1
|
Lussey-Lepoutre C, Pacak K, Grossman A, Taieb D, Amar L. Overview of recent guidelines and consensus statements on initial screening and management of phaeochromocytoma and paraganglioma in SDHx pathogenic variant carriers and patients. Best Pract Res Clin Endocrinol Metab 2024:101938. [PMID: 39271377 DOI: 10.1016/j.beem.2024.101938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Phaeochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumours with a strong genetic predisposition, involving over 20 genes and with germline pathogenic variants identified in 40 % of cases. The succinate dehydrogenase (SDHx) genes are the most commonly implicated in hereditary PPGLs, accounting for 20 % of cases, and present unique diagnostic and treatment challenges due to their potential for multiple, recurrent, and aggressive manifestations, often necessitating lifelong follow-up. Over the past two decades, advances in biochemical and imaging assessments, management, and follow-up protocols have significantly improved care for both adult and paediatric patients. These advances include next-generation sequencing, new biochemical tests, cluster-specific functional imaging, and improved surgical and radiotherapy techniques, such as stereotactic surgery and peptide receptor radionuclide therapy (PRRT). International consensus guidelines have been developed to standardise the management of patients with SDHx pathogenic variants, emphasising multidisciplinary approaches and frequent tumour board discussions. These guidelines, summarised below, cover recommendations for initial genetic testing, tumour screening, follow-up care, and management of patients and asymptomatic carriers.
Collapse
Affiliation(s)
- Charlotte Lussey-Lepoutre
- Sorbonne University, Nuclear Medicine Department, Pitié-Salpêtrière Hospital, Assistance -Publique Hôpitaux de Paris, Paris Cardiovascular Research Center (PARCC), Inserm U970, Paris, France.
| | - Karel Pacak
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Building 10, CRC, Room 1E-3140, 10 Center Drive MSC-1109, Bethesda, MD 20892-1109, USA.
| | - Ashley Grossman
- Green Templeton College, University of Oxford, UK; NET Unit, Royal Free Hospital, London, UK; Centre for Endocrinology, Barts and the London School of Medicine, Queen Mary University of London, University of Oxford, UK.
| | - David Taieb
- Department of Nuclear Medicine, La Timone University Hospital, Inserm ERL U1326 RNAnoTher, Aix-Marseille Univ, France.
| | - Laurence Amar
- Université Paris Cité, AP-HP, Hôpital Européen Georges Pompidou, DMU Carte, Unité Hypertension Artérielle, Centre de références en maladies rares de la surrénale, Paris Centre de Recherche Cardiovasculaire, INSERM, Paris, France.
| |
Collapse
|
2
|
Freitas-Castro F, Almeida MQ. Personalized management for phaeochromocytomas and paragangliomas in Latin America: A genetic perspective. Best Pract Res Clin Endocrinol Metab 2024:101922. [PMID: 39244493 DOI: 10.1016/j.beem.2024.101922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Phaeochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors with clinical heterogeneity and a high association with hereditary disease, affecting approximately 30 % of the cases. Differences in the presentation and genetic etiologies of PPGLs have been demonstrated between Chinese and European patients. The frequency of germline genetic diagnosis was remarkably higher in Brazilian patients (∼50 %) compared with other cohorts (Chinese 21 %, European 31 %, and The Cancer Genome Atlas Program cohort 27 %). Interestingly, germline SDHB genetic defects were also more prevalent in Brazilian patients (17 %) with PPGLs when compared with other cohorts (3-9 %). The SDHB exon 1 deletion was responsible for approximately 50 % of the SDHB pathogenic/likely pathogenic variants in Brazilian patients with PPGLs due to a founder effect. The germline SDHB exon 1 deletion represents ∼10 % of the germline drivers in Brazilian patients (and possibly in Latin America). Therefore, a single diagnostic PCR for the SDHB exon 1 deletion might be very useful in clinical practice for genetic testing and counseling of patients with PPGLs in Latin America.
Collapse
Affiliation(s)
- Felipe Freitas-Castro
- Unidade de Adrenal, Laboratório de Endocrinologia Molecular e Celular LIM25, Divisão de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Madson Q Almeida
- Unidade de Adrenal, Laboratório de Endocrinologia Molecular e Celular LIM25, Divisão de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-903, Brazil; Unidade de Oncologia Endócrina, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil.
| |
Collapse
|
3
|
Richter S, Bechmann N. Patient Sex and Origin Influence Distribution of Driver Genes and Clinical Presentation of Paraganglioma. J Endocr Soc 2024; 8:bvae038. [PMID: 38481600 PMCID: PMC10928507 DOI: 10.1210/jendso/bvae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Indexed: 04/07/2024] Open
Abstract
Context Sexual and ancestral differences in driver gene prevalence have been described in many cancers but have not yet been investigated in pheochromocytoma and paraganglioma (PPGL). Objective This study aims to assess whether sex and ancestry influence prevalence of PPGL driver genes and clinical presentation. Methods We conducted a retrospective analysis of patients with PPGL considering studies from 2010 onwards that included minimal data of type of disease, sex, mutated gene, and country of origin. Additional features were recorded when available (age, tumor location, bilateral or multifocal, somatic or germline, and metastatic disease). Results We included 2162 patients: 877 in Europe and 757 in Asia. Males presented more often with germline pathogenic variants (PVs) in genes activating hypoxia pathways (P = .0006) and had more often sympathetic paragangliomas (P = .0005) and metastasis (P = .0039). On the other hand, females with PPGLs due to MAX PVs were diagnosed later than males (P = .0378) and more often developed metastasis (P = .0497). European but not Asian females presented more often with PPGLs due to PVs in genes related to kinase signaling (P = .0052), particularly RET and TMEM127. Contrary to experiences from Europe, Asian patients with PPGL due to PVs in kinase signaling genes NF1, HRAS, and FGFR1 showed a high proportion of sympathetic tumors, while European patients almost exclusively had adrenal tumors (P < .005). Conclusion Personalized management of patients with PPGL might benefit from considering sexual and ancestral differences. Further studies with better clinically aligned cohorts from various origins are required to better dissect ancestral influences on PPGL development.
Collapse
Affiliation(s)
- Susan Richter
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Nicole Bechmann
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
4
|
Yanus GA, Kuligina ES, Imyanitov EN. Hereditary Renal Cancer Syndromes. Med Sci (Basel) 2024; 12:12. [PMID: 38390862 PMCID: PMC10885096 DOI: 10.3390/medsci12010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/26/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Familial kidney tumors represent a rare variety of hereditary cancer syndromes, although systematic gene sequencing studies revealed that as many as 5% of renal cell carcinomas (RCCs) are associated with germline pathogenic variants (PVs). Most instances of RCC predisposition are attributed to the loss-of-function mutations in tumor suppressor genes, which drive the malignant progression via somatic inactivation of the remaining allele. These syndromes almost always have extrarenal manifestations, for example, von Hippel-Lindau (VHL) disease, fumarate hydratase tumor predisposition syndrome (FHTPS), Birt-Hogg-Dubé (BHD) syndrome, tuberous sclerosis (TS), etc. In contrast to the above conditions, hereditary papillary renal cell carcinoma syndrome (HPRCC) is caused by activating mutations in the MET oncogene and affects only the kidneys. Recent years have been characterized by remarkable progress in the development of targeted therapies for hereditary RCCs. The HIF2aplha inhibitor belzutifan demonstrated high clinical efficacy towards VHL-associated RCCs. mTOR downregulation provides significant benefits to patients with tuberous sclerosis. MET inhibitors hold promise for the treatment of HPRCC. Systematic gene sequencing studies have the potential to identify novel RCC-predisposing genes, especially when applied to yet unstudied populations.
Collapse
Affiliation(s)
- Grigory A. Yanus
- Department of Medical Genetics, Saint-Petersburg State Pediatric Medical University, 194100 Saint-Petersburg, Russia;
- Department of Tumor Growth Biology, N.N. Petrov National Medical Research Center of Oncology, 197758 Saint-Petersburg, Russia;
| | - Ekaterina Sh. Kuligina
- Department of Tumor Growth Biology, N.N. Petrov National Medical Research Center of Oncology, 197758 Saint-Petersburg, Russia;
| | - Evgeny N. Imyanitov
- Department of Medical Genetics, Saint-Petersburg State Pediatric Medical University, 194100 Saint-Petersburg, Russia;
- Department of Tumor Growth Biology, N.N. Petrov National Medical Research Center of Oncology, 197758 Saint-Petersburg, Russia;
- Laboratory of Molecular Biology, Kurchatov Complex for Medical Primatology, National Research Centre “Kurchatov Institute”, 354376 Sochi, Russia
| |
Collapse
|
5
|
Fabozzi F, Carrozzo R, Lodi M, Di Giannatale A, Cipri S, Rosignoli C, Giovannoni I, Stracuzzi A, Rizza T, Montante C, Agolini E, Di Nottia M, Galaverna F, Del Baldo G, Del Bufalo F, Mastronuzzi A, De Ioris MA. Case report: A safeguard in the sea of variants of uncertain significance: a case study on child with high risk neuroblastoma and acute myeloid leukemia. Front Oncol 2024; 13:1324013. [PMID: 38260858 PMCID: PMC10800918 DOI: 10.3389/fonc.2023.1324013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
The increased availability of genetic technologies has significantly improved the detection of novel germline variants conferring a predisposition to tumor development in patients with malignant disease. The identification of variants of uncertain significance (VUS) represents a challenge for the clinician, leading to difficulties in decision-making regarding medical management, the surveillance program, and genetic counseling. Moreover, it can generate confusion and anxiety for patients and their family members. Herein, we report a 5-year-old girl carrying a VUS in the Succinate Dehydrogenase Complex Subunit C (SHDC) gene who had been previously treated for high-risk neuroblastoma and subsequently followed by the development of secondary acute myeloid leukemia. In this context, we describe how functional studies can provide additional insight on gene function determining whether the variant interferes with normal protein function or stability.
