1
|
Hung SC, Chan TF, Chan HC, Wu CY, Chan ML, Jhuang JY, Tan JQ, Mei JB, Law SH, Ponnusamy VK, Chan HC, Ke LY. Lysophosphatidylcholine Impairs the Mitochondria Homeostasis Leading to Trophoblast Dysfunction in Gestational Diabetes Mellitus. Antioxidants (Basel) 2024; 13:1007. [PMID: 39199251 PMCID: PMC11351454 DOI: 10.3390/antiox13081007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/10/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is a common pregnancy disorder associated with an increased risk of pre-eclampsia and macrosomia. Recent research has shown that the buildup of excess lipids within the placental trophoblast impairs mitochondrial function. However, the exact lipids that impact the placental trophoblast and the underlying mechanism remain unclear. GDM cases and healthy controls were recruited at Kaohsiung Medical University Hospital. The placenta and cord blood were taken during birth. Confocal and electron microscopy were utilized to examine the morphology of the placenta and mitochondria. We determined the lipid composition using liquid chromatography-mass spectrometry in data-independent analysis mode (LC/MSE). In vitro studies were carried out on choriocarcinoma cells (JEG3) to investigate the mechanism of trophoblast mitochondrial dysfunction. Results showed that the GDM placenta was distinguished by increased syncytial knots, chorangiosis, lectin-like oxidized low-density lipoprotein (LDL) receptor-1 (LOX-1) overexpression, and mitochondrial dysfunction. Lysophosphatidylcholine (LPC) 16:0 was significantly elevated in the cord blood LDL of GDM patients. In vitro, we demonstrated that LPC dose-dependently disrupts mitochondrial function by increasing reactive oxygen species (ROS) levels and HIF-1α signaling. In conclusion, highly elevated LPC in cord blood plays a pivotal role in GDM, contributing to trophoblast impairment and pregnancy complications.
Collapse
Affiliation(s)
- Shao-Chi Hung
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (S.-C.H.); (J.-Q.T.); (J.-B.M.); (S.-H.L.)
| | - Te-Fu Chan
- Graduate Institute of Medicine, College of Medicine & Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
| | - Hsiu-Chuan Chan
- PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (H.-C.C.); (V.K.P.)
| | - Chia-Ying Wu
- The Master Program of AI Application in Health Industry, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
| | - Mei-Lin Chan
- Division of Thoracic Surgery, Department of Surgery, MacKay Memorial Hospital, MacKay Medical College, Taipei 104217, Taiwan;
- Department of Medicine, MacKay Medical College, New Taipei 252005, Taiwan;
| | - Jie-Yang Jhuang
- Department of Medicine, MacKay Medical College, New Taipei 252005, Taiwan;
- Department of Pathology, Mackay Memorial Hospital, Tamsui Branch, New Taipei 251404, Taiwan
| | - Ji-Qin Tan
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (S.-C.H.); (J.-Q.T.); (J.-B.M.); (S.-H.L.)
| | - Jia-Bin Mei
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (S.-C.H.); (J.-Q.T.); (J.-B.M.); (S.-H.L.)
| | - Shi-Hui Law
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (S.-C.H.); (J.-Q.T.); (J.-B.M.); (S.-H.L.)
| | - Vinoth Kumar Ponnusamy
- PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (H.-C.C.); (V.K.P.)
- Department of Medicinal and Applied Chemistry & Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hua-Chen Chan
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (S.-C.H.); (J.-Q.T.); (J.-B.M.); (S.-H.L.)
- Department of Medical Laboratory Science, College of Medicine, I-Shou University, Kaohsiung 824005, Taiwan
| | - Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (S.-C.H.); (J.-Q.T.); (J.-B.M.); (S.-H.L.)
- Graduate Institute of Medicine, College of Medicine & Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
- Center for Lipid Biosciences, Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
| |
Collapse
|
2
|
Law SH, Ke CC, Chu CS, Liu SH, Weng MC, Ke LY, Chan HC. SPECT/CT imaging for tracking subendothelial retention of electronegative low-density lipoprotein in vivo. Int J Biol Macromol 2023; 250:126069. [PMID: 37536403 DOI: 10.1016/j.ijbiomac.2023.126069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/29/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023]
Abstract
The fifth subfraction of low-density lipoprotein (L5 LDL) can be separated from human LDL using fast-protein liquid chromatography with an anion exchange column. L5 LDL induces vascular endothelial injury both in vitro and in vivo through the lectin-like oxidized LDL receptor-1 (LOX-1). However, no in vivo evidence shows the tendency of L5 LDL deposition on vascular endothelium and links to dysfunction. This study aimed to investigate L5 LDL retention in vivo using SPECT/CT imaging, with Iodine-131 (131I)-labeled and injected into six-month-old apolipoprotein E knockout (apoE-/-) mice through tail veins. Besides, we examined the biodistribution of L5 LDL in tissues and analyzed the intracellular trafficking in human aortic endothelial cells (HAoECs) by confocal microscopy. The impacts of L5 LDL on HAoECs were analyzed using electron microscopy for mitochondrial morphology and western blotting for signaling. Results showed 131I-labeled-L5 was preferentially deposited in the heart and vessels compared to L1 LDL. Furthermore, L5 LDL was co-localized with the mitochondria and associated with mitofusin (MFN1/2) and optic atrophy protein 1 (OPA1) downregulation, leading to mitochondrial fission. In summary, L5 LDL exhibits a propensity for subendothelial retention, thereby promoting endothelial dysfunction and the formation of atherosclerotic lesions.
