Torino, Italy
| | - Francesca Elli
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Endocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Javier Errea
- Molecular (Epi)Genetics LaboratoryBioAraba National Health Institute, OSI Araba University Hospital, Vitoria-Gasteiz, Spain
| | - Bruno Francou
- APHP, Department of molecular genetics, Bicêtre Paris Sud hospital, Le Kremlin Bicêtre, France
| | - Peter Kamenicky
- APHP, Department of endocrinology, Bicêtre Paris Sud hospital, Le Kremlin Bicêtre, France
- APHP, Reference Center for rare disorders of the calcium and phosphate metabolism, filière OSCAR and Plateforme d’Expertise Maladies Rares Paris-Sud, Bicêtre Paris Sud hospital, Le Kremlin Bicêtre, France
| | - Léa Linglart
- APHP, Reference Center for rare disorders of the calcium and phosphate metabolism, filière OSCAR and Plateforme d’Expertise Maladies Rares Paris-Sud, Bicêtre Paris Sud hospital, Le Kremlin Bicêtre, France
| | - Arrate Pereda
- Molecular (Epi)Genetics LaboratoryBioAraba National Health Institute, OSI Araba University Hospital, Vitoria-Gasteiz, Spain
| | - Anya Rothenbuhler
- APHP, Reference Center for rare disorders of the calcium and phosphate metabolism, filière OSCAR and Plateforme d’Expertise Maladies Rares Paris-Sud, Bicêtre Paris Sud hospital, Le Kremlin Bicêtre, France
- APHP, Endocrinology and diabetes for children, Bicêtre Paris Sud hospital, Le Kremlin Bicêtre, France
| | - Daniele Tessaris
- Paediatric Endocrinology Unit and department of Public Health and Pediatric Sciences University of Torino, Torino, Italy
| | - Susanne Thiele
- Division of Experimental Pediatric Endocrinology and Diabetes Department of Pediatrics, Center of brain, behavior and metabolism, University of Lübeck, Lübeck, Germany
| | - Alessia Usardi
- APHP, Reference Center for rare disorders of the calcium and phosphate metabolism, filière OSCAR and Plateforme d’Expertise Maladies Rares Paris-Sud, Bicêtre Paris Sud hospital, Le Kremlin Bicêtre, France
| | | | - Marie-Laure Kottler
- Caen University Hospital, Molecular Genetics Laboratory, Université Caen Normandie, Medical School, BioTARGEN, Caen Normandy University, Caen, France
| | - Harald Jüppner
- Endocrine Unit and Pediatric Nephrology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Giovanna Mantovani
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Endocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Agnès Linglart
- INSERM U1169 and Paris Sud Paris-Saclay university, Bicêtre Paris Sud hospital, Le Kremlin Bicêtre, France
- APHP, Reference Center for rare disorders of the calcium and phosphate metabolism, filière OSCAR and Plateforme d’Expertise Maladies Rares Paris-Sud, Bicêtre Paris Sud hospital, Le Kremlin Bicêtre, France
- APHP, Endocrinology and diabetes for children, Bicêtre Paris Sud hospital, Le Kremlin Bicêtre, France
| |
Collapse
|
38
|
Mantovani G, Bastepe M, Monk D, de Sanctis L, Thiele S, Usardi A, Ahmed SF, Bufo R, Choplin T, De Filippo G, Devernois G, Eggermann T, Elli FM, Freson K, García Ramirez A, Germain-Lee EL, Groussin L, Hamdy N, Hanna P, Hiort O, Jüppner H, Kamenický P, Knight N, Kottler ML, Le Norcy E, Lecumberri B, Levine MA, Mäkitie O, Martin R, Martos-Moreno GÁ, Minagawa M, Murray P, Pereda A, Pignolo R, Rejnmark L, Rodado R, Rothenbuhler A, Saraff V, Shoemaker AH, Shore EM, Silve C, Turan S, Woods P, Zillikens MC, Perez de Nanclares G, Linglart A. Diagnosis and management of pseudohypoparathyroidism and related disorders: first international Consensus Statement. Nat Rev Endocrinol 2018; 14:476-500. [PMID: 29959430 PMCID: PMC6541219 DOI: 10.1038/s41574-018-0042-0] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This Consensus Statement covers recommendations for the diagnosis and management of patients with pseudohypoparathyroidism (PHP) and related disorders, which comprise metabolic disorders characterized by physical findings that variably include short bones, short stature, a stocky build, early-onset obesity and ectopic ossifications, as well as endocrine defects that often include resistance to parathyroid hormone (PTH) and TSH. The presentation and severity of PHP and its related disorders vary between affected individuals with considerable clinical and molecular overlap between the different types. A specific diagnosis is often delayed owing to lack of recognition of the syndrome and associated features. The participants in this Consensus Statement agreed that the diagnosis of PHP should be based on major criteria, including resistance to PTH, ectopic ossifications, brachydactyly and early-onset obesity. The clinical and laboratory diagnosis should be confirmed by a molecular genetic analysis. Patients should be screened at diagnosis and during follow-up for specific features, such as PTH resistance, TSH resistance, growth hormone deficiency, hypogonadism, skeletal deformities, oral health, weight gain, glucose intolerance or type 2 diabetes mellitus, and hypertension, as well as subcutaneous and/or deeper ectopic ossifications and neurocognitive impairment. Overall, a coordinated and multidisciplinary approach from infancy through adulthood, including a transition programme, should help us to improve the care of patients affected by these disorders.