Collapse
Affiliation(s)
- Francesco Fabozzi
- Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Rosalba Carrozzo
- Unit of Cell Biology and Diagnosis of Mitochondrial Disorders, Laboratory of Medical Genetics, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Mariachiara Lodi
- Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Angela Di Giannatale
- Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Selene Cipri
- Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Chiara Rosignoli
- Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | | | | | - Teresa Rizza
- Unit of Cell Biology and Diagnosis of Mitochondrial Disorders, Laboratory of Medical Genetics, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Claudio Montante
- Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Michela Di Nottia
- Unit of Cell Biology and Diagnosis of Mitochondrial Disorders, Neuromuscular Disorders Research Unit, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Federica Galaverna
- Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Giada Del Baldo
- Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Francesco Del Bufalo
- Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Angela Mastronuzzi
- Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | | |
Collapse
|
6
|
Kim JH, Choi JH. Applications of genomic research in pediatric endocrine diseases. Clin Exp Pediatr 2023; 66:520-530. [PMID: 37321569 PMCID: PMC10694553 DOI: 10.3345/cep.2022.00948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023] Open
Abstract
Recent advances in molecular genetics have advanced our understanding of the molecular mechanisms involved in pediatric endocrine disorders and now play a major role in mainstream medical practice. The spectrum of endocrine genetic disorders has 2 extremes: Mendelian and polygenic. Mendelian or monogenic diseases are caused by rare variants of a single gene, each of which exerts a strong effect on disease risk. Polygenic diseases or common traits are caused by the combined effects of multiple genetic variants in conjunction with environmental and lifestyle factors. Testing for a single gene is preferable if the disease is phenotypically and/or geneically homogeneous. Next-generation sequencing (NGS) can be applied to phenotypically and genetically heterogeneous conditions. Genome-wide association studies (GWASs) have examined genetic variants across the entire genome in a large number of individuals who have been matched for population ancestry and assessed for a disease or trait of interest. Common endocrine diseases or traits, such as type 2 diabetes mellitus, obesity, height, and pubertal timing, result from the combined effects of multiple variants in various genes that are frequently found in the general population, each of which contributes a small individual effect. Isolated founder mutations can result from a true founder effect or an extreme reduction in population size. Studies of founder mutations offer powerful advantages for efficiently localizing the genes that underlie Mendelian disorders. The Korean population has settled in the Korean peninsula for thousands of years, and several recurrent mutations have been identified as founder mutations. The application of molecular technology has increased our understanding of endocrine diseases, which have impacted on the practice of pediatric endocrinology related to diagnosis and genetic counseling. This review focuses on the application of genomic research to pediatric endocrine diseases using GWASs and NGS technology for diagnosis and treatment.
Collapse
Affiliation(s)
- Ja Hye Kim
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jin-Ho Choi
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Fagundes GFC, Freitas-Castro F, Santana LS, Afonso ACF, Petenuci J, Funari MFA, Guimaraes AG, Ledesma FL, Pereira MAA, Victor CR, Ferrari MSM, Coelho FMA, Srougi V, Tanno FY, Chambo JL, Latronico AC, Mendonca BB, Fragoso MCBV, Hoff AO, Almeida MQ. Evidence for a Founder Effect of SDHB Exon 1 Deletion in Brazilian Patients With Paraganglioma. J Clin Endocrinol Metab 2023; 108:2105-2114. [PMID: 36652439 DOI: 10.1210/clinem/dgad028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
CONTEXT Limited information is available concerning the genetic spectrum of pheochromocytoma and paraganglioma (PPGL) patients in South America. Germline SDHB large deletions are very rare worldwide, but most of the individuals harboring the SDHB exon 1 deletion originated from the Iberian Peninsula. OBJECTIVE Our aim was to investigate the spectrum of SDHB genetic defects in a large cohort of Brazilian patients with PPGLs. METHODS Genetic investigation of 155 index PPGL patients was performed by Sanger DNA sequencing, multiplex ligation-dependent probe amplification, and/or target next-generation sequencing panel. Common ancestrality was investigated by microsatellite genotyping with haplotype reconstruction, and analysis of deletion breakpoint. RESULTS Among 155 index patients, heterozygous germline SDHB pathogenic or likely pathogenic variants were identified in 22 cases (14.2%). The heterozygous SDHB exon 1 complete deletion was the most frequent genetic defect in SDHB, identified in 8 out of 22 (36%) of patients. Haplotype analysis of 5 SDHB flanking microsatellite markers demonstrated a significant difference in haplotype frequencies in a case-control permutation test (P = 0.03). More precisely, 3 closer/informative microsatellites were shared by 6 out of 8 apparently unrelated cases (75%) (SDHB-GATA29A05-D1S2826-D1S2644 | SDHB-186-130-213), which was observed in only 1 chromosome (1/42) without SDHB exon 1 deletion (X2 = 29.43; P < 0.001). Moreover, all cases with SDHB exon 1 deletion had the same gene breakpoint pattern of a 15 678 bp deletion previously described in the Iberian Peninsula, indicating a common origin. CONCLUSION The germline heterozygous SDHB exon 1 deletion was the most frequent genetic defect in the Brazilian PPGL cohort. Our findings demonstrated a founder effect for the SDHB exon 1 deletion in Brazilian patients with paragangliomas.
Collapse
Affiliation(s)
- Gustavo F C Fagundes
- Unidade de Adrenal, Laboratório de Endocrinologia Molecular e Celular LIM/25, Divisão de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brasil
| | - Felipe Freitas-Castro
- Unidade de Adrenal, Laboratório de Endocrinologia Molecular e Celular LIM/25, Divisão de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brasil
| | - Lucas S Santana
- Unidade de Adrenal, Laboratório de Endocrinologia Molecular e Celular LIM/25, Divisão de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brasil
| | - Ana Caroline F Afonso
- Unidade de Adrenal, Laboratório de Endocrinologia Molecular e Celular LIM/25, Divisão de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brasil
| | - Janaina Petenuci
- Unidade de Adrenal, Laboratório de Endocrinologia Molecular e Celular LIM/25, Divisão de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brasil
| | - Mariana F A Funari
- Unidade de Adrenal, Laboratório de Endocrinologia Molecular e Celular LIM/25, Divisão de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brasil
| | - Augusto G Guimaraes
- Unidade de Adrenal, Laboratório de Endocrinologia Molecular e Celular LIM/25, Divisão de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brasil
| | - Felipe L Ledesma
- Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brasil
| | - Maria Adelaide A Pereira
- Unidade de Adrenal, Laboratório de Endocrinologia Molecular e Celular LIM/25, Divisão de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brasil
| | - Carolina R Victor
- Divisão de Oncologia Clínica, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brasil
- Centro de Oncologia Clínica, Rede D'Or, São Paulo 04543-000, Brasil
| | - Marcela S M Ferrari
- Divisão de Oncologia Clínica, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brasil
- Centro de Oncologia Clínica, Rede D'Or, São Paulo 04543-000, Brasil
| | - Fernando M A Coelho
- Instituto de Radiologia InRad, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brasil
| | - Victor Srougi
- Divisão de Urologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brasil
| | - Fabio Y Tanno
- Divisão de Urologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brasil
| | - Jose L Chambo
- Divisão de Urologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brasil
| | - Ana Claudia Latronico
- Unidade de Adrenal & Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Divisão de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brasil
| | - Berenice B Mendonca
- Unidade de Adrenal & Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Divisão de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brasil
| | - Maria Candida B V Fragoso
- Unidade de Adrenal & Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Divisão de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brasil
- Divisão de Oncologia Endócrina, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brasil
| | - Ana O Hoff
- Centro de Oncologia Clínica, Rede D'Or, São Paulo 04543-000, Brasil
- Divisão de Oncologia Endócrina, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brasil
| | - Madson Q Almeida
- Unidade de Adrenal, Laboratório de Endocrinologia Molecular e Celular LIM/25, Divisão de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brasil
- Divisão de Oncologia Endócrina, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brasil
| |
Collapse
|
8
|
Nezu M, Hirotsu Y, Amemiya K, Tateno T, Takizawa S, Inoue M, Mochizuki H, Hosaka K, Chik C, Oyama T, Omata M. Paraganglioma with High Levels of Dopamine, Dopa Decarboxylase Suppression, Dopamine β-hydroxylase Upregulation and Intra-tumoral Melanin Accumulation: A Case Report with a Literature Review. Intern Med 2023; 62:1895-1905. [PMID: 36384901 PMCID: PMC10372287 DOI: 10.2169/internalmedicine.0743-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Object Exclusively dopamine-producing pheochromocytoma/paraganglioma (PPGL) is an extremely rare subtype. In this condition, intratumoral dopamine β-hydroxylase (DBH), which controls the conversion of norepinephrine from dopamine, is impaired, resulting in suppressed norepinephrine and epinephrine production. However, the rarity of this type of PPGL hampers the understanding of its pathophysiology. We therefore conducted genetic and immunohistological analyses of a patient with an exclusively dopamine-producing paraganglioma. Methods Paraganglioma samples from a 52-year-old woman who presented with a 29.6- and 41.5-fold increase in plasma and 24-h urinary dopamine, respectively, but only a minor elevation in the plasma norepinephrine level was subjected to immunohistological and gene expression analyses of catecholamine synthases. Three tumors carrying known somatic PPGL-related gene variants (HRAS, EPAS1) were used as controls. Whole-exome sequencing (WES) was also performed using the patient's blood and tumor tissue. Results Surprisingly, the protein expression of DBH was not suppressed, and its mRNA expression was clearly higher in the patient than in the controls. Furthermore, dopa decarboxylase (DDC), which governs the conversion of 3,4-dihydroxyphenyl-L-alanine (L-DOPA) to dopamine, was downregulated at the protein and gene levels. In addition, melanin, which is synthesized by L-DOPA, accumulated in the tumor. WES revealed no PPGL-associated pathogenic germline variants, but a missense somatic variant (c.1798G>T) in CSDE1 was identified. Conclusion Although pre-operative plasma L-DOPA was not measured, our histological and gene expression analyses suggest that L-DOPA, rather than dopamine, might have been overproduced in the tumor. This raises the possibility of pathophysiological heterogeneity in exclusively dopamine-producing PPGL.