Collapse
Affiliation(s)
- Shi Hui Law
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chien-Chih Ke
- Department of Medical Imaging and Radiological Sciences, College of Health Sciences, Kaohsiung Medical University, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Sheng Chu
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan; Division of Cardiology, Department of International Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Center for Lipid Biosciences, Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shu-Hsuan Liu
- Faculty of Health Sciences, Bristol Medical School, Bristol, England, United Kingdom
| | - Mao-Chi Weng
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Lipid Biosciences, Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Graduate Institute of Medicine & Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Hua-Chen Chan
- Department of Medical Laboratory Science, College of Medicine, I-Shou University, Kaohsiung, Taiwan.
| |
Collapse
|
3
|
The potential pathophysiological role of altered lipid metabolism and electronegative low-density lipoprotein (LDL) in non-alcoholic fatty liver disease and cardiovascular diseases. Clin Chim Acta 2021; 523:374-379. [PMID: 34678296 DOI: 10.1016/j.cca.2021.10.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/20/2021] [Accepted: 10/13/2021] [Indexed: 01/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an umbrella term for a range of conditions caused by a build-up of fat in the liver. It is usually seen in people who are overweight or obese. Increasingly common around the world, this disease is the most common chronic liver disease in the United States, affecting about a quarter of the population. Recently, the designation of NAFLD as 'metabolic dysfunction-associated fatty liver disease' (MAFLD) has been a subject of current debate. In this context, 'insulin resistance' is the underlying common and basic pathophysiological mechanism of metabolic dysfunction due to its association with obesity, type 2 diabetes mellitus (T2DM), metabolic syndrome, dyslipidemia and NAFLD. All these pathological conditions are among the metabolic risk factors for cardiovascular diseases, too. Also, due to the bidirectional causality between NAFLD and cardiovascular diseases, a liver-heart axis is suggested. Therefore, various factors such as insulin resistance as well as systemic inflammation, cytokines, oxidative stress, adipokines, hepatokines, genes and intestinal microbiota have been identified as possible pathogenic factors that play a role in the explanation of the complex NAFLD and cardiovascular risk relationship. Recent data and cumulative evidence show that electronegative low-density lipoprotein [LDL (-)/L5] cholesterol is a promising biomarker for complex organ interactions and diseases associated with liver-heart axis. In this mini review, we focus not only on recent data on NAFLD mechanisms, but also on the potential of the lipid mediator LDL (-)/L5 as a diagnostic and therapeutic target for liver-heart line diseases.
Collapse
|
4
|
Chen DY, Sawamura T, Dixon RAF, Sánchez-Quesada JL, Chen CH. Autoimmune Rheumatic Diseases: An Update on the Role of Atherogenic Electronegative LDL and Potential Therapeutic Strategies. J Clin Med 2021; 10:1992. [PMID: 34066436 PMCID: PMC8124242 DOI: 10.3390/jcm10091992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/20/2021] [Accepted: 05/02/2021] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis has been linked with an increased risk of atherosclerotic cardiovascular disease (ASCVD). Autoimmune rheumatic diseases (AIRDs) are associated with accelerated atherosclerosis and ASCVD. However, the mechanisms underlying the high ASCVD burden in patients with AIRDs cannot be explained only by conventional risk factors despite disease-specific factors and chronic inflammation. Nevertheless, the normal levels of plasma low-density lipoprotein (LDL) cholesterol observed in most patients with AIRDs do not exclude the possibility of increased LDL atherogenicity. By using anion-exchange chromatography, human LDL can be divided into five increasingly electronegative subfractions, L1 to L5, or into electropositive and electronegative counterparts, LDL (+) and LDL (-). Electronegative L5 and LDL (-) have similar chemical compositions and can induce adverse inflammatory reactions in vascular cells. Notably, the percentage of L5 or LDL (-) in total LDL is increased in normolipidemic patients with AIRDs. Electronegative L5 and LDL (-) are not recognized by the normal LDL receptor but instead signal through the lectin-like oxidized LDL receptor 1 (LOX-1) to activate inflammasomes involving interleukin 1β (IL-1β). Here, we describe the detailed mechanisms of AIRD-related ASCVD mediated by L5 or LDL (-) and discuss the potential targeting of LOX-1 or IL-1β signaling as new therapeutic modalities for these diseases.
