1
|
Minniakhmetov IR, Khusainova RI, Vasyukova OV, Kopytina DA, Yalaev BI, Salakhov RR, Guseynova RM, Peterkova VA, Mokrysheva NG. Molecular Genetic Architecture of Morbid Obesity in Russian Children. Biomedicines 2025; 13:756. [PMID: 40149731 PMCID: PMC11939864 DOI: 10.3390/biomedicines13030756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/12/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Over the past few decades, the prevalence of obesity has significantly increased worldwide, particularly among children. This trend represents a global health challenge. Considering the pivotal role of obesity in the development of metabolic disorders, the identification and characterization of pathogenic gene variants in children with severe forms of obesity are key priorities in fundamental endocrinology. Methods: We performed whole-exome sequencing (WES) in 163 Russian children with morbid obesity and identified 96 pathogenic or likely pathogenic variants in 61 genes. These variants were clinically significant in 64 children (38.79% of the cohort). Results: Notably, 42 of the identified variants have not been previously described in the literature or reported in existing databases. Conclusions: The findings of this study will enable a more personalized approach to the diagnosis and treatment of patients with syndromic and polygenic forms of obesity. Moreover, these results advance our understanding of the genetic architecture of obesity in the Russian population.
Collapse
Affiliation(s)
- Ildar R. Minniakhmetov
- Endocrinology Research Centre, 117292 Moscow, Russia; (R.I.K.); (O.V.V.); (D.A.K.); (B.I.Y.); (R.R.S.); (R.M.G.); (V.A.P.); (N.G.M.)
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Chen YY, Chen CS, Huang JF, Su WH, Li CY, Chen WS, Lin ES, Chuang WL, Yu ML, Wang SC. The obesity-related mutation gene on nonalcoholic fatty liver disease. Hum Genet 2025; 144:1-14. [PMID: 38985322 DOI: 10.1007/s00439-024-02686-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 06/30/2024] [Indexed: 07/11/2024]
Abstract
The prevalence of overweight and obesity is increasing, leading to metabolic-associated fatty liver disease (MAFLD) characterized by excessive accumulation of liver fat and a risk of developing hepatocellular carcinoma (HCC). The driver gene mutations may play the roles of passengers that occur in single 'hotspots' and can promote tumorigenesis from benign to malignant lesions. We investigated the impact of high body weight and BMI on HCC survival using The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) dataset. To explore the effects of obesity-related gene mutations on HCC, we collected driver mutation genes in 34 TCGA patients with BMI ≥ 27 and 23 TCGA patients with BMI < 27. The digital PCR performing the PBMC samples for the variant rate by clinical cohort of 96 NAFLD patients. Our analysis showed that obesity leads to significantly worse survival outcomes in HCC. Using cbioportal, we identified 414 driver mutation genes in patients with obesity and 127 driver mutation genes in non-obese patients. Functional analysis showed that obese-related genes significantly enriched the regulated lipid and insulin pathways in HCC. The insulin secretion pathway in patients with obesity HCC-specific survival identified ABCC8 and PRKCB as significant genes (p < 0.001). It revealed significant differences in gene mutation and gene expression profiles compared to non-obese patients. The digital PCR test ABCC8 variants were detected in PBMC samples and caused a 14.5% variant rate, significantly higher than that of non-obese NAFLD patients. The study findings showed that the gene ABCC8 was a patient with the obesity-related gene in NAFLD, which provides the probability that ABCC8 mutation contributes to the pre-cancer lesion biomarker for HCC.
Collapse
Affiliation(s)
- Yen-Yu Chen
- School of Medicine, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan
| | - Chi-Sheng Chen
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan
| | - Jee-Fu Huang
- Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan
- Faculty of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan
| | - Wen-Hsiu Su
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan
| | - Wei-Shiun Chen
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan
| | - En-Sheng Lin
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan
| | - Wan-Long Chuang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan
- Faculty of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan
| | - Ming-Lung Yu
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan
- Faculty of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, 80756, Taiwan
- Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung, 80756, Taiwan
| | - Shu-Chi Wang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan.
- Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan.
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan.
- Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung, 80756, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan.
| |
Collapse
|
3
|
Loid P, Grönroos S, Hurme S, Salminen P, Mäkitie O. Rare gene variants and weight loss at 10 years after sleeve gastrectomy and gastric bypass - a randomized clinical trial. Surg Obes Relat Dis 2024:S1550-7289(24)00959-6. [PMID: 39743445 DOI: 10.1016/j.soard.2024.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/06/2024] [Accepted: 11/23/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Genetic background of severe obesity is inadequately understood. The effect of genetic factors on weight loss after metabolic bariatric surgery (MBS) has shown inconclusive results. OBJECTIVES To determine the prevalence of rare obesity-associated gene variants in a secondary analysis of a randomized clinical trial (RCT) comparing laparoscopic sleeve gastrectomy (LSG) and laparoscopic Roux-en-Y gastric bypass (LRYGB) for the treatment of severe obesity and examine their association with long-term weight loss at 10 years. SETTING University Hospital, Finland. METHODS Targeted sequencing panel was used to examine variants in 79 obesity-associated genes and 16p11.2 copy number variants. Weight loss was evaluated by percentage total weight loss (%TWL). RESULTS Out of 240 patients, 113 patients [mean body mass index 48.4 kg/m2, (6.8 standard deviation [SD]) kg/m2 and median age 49 (range 26-64) years, LSG n = 60, LRYGB n = 53] were available for this post-hoc study. We identified 7 rare heterozygous likely/suspected pathogenic (LP/SP) variants in SH2B1, PCSK1, DNMT3A, BDNF, and AFF4 in 6 patients (5.3%), 5 heterozygous variants of uncertain significance in PLXNA4, PLXNA2, NRP1, and SEMA3D in 5 patients (4.4%), heterozygous Bardet-Biedl syndrome variants in 3 patients (2.7%), and PCKS1 risk allele p.Asn221Asp in 9 patients (8.0%). The patients with LP/SP variants had earlier age of obesity onset (P = .0089) and higher %TWL (P = .0446) compared with patients without LP/SP variants. CONCLUSIONS There were LP/SP pathogenic variants in 5% of the patients supporting the potential benefits of genetic testing to optimize targeted therapies in the future. Despite deleterious gene defects the long-term MBS outcome can be favorable.
Collapse
Affiliation(s)
- Petra Loid
- Folkhälsan Research Center, Genetics Research Program, Helsinki, Finland; Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland.
| | - Sofia Grönroos
- Department of Surgery, University of Turku, Turku, Finland; Division of Digestive Surgery and Urology, Turku University Hospital, Turku, Finland; Department of Surgery, Satasairaala Central Hospital, Pori, Finland
| | - Saija Hurme
- Department of Biostatistics, University of Turku and Turku University Hospital, Turku, Finland
| | - Paulina Salminen
- Department of Surgery, University of Turku, Turku, Finland; Division of Digestive Surgery and Urology, Turku University Hospital, Turku, Finland
| | - Outi Mäkitie
- Folkhälsan Research Center, Genetics Research Program, Helsinki, Finland; Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland; Department of Molecular Medicine and Surgery, Karolinska Institutet, and Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
4
|
Liu D, Liu Y, Lu CY, Wang Q, Bao Y, Yu Y, Wang Q, Peng W. Investigating genetic variants in early-onset obesity through exome sequencing: A retrospective cohort study. Obes Res Clin Pract 2024; 18:417-425. [PMID: 39667993 DOI: 10.1016/j.orcp.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024]
Abstract
OBJECTIVE This study aimed to examine clinical data and analyze exome sequencing (ES) findings in children diagnosed with early-onset obesity. METHODS We screened children presenting with severe (body mass index-standard deviation score >3) and early-onset (<7 years) obesity using ES. Participants were categorized into either the "no variant identified" group or the "variant identified" group, facilitating the exploration of correlations between clinical-demographic characteristics and genetic mutations linked to early-onset obesity. The functional implications of identified variants were assessed through in silico analyses. RESULTS Of the patients, 32 (35.5 %) possessed one or more mutations in pathways associated with obesity, all of which were heterozygous and patients with more than two obesity-associated variants were more obese. This cohort included 29 novel mutations distinct to our study population, 7 previously reported pathogenic variants, two instances of uniparental disomy, and one mitochondrial hotspot mutation. Variants in the SH2B1 gene emerged as a prevalent genetic determinant of obesity within our group, accounting for 16.6 % of cases. Statistical evaluations showed no significant differences in demographic attributes between the two groups. CONCLUSION Exome sequencing proves to be an instrumental approach for uncovering new variants and broadening the spectrum of mutations in early-onset obesity among children. Concurrently, further functional studies, both in vitro and in vivo, are crucial to elucidate the contributions of these variants to obesity's pathogenesis.