Collapse
Affiliation(s)
- Masahiro Nezu
- Department of Endocrinology and Diabetes, Yamanashi Central Hospital, Japan
- Genome Analysis Center, Yamanashi Central Hospital, Japan
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Canada
| | - Yosuke Hirotsu
- Genome Analysis Center, Yamanashi Central Hospital, Japan
| | - Kenji Amemiya
- Genome Analysis Center, Yamanashi Central Hospital, Japan
| | - Toru Tateno
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Canada
| | - Soichi Takizawa
- Department of Endocrinology and Diabetes, Yamanashi Central Hospital, Japan
| | - Masaharu Inoue
- Department of Endocrinology and Diabetes, Yamanashi Central Hospital, Japan
| | | | - Kyoko Hosaka
- Department of Urology, Yamanashi Central Hospital, Japan
| | - Constance Chik
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Canada
| | - Toshio Oyama
- Department of Pathology, Yamanashi Central Hospital, Japan
| | - Masao Omata
- Genome Analysis Center, Yamanashi Central Hospital, Japan
- The University of Tokyo, Japan
| |
Collapse
|
9
|
Parisien-La Salle S, Dumas N, Bédard K, Jolin J, Moramarco J, Lacroix A, Lévesque I, Burnichon N, Gimenez-Roqueplo AP, Bourdeau I. Genetic spectrum in a Canadian cohort of apparently sporadic pheochromocytomas and paragangliomas: New data on multigene panel retesting over time. Clin Endocrinol (Oxf) 2022; 96:803-811. [PMID: 34750850 DOI: 10.1111/cen.14618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Pheochromocytomas (PHEOs) and paragangliomas (PGLs), collectively known as PPGLs, are tumours with high heritability. The prevalence of germline mutations in apparently sporadic PPGLs varies depending on the study population. The objective of this study was to determine the spectrum of germline mutations in a cohort of patients with apparently sporadic PPGLs over time. DESIGN We performed a retrospective review of patients with apparently sporadic PPGLs who underwent genetic testing at our referral centre from 2005 to 2020. PATIENTS We included patients with apparently sporadic PPGLs who underwent genetic testing at our referral center. MEASUREMENTS Genetic analysis included sequential gene sequencing by Sanger method or next generation sequencing (NGS) with a multigene panel. RESULTS The prevalence of germline mutations was 26.2% (43/164); 40.0% (30/75) in PGLs and 14.6% (13/89) in PHEOs. We identified four novel pathogenic variants (two SDHB and two SDHD). Patients carrying germline mutations were younger (38.7 vs. 49.7 years old) than patients with no identified germline mutations. From 2015 to 2020, we performed NGS with a multigene panel on 12 patients for whom the initial genetic analysis was negative. Germline mutations in previously untested genes were found in four (33.3%) of these patients (two MAX and two SDHA), representing 9.3% (4/43) of the mutation carriers. CONCLUSION The prevalence of germline mutations in our cohort of patients with apparently sporadic PPGLs was 26.2%. Genetic re-evaluation over time using multigene sequencing by NGS assay in a subgroup of patients leads to an increase in the detection of mutations.
Collapse
Affiliation(s)
- Stéfanie Parisien-La Salle
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Nadine Dumas
- Division of Genetics, Department of Medicine, CRCHUM, Montreal, Quebec, Canada
| | - Karine Bédard
- Molecular Diagnostic Laboratory, Centre hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada
| | - Judith Jolin
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Jessica Moramarco
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - André Lacroix
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Isabelle Lévesque
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Nelly Burnichon
- Department of Genetics, Assistance Publique-Hôpitaux de Paris, Hôpital européen Georges Pompidou, Paris, France
- PARCC, INSERM, Université de Paris, Paris, France
| | - Anne-Paule Gimenez-Roqueplo
- Department of Genetics, Assistance Publique-Hôpitaux de Paris, Hôpital européen Georges Pompidou, Paris, France
- PARCC, INSERM, Université de Paris, Paris, France
| | - Isabelle Bourdeau
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
- Division of Genetics, Department of Medicine, CRCHUM, Montreal, Quebec, Canada
| |
Collapse
|
10
|
Gordon DM, Beckers P, Castermans E, Neggers SJCMM, Rostomyan L, Bours V, Petrossians P, Dideberg V, Beckers A, Daly AF. Dutch founder SDHB exon 3 deletion in patients with pheochromocytoma-paraganglioma in South Africa. Endocr Connect 2022; 11:EC-21-0560.R1. [PMID: 34939938 PMCID: PMC8859937 DOI: 10.1530/ec-21-0560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/23/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Screening studies have established genetic risk profiles for diseases such as multiple endocrine neoplasia type 1 (MEN1) and pheochromocytoma-paraganglioma (PPGL). Founder effects play an important role in the regional/national epidemiology of endocrine cancers, particularly PPGL. Founder effects in the Netherlands have been described for various diseases, some of which established themselves in South Africa due to Dutch emigration. The role of Dutch founder effects in South Africa has not been explored in PPGL. DESIGN We performed a single-center study in South Africa of the germline genetic causes of isolated/syndromic neuroendocrine tumors. METHODS Next-generation panel, Sanger sequencing and multiplex ligand-dependent probe amplification for endocrine neoplasia risk genes. RESULTS From a group of 13 patients, we identified 6 with PPGL, 4 with sporadic or familial isolated pituitary adenomas, and 3 with clinical MEN1; genetic variants were identified in 9/13 cases. We identified the Dutch founder exon 3 deletion in SDHB in two apparently unrelated individuals with distinct ethnic backgrounds that had metastatic PPGL. Asymptomatic carriers with this Dutch founder SDHBexon 3 deletion were also identified. Other PPGL patients had variants in SDHB, and SDHD and three MEN1variants were identified among MEN1 and young-onset pituitary adenoma patients. CONCLUSIONS This is the first identification of a Dutch founder effect for PPGL in South Africa. Awareness of the presence of this exon 3 SDHB deletion could promote targeted screening at a local level. Insights into PPGL genetics in South Africa could be achieved by studying existing patient databases for Dutch founder mutations in SDHx genes.
Collapse
Affiliation(s)
- Debra M Gordon
- University of the Witwatersrand (WITS) Donald Gordon Medical Centre, Parktown, Johannesburg, South Africa
| | - Pablo Beckers
- Department of Human Genetics, Centre Hospitalier Universitaire de Liège, Liège Université, Liège, Belgium
| | - Emilie Castermans
- Department of Human Genetics, Centre Hospitalier Universitaire de Liège, Liège Université, Liège, Belgium
| | | | - Liliya Rostomyan
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, Liège Université, Liège, Belgium
| | - Vincent Bours
- Department of Human Genetics, Centre Hospitalier Universitaire de Liège, Liège Université, Liège, Belgium
| | - Patrick Petrossians
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, Liège Université, Liège, Belgium
| | - Vinciane Dideberg
- Department of Human Genetics, Centre Hospitalier Universitaire de Liège, Liège Université, Liège, Belgium
| | - Albert Beckers
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, Liège Université, Liège, Belgium
| | - Adrian F Daly
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, Liège Université, Liège, Belgium
- Correspondence should be addressed to A F Daly:
| |
Collapse
|
11
|
Jhawar S, Arakawa Y, Kumar S, Varghese D, Kim YS, Roper N, Elloumi F, Pommier Y, Pacak K, Del Rivero J. New Insights on the Genetics of Pheochromocytoma and Paraganglioma and Its Clinical Implications. Cancers (Basel) 2022; 14:cancers14030594. [PMID: 35158861 PMCID: PMC8833412 DOI: 10.3390/cancers14030594] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Pheochromocytoma and paraganglioma (together PPGL) are rare neuroendocrine tumors that arise from chromaffin tissue and produce catecholamines. Approximately 40% of cases of PPGL carry a germline mutation, suggesting that they have a high degree of heritability. The underlying mutation influences the PPGL clinical presentation such as cell differentiation, specific catecholamine production, tumor location, malignant potential and genetic anticipation, which helps to better understand the clinical course and tailor treatment accordingly. Genetic testing for pheochromocytoma and paraganglioma allows an early detection of hereditary syndromes and facilitates a close follow-up of high-risk patients. In this review article, we present the most recent advances in the field of genetics and we discuss the latest guidelines on the surveillance of asymptomatic SDHx mutation carriers. Abstract Pheochromocytomas (PHEOs) and paragangliomas (PGLs) are rare neuroendocrine tumors that arise from chromaffin cells. PHEOs arise from the adrenal medulla, whereas PGLs arise from the neural crest localized outside the adrenal gland. Approximately 40% of all cases of PPGLs (pheochromocytomas/paragangliomas) are associated with germline mutations and 30–40% display somatic driver mutations. The mutations associated with PPGLs can be classified into three groups. The pseudohypoxic group or cluster I includes the following genes: SDHA, SDHB, SDHC, SDHD, SDHAF2, FH, VHL, IDH1/2, MHD2, EGLN1/2 and HIF2/EPAS; the kinase group or cluster II includes RET, NF1, TMEM127, MAX and HRAS; and the Wnt signaling group or cluster III includes CSDE1 and MAML3. Underlying mutations can help understand the clinical presentation, overall prognosis and surveillance follow-up. Here we are discussing the new genetic insights of PPGLs.
Collapse
Affiliation(s)
- Sakshi Jhawar
- Life Bridge Health Center, Internal Medicine Program, Sinai Hospital of Baltimore, Baltimore, MD 21215, USA
| | - Yasuhiro Arakawa
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Suresh Kumar
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Diana Varghese
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Yoo Sun Kim
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Nitin Roper
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Fathi Elloumi
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Yves Pommier
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Jaydira Del Rivero
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
12
|
Amar L, Pacak K, Steichen O, Akker SA, Aylwin SJB, Baudin E, Buffet A, Burnichon N, Clifton-Bligh RJ, Dahia PLM, Fassnacht M, Grossman AB, Herman P, Hicks RJ, Januszewicz A, Jimenez C, Kunst HPM, Lewis D, Mannelli M, Naruse M, Robledo M, Taïeb D, Taylor DR, Timmers HJLM, Treglia G, Tufton N, Young WF, Lenders JWM, Gimenez-Roqueplo AP, Lussey-Lepoutre C. International consensus on initial screening and follow-up of asymptomatic SDHx mutation carriers. Nat Rev Endocrinol 2021; 17:435-444. [PMID: 34021277 PMCID: PMC8205850 DOI: 10.1038/s41574-021-00492-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/31/2021] [Indexed: 12/11/2022]
Abstract
Approximately 20% of patients diagnosed with a phaeochromocytoma or paraganglioma carry a germline mutation in one of the succinate dehydrogenase (SDHx) genes (SDHA, SDHB, SDHC and SDHD), which encode the four subunits of the SDH enzyme. When a pathogenic SDHx mutation is identified in an affected patient, genetic counselling is proposed for first-degree relatives. Optimal initial evaluation and follow-up of people who are asymptomatic but might carry SDHx mutations have not yet been agreed. Thus, we established an international consensus algorithm of clinical, biochemical and imaging screening at diagnosis and during surveillance for both adults and children. An international panel of 29 experts from 12 countries was assembled, and the Delphi method was used to reach a consensus on 41 statements. This Consensus Statement covers a range of topics, including age of first genetic testing, appropriate biochemical and imaging tests for initial tumour screening and follow-up, screening for rare SDHx-related tumours and management of elderly people who have an SDHx mutation. This Consensus Statement focuses on the management of asymptomatic SDHx mutation carriers and provides clinicians with much-needed guidance. The standardization of practice will enable prospective studies in the near future.