Collapse
Affiliation(s)
- Der-Yuan Chen
- Translational Medicine Center, China Medical University Hospital, Taichung 404, Taiwan;
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung 404, Taiwan
- College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Tatsuya Sawamura
- Department of Molecular Pathophysiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan;
- Department of Life Innovation, Institute for Biomedical Sciences, Shinshu University, Matsumoto 390-8621, Japan
| | - Richard A. F. Dixon
- Molecular Cardiology Research Laboratories, Texas Heart Institute, Houston, TX 77030, USA;
| | - José Luis Sánchez-Quesada
- Cardiovascular Biochemistry Group, Biomedical Research Institute IIB Sant Pau, 08041 Barcelona, Spain;
- CIBER of Diabetes and Metabolic Diseases (CIBERDEM), 08041 Barcelona, Spain
| | - Chu-Huang Chen
- Department of Life Innovation, Institute for Biomedical Sciences, Shinshu University, Matsumoto 390-8621, Japan
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX 77030, USA
- New York Heart Research Foundation, Mineola, NY 11501, USA
| |
Collapse
|
5
|
Ke LY, Law SH, Mishra VK, Parveen F, Chan HC, Lu YH, Chu CS. Molecular and Cellular Mechanisms of Electronegative Lipoproteins in Cardiovascular Diseases. Biomedicines 2020; 8:biomedicines8120550. [PMID: 33260304 PMCID: PMC7760527 DOI: 10.3390/biomedicines8120550] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Dysregulation of glucose and lipid metabolism increases plasma levels of lipoproteins and triglycerides, resulting in vascular endothelial damage. Remarkably, the oxidation of lipid and lipoprotein particles generates electronegative lipoproteins that mediate cellular deterioration of atherosclerosis. In this review, we examined the core of atherosclerotic plaque, which is enriched by byproducts of lipid metabolism and lipoproteins, such as oxidized low-density lipoproteins (oxLDL) and electronegative subfraction of LDL (LDL(−)). We also summarized the chemical properties, receptors, and molecular mechanisms of LDL(−). In combination with other well-known markers of inflammation, namely metabolic diseases, we concluded that LDL(−) can be used as a novel prognostic tool for these lipid disorders. In addition, through understanding the underlying pathophysiological molecular routes for endothelial dysfunction and inflammation, we may reassess current therapeutics and might gain a new direction to treat atherosclerotic cardiovascular diseases, mainly targeting LDL(−) clearance.
Collapse
Affiliation(s)
- Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (L.-Y.K.); (S.H.L.); (V.K.M.); (F.P.)
- Graduate Institute of Medicine, College of Medicine and Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan; (H.-C.C.); (Y.-H.L.)
| | - Shi Hui Law
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (L.-Y.K.); (S.H.L.); (V.K.M.); (F.P.)
| | - Vineet Kumar Mishra
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (L.-Y.K.); (S.H.L.); (V.K.M.); (F.P.)
| | - Farzana Parveen
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (L.-Y.K.); (S.H.L.); (V.K.M.); (F.P.)
| | - Hua-Chen Chan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan; (H.-C.C.); (Y.-H.L.)
| | - Ye-Hsu Lu
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan; (H.-C.C.); (Y.-H.L.)
- Division of Cardiology, Department of International Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
| | - Chih-Sheng Chu
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan; (H.-C.C.); (Y.-H.L.)
- Division of Cardiology, Department of International Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Correspondence: ; Tel.: +886-73121101 (ext. 2297); Fax: +886-73111996
| |
Collapse
|
6
|
Ma Y, Cheng N, Sun J, Lu JX, Abbasi S, Wu G, Lee AS, Sawamura T, Cheng J, Chen CH, Xi Y. Atherogenic L5 LDL induces cardiomyocyte apoptosis and inhibits K ATP channels through CaMKII activation. Lipids Health Dis 2020; 19:189. [PMID: 32825832 PMCID: PMC7441649 DOI: 10.1186/s12944-020-01368-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/11/2020] [Indexed: 12/30/2022] Open
Abstract
Background Cardiac Ca2+/calmodulin-dependent protein kinase II (CaMKII) activation plays a critical role in cardiomyocyte (CM) apoptosis and arrhythmia. Functional ATP-sensitive potassium (KATP) channels are essential for cardiac protection during ischemia. In cultured CMs, L5 low-density lipoprotein (LDL) induces apoptosis and QTc prolongation. L5 is a highly electronegative and atherogenic aberrant form of LDL, and its levels are significantly higher in patients with cardiovascular-related diseases. Here, the role of L5 in cardiac injury was studied by evaluating the effects of L5 on CaMKII activity and KATP channel physiology in CMs. Methods Cultured neonatal rat CMs (NRCMs) were treated with a moderate concentration (ie, 7.5 μg/mL) of L5 or L1 (the least electronegative LDL subfraction). NRCMs were examined for apoptosis and viability, CaMKII activity, and the expression of phosphorylated CaMKIIδ and NOX2/gp91phox. The function of KATP and action potentials (APs) was analyzed by using the patch-clamp technique. Results In NRCMs, L5 but not L1 significantly induced cell apoptosis and reduced cell viability. Furthermore, L5 decreased Kir6.2 expression by more than 50%. Patch-clamp analysis showed that L5 reduced the KATP current (IKATP) density induced by pinacidil, a KATP opener. The partial recovery of the inward potassium current during pinacidil washout was susceptible to subsequent inhibition by the IKATP blocker glibenclamide. Suppression of IKATP by L5 significantly prolonged the AP duration. L5 also significantly increased the activity of CaMKII, the phosphorylation of CaMKIIδ, and the expression of NOX2/gp91phox. L5-induced apoptosis was prevented by the addition of the CaMKII inhibitor KN93 and the reactive oxygen species scavenger Mn (III)TBAP. Conclusions L5 but not L1 induces CM damage through the activation of the CaMKII pathway and increases arrhythmogenicity in CMs by modulating the AP duration. These results help to explain the harmful effects of L5 in cardiovascular-related disease.