Collapse
Affiliation(s)
- Giovanna Mantovani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Murat Bastepe
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - David Monk
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program (PEBC), Institut d'Investigació Biomedica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Luisa de Sanctis
- Pediatric Endocrinology Unit, Department of Public Health and Pediatric Sciences, University of Torino, Turin, Italy
| | - Susanne Thiele
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University of Lübeck, Lübeck, Germany
| | - Alessia Usardi
- APHP, Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, Platform of Expertise Paris-Sud for Rare Diseases and Filière OSCAR, Bicêtre Paris Sud Hospital (HUPS), Le Kremlin-Bicêtre, France
- APHP, Endocrinology and diabetes for children, Bicêtre Paris Sud Hospital (HUPS), Le Kremlin-Bicêtre, France
| | - S Faisal Ahmed
- Developmental Endocrinology Research Group, School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, UK
| | - Roberto Bufo
- IPOHA, Italian Progressive Osseous Heteroplasia Association, Cerignola, Foggia, Italy
| | - Timothée Choplin
- K20, French PHP and related disorders patient association, Jouars Pontchartrain, France
| | - Gianpaolo De Filippo
- APHP, Department of medicine for adolescents, Bicêtre Paris Sud Hospital (HUPS), Le Kremlin-Bicêtre, France
| | - Guillemette Devernois
- K20, French PHP and related disorders patient association, Jouars Pontchartrain, France
| | - Thomas Eggermann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Francesca M Elli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, Gasthuisberg, University of Leuven, Leuven, Belgium
| | - Aurora García Ramirez
- AEPHP, Spanish PHP and related disorders patient association, Huércal-Overa, Almería, Spain
| | - Emily L Germain-Lee
- Albright Center & Center for Rare Bone Disorders, Division of Pediatric Endocrinology & Diabetes, Connecticut Children's Medical Center, Farmington, CT, USA
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Lionel Groussin
- APHP, Department of Endocrinology, Cochin Hospital (HUPC), Paris, France
- University of Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Neveen Hamdy
- Department of Medicine, Division of Endocrinology and Centre for Bone Quality, Leiden University Medical Center, Leiden, Netherlands
| | - Patrick Hanna
- INSERM U1169, Bicêtre Paris Sud, Paris Sud - Paris Saclay University, Le Kremlin-Bicêtre, France
| | - Olaf Hiort
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University of Lübeck, Lübeck, Germany
| | - Harald Jüppner
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter Kamenický
- APHP, Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, Platform of Expertise Paris-Sud for Rare Diseases and Filière OSCAR, Bicêtre Paris Sud Hospital (HUPS), Le Kremlin-Bicêtre, France
- APHP, Department of Endocrinology and Reproductive Diseases, Bicêtre Paris Sud Hospital (HUPS), Le Kremlin-Bicêtre, France
- INSERM U1185, Paris Sud - Paris Saclay University, Le Kremlin-Bicêtre, France
| | - Nina Knight
- UK acrodysostosis patients' group, London, UK
| | - Marie-Laure Kottler
- Department of Genetics, Reference Centre for Rare Disorders of Calcium and Phosphate Metabolism, Caen University Hospital, Caen, France
- BIOTARGEN, UNICAEN, Normandie University, Caen, France
| | - Elvire Le Norcy
- University of Paris Descartes, Sorbonne Paris Cité, Paris, France
- APHP, Department of Odontology, Bretonneau Hospital (PNVS), Paris, France
| | - Beatriz Lecumberri
- Department of Endocrinology and Nutrition, La Paz University Hospital, Madrid, Spain
- Department of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain
- Endocrine Diseases Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Michael A Levine
- Division of Endocrinology and Diabetes and Center for Bone Health, Children's Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Outi Mäkitie
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Regina Martin
- Osteometabolic Disorders Unit, Hormone and Molecular Genetics Laboratory (LIM/42), Endocrinology Division, Hospital das Clínicas HCFMUSP, Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Gabriel Ángel Martos-Moreno
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, CIBERobn, ISCIII, Madrid, Spain
- Department of Pediatrics, Autonomous University of Madrid (UAM), Madrid, Spain
- Endocrine Diseases Research Group, Hospital La Princesa Institute for Health Research (IIS La Princesa), Madrid, Spain
| | | | - Philip Murray
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Arrate Pereda
- Molecular (Epi)Genetics Laboratory, BioAraba National Health Institute, Hospital Universitario Araba-Txagorritxu, Vitoria-Gasteiz, Alava, Spain
| | | | - Lars Rejnmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Rebecca Rodado
- AEPHP, Spanish PHP and related disorders patient association, Huércal-Overa, Almería, Spain
| | - Anya Rothenbuhler
- APHP, Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, Platform of Expertise Paris-Sud for Rare Diseases and Filière OSCAR, Bicêtre Paris Sud Hospital (HUPS), Le Kremlin-Bicêtre, France
- APHP, Endocrinology and diabetes for children, Bicêtre Paris Sud Hospital (HUPS), Le Kremlin-Bicêtre, France
| | - Vrinda Saraff
- Department of Endocrinology and Diabetes, Birmingham Children's Hospital, Birmingham, UK
| | - Ashley H Shoemaker
- Pediatric Endocrinology and Diabetes, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eileen M Shore
- Departments of Orthopaedic Surgery and Genetics, Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Caroline Silve
- APHP, Service de Biochimie et Génétique Moléculaires, Hôpital Cochin, Paris, France
| | - Serap Turan
- Department of Pediatrics, Division of Endocrinology and Diabetes, Marmara University, Istanbul, Turkey
| | | | - M Carola Zillikens
- Department of Internal Medicine, Bone Center Erasmus MC - University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Guiomar Perez de Nanclares
- Molecular (Epi)Genetics Laboratory, BioAraba National Health Institute, Hospital Universitario Araba-Txagorritxu, Vitoria-Gasteiz, Alava, Spain.