Collapse
Affiliation(s)
- Laurence Amar
- Paris University, Hypertension unit, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
- INSERM, PARCC, Equipe Labellisée par la Ligue contre le Cancer, Paris, France.
| | - Karel Pacak
- Eunice Kennedy Shriver NICHD, NIH, Bethesda, MD, USA
| | - Olivier Steichen
- Sorbonne University, Department of Internal Medicine, Hôpital Tenon, AP-HP, Paris, France
| | - Scott A Akker
- St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | | | - Eric Baudin
- Gustave Roussy Institute and Paris Saclay University, Villejuif, France
| | - Alexandre Buffet
- INSERM, PARCC, Equipe Labellisée par la Ligue contre le Cancer, Paris, France
- Genetics Department, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Nelly Burnichon
- INSERM, PARCC, Equipe Labellisée par la Ligue contre le Cancer, Paris, France
- Genetics Department, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Roderick J Clifton-Bligh
- Department of Endocrinology, Royal North Shore Hospital, St Leonards, NSW, Australia
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Patricia L M Dahia
- Department of Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Martin Fassnacht
- Department of Internal Medicine, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Germany
| | - Ashley B Grossman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, UK
- NET Unit, Royal Free Hospital, London, UK
- Centre for Endocrinology, Barts and the London School of Medicine, London, UK
| | - Philippe Herman
- ENT unit, Lariboisière Hospital, AP-HP, University of Paris, Paris, France
| | - Rodney J Hicks
- Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, VIC, Australia
| | - Andrzej Januszewicz
- Department of Hypertension, National Institute of Cardiology, Warsaw, Poland
| | - Camilo Jimenez
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Henricus P M Kunst
- Department of ENT, Radboud University Medical Center, Nijmegen, Netherlands
- Maastricht University Medical Center, Maastricht, Netherlands
| | - Dylan Lewis
- King's College Hospital NHS Foundation Trust, London, UK
| | - Massimo Mannelli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Mitsuhide Naruse
- Endocrine Center, Ijinkai Takeda General Hospital and Clinical Research Institute, NHO Kyoto Medical Center, Kyoto, Japan
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group. Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
| | - David Taïeb
- Aix-Marseille University, La Timone university hospital, European Center for Research in Medical Imaging, Marseille, France
| | - David R Taylor
- King's College Hospital NHS Foundation Trust, London, UK
| | - Henri J L M Timmers
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Giorgio Treglia
- Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical sciences, Università della Svizzera Italiana, Lugano, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Nicola Tufton
- St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - William F Young
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN, USA
| | - Jacques W M Lenders
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
- University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Anne-Paule Gimenez-Roqueplo
- INSERM, PARCC, Equipe Labellisée par la Ligue contre le Cancer, Paris, France
- Genetics Department, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Charlotte Lussey-Lepoutre
- INSERM, PARCC, Equipe Labellisée par la Ligue contre le Cancer, Paris, France.
- Sorbonne University, Nuclear medicine department, Pitié-Salpêtrière Hospital, AP-HP, Paris, France.
| |
Collapse
|
13
|
Saie C, Buffet A, Abeillon J, Drui D, Leboulleux S, Bertherat J, Zenaty D, Storey C, Borson-Chazot F, Burnichon N, Vincent M, Favier J, Baudin E, Giraud S, Gimenez-Roqueplo AP, Amar L, Lussey-Lepoutre C. Screening of a Large Cohort of Asymptomatic SDHx Mutation Carriers in Routine Practice. J Clin Endocrinol Metab 2021; 106:e1301-e1315. [PMID: 33247927 DOI: 10.1210/clinem/dgaa888] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT When an SDHx mutation is identified in a patient with a pheochromocytoma (PCC) or a paraganglioma (PGL), predictive genetic testing can detect mutation carriers that would benefit from screening protocols. OBJECTIVE To define the tumor detection rate in a large cohort of asymptomatic SDHX mutation carriers. DESIGN AND SETTING Retrospective multicentric study in 6 referral centers. PATIENTS Between 2005 and 2019, 249 asymptomatic SDHx (171 SDHB, 31 SDHC, 47 SDHD) mutation carriers, with at least 1 imaging work-up were enrolled. RESULTS Initial work-up, including anatomical (98% of subjects [97-100% according to center]) and/or functional imaging (67% [14-90%]) detected 48 tumors in 40 patients. After a negative initial work-up, 124 patients benefited from 1 to 9 subsequent follow-up assessments (mean: 1.9 per patient), with a median follow-up time of 5 (1-13) years. Anatomical (86% [49-100 %]) and/or functional imaging (36% [7-60 %]) identified 10 new tumors (mean size: 16 mm [4-50]) in 10 patients. Altogether, 58 tumors (55 paraganglioma [PGL], including 45 head and neck PGL, 2 pheochromocytoma [PCC], 1 gastrointestinal stromal tumor [GIST]), were detected in 50 patients (22 [13%] SDHB, 1 [3.2%] SDHC, and 27 [57%] SDHD), with a median age of 41 years old [11-86], 76% without catecholamine secretion and 80% during initial imaging work-up. CONCLUSIONS Imaging screening enabled detection of tumors in 20% of asymptomatic SDHx mutation carriers, with a higher detection rate in SDHD (57%) than in SDHB (13%) and SDHC (3%) mutation carriers, arguing for a gene-by-gene approach. Prospective studies using well-defined protocols are needed to obtain strong and useful data.
Collapse
Affiliation(s)
- Clotilde Saie
- Department of Nuclear Medicine, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Alexandre Buffet
- Service de Génétique AP-HP, Hôpital Européen Georges Pompidou, Paris, France
- Université de Paris, INSERM, PARCC, Equipe Labellisée par la Ligue contre le Cancer, Paris, France
| | - Juliette Abeillon
- Service d'Endocrinologie, Hospices Civils de Lyon, Bron Cedex, France
| | - Delphine Drui
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, Institut du Thorax, Centre Hospitalier Universitaire de Nantes, Hôpital Nord Laënnec, Nantes, France
| | - Sophie Leboulleux
- Department of Nuclear Medicine and Endocrine Oncology, Gustave Roussy Institut, Cancer Campus Grand Paris, VIllejuif, France
| | - Jérôme Bertherat
- Université de Paris, Service d'Endocrinologie, Centre de Référence des Maladies Rares de la Surrénale, APHP, Hôpital Cochin, Paris, France
| | - Delphine Zenaty
- Department of Pediatric Endocrinology and Diabetology, Robert Debre University Hospital, Reference Center for Growth and Development Endocrine Diseases, Paris, France
| | - Caroline Storey
- Department of Pediatric Endocrinology and Diabetology, Robert Debre University Hospital, Reference Center for Growth and Development Endocrine Diseases, Paris, France
| | | | - Nelly Burnichon
- Service de Génétique AP-HP, Hôpital Européen Georges Pompidou, Paris, France
- Université de Paris, INSERM, PARCC, Equipe Labellisée par la Ligue contre le Cancer, Paris, France
| | - Marie Vincent
- Service de Génétique Médicale, CHU de Nantes, Nantes, France
- Inserm, CNRS, Univ Nantes, Institut du Thorax, Nantes, France
| | - Judith Favier
- Université de Paris, INSERM, PARCC, Equipe Labellisée par la Ligue contre le Cancer, Paris, France
| | - Eric Baudin
- Department of Nuclear Medicine and Endocrine Oncology, Gustave Roussy Institut, Cancer Campus Grand Paris, VIllejuif, France
| | - Sophie Giraud
- Genetics Department, Hospices Civils de LYON (HCL), University Hospital, East Biology and Pathology Center, Bron Cedex, France
| | - Anne-Paule Gimenez-Roqueplo
- Service de Génétique AP-HP, Hôpital Européen Georges Pompidou, Paris, France
- Université de Paris, INSERM, PARCC, Equipe Labellisée par la Ligue contre le Cancer, Paris, France
| | - Laurence Amar
- Université de Paris, INSERM, PARCC, Equipe Labellisée par la Ligue contre le Cancer, Paris, France
- Hypertension Unit, Université de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Charlotte Lussey-Lepoutre
- Department of Nuclear Medicine, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Université de Paris, INSERM, PARCC, Equipe Labellisée par la Ligue contre le Cancer, Paris, France
| |
Collapse
|
14
|
Matlac DM, Hadrava Vanova K, Bechmann N, Richter S, Folberth J, Ghayee HK, Ge GB, Abunimer L, Wesley R, Aherrahrou R, Dona M, Martínez-Montes ÁM, Calsina B, Merino MJ, Schwaninger M, Deen PMT, Zhuang Z, Neuzil J, Pacak K, Lehnert H, Fliedner SMJ. Succinate Mediates Tumorigenic Effects via Succinate Receptor 1: Potential for New Targeted Treatment Strategies in Succinate Dehydrogenase Deficient Paragangliomas. Front Endocrinol (Lausanne) 2021; 12:589451. [PMID: 33776908 PMCID: PMC7994772 DOI: 10.3389/fendo.2021.589451] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
Paragangliomas and pheochromocytomas (PPGLs) are chromaffin tumors associated with severe catecholamine-induced morbidities. Surgical removal is often curative. However, complete resection may not be an option for patients with succinate dehydrogenase subunit A-D (SDHx) mutations. SDHx mutations are associated with a high risk for multiple recurrent, and metastatic PPGLs. Treatment options in these cases are limited and prognosis is dismal once metastases are present. Identification of new therapeutic targets and candidate drugs is thus urgently needed. Previously, we showed elevated expression of succinate receptor 1 (SUCNR1) in SDHB PPGLs and SDHD head and neck paragangliomas. Its ligand succinate has been reported to accumulate due to SDHx mutations. We thus hypothesize that autocrine stimulation of SUCNR1 plays a role in the pathogenesis of SDHx mutation-derived PPGLs. We confirmed elevated SUCNR1 expression in SDHx PPGLs and after SDHB knockout in progenitor cells derived from a human pheochromocytoma (hPheo1). Succinate significantly increased viability of SUCNR1-transfected PC12 and ERK pathway signaling compared to control cells. Candidate SUCNR1 inhibitors successfully reversed proliferative effects of succinate. Our data reveal an unrecognized oncometabolic function of succinate in SDHx PPGLs, providing a growth advantage via SUCNR1.