Collapse
Affiliation(s)
- Yanzhuo Ma
- Department of Cardiology, Bethune International Peace Hospital, 398 Zhongshan Xilu, Shijiazhuang, 050082, Hebei, China.,Cardiac Electrophysiology Research Laboratory, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX, 77030, USA
| | - Nancy Cheng
- Cardiac Electrophysiology Research Laboratory, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX, 77030, USA
| | - Junping Sun
- Cardiac Electrophysiology Research Laboratory, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX, 77030, USA
| | - Jonathan Xuhai Lu
- Vascular and Medicinal Research, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX, 77030, USA.,InVitro Cell Research, LLC, 106 Grand Avenue, Suite 290, Englewood, NJ, 07631, USA
| | - Shahrzad Abbasi
- Molecular Cardiology Research, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX, USA
| | - Geru Wu
- Cardiac Electrophysiology Research Laboratory, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX, 77030, USA
| | - An-Sheng Lee
- Department of Medicine, Mackay Medical College, No. 46, Section 3, Zhongzheng Road, Sanzhi District, New Taipei City, Taiwan, 252.,Cardiovascular Research Laboratory, China Medical University Hospital, No. 2 Yude Road, North District, Taichung City, Taiwan
| | - Tatsuya Sawamura
- Department of Life Innovation, Institute for Biomedical Sciences, Shinshu University, 3-1-1, Asahi, Matsumoto, Nagano, 390-8621, Japan.,Department of Molecular Pathophysiology, Shinshu University School of Medicine, 3 Chome-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Jie Cheng
- Cardiac Electrophysiology Research Laboratory, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX, 77030, USA
| | - Chu-Huang Chen
- Vascular and Medicinal Research, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX, 77030, USA. .,Department of Life Innovation, Institute for Biomedical Sciences, Shinshu University, 3-1-1, Asahi, Matsumoto, Nagano, 390-8621, Japan.
| | - Yutao Xi
- Department of Cardiology, Bethune International Peace Hospital, 398 Zhongshan Xilu, Shijiazhuang, 050082, Hebei, China. .,, 6770 Bertner Street, MC 2-255, Houston, TX, 77030, USA.
| |
Collapse
|
7
|
Chang CK, Chen PK, Lan JL, Chang SH, Hsieh TY, Liao PJ, Chen CH, Chen DY. Association of Electronegative LDL with Macrophage Foam Cell Formation and CD11c Expression in Rheumatoid Arthritis Patients. Int J Mol Sci 2020; 21:ijms21165883. [PMID: 32824307 PMCID: PMC7461586 DOI: 10.3390/ijms21165883] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 12/22/2022] Open
Abstract
L5, the most negatively charged subfraction of low-density lipoprotein (LDL), is implicated in atherogenesis, but the pathogenic association is relatively unexplored in patients with rheumatoid arthritis (RA). We examined the role of L5 LDL in macrophage foam cell formation and the association of L5 with CD11c expression in THP-1 cells and RA patients. Using quantitative real-time PCR, we determined mRNA expression levels of ITGAX, the gene for CD11c, a marker associated with vascular plaque formation and M1 macrophages in atherogenesis, in 93 RA patients. We also examined CD11c expression on THP-1 cells treated with L5 by flow cytometry analysis and the plasma levels of inflammatory mediators using a magnetic bead array. We found a dose-dependent upregulation of foam cell formation of macrophages after L5 treatment (mean ± SEM, 12.05 ± 2.35% in L5 (10 µg/mL); 50.13 ± 3.9% in L5 (25 µg/mL); 90.69 ± 1.82% in L5 (50 µg/mL), p < 0.01). Significantly higher levels of CD11c expression were observed in 30 patients with a high percentage of L5 in LDL (L5%) (0.0752 ± 0.0139-fold) compared to 63 patients with normal L5% (0.0446 ± 0.0054-fold, p < 0.05). CD11c expression levels were increased in the L5-treated group (30.00 ± 3.13% in L5 (10 µg/mL); 41.46 ± 2.77% in L5 (50 µg/mL), p < 0.05) and were positively correlated with plasma levels of interleukin (IL)-6 and IL-8. L5 augmented the expression of IL-6, IL-8, and tumor necrosis factor-α (TNF-α) on monocytes and macrophages. Our findings suggest that L5 may promote atherogenesis by augmenting macrophage foam cell formation, upregulating CD11c expression, and enhancing the expression levels of atherosclerosis-related mediators.