Collapse
Affiliation(s)
- Deyun Liu
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.
| | - Yuxiang Liu
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Chen Yu Lu
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Qian Wang
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yingying Bao
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yue Yu
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Qiang Wang
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Wu Peng
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
5
|
Politei JM, Patrono A. Clinically Meaningful Outcomes after 1 Year of Treatment with Setmelanotide in an Adult Patient with a Variant in SH2B1. Obes Facts 2024; 17:646-651. [PMID: 39284294 PMCID: PMC11661841 DOI: 10.1159/000541267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/26/2024] [Indexed: 10/12/2024] Open
Abstract
INTRODUCTION Monogenic obesity is caused by a unique genetic dysfunction, often appears in childhood, and can be accompanied by neuroendocrine, skeletal, developmental, and behavioral disorders, among other manifestations. Some variants in the SH2B1 gene have been suggested as strong candidates for the development of autosomal dominant obesity. CASE PRESENTATION We describe here the clinical response after 1 year of setmelanotide treatment in a 22-year-old patient with an SH2B1 variant. After 3 months of treatment, our patient lost 5.4% of body weight. This period was followed by a 3-month period of noncompliance, in which the patient gained 4% body weight. After reinstating daily drug administration, the patient showed a 19.5% reduction in body weight and a clear improvement in all hunger scales after 1 year of treatment. CONCLUSION These results indicate that the changes seen are drug dependent and provide positive evidence for the administration of setmelanotide in adult patients with heterozygous variants in the SH2B1 gene.
Collapse
Affiliation(s)
- Juan M. Politei
- Neurology Department, SPINE Foundation, Buenos Aires, Argentina
| | - Andrea Patrono
- Nutrition Department, Trinity Clinic, Buenos Aires, Argentina
| |
Collapse
|
6
|
Jacob JJ. Gut-Brain Hormone Analogues and Metabolic Magic Wand. Indian J Endocrinol Metab 2024; 28:433-435. [PMID: 39676777 PMCID: PMC11642517 DOI: 10.4103/ijem.ijem_460_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Affiliation(s)
- Jubbin J. Jacob
- Department of Endocrinology, Christian Medical College Hospital, Ludhiana, Punjab, India
- Department of Endocrinology, Naseem Healthcare, Doha, Qatar
| |
Collapse
|
7
|
Engin A. The Mechanism of Leptin Resistance in Obesity and Therapeutic Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:463-487. [PMID: 39287862 DOI: 10.1007/978-3-031-63657-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Leptin resistance is induced via leptin signaling blockade by chronic overstimulation of the leptin receptor and intracellular signaling defect or increased hypothalamic inflammation and suppressor of cytokine signaling (SOCS)-3 expression. High-fat diet triggers leptin resistance induced by at least two independent causes: first, the limited ability of peripheral leptin to activate hypothalamic signaling transducers and activators of transcription (STAT) signaling and secondly a signaling defect in leptin-responsive hypothalamic neurons. Central leptin resistance is dependent on decreased leptin transport efficiency across the blood brain barrier (BBB) rather than hypothalamic leptin insensitivity. Since the hypothalamic phosphorylated STAT3 (pSTAT3) represents a sensitive and specific readout of leptin receptor-B signaling, the assessment of pSTAT3 levels is the gold standard. Hypertriglyceridemia is one of important factors to inhibit the transport of leptin across BBB in obesity. Mismatch between high leptin and the amount of leptin receptor expression in obesity triggers brain leptin resistance via increasing hypothalamic inflammation and SOCS-3 expression. Therapeutic strategies that regulate the passage of leptin to the brain include the development of modifications in the structure of leptin analogues as well as the synthesis of new leptin receptor agonists with increased BBB permeability. In the hyperleptinemic state, polyethylene glycol (PEG)-modified leptin is unable to pass through the BBB. Peripheral histone deacetylase (HDAC) 6 inhibitor, tubastatin, and metformin increase central leptin sensitization. While add-on therapy with anagliptin, metformin and miglitol reduce leptin concentrations, the use of long-acting leptin analogs, and exendin-4 lead to the recovery of leptin sensitivity. Contouring surgery with fat removal, and bariatric surgery independently of the type of surgery performed provide significant improvement in leptin concentrations. Although approaches to correcting leptin resistance have shown some success, no clinically effective application has been developed to date. Due to the impairment of central and peripheral leptin signaling, as well as the extensive integration of leptin-sensitive metabolic pathways with other neurons, the effectiveness of methods used to eliminate leptin resistance is extremely limited.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
8
|
Mohammed I, Haris B, Al-Barazenji T, Vasudeva D, Tomei S, Al Azwani I, Dauleh H, Shehzad S, Chirayath S, Mohamadsalih G, Petrovski G, Khalifa A, Love DR, Al-Shafai M, Hussain K. Understanding the Genetics of Early-Onset Obesity in a Cohort of Children From Qatar. J Clin Endocrinol Metab 2023; 108:3201-3213. [PMID: 37329217 PMCID: PMC10655519 DOI: 10.1210/clinem/dgad366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 06/18/2023]