| | - Agnès Linglart
- APHP, Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, Platform of Expertise Paris-Sud for Rare Diseases and Filière OSCAR, Bicêtre Paris Sud Hospital (HUPS), Le Kremlin-Bicêtre, France.
- APHP, Endocrinology and diabetes for children, Bicêtre Paris Sud Hospital (HUPS), Le Kremlin-Bicêtre, France.
- INSERM U1169, Bicêtre Paris Sud, Paris Sud - Paris Saclay University, Le Kremlin-Bicêtre, France.
| |
Collapse
|
39
|
Long XD, Xiong J, Mo ZH, Dong CS, Jin P. Identification of a novel GNAS mutation in a case of pseudohypoparathyroidism type 1A with normocalcemia. BMC MEDICAL GENETICS 2018; 19:132. [PMID: 30060753 PMCID: PMC6065144 DOI: 10.1186/s12881-018-0648-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/19/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND Pseudohypoparathyroidism type 1A (PHP1A) is a rare genetic disease primarily characterized by resistance to parathyroid hormone along with hormonal resistance and other features of Albright hereditary osteodystrophy (AHO). It is caused by heterozygous inactivating mutations in the maternal allele of the GNAS gene, which encodes the stimulatory G-protein alpha subunit (Gsα) and regulates production of the second messenger cyclic AMP (cAMP). Herein, we report a case of of PHP1A with atypical clinical manifestations (oligomenorrhea, subclinical hypothyroidism, and normocalcemia) and explore the underlying genetic cause in this patient. METHODS Blood samples were collected from the patient, her family members, and 100 healthy controls. The 13 exons and flanking splice sites of the GNAS gene were amplified by PCR and sequenced. To further assess whether the novel mutation resulted in gain or loss of function of Gsα, we examined the level of cAMP activity associated with this mutation through in vitro functional studies by introducing the target mutation into a human GNAS plasmid. RESULTS A novel heterozygous c.715A > G (p.N239D) mutation in exon 9 of the GNAS gene was identified in the patient. This mutation was also found in her mother, who was diagnosed with pseudopseudohypoparathyroidism. An in vitro cAMP assay showed a significant decrease in PTH-induced cAMP production in cells transfected with the mutant plasmid, compared to that in the wild-type control cells (P < 0.01), which was consistent with loss of Gsa activity. CONCLUSION We identified a novel GNAS mutation that altered Gsα function, which furthers our understanding of the pathogenesis of this disease. Screening for GNAS mutations should be considered in suspected cases of PHP1A even if the classical signs are not present.
Collapse
Affiliation(s)
- Xiao-dan Long
- Department of Endorcrinology, The third Xiangya Hospital Central South University, Tongzipo Road, 410007 Changsha, Hunan Province People’s Republic of China
| | - Jing Xiong
- Department of Endorcrinology, The third Xiangya Hospital Central South University, Tongzipo Road, 410007 Changsha, Hunan Province People’s Republic of China
| | - Zhao-hui Mo
- Department of Endorcrinology, The third Xiangya Hospital Central South University, Tongzipo Road, 410007 Changsha, Hunan Province People’s Republic of China
| | - Chang-sheng Dong
- Department of Anesthesia, The affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, 410007 Hunan China
| | - Ping Jin
- Department of Endorcrinology, The third Xiangya Hospital Central South University, Tongzipo Road, 410007 Changsha, Hunan Province People’s Republic of China
| |
Collapse
|
40
|
Dzeranova LK, Makazan NV, Pigarova EA, Tiuliakova AN, Artemova EV, Soldatova TV, Tulupov DO, Vorontsov AV, Mel`nichenko GA. Multiple hormonal resistance and metabolic disorders in pseudogypoparatiosis. OBESITY AND METABOLISM 2018. [DOI: 10.14341/omet20182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Pseudohypoparathyroidism is a rare group of clinically and genetically heterogeneous diseases caused by the inactivation of the PTH-signaling pathway. The main component of the disease is resistance to PTH, causing a disturbance of calcium-phosphorus metabolism. With pseudohypoparathyroidism, there may also be a development of insensitivity to thyrotropic and gonadotropic hormones of the pituitary gland and the formation of characteristic clinical features in the form of subcutaneous calcifications, brachidactyly, obesity, stuntedness, mental retardation. This article describes the clinical case of pseudohypoparathyroidism in a 35-year-old woman with classic phenotypic hypoparathyroidism with hereditary Albright osteodystrophy and a proven mutation in the GNAS gene, and discusses the spectrum of metabolic disorders of the disease.