Collapse
Affiliation(s)
- Ching-Kun Chang
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung 404, Taiwan; (C.-K.C.); (P.-K.C.); (P.-J.L.)
- Translational Medicine Laboratory, China Medical University Hospital, Taichung 404, Taiwan; (J.-L.L.); (S.-H.C.)
| | - Po-Ku Chen
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung 404, Taiwan; (C.-K.C.); (P.-K.C.); (P.-J.L.)
- Translational Medicine Laboratory, China Medical University Hospital, Taichung 404, Taiwan; (J.-L.L.); (S.-H.C.)
- College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Joung-Liang Lan
- Translational Medicine Laboratory, China Medical University Hospital, Taichung 404, Taiwan; (J.-L.L.); (S.-H.C.)
- College of Medicine, China Medical University, Taichung 404, Taiwan
- Rheumatic Diseases Research Center, China Medical University Hospital, Taichung 404, Taiwan
| | - Shih-Hsin Chang
- Translational Medicine Laboratory, China Medical University Hospital, Taichung 404, Taiwan; (J.-L.L.); (S.-H.C.)
- College of Medicine, China Medical University, Taichung 404, Taiwan
- Ph.D. Program in Translational Medicine and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Tsu-Yi Hsieh
- Department of Medical Education and Research, Taichung Veterans General Hospital, Taichung 407, Taiwan;
| | - Pei-Jyuan Liao
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung 404, Taiwan; (C.-K.C.); (P.-K.C.); (P.-J.L.)
- Translational Medicine Laboratory, China Medical University Hospital, Taichung 404, Taiwan; (J.-L.L.); (S.-H.C.)
| | - Chu-Huang Chen
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX 6770, USA;
- Institute for Biomedical Sciences, Shinshu University, Nagano 390-8621, Japan
| | - Der-Yuan Chen
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung 404, Taiwan; (C.-K.C.); (P.-K.C.); (P.-J.L.)
- Translational Medicine Laboratory, China Medical University Hospital, Taichung 404, Taiwan; (J.-L.L.); (S.-H.C.)
- College of Medicine, China Medical University, Taichung 404, Taiwan
- Ph.D. Program in Translational Medicine and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: ; Tel.: +886-4-22052121 (ext. 4628); Fax: +886-4-22073812
| |
Collapse
|
8
|
Chu CS, Law SH, Lenzen D, Tan YH, Weng SF, Ito E, Wu JC, Chen CH, Chan HC, Ke LY. Clinical Significance of Electronegative Low-Density Lipoprotein Cholesterol in Atherothrombosis. Biomedicines 2020; 8:biomedicines8080254. [PMID: 32751498 PMCID: PMC7460408 DOI: 10.3390/biomedicines8080254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
Despite the numerous risk factors for atherosclerotic cardiovascular diseases (ASCVD), cumulative evidence shows that electronegative low-density lipoprotein (L5 LDL) cholesterol is a promising biomarker. Its toxicity may contribute to atherothrombotic events. Notably, plasma L5 LDL levels positively correlate with the increasing severity of cardiovascular diseases. In contrast, traditional markers such as LDL-cholesterol and triglyceride are the therapeutic goals in secondary prevention for ASCVD, but that is controversial in primary prevention for patients with low risk. In this review, we point out the clinical significance and pathophysiological mechanisms of L5 LDL, and the clinical applications of L5 LDL levels in ASCVD can be confidently addressed. Based on the previously defined cut-off value by receiver operating characteristic curve, the acceptable physiological range of L5 concentration is proposed to be below 1.7 mg/dL. When L5 LDL level surpass this threshold, clinically relevant ASCVD might be present, and further exams such as carotid intima-media thickness, pulse wave velocity, exercise stress test, or multidetector computed tomography are required. Notably, the ultimate goal of L5 LDL concentration is lower than 1.7 mg/dL. Instead, with L5 LDL greater than 1.7 mg/dL, lipid-lowering treatment may be required, including statin, ezetimibe or PCSK9 inhibitor, regardless of the low-density lipoprotein cholesterol (LDL-C) level. Since L5 LDL could be a promising biomarker, we propose that a high throughput, clinically feasible methodology is urgently required not only for conducting a prospective, large population study but for developing therapeutics strategies to decrease L5 LDL in the blood.
Collapse
Affiliation(s)
- Chih-Sheng Chu
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan;
- Division of Cardiology, Department of International Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Shi Hui Law
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (S.H.L.); (D.L.); (Y.-H.T.); (E.I.)
| | - David Lenzen
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (S.H.L.); (D.L.); (Y.-H.T.); (E.I.)
| | - Yong-Hong Tan
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (S.H.L.); (D.L.); (Y.-H.T.); (E.I.)
| | - Shih-Feng Weng
- Department of Healthcare Administration and Medical Informatics, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
| | - Etsuro Ito
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (S.H.L.); (D.L.); (Y.-H.T.); (E.I.)