Collapse
Affiliation(s)
- Dieter M. Matlac
- Neuroendocrine Oncology and Metabolism, Medical Department I, Center of Brain, Behavior, and Metabolism, University Medical Center Schleswig-Holstein Lübeck, Lübeck, Germany
| | - Katerina Hadrava Vanova
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czechia
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Susan Richter
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Julica Folberth
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Hans K. Ghayee
- Department of Medicine, Division of Endocrinology, University of Florida and Malcom Randall VA Medical Center, Gainesville, FL, United States
| | - Guang-Bo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Luma Abunimer
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | | | - Redouane Aherrahrou
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- Department of Biomedical Engineering, Centre for Public Health Genomics, University of Virginia, Charlottesville, VA, United States
| | - Margo Dona
- Division of Endocrinology 471, Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ángel M. Martínez-Montes
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Bruna Calsina
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Maria J. Merino
- Laboratory of Surgical Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | | | - Zhengping Zhuang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Jiri Neuzil
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czechia
- School of Medical Science, Griffith University, Southport, QLD, Australia
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Hendrik Lehnert
- Neuroendocrine Oncology and Metabolism, Medical Department I, Center of Brain, Behavior, and Metabolism, University Medical Center Schleswig-Holstein Lübeck, Lübeck, Germany
| | - Stephanie M. J. Fliedner
- Neuroendocrine Oncology and Metabolism, Medical Department I, Center of Brain, Behavior, and Metabolism, University Medical Center Schleswig-Holstein Lübeck, Lübeck, Germany
- *Correspondence: Stephanie M. J. Fliedner,
| |
Collapse
|
15
|
Oliveira GL, Coelho AR, Marques R, Oliveira PJ. Cancer cell metabolism: Rewiring the mitochondrial hub. Biochim Biophys Acta Mol Basis Dis 2020; 1867:166016. [PMID: 33246010 DOI: 10.1016/j.bbadis.2020.166016] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 12/15/2022]
Abstract
To adapt to tumoral environment conditions or even to escape chemotherapy, cells rapidly reprogram their metabolism to handle adversities and survive. Given the rapid rise of studies uncovering novel insights and therapeutic opportunities based on the role of mitochondria in tumor metabolic programing and therapeutics, this review summarizes most significant developments in the field. Taking in mind the key role of mitochondria on carcinogenesis and tumor progression due to their involvement on tumor plasticity, metabolic remodeling, and signaling re-wiring, those organelles are also potential therapeutic targets. Among other topics, we address the recent data intersecting mitochondria as of prognostic value and staging in cancer, by mitochondrial DNA (mtDNA) determination, and current inhibitors developments targeting mtDNA, OXPHOS machinery and metabolic pathways. We contribute for a holistic view of the role of mitochondria metabolism and directed therapeutics to understand tumor metabolism, to circumvent therapy resistance, and to control tumor development.
Collapse
Affiliation(s)
- Gabriela L Oliveira
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - Ana R Coelho
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - Ricardo Marques
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal.
| |
Collapse
|
16
|
Metabolic Cancer-Macrophage Crosstalk in the Tumor Microenvironment. BIOLOGY 2020; 9:biology9110380. [PMID: 33171762 PMCID: PMC7694986 DOI: 10.3390/biology9110380] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 12/26/2022]
Abstract
Tumors consist of a wide variety of cells, including immune cells, that affect tumor progression. Macrophages are abundant innate immune cells in the tumor microenvironment (TME) and are crucial in regulating tumorigenicity. Specific metabolic conditions in the TME can alter the phenotype of tumor-associated macrophages (TAMs) in a direction that supports their pro-tumor functions. One of these conditions is the accumulation of metabolites, also known as oncometabolites. Interactions of oncometabolites with TAMs can promote a pro-tumorigenic phenotype, thereby sustaining cancer cell growth and decreasing the chance of eradication. This review focuses on the metabolic cancer-macrophage crosstalk in the TME. We discuss how cancer cell metabolism and oncometabolites affect macrophage phenotype and function, and conversely how macrophage metabolism can impact tumor progression. Lastly, we propose tumor-secreted exosome-mediated metabolic signaling as a potential factor in tumorigenesis. Insight in these processes may contribute to the development of novel cancer therapies.
Collapse
|
17
|
De Sousa SMC, Toubia J, Hardy TSE, Feng J, Wang P, Schreiber AW, Geoghegan J, Hall R, Rawlings L, Buckland M, Luxford C, Novos T, Clifton-Bligh RJ, Poplawski NK, Scott HS, Torpy DJ. Aberrant Splicing of SDHC in Families With Unexplained Succinate Dehydrogenase-Deficient Paragangliomas. J Endocr Soc 2020; 4:bvaa071. [PMID: 33195952 PMCID: PMC7646550 DOI: 10.1210/jendso/bvaa071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Indexed: 12/12/2022] Open
Abstract
Context Germline mutations in the succinate dehydrogenase genes (SDHA/B/C/D, SDHAF2-collectively, "SDHx") have been implicated in paraganglioma (PGL), renal cell carcinoma (RCC), gastrointestinal stromal tumor (GIST), and pituitary adenoma (PA). Negative SDHB tumor staining is indicative of SDH-deficient tumors, usually reflecting an underlying germline SDHx mutation. However, approximately 20% of individuals with SDH-deficient tumors lack an identifiable germline SDHx mutation. Methods We performed whole-exome sequencing (WES) of germline and tumor DNA followed by Sanger sequencing validation, transcriptome analysis, metabolomic studies, and haplotype analysis in 2 Italian-Australian families with SDH-deficient PGLs and various neoplasms, including RCC, GIST, and PA. Results Germline WES revealed a novel SDHC intronic variant, which had been missed during previous routine testing, in 4 affected siblings of the index family. Transcriptome analysis demonstrated aberrant SDHC splicing, with the retained intronic segment introducing a premature stop codon. WES of available tumors in this family showed chromosome 1 deletion with loss of wild-type SDHC in a PGL and a somatic gain-of-function KIT mutation in a GIST. The SDHC intronic variant identified was subsequently detected in the second family, with haplotype analysis indicating a founder effect. Conclusions This is the deepest intronic variant to be reported among the SDHx genes. Intronic variants beyond the limits of standard gene sequencing analysis should be considered in patients with SDH-deficient tumors but negative genetic test results.
Collapse
Affiliation(s)
- Sunita M C De Sousa
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia.,Department of Genetics and Molecular Pathology, Centre for Cancer Biology, an SA Pathology and University of South Australia alliance, Adelaide, Australia.,Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, Australia.,School of Medicine, University of Adelaide, Adelaide, Australia
| | - John Toubia
- ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, Australia
| | | | - Jinghua Feng
- ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, Australia.,School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Paul Wang
- ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, Australia
| | - Andreas W Schreiber
- ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, Australia.,School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia.,School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Joel Geoghegan
- ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, Australia
| | - Rachel Hall
- SA Pathology, Flinders Medical Centre, Bedford Park, Australia
| | | | - Michael Buckland
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, Australia.,School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Catherine Luxford
- Cancer Genetics, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, Australia
| | - Talia Novos
- Cancer Genetics, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, Australia
| | - Roderick J Clifton-Bligh
- Cancer Genetics, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, Australia
| | - Nicola K Poplawski
- Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, Australia.,School of Medicine, University of Adelaide, Adelaide, Australia
| | - Hamish S Scott
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, an SA Pathology and University of South Australia alliance, Adelaide, Australia.,School of Medicine, University of Adelaide, Adelaide, Australia.,ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, Australia.,School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia.,School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - David J Torpy
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia.,School of Medicine, University of Adelaide, Adelaide, Australia
| |
Collapse
|
18
|
Lee H, Jeong S, Yu Y, Kang J, Sun H, Rhee JK, Kim YH. Risk of metastatic pheochromocytoma and paraganglioma in SDHx mutation carriers: a systematic review and updated meta-analysis. J Med Genet 2019; 57:217-225. [PMID: 31649053 DOI: 10.1136/jmedgenet-2019-106324] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/04/2019] [Accepted: 09/16/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND Pheochromocytoma and paraganglioma (PPGL) are tumours that arise from chromaffin cells. Some genetic mutations influence PPGL, among which, those in genes encoding subunits of succinate dehydrogenase (SDHA, SDHB, SDHC and SDHD) and assembly factor (SDHAF2) are the most relevant. However, the risk of metastasis posed by these mutations is not reported except for SDHB and SDHD mutations. This study aimed to update the metastatic risks, considering prevalence and incidence of each SDHx mutation, which were dealt formerly all together. METHODS We searched EMBASE and MEDLINE and selected 27 articles. The patients included in the studies were divided into three groups depending on the presence of PPGL. We checked the heterogeneity between studies and performed a meta-analysis using Hartung-Knapp-Sidik-Jonkman method based on a random effect model. RESULTS The highest PPGL prevalence was for SDHB mutation, ranging from 23% to 31%, and for SDHC mutation (23%), followed by that for SDHA mutation (16%). The lowest prevalence was for SDHD mutation, ranging from 6% to 8%. SDHAF2 mutation showed no metastatic events. The PPGL incidence showed a tendency similar to that of its prevalence with the highest risk of metastasis posed by SDHB mutation (12%-41%) and the lowest risk by SDHD mutation (~4%). CONCLUSION There was no integrated evidence of how SDHx mutations are related to metastatic PPGL. However, these findings suggest that SDHA, SDHB and SDHC mutations are highly associated and should be tested as indicators of metastasis in patients with PPGL.