Collapse
|
41
|
Curley KL, Kahanda S, Perez KM, Malow BA, Shoemaker AH. Obstructive Sleep Apnea and Otolaryngologic Manifestations in Children with Pseudohypoparathyroidism. Horm Res Paediatr 2018; 89:178-183. [PMID: 29455209 PMCID: PMC6208325 DOI: 10.1159/000486715] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/09/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND/AIMS Pseudohypoparathyroidism (PHP) is a rare, genetic disorder. Patients with PHP may have increased prevalence of obstructive sleep apnea (OSA) but this has not been prospectively studied. METHODS We enrolled children aged 6-18 years with PHP and matched controls. Evaluation included physical examination, medical history, and polysomnography. RESULTS Fifteen children with PHP type 1A (PHP1A) and 15 controls completed the study. Both groups were obese (BMI 32.2 ± 8.7 vs. 31.7± 6.5). The majority of PHP1A patients required tympanostomy tubes (86.7%) and adenotonsillectomy (73.3%). The primary outcome, i.e., the obstructive disturbance index, was significantly higher in PHP1A children versus controls (1.8 ± 2.3 vs. 0.6 ± 0.5, p = 0.045). Children with PHP1A were more likely to have OSA compared with controls (60.0 vs. 13.3%, p = 0.008). Three siblings with PHP type 1B (PHP1B) were also studied (BMI 25.9 ± 9.0). None had a history of adenotonsillectomy, one had tympanostomy tubes. The obstructive disturbance index (2.0 ± 2.3) was similar to that of children with PHP1A. Two (66.7%) PHP1B participants had OSA. CONCLUSION Children with PHP1A are at an increased risk for OSA compared with similarly obese peers. They also have higher rates of otitis media and adenotonsillar hypertrophy. Screening for OSA should be considered in all patients with PHP1A and possibly PHP1B though more research is needed.
Collapse
Affiliation(s)
- Kathleen L Curley
- The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Sachini Kahanda
- Department of Pediatrics, Division of Pediatric Endocrinology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Katia M Perez
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Beth A Malow
- Department of Neurology and Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ashley H Shoemaker
- Department of Pediatrics, Division of Pediatric Endocrinology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
42
|
Elli FM, Bordogna P, Arosio M, Spada A, Mantovani G. Mosaicism for GNAS methylation defects associated with pseudohypoparathyroidism type 1B arose in early post-zygotic phases. Clin Epigenetics 2018; 10:16. [PMID: 29445425 PMCID: PMC5801752 DOI: 10.1186/s13148-018-0449-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 01/30/2018] [Indexed: 11/10/2022] Open
Abstract
Background Pseudohypoparathyroidism type 1B (PHP1B; MIM#603233) is a rare imprinting disorder (ID), associated with the GNAS locus, characterized by parathyroid hormone (PTH) resistance in the absence of other endocrine or physical abnormalities. Sporadic PHP1B cases, with no known underlying primary genetic lesions, could represent true stochastic errors in early embryonic maintenance of methylation. Previous data confirmed the existence of different degrees of methylation defects associated with PHP1B and suggested the presence of mosaicism, a phenomenon already described in the context of other IDs. Results With respect to mosaic conditions, the study of multiple tissues is a necessary approach; thus, we investigated somatic cell lines (peripheral blood and buccal epithelium and cells from the urine sediment) descending from different germ layers from 19 PHP patients (11 spor-PHP1B, 4 GNAS mutated PHP1A, and 4 PHP with no GNAS (epi)genetic defects) and 5 healthy controls. We identified 11 patients with epigenetic defects, further subdivided in groups with complete or partial methylation defects. The recurrence of specific patterns of partial methylation defects limited to specific CpGs was confirmed by checking methylation profiles of spor-PHP1B patients diagnosed in our lab (n = 56). Underlying primary genetic defects, such as uniparental disomy or deletion, potentially causative for the detected partial methylation were excluded in all samples. Conclusions Our data showed no differences of methylation levels between organs and tissues from the same patient, so we concluded that the epimutation occurred in early post-zygotic phases and that the partial defects were mosaics. The number of patients with no detectable (epi)genetic GNAS defects was too small to exclude epimutations occurring in later post-zygotic phases, affecting only selected tissues different from blood, thus leading to underdiagnosis during routine molecular diagnosis. Finally, we found no correlation between methylation ratios, representing the proportion of epimutated cells, and the clinical presentation, further confirming the hypothesis of a threshold effect of the GNAS loss of imprinting leading to an "all-or-none" phenotype.