- Department of Biology, Waseda University, Tokyo 162-8480, Japan
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 162-8480, Japan
| | - Jung-Chou Wu
- Division of Cardiology, Department of Internal Medicine, Pingtung Christian Hospital, Pingtung 90059, Taiwan;
| | - Chu-Huang Chen
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX 77030, USA;
| | - Hua-Chen Chan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan;
- Correspondence: (H.-C.C.); (L.-Y.K.); Tel.: +886-73121101 (ext. 2296); Fax: +886-73111996 (L.-Y.K.)
| | - Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (S.H.L.); (D.L.); (Y.-H.T.); (E.I.)
- Graduate Institute of Medicine, College of Medicine, & Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Correspondence: (H.-C.C.); (L.-Y.K.); Tel.: +886-73121101 (ext. 2296); Fax: +886-73111996 (L.-Y.K.)
| |
Collapse
|
9
|
Ke LY, Chan HC, Chen CC, Chang CF, Lu PL, Chu CS, Lai WT, Shin SJ, Liu FT, Chen CH. Increased APOE glycosylation plays a key role in the atherogenicity of L5 low-density lipoprotein. FASEB J 2020; 34:9802-9813. [PMID: 32501643 DOI: 10.1096/fj.202000659r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/22/2022]
Abstract
Low-density lipoprotein (LDL) is heterogeneous, composed of particles with variable atherogenicity. Electronegative L5 LDL exhibits atherogenic properties in vitro and in vivo, and its levels are elevated in patients with increased cardiovascular risk. Apolipoprotein E (APOE) content is increased in L5, but what role APOE plays in L5 function remains unclear. Here, we characterized the contributions of APOE posttranslational modification to L5's atherogenicity. Using two-dimensional electrophoresis and liquid chromatography-mass spectrometry, we studied APOE's posttranslational modification in L5 from human plasma. APOE structures with various glycan residues were predicted. Molecular docking and molecular dynamics simulation were performed to examine the functional changes of APOE resulting from glycosylation. We also examined the effects of L5 deglycosylation on endothelial cell apoptosis. The glycan sequence N-acetylgalactosamine, galactose, and sialic acid was consistently expressed on serine 94, threonine 194, and threonine 289 of APOE in L5 and was predicted to contribute to L5's negative surface charge and hydrophilicity. The electrostatic force between the negatively charged sialic acid-containing glycan residue of APOE and positively charged amino acids at the receptor-binding area suggested that glycosylation interferes with APOE's attraction to receptors, lipid-binding ability, and lipid transportation and metabolism functions. Importantly, L5 containing glycosylated APOE induced apoptosis in cultured endothelial cells through lectin-like oxidized LDL receptor-1 (LOX-1) signaling, and glycosylation removal from L5 attenuated L5-induced apoptosis. APOE glycosylation may contribute to the atherogenicity of L5 and be a useful biomarker for rapidly quantifying L5.
Collapse
Affiliation(s)
- Liang-Yin Ke
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX, USA.,Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hua-Chen Chan
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX, USA.,Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Chieh Chen
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chuan-Fa Chang
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Liang Lu
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Sheng Chu
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Wen-Ter Lai
- Graduate Institute of Medicine, College of Medicine, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shyi-Jang Shin
- Graduate Institute of Medicine, College of Medicine, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Department of Dermatology, University of California, Davis, School of Medicine, Sacramento, CA, USA
| | - Chu-Huang Chen
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX, USA.,New York Heart Research Foundation, New York, NY, USA
| |
Collapse
|
10
|
Identifying the Therapeutic Significance of Mesenchymal Stem Cells. Cells 2020; 9:cells9051145. [PMID: 32384763 PMCID: PMC7291143 DOI: 10.3390/cells9051145] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022] Open
Abstract
The pleiotropic behavior of mesenchymal stem cells (MSCs) has gained global attention due to their immense potential for immunosuppression and their therapeutic role in immune disorders. MSCs migrate towards inflamed microenvironments, produce anti-inflammatory cytokines and conceal themselves from the innate immune system. These signatures are the reason for the uprising in the sciences of cellular therapy in the last decades. Irrespective of their therapeutic role in immune disorders, some factors limit beneficial effects such as inconsistency of cell characteristics, erratic protocols, deviating dosages, and diverse transfusion patterns. Conclusive protocols for cell culture, differentiation, expansion, and cryopreservation of MSCs are of the utmost importance for a better understanding of MSCs in therapeutic applications. In this review, we address the immunomodulatory properties and immunosuppressive actions of MSCs. Also, we sum up the results of the enhancement, utilization, and therapeutic responses of MSCs in treating inflammatory diseases, metabolic disorders and diabetes.