Abstract
CONTEXT Monogenic obesity is a rare form of obesity due to pathogenic variants in genes implicated in the leptin-melanocortin signaling pathway and accounts for around 5% of severe early-onset obesity. Mutations in the genes encoding the MC4R, leptin, and leptin receptor are commonly reported in various populations to cause monogenic obesity. Determining the genetic cause has important clinical benefits as novel therapeutic interventions are now available for some forms of monogenic obesity. OBJECTIVE To unravel the genetic causes of early-onset obesity in the population of Qatar. METHODS In total, 243 patients with early-onset obesity (above the 95% percentile) and age of onset below 10 years were screened for monogenic obesity variants using a targeted gene panel, consisting of 52 obesity-related genes. RESULTS Thirty rare variants potentially associated with obesity were identified in 36 of 243 (14.8%) probands in 15 candidate genes (LEP, LEPR, POMC, MC3R, MC4R, MRAP2, SH2B1, BDNF, NTRK2, DYRK1B, SIM1, GNAS, ADCY3, RAI1, and BBS2). Twenty-three of the variants identified were novel to this study and the rest, 7 variants, were previously reported in literature. Variants in MC4R were the most common cause of obesity in our cohort (19%) and the c.485C>T p.T162I variant was the most frequent MC4R variant seen in 5 patients. CONCLUSION We identified likely pathogenic/pathogenic variants that seem to explain the phenotype of around 14.8% of our cases. Variants in the MC4R gene are the commonest cause of early-onset obesity in our population. Our study represents the largest monogenic obesity cohort in the Middle East and revealed novel obesity variants in this understudied population. Functional studies will be required to elucidate the molecular mechanism of their pathogenicity.
Collapse
Affiliation(s)
- Idris Mohammed
- College of Health & Life Sciences, Hamad Bin Khalifa University, PO Box 34110, Doha, Qatar
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Basma Haris
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Tara Al-Barazenji
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Dhanya Vasudeva
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Sara Tomei
- Omics Core, Integrated Genomic Services, Research Branch, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Iman Al Azwani
- Omics Core, Integrated Genomic Services, Research Branch, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Hajar Dauleh
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Saira Shehzad
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Shiga Chirayath
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Ghassan Mohamadsalih
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Goran Petrovski
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Amel Khalifa
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Donald R Love
- Division of Genetic Pathology, Department of Pathology, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Mashael Al-Shafai
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, PO Box 2713, Doha, Qatar
- Biomedical Research Center, Qatar University, PO Box 2713, Doha, Qatar
| | - Khalid Hussain
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, PO Box 26999, Doha, Qatar
| |
Collapse
|
9
|
Chakhtoura M, Haber R, Ghezzawi M, Rhayem C, Tcheroyan R, Mantzoros CS. Pharmacotherapy of obesity: an update on the available medications and drugs under investigation. EClinicalMedicine 2023; 58:101882. [PMID: 36992862 PMCID: PMC10041469 DOI: 10.1016/j.eclinm.2023.101882] [Citation(s) in RCA: 191] [Impact Index Per Article: 95.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 03/31/2023] Open
Abstract
Obesity is an epidemic and a public health threat. Medical weight management remains one of the options for the treatment of excess weight and recent advances have revolutionized how we treat, and more importantly how we will be treating obesity in the near future. Metreleptin and Setmelanotide are currently indicated for rare obesity syndromes, and 5 other medications (orlistat, phentermine/topiramate, naltrexone/bupropion, liraglutide, semaglutide) are approved for non-syndromic obesity. Tirzepatide is about to be approved, and other drugs, with exciting novel mechanisms of action primarily based on incretins, are currently being investigated in different phases of clinical trials. The majority of these compounds act centrally, to reduce appetite and increase satiety, and secondarily, in the gastrointestinal tract to slow gastric emptying. All anti-obesity medications improve weight and metabolic parameters, with variable potency and effects depending on the specific drug. The currently available data do not support a reduction in hard cardiovascular outcomes, but it is almost certain that such data are forthcoming in the very near future. The choice of the anti-obesity medication needs to take into consideration the patient's clinical and biochemical profile, co-morbidities, and drug contra-indications, as well as expected degree of weight loss and improvements in cardio-renal and metabolic risk. It also remains to be seen whether precision medicine may offer personalized solutions to individuals with obesity, and whether it may represent the future of medical weight management along with the development of novel, very potent, anti-obesity medications currently in the pipeline. Funding None.