Collapse
Affiliation(s)
- Francesca Marta Elli
- Endocrinology Unit, Department of Clinical Sciences and Community Health, University of Milan, Via Francesco Sforza, 35-20122 Milan, Italy
| | - Paolo Bordogna
- Endocrinology and Metabolic Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maura Arosio
- Endocrinology Unit, Department of Clinical Sciences and Community Health, University of Milan, Via Francesco Sforza, 35-20122 Milan, Italy
- Endocrinology and Metabolic Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Anna Spada
- Endocrinology Unit, Department of Clinical Sciences and Community Health, University of Milan, Via Francesco Sforza, 35-20122 Milan, Italy
- Endocrinology and Metabolic Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giovanna Mantovani
- Endocrinology Unit, Department of Clinical Sciences and Community Health, University of Milan, Via Francesco Sforza, 35-20122 Milan, Italy
- Endocrinology and Metabolic Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
43
|
Perez KM, Lee EB, Kahanda S, Duis J, Reyes M, Jüppner H, Shoemaker AH. Cognitive and behavioral phenotype of children with pseudohypoparathyroidism type 1A. Am J Med Genet A 2018; 176:283-289. [PMID: 29193623 PMCID: PMC5942181 DOI: 10.1002/ajmg.a.38534] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/05/2017] [Accepted: 10/15/2017] [Indexed: 01/22/2023]
Abstract
Pseudohypoparathyroidism 1A (PHP1A) is a rare, genetic disorder. Most patients with PHP1A have cognitive impairment but this has not been systematically studied. We hypothesized that children with PHP1A would have lower intelligent quotient (IQ) scores than controls. To evaluate cognition and behavior, we prospectively enrolled children with PHP1A, one unaffected sibling (when available) and controls matched on BMI/age/gender/race. Evaluations included cognitive and executive function testing. Parents completed questionnaires on behavior and executive function. We enrolled 16 patients with PHP1A, 8 unaffected siblings, and 15 controls. Results are presented as mean (SD). The PHP1A group had a composite IQ of 85.9 (17.2); 25% had a composite IQ < -2 SD. The PHP1A group had significantly lower IQs than matched controls (composite IQ -17.3, 95%CI -28.1 to -6.5, p < 0.01) and unaffected siblings (composite IQ -21.5, 95%CI -33.9 to -9.1, p < 0.01). Special education services were utilized for 93% of the patients with PHP1A. Deficits were observed in executive function and parents reported delayed adaptive behavior skills and increased rates of attention deficit hyperactivity disorder. In conclusion, children with PHP1A have lower intelligence quotient scores, poorer executive function, delayed adaptive behavior skills, and increased behavior problems.
Collapse
Affiliation(s)
- Katia M Perez
- Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Evon B Lee
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sachini Kahanda
- Division of Pediatric Endocrinology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jessica Duis
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Monica Reyes
- Endocrine Unit and Pediatric Nephrology Unit, Massachusetts General Hospital and Harvard Medical School Boston, Boston, Massachusetts
| | - Harald Jüppner
- Endocrine Unit and Pediatric Nephrology Unit, Massachusetts General Hospital and Harvard Medical School Boston, Boston, Massachusetts
| | - Ashley H Shoemaker
- Division of Pediatric Endocrinology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
44
|
Sano S, Nakamura A, Matsubara K, Nagasaki K, Fukami M, Kagami M, Ogata T. (Epi)genotype-Phenotype Analysis in 69 Japanese Patients With Pseudohypoparathyroidism Type I. J Endocr Soc 2017; 2:9-23. [PMID: 29379892 PMCID: PMC5779104 DOI: 10.1210/js.2017-00293] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/16/2017] [Indexed: 11/19/2022] Open
Abstract
Context: Pseudohypoparathyroidism type I (PHP-I) is divided into PHP-Ia with Albright
hereditary osteodystrophy and PHP-Ib, which usually shows no Albright hereditary
osteodystrophy features. Although PHP-Ia and PHP-Ib are typically caused by
genetic defects involving α subunit of the stimulatory G
protein (Gsα)–coding GNAS exons
and methylation defects of the GNAS differentially methylated
regions (DMRs) on the maternal allele, respectively, detailed phenotypic
characteristics still remains to be examined. Objective: To clarify phenotypic characteristics according to underlying (epi)genetic
causes. Patients and Methods: We performed (epi)genotype-phenotype analysis in 69 Japanese patients with PHP-I;
that is, 28 patients with genetic defects involving
Gsα-coding GNAS exons (group 1)
consisting of 12 patients with missense variants (subgroup A) and 16 patients with
null variants (subgroup B), as well as 41 patients with methylation defects (group
2) consisting of 21 patients with broad methylation defects of the
GNAS-DMRs (subgroup C) and 20 patients with an isolated
A/B-DMR methylation defect accompanied by the common
STX16 microdeletion (subgroup D). Results: Although (epi)genotype-phenotype findings were grossly similar to those reported
previously, several important findings were identified, including younger age at
hypocalcemic symptoms and higher frequencies of hyperphosphatemia in subgroup C
than in subgroup D, development of brachydactyly in four patients of subgroup C,
predominant manifestation of subcutaneous ossification in subgroup B, higher
frequency of thyrotropin resistance in group 1 than in group 2, and relatively low
thyrotropin values in four patients with low T4 values and relatively low
luteinizing hormone/follicle-stimulating hormone values in five adult females with
ovarian dysfunction. Conclusion: The results imply the presence of clinical findings characteristic of each
underlying cause and provide useful information on the imprinting status of
Gsα.