Collapse
|
11
|
Chen C, Ke L, Chan H, Chu C, Lee A, Lin K, Lee M, Hsiao P, Chen C, Shin S. Electronegative low-density lipoprotein of patients with metabolic syndrome induces pathogenesis of aorta through disruption of the stimulated by retinoic acid 6 cascade. J Diabetes Investig 2020; 11:535-544. [PMID: 31597015 PMCID: PMC7232312 DOI: 10.1111/jdi.13158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 10/01/2019] [Accepted: 10/06/2019] [Indexed: 12/26/2022] Open
Abstract
AIMS/INTRODUCTION Electronegative low-density lipoprotein (L5) is the most atherogenic fraction of low-density lipoprotein and is elevated in people with metabolic syndrome (MetS), whereas the retinol-binding protein 4 receptor (stimulated by retinoic acid 6 [STRA6]) cascade is disrupted in various organs of patients with obesity-related diseases. Our objective was to investigate whether L5 from MetS patients capably induces pathogenesis of aorta through disrupting the STRA6 cascade. MATERIAL AND METHODS We examined the in vivo and in vitro effects of L5 on the STRA6 cascade and aortic atherogenic markers. To investigate the role of this cascade on atherosclerotic formation, crbp1 transfection was carried out in vitro. RESULTS This study shows that L5 activates atherogenic markers (p38 mitogen-activated protein kinases, pSmad2 and matrix metallopeptidase 9) and simultaneously suppresses STRA6 signals (STRA6, cellular retinol-binding protein 1, lecithin-retinol acyltransferase, retinoic acid receptor-α and retinoid X receptor-α) in aortas of L5-injected mice and L5-treated human aortic endothelial cell lines and human aortic smooth muscle cell lines. These L5-induced changes of the STRA6 cascade and atherogenic markers were reversed in aortas of LOX1-/- mice and in LOX1 ribonucleic acid-silenced human aortic endothelial cell lines and human aortic smooth muscle cell lines. Furthermore, crbp1 gene transfection reversed the disruption of the STRA6 cascade, the phosphorylation of p38 mitogen-activated protein kinases and Smad2, and the elevation of matrix metallopeptidase 9 in L5-treated human aortic endothelial cell lines. CONCLUSIONS This study shows that L5 from MetS patients induces atherogenic markers by disrupting STRA6 signaling. Suppression of STRA6 might be one novel pathogenesis of aorta in patients with MetS.
Collapse
Affiliation(s)
- Chao‐Hung Chen
- School of MedicineCollege of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
- Divison of Endocrinology and MetabolismDepartment of Internal MedicineKaohsiung Medical University HospitalKaohsiungTaiwan
| | - Liang‐Yin Ke
- Lipid Science and Aging Research CenterKaohsiung Medical UniversityKaohsiungTaiwan
- Department of Medical Laboratory Science and BiotechnologyCollege of Health SciencesKaohsiung Medical UniversityKaohsiungTaiwan
| | - Hua‐Chen Chan
- Department of Medical Laboratory Science and BiotechnologyCollege of Health SciencesKaohsiung Medical UniversityKaohsiungTaiwan
| | - Chih‐Sheng Chu
- Division of CardiologyDepartment of Internal MedicineKaohsiung Medical University HospitalKaohsiungTaiwan
| | - An‐Sheng Lee
- Department of MedicineMackay Medical CollegeNew TaipeiTaiwan
| | - Kun‐Der Lin
- School of MedicineCollege of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
- Divison of Endocrinology and MetabolismDepartment of Internal MedicineKaohsiung Medical University HospitalKaohsiungTaiwan
- Vascular and Medical ResearchTexas Heart InstituteHoustonTexasUSA
| | - Mei‐Yueh Lee
- School of MedicineCollege of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
- Divison of Endocrinology and MetabolismDepartment of Internal MedicineKaohsiung Medical University HospitalKaohsiungTaiwan
| | - Pi‐Jung Hsiao
- School of MedicineCollege of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
- Divison of Endocrinology and MetabolismDepartment of Internal MedicineKaohsiung Medical University HospitalKaohsiungTaiwan
| | - Chu‐Huang Chen
- Lipid Science and Aging Research CenterKaohsiung Medical UniversityKaohsiungTaiwan
- Vascular and Medical ResearchTexas Heart InstituteHoustonTexasUSA
- Department of Internal MedicineKaohsiung Ta‐Tung Municipal HospitalKaohsiung Medical University HospitalKaohsiungTaiwan
| | - Shyi‐Jang Shin
- School of MedicineCollege of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
- Divison of Endocrinology and MetabolismDepartment of Internal MedicineKaohsiung Medical University HospitalKaohsiungTaiwan
- Department of Medical Laboratory Science and BiotechnologyCollege of Health SciencesKaohsiung Medical UniversityKaohsiungTaiwan
| |
Collapse
|
12
|
de Freitas MCP, Martins Figueiredo Neto A, Damasceno NR. Nonlinear optical responses of oxidized low-density lipoprotein: Cutoff point for z-scan peak-valley distance. Photodiagnosis Photodyn Ther 2020; 30:101689. [PMID: 32087295 DOI: 10.1016/j.pdpdt.2020.101689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 01/28/2020] [Accepted: 02/18/2020] [Indexed: 11/26/2022]
Abstract
The development of new methods to assess biomarkers of cardiovascular disease is currently a subject of scientific research. This article broadens our view of nonlinear optical responses of oxidized low density lipoprotein (LDL) evaluated using the Z-scan peak-valley distance and proposes a cutoff point. We investigated the association of peak-valley distance and some cardiovascular risk factors related with sociodemographic, clinical and anthropometric profiles and plasma biomarkers such as lipid and glucose profile, apolipoprotein, lipoprotein subfractions and omega 3 fatty acids. Z-scan analysis was performed using isolated LDL after ultracentrifugation in human blood samples collected after fasting. Peak-valley distance is a parameter that decreases directly depending on the oxidizability of LDL. As peak-valley distance was associated with relevant biomarkers of cardiovascular risk, we tested cutoff points for categorization and the best results were obtained using percentile < 75 (Lowz-scan) and percentile ≥ 75 (Highz-scan). The regression logistic models tested after establishing the cutoff point for peak-valley distance showed that increased levels of plasma high-density lipoprotein cholesterol, apolipoprotein A-I, large high-density lipoprotein subfractions and docosahexaenoic acid are directly associated with HighZ-scan. Conversely, high levels of small LDL were associated with decreased odds of presenting HighZ-scan. In conclusion, the cutoff point for peak-valley distance was able to identify atherogenic characteristics of LDL and its relationship with some parameters of high-density lipoprotein functionality.