Collapse
Affiliation(s)
- Hansong Lee
- Interdisciplinary program of genomic data science, Pusan National University School of Medicine, Yangsan, Korea (the Republic of)
| | - Seongdo Jeong
- Interdisciplinary program of genomic data science, Pusan National University School of Medicine, Yangsan, Korea (the Republic of)
| | - Yeuni Yu
- Interdisciplinary program of genomic data science, Pusan National University School of Medicine, Yangsan, Korea (the Republic of)
| | - Junho Kang
- Interdisciplinary program of genomic data science, Pusan National University School of Medicine, Yangsan, Korea (the Republic of)
| | - Hokeun Sun
- Department of Statistics, Pusan National University School of Medicine, Busan, Korea (the Republic of)
| | - Je-Keun Rhee
- School of Systems Biomedical Science, Soongsil University, Seoul, Korea (the Republic of)
| | - Yun Hak Kim
- Department of Anatomy and Department of Biomedical Informatics, Pusan National University School of Medicine, Yangsan, Korea (the Republic of)
| |
Collapse
|
19
|
Albattal S, Alswailem M, Moria Y, Al-Hindi H, Dasouki M, Abouelhoda M, Alkhail HA, Alsuhaibani E, Alzahrani AS. Mutational profile and genotype/phenotype correlation of non-familial pheochromocytoma and paraganglioma. Oncotarget 2019; 10:5919-5931. [PMID: 31666924 PMCID: PMC6800268 DOI: 10.18632/oncotarget.27194] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/16/2019] [Indexed: 12/11/2022] Open
Abstract
About 30%-40% of patients with pheochromocytoma (PCC) and paraganglioma (PGL) have underlying germline mutations in certain susceptibility genes despite absent family history of these tumors. Here, we present mutational profile of 101 such patients with PCC/PGL (PPGL) from the highly consanguineous population of Saudi Arabia. Results: Of 101 cases with PPGL, 37/101 (36.6%) had germline mutations. Mutations were detected in 30 cases by PCR and direct Sanger sequencing and in 7 additional cases by NGS. The most commonly mutated gene was SDHB (21/101 cases, 20.8%) and the most common SDHB mutation was c.268C>T, p.R90X occurring in 12/21 (57%) cases. Mutations also occurred in SDHC (4/101, 3.96%), SDHD (3/101, 3%), VHL (2/101, 2%) and MAX (2/101, 2%) genes. The following genes were mutated in 1 patient each (1%), RET, SDHA, SDHAF2, TMEM127 and NF1. Metastatic PPGL occurred in 6/21 cases (28.6%) with SDHB mutations and in 1 case with SDHAF2 mutation. Patients and Methods: DNA was isolated from peripheral blood (53 patients) or from non-tumorous formalin fixed paraffin embedded (FFPE) tissue (48 patients). PCR and direct Sanger sequencing of RET, SDHx, VHL, MAX and TMEM127 genes were performed. Cases without mutations were subjected to whole exome sequencing using next generation sequencing (NGS). Conclusion: About 37% of PPGL without family history of such tumors harbor germline mutations. The most commonly mutated gene is SDHB followed by SDHC, SDHD, VHL, MAX and rarely RET, SDHA, SDHAF2, TMEM127 and NF1. SDHB mutations were associated with metastatic PPGL in more than a quarter of cases.
Collapse
Affiliation(s)
- Shatha Albattal
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia.,Faculty of Science, King Saud University, Riyadh 11211, Saudi Arabia
| | - Meshael Alswailem
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Yosra Moria
- Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Hindi Al-Hindi
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Majed Dasouki
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh 11211, Saudi Arabia
| | - Mohamed Abouelhoda
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh 11211, Saudi Arabia
| | - Hala Aba Alkhail
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | | | - Ali S Alzahrani
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia.,Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| |
Collapse
|
20
|
SDHC-related deficiency of SDH complex activity promotes growth and metastasis of hepatocellular carcinoma via ROS/NFκB signaling. Cancer Lett 2019; 461:44-55. [DOI: 10.1016/j.canlet.2019.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 06/07/2019] [Accepted: 07/02/2019] [Indexed: 12/22/2022]
|
21
|
Bayley JP, Bausch B, Rijken JA, van Hulsteijn LT, Jansen JC, Ascher D, Pires DEV, Hes FJ, Hensen EF, Corssmit EPM, Devilee P, Neumann HPH. Variant type is associated with disease characteristics in SDHB, SDHC and SDHD-linked phaeochromocytoma-paraganglioma. J Med Genet 2019; 57:96-103. [PMID: 31492822 DOI: 10.1136/jmedgenet-2019-106214] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/09/2019] [Accepted: 07/24/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Pathogenic germline variants in subunits of succinate dehydrogenase (SDHB, SDHC and SDHD) are broadly associated with disease subtypes of phaeochromocytoma-paraganglioma (PPGL) syndrome. Our objective was to investigate the role of variant type (ie, missense vs truncating) in determining tumour phenotype. METHODS Three independent datasets comprising 950 PPGL and head and neck paraganglioma (HNPGL) patients were analysed for associations of variant type with tumour type and age-related tumour risk. All patients were carriers of pathogenic germline variants in the SDHB, SDHC or SDHD genes. RESULTS Truncating SDH variants were significantly over-represented in clinical cases compared with missense variants, and carriers of SDHD truncating variants had a significantly higher risk for PPGL (p<0.001), an earlier age of diagnosis (p<0.0001) and a greater risk for PPGL/HNPGL comorbidity compared with carriers of missense variants. Carriers of SDHB truncating variants displayed a trend towards increased risk of PPGL, and all three SDH genes showed a trend towards over-representation of missense variants in HNPGL cases. Overall, variant types conferred PPGL risk in the (highest-to-lowest) sequence SDHB truncating, SDHB missense, SDHD truncating and SDHD missense, with the opposite pattern apparent for HNPGL (p<0.001). CONCLUSIONS SDHD truncating variants represent a distinct group, with a clinical phenotype reminiscent of but not identical to SDHB. We propose that surveillance and counselling of carriers of SDHD should be tailored by variant type. The clinical impact of truncating SDHx variants is distinct from missense variants and suggests that residual SDH protein subunit function determines risk and site of disease.
Collapse
Affiliation(s)
- Jean Pierre Bayley
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Birke Bausch
- Department of Medicine II, University of Freiburg Faculty of Medicine, Freiburg, Germany
| | - Johannes Adriaan Rijken
- Department of Otorhinolaryngology - Head & Neck Surgery, Free University Medical Center, Amsterdam, The Netherlands
| | | | - Jeroen C Jansen
- Department of Otorhinolaryngology, Leiden University Medical Center, Leiden, The Netherlands
| | - David Ascher
- Department of Biochemistry and Molecular Biology, The University of Melbourne Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria, Australia
| | | | - Frederik J Hes
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Erik F Hensen
- Department of Otorhinolaryngology, Leiden University Medical Center, Leiden, The Netherlands
| | - Eleonora P M Corssmit
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Devilee
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hartmut P H Neumann
- Section for Preventive Medicine, Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
| |
Collapse
|
22
|
Abstract
Since Felix Fränkel's account of pheochromocytoma in 1886, great discoveries and vast advancements in the diagnosis, genetics, anatomical and functional imaging techniques, and surgical management of pheochromcytoma and paraganglioma (P-PGL) have been made. The improved insight in the pathophysiology of P-PGL and more accurate detection methods enable physicians to tailor the treatment plan to an individual based on the genetic profile and tumor behavior. This review will cover briefly the clinical features, diagnosis, genetic mutations, and imaging modalities that are used to guide current surgical management of these rare and interesting endocrinopathies.
Collapse
Affiliation(s)
- Douglas Wiseman
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Mustapha El Lakis
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Naris Nilubol
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
23
|
Eijkelenkamp K, Osinga TE, Links TP, van der Horst-Schrivers ANA. Clinical implications of the oncometabolite succinate in SDHx-mutation carriers. Clin Genet 2019; 97:39-53. [PMID: 30977114 PMCID: PMC6972524 DOI: 10.1111/cge.13553] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/15/2019] [Accepted: 04/10/2019] [Indexed: 12/11/2022]
Abstract
Succinate dehydrogenase (SDH) mutations lead to the accumulation of succinate, which acts as an oncometabolite. Germline SDHx mutations predispose to paraganglioma (PGL) and pheochromocytoma (PCC), as well as to renal cell carcinoma and gastro‐intestinal stromal tumors. The SDHx genes were the first tumor suppressor genes discovered which encode for a mitochondrial enzyme, thereby supporting Otto Warburg's hypothesis in 1926 that a direct link existed between mitochondrial dysfunction and cancer. Accumulation of succinate is the hallmark of tumorigenesis in PGL and PCC. Succinate accumulation inhibits several α‐ketoglutarate dioxygenases, thereby inducing the pseudohypoxia pathway and causing epigenetic changes. Moreover, SDH loss as a consequence of SDHx mutations can lead to reprogramming of cell metabolism. Metabolomics can be used as a diagnostic tool, as succinate and other metabolites can be measured in tumor tissue, plasma and urine with different techniques. Furthermore, these pathophysiological characteristics provide insight into therapeutic targets for metastatic disease. This review provides an overview of the pathophysiology and clinical implications of oncometabolite succinate in SDHx mutations.
Collapse
Affiliation(s)
- Karin Eijkelenkamp
- Department of Endocrinology and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Thamara E Osinga
- Department of Endocrinology and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Thera P Links
- Department of Endocrinology and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Anouk N A van der Horst-Schrivers
- Department of Endocrinology and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
24
|
Tufton N, Sahdev A, Drake WM, Akker SA. Can subunit-specific phenotypes guide surveillance imaging decisions in asymptomatic SDH mutation carriers? Clin Endocrinol (Oxf) 2019; 90:31-46. [PMID: 30303539 DOI: 10.1111/cen.13877] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/07/2018] [Accepted: 10/07/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVE With the discovery that familial phaeochromocytoma and paraganglioma syndrome can be caused by mutations in each subunit of the succinate dehydrogenase enzyme (SDH), has come the recognition that mutations in the individual subunits have their own distinct natural histories. Increased genetic screening is leading to the identification of increasing numbers of, mostly asymptomatic, gene mutation carriers and the implementation of screening strategies for these individuals. Yet there is, to date, no international consensus regarding screening strategies for asymptomatic carriers. DESIGN A comprehensive PubMed search from 1/1/2000 to 28/2/2018 was undertaken using multiple search terms and subsequently a manual review of references in identified papers to identify all clinically relevant cases and cohorts. In this review, the accumulated, published experience of phenotype and malignancy risks of individual SDH subunits is analysed. Where possible screening results for asymptomatic SDH mutation carriers have been analysed separately to define the penetrance in asymptomatic carriers (asymptomatic penetrance). RESULTS The combined data confirms that "asymptomatic penetrance" is highest for SDHD and when there is penetrance, the most likely site to develop a PGL is head and neck (SDHD) and extra-adrenal abdominal (SDHB). However, the risk in SDHB carriers of developing HNPGL is also high (35.5%) and a PCC is low (15.1%), and in SDHD carriers there is a high risk of developing a PCC (35.8%) or abdominal PGL (9.4%) and a small, but significant risk at other sympathetic sites. The data suggest that the risk of malignant transformation is the same for both PCC and extra-adrenal abdominal PGLs (30%-35%) in SDHB carriers. In SDHD carriers, the risk of malignant transformation was highest in HNPGLs (7.5%) and similar for sympathetic sites (3.8%-5.2%). CONCLUSIONS Using this data, we suggest surveillance screening of asymptomatic carriers can be tailored to the underlying SDH subunit and review possible surveillance programmes.