Collapse
Affiliation(s)
- Shinichiro Sano
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan.,Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Akie Nakamura
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Keiko Matsubara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Keisuke Nagasaki
- Division of Pediatrics, Department of Homeostatic Regulation and Development, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8520, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Tsutomu Ogata
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan.,Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| |
Collapse
|
45
|
Mackay DJ, Temple IK. Human imprinting disorders: Principles, practice, problems and progress. Eur J Med Genet 2017; 60:618-626. [DOI: 10.1016/j.ejmg.2017.08.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/02/2017] [Accepted: 08/11/2017] [Indexed: 12/17/2022]
|
46
|
Tafaj O, Hann S, Ayturk U, Warman ML, Jüppner H. Mice maintain predominantly maternal Gαs expression throughout life in brown fat tissue (BAT), but not other tissues. Bone 2017; 103:177-187. [PMID: 28694163 PMCID: PMC5943706 DOI: 10.1016/j.bone.2017.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/14/2017] [Accepted: 07/01/2017] [Indexed: 11/20/2022]
Abstract
The murine Gnas (human GNAS) locus gives rise to Gαs and different splice variants thereof. The Gαs promoter is not methylated thus allowing biallelic expression in most tissues. In contrast, the alternative first Gnas/GNAS exons and their promoters undergo parent specific methylation, which limits transcription to the non-methylated allele. Pseudohypoparathyroidism type Ia (PHP1A) or type Ib (PHP1B) are caused by heterozygous maternal GNAS mutations suggesting that little or no Gαs is derived in some tissues from the non-mutated paternal GNAS thereby causing hormonal resistance. Previous data had indicated that Gαs is mainly derived from the maternal Gnas allele in brown adipose tissue (BAT) of newborn mice, yet it is biallelically expressed in adult BAT. This suggested that paternal Gαs expression is regulated by an unknown factor(s) that varies considerably with age. To extend these findings, we now used a strain-specific SNP in Gnas exon 11 (rs13460569) for evaluation of parent-specific Gαs expression through the densitometric quantification of BanII-digested RT-PCR products and digital droplet PCR (ddPCR). At all investigated ages, Gαs transcripts were derived in BAT predominantly from the maternal Gnas allele, while kidney and liver showed largely biallelic Gαs expression. Only low or undetectable levels of other paternally Gnas-derived transcripts were observed, making it unlikely that these are involved in regulating paternal Gαs expression. Our findings suggest that a cis-acting factor could be implicated in reducing paternal Gαs expression in BAT and presumably in proximal renal tubules, thereby causing PTH-resistance if the maternal GNAS/Gnas allele is mutated.
Collapse
Affiliation(s)
- Olta Tafaj
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Steven Hann
- Department of Orthopedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ugur Ayturk
- Department of Orthopedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthew L Warman
- Department of Orthopedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Harald Jüppner
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Pediatric Nephrology Unit, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
47
|
Reyes M, Karaca A, Bastepe M, Gulcelik NE, Jüppner H. A novel deletion involving GNAS exon 1 causes PHP1A and further refines the region required for normal methylation at exon A/B. Bone 2017; 103:281-286. [PMID: 28711660 PMCID: PMC5943703 DOI: 10.1016/j.bone.2017.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 06/20/2017] [Accepted: 07/11/2017] [Indexed: 11/25/2022]
Abstract
GNAS exons 1-13 encode the biallelically expressed alpha-subunit of the stimulatory G protein (Gαs). Additional transcripts derived from this locus use alternative first exons that undergo parent-specific methylation, thus allowing transcription only from the non-modified allele. Pseudohypoparathyroidism type Ia (PHP1A) is characterized by Albright's Hereditary Osteodystrophy (AHO) and resistance to multiple hormones; this disorder is caused by maternal inactivating mutations involving Gαs exons. In contrast, pseudohypoparathyroidism type Ib (PHP1B) is characterized mostly by resistance to PTH and often mild TSH resistance, usually without AHO features. The autosomal dominant variant of PHP1B (AD-PHP1B) is caused by maternal deletions in GNAS or STX16 that reduce Gαs expression through loss-of-methylation at GNAS exon A/B alone or at multiple differentially methylated regions (DMR). Several large maternal deletions involve not only GNAS exons 1-13, but also one or several GNAS DMRs, thus causing PHP1A combined with apparent GNAS epigenetic changes that are indistinguishable from those observed in PHP1B. Some of these deletions include a large CpG island extending from exon A/B to the intron between GNAS exons 1 and 2, but there is no evidence for parent-specific exon 1 methylation. We now describe a family in which the female proband and her daughter presented with hypocalcemia, elevated PTH levels, shortened metacarpals, and obesity, but without obvious neurocognitive abnormalities. A maternally inherited 2015-bp deletion that includes GNAS exon 1 was identified thereby establishing the diagnosis of PHP1A. The centromeric deletion breakpoint is located 178bp upstream of exon 1, yet no methylation changes were observed at exon A/B. This novel deletion therefore refines further the region between exon A/B and exon 1 that is critical for establishing or maintaining normal methylation at GNAS exon A/B.