Collapse
Affiliation(s)
- Maria Camila Pruper de Freitas
- Department of Nutrition, Faculty of Public Health, University of Sao Paulo, Av. Dr. Arnaldo, 715, 01246-904, Sao Paulo, SP, Brazil.
| | | | - Nágila Raquel Damasceno
- Department of Nutrition, Faculty of Public Health, University of Sao Paulo, Av. Dr. Arnaldo, 715, 01246-904, Sao Paulo, SP, Brazil.
| |
Collapse
|
13
|
Tripodi GL, Prieto MB, Abdalla DSP. Inflammasome Activation in Human Macrophages Induced by a LDL (-) Mimetic Peptide. Inflammation 2019; 43:722-730. [PMID: 31858317 DOI: 10.1007/s10753-019-01159-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The inflammasome is responsible for maturation of interleukin-1β (IL-1β) and interleukin-18 (IL-18) contributing to the inflammatory process in atherosclerosis. It is shown here that an electronegative low-density lipoprotein [LDL (-)] apoB-100 mimetic peptide can activate the transcriptional and posttranslational signs needed for complete inflammasome activation. This peptide, named p2C7, can activate the Toll-like receptor 4 (TLR4) that induces NF-κB activation and the transcription of inflammasome components. After blocking TLR4 with a neutralizing antibody, inflammasome component (NLRP3, CASP1, and ASC) and IL1b and IL18 gene downregulation occurred in human-derived macrophages stimulated with p2C7 or LDL (-). Moreover, the posttranslational signal was activated by the interaction between p2C7 and the lectin-type oxidized LDL receptor 1 (LOX-1), as demonstrated by the induction of caspase-1 cleavage in macrophages. The blockage of either TLR4 or LOX-1 decreased IL-1β and IL-18 secretion by human-derived macrophages as both pathways are necessary for complete inflammasome activation. These findings suggest a mechanism by which macrophages transduce the pro-inflammatory signal provided by LDL (-) ApoB-100 and its mimetic peptides to activate the inflammasome protein complex what may be relevant for the inflammatory process in atherosclerosis.
Collapse
Affiliation(s)
- Gustavo Luis Tripodi
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, 05508-000, Brazil
| | - Marcela Bach Prieto
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, 05508-000, Brazil
| | - Dulcineia Saes Parra Abdalla
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, 05508-000, Brazil.
| |
Collapse
|
14
|
Actis Dato V, Chiabrando GA. The Role of Low-Density Lipoprotein Receptor-Related Protein 1 in Lipid Metabolism, Glucose Homeostasis and Inflammation. Int J Mol Sci 2018; 19:ijms19061780. [PMID: 29914093 PMCID: PMC6032055 DOI: 10.3390/ijms19061780] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 12/30/2022] Open
Abstract
Metabolic syndrome (MetS) is a highly prevalent disorder which can be used to identify individuals with a higher risk for cardiovascular disease and type 2 diabetes. This metabolic syndrome is characterized by a combination of physiological, metabolic, and molecular alterations such as insulin resistance, dyslipidemia, and central obesity. The low-density lipoprotein receptor-related protein 1 (LRP1—A member of the LDL receptor family) is an endocytic and signaling receptor that is expressed in several tissues. It is involved in the clearance of chylomicron remnants from circulation, and has been demonstrated to play a key role in the lipid metabolism at the hepatic level. Recent studies have shown that LRP1 is involved in insulin receptor (IR) trafficking and intracellular signaling activity, which have an impact on the regulation of glucose homeostasis in adipocytes, muscle cells, and brain. In addition, LRP1 has the potential to inhibit or sustain inflammation in macrophages, depending on its cellular expression, as well as the presence of particular types of ligands in the extracellular microenvironment. In this review, we summarize existing perspectives and the latest innovations concerning the role of tissue-specific LRP1 in lipoprotein and glucose metabolism, and examine its ability to mediate inflammatory processes related to MetS and atherosclerosis.
Collapse
Affiliation(s)
- Virginia Actis Dato
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba X5000HUA, Argentina.
| | - Gustavo Alberto Chiabrando
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba X5000HUA, Argentina.
| |
Collapse
|