Collapse
Affiliation(s)
- Nicola Tufton
- Department of Endocrinology, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
- Centre for Endocrinology, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Anju Sahdev
- Department of Radiology, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - William M Drake
- Department of Endocrinology, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
- Centre for Endocrinology, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Scott A Akker
- Department of Endocrinology, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
- Centre for Endocrinology, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
25
|
Vermalle M, Tabarin A, Castinetti F. [Hereditary pheochromocytoma and paraganglioma: screening and follow-up strategies in asymptomatic mutation carriers]. ANNALES D'ENDOCRINOLOGIE 2018; 79 Suppl 1:S10-S21. [PMID: 30213301 DOI: 10.1016/s0003-4266(18)31234-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The management of pheochromocytoma and paraganglioma has deeply evolved over the last years due to the discovery of novel genes of susceptibility, especially SDHx, MAX and TMEM127. While the modalities of diagnosis and management of patients presenting with hereditary pheochromocytoma and paraganglioma are now well defined, screening and follow-up strategies for asymptomatic mutation carriers remain a matter of debate. This raises major questions as these asymptomatic patients will require a lifelong follow-up. The aim of this review is an attempt to give insights on the optimal screening and follow-up strategies of asymptomatic carriers of SDHx, MAX and TMEM127 mutations, with additional thoughts on the forensic and psychological aspects of the management of such patients with rare diseases.
Collapse
Affiliation(s)
- Marie Vermalle
- Aix-Marseille université, Institut national de la santé et de la recherche médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Marseille, France; Assistance publique-Hôpitaux de Marseille (AP-HM), département d'endocrinologie, hôpital de la Conception, centre de référence des maladies rares de l'hypophyse HYPO, 13005, Marseille, France.
| | - Antoine Tabarin
- Service d'endocrinologie, diabète et nutrition, USN Haut-Leveque, 33000 CHU Bordeaux, université Bordeaux, France
| | - Frederic Castinetti
- Aix-Marseille université, Institut national de la santé et de la recherche médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Marseille, France; Assistance publique-Hôpitaux de Marseille (AP-HM), département d'endocrinologie, hôpital de la Conception, centre de référence des maladies rares de l'hypophyse HYPO, 13005, Marseille, France.
| |
Collapse
|
26
|
Neumann HP, Young WF, Krauss T, Bayley JP, Schiavi F, Opocher G, Boedeker CC, Tirosh A, Castinetti F, Ruf J, Beltsevich D, Walz M, Groeben HT, von Dobschuetz E, Gimm O, Wohllk N, Pfeifer M, Lourenço DM, Peczkowska M, Patocs A, Ngeow J, Makay Ö, Shah NS, Tischler A, Leijon H, Pennelli G, Villar Gómez de Las Heras K, Links TP, Bausch B, Eng C. 65 YEARS OF THE DOUBLE HELIX: Genetics informs precision practice in the diagnosis and management of pheochromocytoma. Endocr Relat Cancer 2018; 25:T201-T219. [PMID: 29794110 DOI: 10.1530/erc-18-0085] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 05/24/2018] [Indexed: 12/21/2022]
Abstract
Although the authors of the present review have contributed to genetic discoveries in the field of pheochromocytoma research, we can legitimately ask whether these advances have led to improvements in the diagnosis and management of patients with pheochromocytoma. The answer to this question is an emphatic Yes! In the field of molecular genetics, the well-established axiom that familial (genetic) pheochromocytoma represents 10% of all cases has been overturned, with >35% of cases now attributable to germline disease-causing mutations. Furthermore, genetic pheochromocytoma can now be grouped into five different clinical presentation types in the context of the ten known susceptibility genes for pheochromocytoma-associated syndromes. We now have the tools to diagnose patients with genetic pheochromocytoma, identify germline mutation carriers and to offer gene-informed medical management including enhanced surveillance and prevention. Clinically, we now treat an entire family of tumors of the paraganglia, with the exact phenotype varying by specific gene. In terms of detection and classification, simultaneous advances in biochemical detection and imaging localization have taken place, and the histopathology of the paraganglioma tumor family has been revised by immunohistochemical-genetic classification by gene-specific antibody immunohistochemistry. Treatment options have also been substantially enriched by the application of minimally invasive and adrenal-sparing surgery. Finally and most importantly, it is now widely recognized that patients with genetic pheochromocytoma/paraganglioma syndromes should be treated in specialized centers dedicated to the diagnosis, treatment and surveillance of this rare neoplasm.
Collapse
Affiliation(s)
- Hartmut P Neumann
- Section for Preventive MedicineUniversity Medical Center, Albert-Ludwigs-University, Freiburg, Germany
| | - William F Young
- Division of EndocrinologyDiabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, New York, USA
| | - Tobias Krauss
- Department of RadiologyMedical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jean-Pierre Bayley
- Department of Human GeneticsLeiden University Medical Center, Leiden, The Netherlands
| | - Francesca Schiavi
- Familial Cancer Clinic and OncoendocrinologyVeneto Institute of Oncology, IRCCS, Padova, Italy
| | - Giuseppe Opocher
- Familial Cancer Clinic and OncoendocrinologyVeneto Institute of Oncology, IRCCS, Padova, Italy
| | - Carsten C Boedeker
- Department of OtorhinolaryngologyHELIOS Hanseklinikum Stralsund, Stralsund, Germany
| | - Amit Tirosh
- Sackler Faculty of MedicineTel Aviv University, Tel Aviv, Israel
| | - Frederic Castinetti
- Department of EndocrinologyAix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Marseille, France
- Assistance Publique - Hôpitaux de Marseille (AP-HM)Hôpital de la Conception, Centre de Référence des Maladies Rares Hypophysaires HYPO, Marseille, France
| | - Juri Ruf
- Department of Nuclear MedicineFaculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
| | | | - Martin Walz
- Department of Surgery and Center of Minimally-Invasive SurgeryKliniken Essen-Mitte, Essen, Germany
| | | | - Ernst von Dobschuetz
- Section of Endocrine SurgeryClinic of General, Visceral and Thoracic Surgery, Krankenhaus Reinbek, Academic Teaching Hospital University of Hamburg, Reinbek, Germany
| | - Oliver Gimm
- Department of Clinical and Experimental MedicineFaculty of Health Sciences, Linköping University, Linköping, Sweden
- Department of SurgeryRegion Östergötland, Linköping, Sweden
| | - Nelson Wohllk
- Endocrine SectionUniversidad de Chile, Hospital del Salvador, Santiago de Chile, Chile
| | - Marija Pfeifer
- Department of EndocrinologyUniversity Medical Center Ljubljana, Ljubljana, Slovenia
| | - Delmar M Lourenço
- Endocrine Genetics UnitEndocrinology Division, Hospital das Clínicas, University of São Paulo School of Medicine (FMUSP), Endocrine Oncology Division, Institute of Cancer of the State of São Paulo, FMUSP, São Paulo, Brazil
| | | | - Attila Patocs
- HSA-SE 'Lendület' Hereditary Endocrine Tumor Research GroupHungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Joanne Ngeow
- Lee Kong Chian School of MedicineNanyang Technological University Singapore and Cancer Genetics Service, National Cancer Centre Singapore, Singapore, Singapore
| | - Özer Makay
- Division of Endocrine SurgeryDepartment of General Surgery, Ege University, Izmir, Turkey
| | - Nalini S Shah
- Department of EndocrinologySeth G S Medical College, K.E.M. Hospital, Parel, Mumbai, India
| | - Arthur Tischler
- Department of Pathology and Laboratory MedicineTufts Medical Center and Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Helena Leijon
- Department of PathologyUniversity of Helsinki, and HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Gianmaria Pennelli
- Department of Medicine (DIMED)Surgical Pathology Unit, University of Padua, Padua, Italy
| | | | - Thera P Links
- Department of EndocrinologyUniversity of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Birke Bausch
- Department of Medicine IIMedical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Charis Eng
- Genomic Medicine InstituteLerner Research Institute and Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
27
|
Andrews KA, Ascher DB, Pires DEV, Barnes DR, Vialard L, Casey RT, Bradshaw N, Adlard J, Aylwin S, Brennan P, Brewer C, Cole T, Cook JA, Davidson R, Donaldson A, Fryer A, Greenhalgh L, Hodgson SV, Irving R, Lalloo F, McConachie M, McConnell VPM, Morrison PJ, Murday V, Park SM, Simpson HL, Snape K, Stewart S, Tomkins SE, Wallis Y, Izatt L, Goudie D, Lindsay RS, Perry CG, Woodward ER, Antoniou AC, Maher ER. Tumour risks and genotype-phenotype correlations associated with germline variants in succinate dehydrogenase subunit genes SDHB, SDHC and SDHD. J Med Genet 2018; 55:384-394. [PMID: 29386252 PMCID: PMC5992372 DOI: 10.1136/jmedgenet-2017-105127] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/05/2018] [Accepted: 01/08/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Germline pathogenic variants in SDHB/SDHC/SDHD are the most frequent causes of inherited phaeochromocytomas/paragangliomas. Insufficient information regarding penetrance and phenotypic variability hinders optimum management of mutation carriers. We estimate penetrance for symptomatic tumours and elucidate genotype-phenotype correlations in a large cohort of SDHB/SDHC/SDHD mutation carriers. METHODS A retrospective survey of 1832 individuals referred for genetic testing due to a personal or family history of phaeochromocytoma/paraganglioma. 876 patients (401 previously reported) had a germline mutation in SDHB/SDHC/SDHD (n=673/43/160). Tumour risks were correlated with in silico structural prediction analyses. RESULTS Tumour risks analysis provided novel penetrance estimates and genotype-phenotype correlations. In addition to tumour type susceptibility differences for individual genes, we confirmed that the SDHD:p.Pro81Leu mutation has a distinct phenotype and identified increased age-related tumour risks with highly destabilising SDHB missense mutations. By Kaplan-Meier analysis, the penetrance (cumulative risk of clinically apparent tumours) in SDHB and (paternally inherited) SDHD mutation-positive non-probands (n=371/67 with detailed clinical information) by age 60 years was 21.8% (95% CI 15.2% to 27.9%) and 43.2% (95% CI 25.4% to 56.7%), respectively. Risk of malignant disease at age 60 years in non-proband SDHB mutation carriers was 4.2%(95% CI 1.1% to 7.2%). With retrospective cohort analysis to adjust for ascertainment, cumulative tumour risks for SDHB mutation carriers at ages 60 years and 80 years were 23.9% (95% CI 20.9% to 27.4%) and 30.6% (95% CI 26.8% to 34.7%). CONCLUSIONS Overall risks of clinically apparent tumours for SDHB mutation carriers are substantially lower than initially estimated and will improve counselling of affected families. Specific genotype-tumour risk associations provides a basis for novel investigative strategies into succinate dehydrogenase-related mechanisms of tumourigenesis and the development of personalised management for SDHB/SDHC/SDHD mutation carriers.