Collapse
Affiliation(s)
- Monica Reyes
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Anara Karaca
- Ankara Training and Research Hospital, Endocrinology and Metabolism, Ankara, Turkey
| | - Murat Bastepe
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Nese Ersoz Gulcelik
- Ankara Training and Research Hospital, Endocrinology and Metabolism, Ankara, Turkey
| | - Harald Jüppner
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Pediatric Nephrology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
48
|
Grüters-Kieslich A, Reyes M, Sharma A, Demirci C, DeClue TJ, Lankes E, Tiosano D, Schnabel D, Jüppner H. Early-Onset Obesity: Unrecognized First Evidence for GNAS Mutations and Methylation Changes. J Clin Endocrinol Metab 2017; 102:2670-2677. [PMID: 28453643 PMCID: PMC5546863 DOI: 10.1210/jc.2017-00395] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 04/17/2017] [Indexed: 12/16/2022]
Abstract
Context Early-onset obesity, characteristic for disorders affecting the leptin-melanocortin pathway, is also observed in pseudohypoparathyroidism type 1A (PHP1A), a disorder caused by maternal GNAS mutations that disrupt expression or function of the stimulatory G protein α-subunit (Gsα). Mutations and/or epigenetic abnormalities at the same genetic locus are also the cause of pseudohypoparathyroidism type 1B (PHP1B). However, although equivalent biochemical and radiographic findings can be encountered in these related disorders caused by GNAS abnormalities, they are considered distinct clinical entities. Objectives To further emphasize the overlapping features between both disorders, we report the cases of several children, initially brought to medical attention because of unexplained early-onset obesity, in whom PHP1B or PHP1A was eventually diagnosed. Patients and Methods Search for GNAS methylation changes or mutations in cohorts of patients with early-onset obesity. Results Severe obesity had been noted in five infants, with a later diagnosis of PHP1B due to STX16 deletions and/or abnormal GNAS methylation. These findings prompted analysis of 24 unselected obese patients, leading to the discovery of inherited STX16 deletions in 2 individuals. Similarly, impressive early weight gains were noted in five patients, who initially lacked additional Albright hereditary osteodystrophy features but in whom PHP1A due to GNAS mutations involving exons encoding Gsα was diagnosed. Conclusions Obesity during the first year of life can be the first clinical evidence for PHP1B, expanding the spectrum of phenotypic overlap between PHP1A and PHP1B. Importantly, GNAS methylation abnormalities escape detection by targeted or genome-wide sequencing strategies, raising the question of whether epigenetic GNAS analyses should be considered for unexplained obesity.
Collapse
Affiliation(s)
- Annette Grüters-Kieslich
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
- Department of Pediatric Endocrinology and Diabetes, Charité-Universitätsmedizin, Berlin 10117, Germany
| | - Monica Reyes
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| | - Amita Sharma
- Pediatric Nephrology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| | - Cem Demirci
- Pediatric Endocrinology, Connecticut Children’s Medical Center, University of Connecticut School of Medicine, Farmington, Connecticut 06030
| | | | - Erwin Lankes
- Department of Pediatric Endocrinology and Diabetes, Charité-Universitätsmedizin, Berlin 10117, Germany
- Center for Chronically Sick Children, Charité-Universitätsmedizin, Berlin 10117, Germany
| | - Dov Tiosano
- Division of Pediatric Endocrinology, Meyer Children's Hospital, Rambam Health Care Campus, Haifa 31096, Israel
| | - Dirk Schnabel
- Department of Pediatric Endocrinology and Diabetes, Charité-Universitätsmedizin, Berlin 10117, Germany
- Center for Chronically Sick Children, Charité-Universitätsmedizin, Berlin 10117, Germany
| | - Harald Jüppner
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
- Pediatric Nephrology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
49
|
Tafaj O, Jüppner H. Pseudohypoparathyroidism: one gene, several syndromes. J Endocrinol Invest 2017; 40:347-356. [PMID: 27995443 DOI: 10.1007/s40618-016-0588-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 11/25/2016] [Indexed: 01/04/2023]
Abstract