Collapse
Affiliation(s)
- Katrina A Andrews
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre and Cancer Research UK Cambridge Cancer Centre and Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - David B Ascher
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Douglas Eduardo Valente Pires
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Daniel R Barnes
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Lindsey Vialard
- West Midlands Regional Genetics service, Birmingham Women's Hospital, Birmingham, UK
| | - Ruth T Casey
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre and Cancer Research UK Cambridge Cancer Centre and Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Nicola Bradshaw
- Department of Clinical Genetics, Queen Elizabeth University Hospital, Glasgow, UK
| | - Julian Adlard
- Yorkshire Regional Genetics Service, St. James's University Hospital, Leeds, UK
| | - Simon Aylwin
- Department of Endocrinology, King's College Hospital, London, UK
| | - Paul Brennan
- Northern Genetics Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Carole Brewer
- Peninsula Clinical Genetics Service, Royal Devon & Exeter Hospital, Exeter, UK
| | - Trevor Cole
- West Midlands Regional Genetics service, Birmingham Women's Hospital, Birmingham, UK
| | - Jackie A Cook
- Department of Clinical Genetics, Sheffield Children's Hospital, Sheffield, UK
| | - Rosemarie Davidson
- Department of Clinical Genetics, Queen Elizabeth University Hospital, Glasgow, UK
| | - Alan Donaldson
- Department of Clinical Genetics, St Michael's Hospital, Bristol, UK
| | - Alan Fryer
- Department of Clinical Genetics, Liverpool Women's NHS Foundation Trust, Liverpool, UK
| | - Lynn Greenhalgh
- Department of Clinical Genetics, Liverpool Women's NHS Foundation Trust, Liverpool, UK
| | - Shirley V Hodgson
- Department of Medical Genetics, St. George's University of London, London, UK
| | - Richard Irving
- Queen Elizabeth Medical Centre, Queen Elizabeth Hospital, Birmingham, UK
| | - Fiona Lalloo
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Michelle McConachie
- East of Scotland Regional Genetics Service, Ninewells Hospital and Medical School, Dundee, UK
| | - Vivienne P M McConnell
- Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast Health & Social Care Trust, Belfast, UK
| | - Patrick J Morrison
- Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast Health & Social Care Trust, Belfast, UK
| | - Victoria Murday
- Department of Clinical Genetics, Queen Elizabeth University Hospital, Glasgow, UK
| | - Soo-Mi Park
- Department of Clinical Genetics, Addenbrooke's Treatment Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Helen L Simpson
- The Wolfson Diabetes and Endocrine Clinic, Institute of Metabolic Science, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Katie Snape
- Department of Medical Genetics, St. George's University of London, London, UK
| | - Susan Stewart
- West Midlands Regional Genetics service, Birmingham Women's Hospital, Birmingham, UK
| | - Susan E Tomkins
- Department of Clinical Genetics, St Michael's Hospital, Bristol, UK
| | - Yvonne Wallis
- West Midlands Regional Genetics service, Birmingham Women's Hospital, Birmingham, UK
| | - Louise Izatt
- Department of Clinical Genetics, Guy's Hospital, London, UK
| | - David Goudie
- East of Scotland Regional Genetics Service, Ninewells Hospital and Medical School, Dundee, UK
| | - Robert S Lindsay
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, Scotland
| | - Colin G Perry
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, Scotland
| | - Emma R Woodward
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Antonis C Antoniou
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre and Cancer Research UK Cambridge Cancer Centre and Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- The Wolfson Diabetes and Endocrine Clinic, Institute of Metabolic Science, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
28
|
Tracheal paraganglioma presenting as stridor in a pediatric patient, case report and literature review. INT J PEDIAT OTO CAS 2018. [DOI: 10.1016/j.pedeo.2018.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Dimachkieh AL, Dobbie A, Olson DR, Lovell MA, Prager JD. Tracheal paraganglioma presenting as stridor in a pediatric patient, case report and literature review. Int J Pediatr Otorhinolaryngol 2018; 107:145-149. [PMID: 29501297 DOI: 10.1016/j.ijporl.2018.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 02/03/2018] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To review tracheal paragangliomas and describe the clinical presentation, radiologic findings, operative management, and histologic findings of a pediatric patient who presented with stridor refractory to traditional asthma therapy. METHODS Chart review of an 8-year-old male who presented to a tertiary care pediatric hospital and literature review of tracheal paragangliomas. RESULTS We present the case of an 8-year-old male who presented with new-onset of wheezing and dyspnea on exertion. He was given a new diagnosis of asthma and treated with bronchodilators that failed to improve his symptoms, which progressed over 3 months until he presented urgently with biphasic stridor. Bedside flexible laryngoscopy failed to reveal an etiology. Computed tomography (CT) imaging demonstrated 17 × 12 × 16 mm exophytic mass arising from the posterior membranous trachea with extension of the mass to the border of the thyroid gland and separate from the esophagus. Magnetic resonance imaging (MRI) angiography confirmed vascular supply from the right thyrocervical trunk and inferior thyroid artery. Rigid microlaryngoscopy revealed a friable vascular polypoid mass 2 cm distal to the vocal folds with 75% obstruction of the airway from which a small biopsy was taken. Pathology confirmed paraganglioma with neuroendocrine cells arranged in "zellballen" architecture and strong immunopositivity for chromogranin and synaptophysin in the neuroendocrine cells and S100 immunopositivity in the sustentacular cells. The patient underwent complete open resection of the tumor including three tracheal rings with primary anastomosis. Final pathology confirmed paraganglioma and negative margins. Genetic screening revealed a succinate dehydrogenase complex subunit C (SDHC) germline mutation, confirming hereditary paraganglioma/pheochromocytoma syndrome. He remains well at 3 month follow up without dyspnea or stridor. CONCLUSION Tracheal paragangliomas are exceptionally rare, with 12 reported cases. This is the only pediatric case reported. In pediatric patients with persistent airway complaints, subglottic and tracheal masses and obstruction should be considered. Due to the vascularity and endotracheal component of tracheal paragangliomas, a detailed surgical plan should consider embolization, endotracheal laser photocoagulation and electrocautery, and open surgical resection. Additionally, pediatric patients benefit from a multidisciplinary approach including radiology, endocrinology, and genetic counseling.
Collapse
Affiliation(s)
- Amy L Dimachkieh
- Department of Pediatric Otolaryngology, Children's Hospital Colorado & University of Colorado School of Medicine, Aurora, CO, United States
| | - Allison Dobbie
- Department of Pediatric Otolaryngology, Children's Hospital Colorado & University of Colorado School of Medicine, Aurora, CO, United States
| | - Damon R Olson
- Department of Pathology, Children's Hospital Colorado & University of Colorado School of Medicine, Aurora, CO, United States
| | - Mark A Lovell
- Department of Pathology, Children's Hospital Colorado & University of Colorado School of Medicine, Aurora, CO, United States
| | - Jeremy D Prager
- Department of Pediatric Otolaryngology, Children's Hospital Colorado & University of Colorado School of Medicine, Aurora, CO, United States.
| |
Collapse
|
30
|
Abstract
Neuroendocrine tumours (NETs) are a heterogenous group of tumours arising from neuroendocrine cells in several sites around the body. They include tumours of the gastroenteropancreatic system, phaeochromocytoma and paraganglioma and medullary thyroid cancer. In recent years, it has become increasingly apparent that a number of these tumours arise as a result of germline genetic mutations and are inherited in an autosomal dominant pattern. The number of genes implicated is increasing rapidly. Identifying which patients are likely to have a germline mutation enables clinicians to counsel patients adequately about their future disease risk, and allows for earlier detection of at-risk patients through family screening. The institution of screening and surveillance programmes may in turn lead to a major shift in presentation patterns for some of these tumours. In this review, we examine the features which may lead a clinician to suspect that a patient may have an inherited cause of a NET and we outline which underlying conditions should be suspected. We also discuss what type of screening may be appropriate in a variety of situations.
Collapse
Affiliation(s)
- Triona O'Shea
- Centre of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| | - Maralyn Druce
- Centre of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| |
Collapse
|
31
|
Gupta G, Pacak K. PRECISION MEDICINE: AN UPDATE ON GENOTYPE/BIOCHEMICAL PHENOTYPE RELATIONSHIPS IN PHEOCHROMOCYTOMA/PARAGANGLIOMA PATIENTS. Endocr Pract 2017; 23:690-704. [PMID: 28332883 DOI: 10.4158/ep161718.ra] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors known to produce and secrete high levels of circulating catecholamines and their metabolites. The biochemical characteristics of these tumors can be used to divide them into three major phenotypes. The adrenergic, noradrenergic and dopaminergic phenotypes are defined by predominant elevations in epinephrine and metanephrine, norepinephrine and normetanephrine, and dopamine and 3-methoxytyramine, respectively. There are over 15 well-identified tumor-susceptibility genes responsible for approximately 40% of the cases. The objective of this review article is to outline specific genotype/biochemical phenotype relationships. METHODS Literature review. RESULTS None. CONCLUSION Biochemical phenotype of PPGL is determined by the underlying genetic mutation and the associated molecular pathway. Identification of genotype/biochemical relationships is valuable in prioritizing testing for specific genes, making treatment decisions and monitoring disease progression. ABBREVIATIONS 3-MT = 3-methoxytyramine; EPAS1 = endothelial pas domain protein 1; FH = fumarate hydratase; HIF2A = hypoxia inducible factor type 2A; MEN2 = multiple endocrine neoplasia type 2; NF1 = neurofibromatosis type 1; PNMT = phenylethanolamine N-methyltransferase; PPGL = pheochromocytoma and paraganglioma; RET = rearranged during transfection; SDH = succinate dehydrogenase; SDHAF2 = succinate dehydrogenase complex assembly factor 2; TCA = tricarboxylic acid; TH = tyrosine hydroxylase; TMEM127 = transmembrane protein 127; VHL = von Hippel-Lindau.
Collapse
|