Pseudohypoparathyroidism (PHP) and pseudopseudohypoparathyroidism (PPHP) are caused by mutations and/or epigenetic changes at the complex GNAS locus on chromosome 20q13.3 that undergoes parent-specific methylation changes at several sites. GNAS encodes the alpha-subunit of the stimulatory G protein (Gsα) and several splice variants thereof. Heterozygous inactivating mutations involving the maternal GNAS exons 1-13 cause PHP type Ia (PHP1A). Because of much reduced paternal Gsα expression in certain tissues, such as the proximal renal tubules, thyroid, and pituitary, there is little or no Gsα protein in the presence of maternal GNAS mutations, thus leading to PTH-resistant hypocalcemia and hyperphosphatemia. When located on the paternal allele, the same or similar GNAS mutations are the cause of PPHP. Besides biochemical abnormalities, patients affected by PHP1A show developmental abnormalities, referred to as Albrights hereditary osteodystrophy (AHO). Some, but not all of these AHO features are encountered also in patients affected by PPHP, who typically show no laboratory abnormalities. Autosomal dominant PHP type Ib (AD-PHP1B) is caused by heterozygous maternal deletions within GNAS or STX16, which are associated with loss-of-methylation (LOM) at exon A/B alone or at all maternally methylated GNAS exons. LOM at exon A/B and the resulting biallelic expression of A/B transcripts reduces Gsα expression, thus leading to hormonal resistance. Epigenetic changes at all differentially methylated GNAS regions are also observed in sporadic PHP1B, the most frequent disease variant, which remains unresolved at the molecular level, except for rare cases with paternal uniparental isodisomy or heterodisomy of chromosome 20q (patUPD20q).
Collapse
Affiliation(s)
- O Tafaj
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Thier 10, 50 Blossom Street, Boston, MA, 02114, USA
| | - H Jüppner
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Thier 10, 50 Blossom Street, Boston, MA, 02114, USA.
- Pediatric Nephrology Unit, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
50
|
Grigelioniene G, Nevalainen PI, Reyes M, Thiele S, Tafaj O, Molinaro A, Takatani R, Ala-Houhala M, Nilsson D, Eisfeldt J, Lindstrand A, Kottler ML, Mäkitie O, Jüppner H. A Large Inversion Involving GNAS Exon A/B and All Exons Encoding Gsα Is Associated With Autosomal Dominant Pseudohypoparathyroidism Type Ib (PHP1B). J Bone Miner Res 2017; 32:776-783. [PMID: 28084650 PMCID: PMC5395346 DOI: 10.1002/jbmr.3083] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/31/2016] [Accepted: 01/11/2017] [Indexed: 01/08/2023]
Abstract
Pseudohypoparathyroidism type Ib (PHP1B) is characterized primarily by resistance to parathyroid hormone (PTH) and thus hypocalcemia and hyperphosphatemia, in most cases without evidence for Albright hereditary osteodystrophy (AHO). PHP1B is associated with epigenetic changes at one or several differentially-methylated regions (DMRs) within GNAS, which encodes the α-subunit of the stimulatory G protein (Gsα) and splice variants thereof. Heterozygous, maternally inherited STX16 or GNAS deletions leading to isolated loss-of-methylation (LOM) at exon A/B alone or at all maternal DMRs are the cause of autosomal dominant PHP1B (AD-PHP1B). In this study, we analyzed three affected individuals, the female proband and her two sons. All three revealed isolated LOM at GNAS exon A/B, whereas the proband's healthy maternal grandmother and uncle showed normal methylation at this locus. Haplotype analysis was consistent with linkage to the STX16/GNAS region, yet no deletion could be identified. Whole-genome sequencing of one of the patients revealed a large heterozygous inversion (1,882,433 bp). The centromeric breakpoint of the inversion is located 7,225 bp downstream of GNAS exon XL, but its DMR showed no methylation abnormality, raising the possibility that the inversion disrupts a regulatory element required only for establishing or maintaining exon A/B methylation. Because our three patients presented phenotypes consistent with PHP1B, and not with PHP1A, the Gsα promoter is probably unaffected by the inversion. Our findings expand the spectrum of genetic mutations that lead to LOM at exon A/B alone and thus biallelic expression of the transcript derived from this alternative first GNAS exon. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Giedre Grigelioniene
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital Stockholm, Stockholm, Sweden
| | - Pasi I Nevalainen
- Endocrine Unit, Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
| | - Monica Reyes
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Susanne Thiele
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Olta Tafaj
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Angelo Molinaro
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Rieko Takatani
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Marja Ala-Houhala
- Department of Pediatrics, Tampere University Hospital, Tampere, Finland
| | - Daniel Nilsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital Stockholm, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet Science Park, Solna, Sweden
| | - Jesper Eisfeldt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet Science Park, Solna, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital Stockholm, Stockholm, Sweden
| | - Marie-Laure Kottler
- Centre Hospitalier Universitaire de Caen, Department of Genetics, Reference Centre for Rare Disorders of Calcium and Phosphorus Metabolism, Caen, France
| | - Outi Mäkitie
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Harald Jüppner
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Pediatric Nephrology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|