Collapse
Affiliation(s)
- Marlene Chakhtoura
- Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Rachelle Haber
- Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Malak Ghezzawi
- Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Caline Rhayem
- Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Raya Tcheroyan
- Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Christos S. Mantzoros
- Beth Israel Deaconess Medical Center and Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA
- Corresponding author. Harvard Medical School, AN-249, 330 Brookline Ave, Boston, MA 02215, USA.
| |
Collapse
|
10
|
SH2B1 variants as potential causes of non-syndromic monogenic obesity in a Brazilian cohort. Eat Weight Disord 2022; 27:3665-3674. [PMID: 36436143 DOI: 10.1007/s40519-022-01506-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/29/2022] [Indexed: 11/28/2022] Open
Abstract
PURPOSE SH2B1 gene encodes an important adaptor protein to receptor tyrosine kinases or cytokine receptors associated with Janus kinases. This gene has been associated with the structural and functional modulation of neurons and other cells, and impacts on energy and glucose homeostasis. Several studies suggested that alterations in this gene are strong candidates for the development of obesity. However, only a few studies have screened SH2B1 point variants in individuals with obesity. Therefore, the aim of this study was to investigate the prevalence of SH2B1 variants in a Brazilian cohort of patients with severe obesity and candidates to bariatric surgery. METHODS The cohort comprised 122 individuals with severe obesity, who developed this phenotype during childhood. As controls, 100 normal-weight individuals were included. The coding region of SH2B1 gene was screened by Sanger sequencing. RESULTS A total of eight variants were identified in SH2B1, of which p.(Val345Met) and p.(Arg630Gln) variants were rare and predicted as potentially pathogenic by the in the silico algorithms used in this study. The p.(Val345Met) was not found in either the control group or in publicly available databases. This variant was identified in a female patient with severe obesity, metabolic syndrome and hyperglycemia. The p.(Arg630Gln) was also absent in our control group, but it was reported in gnomAD with an extremely low frequency. This variant was observed in a female patient with morbid obesity, metabolic syndrome, hypertension and severe binge-eating disorder. CONCLUSION Our study reported for the first time two rare and potentially pathogenic variants in Brazilian patients with severe obesity. Further functional studies will be necessary to confirm and elucidate the impact of these variants on SH2B1 protein function and stability, and their impact on energetic metabolism. LEVEL OF EVIDENCE Level V, cross-sectional descriptive study.
Collapse
|
11
|
Genetic Variants Associated with Elevated Plasma Ceramides in Individuals with Metabolic Syndrome. Genes (Basel) 2022; 13:genes13081497. [PMID: 36011408 PMCID: PMC9407997 DOI: 10.3390/genes13081497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Metabolic syndrome (MetS) is a complex condition of metabolic disorders and shows a steady onset globally. Ceramides are known as intracellular signaling molecules that influence key metabolism through various pathways such as MetS and insulin resistance. Therefore, it is important to identify novel genetic factors related to increased plasma ceramides in subjects with MetS. Here we first measured plasma ceramides levels in 37 subjects with MetS and in 38 healthy subjects by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Specifically, levels of C16 ceramide (Cer-16), C18 ceramide (Cer-18), C20 ceramide (Cer-20), C18 dihydroceramide (DhCer-18), C24 dihydroceramide (DhCer-24), and C24:1 dihydroceramide (DhCer-24:1) were significantly increased in MetS group (p < 5.0 × 10−2). We then performed single nucleotide polymorphism (SNP) genotyping to identify variants associated with elevated plasma ceramides in MetS group using Axiom® Korea Biobank Array v1.1 chip. We also performed linear regression analysis on genetic variants involved in ceramide synthesis and significantly elevated plasma ceramides and dihydroceramides. Ten variants (rs75397325, rs4246316, rs80165332, rs62106618, rs12358192, rs11006229, rs10826014, rs149162405, rs6109681, and rs3906631) across six genes (ACER1, CERS3, CERS6, SGMS1, SPTLC2, and SPTLC3) functionally involved in ceramide biosynthesis showed significant associations with the elevated levels of at least one of the ceramide species in MetS group at a statistically significant threshold of false discovery rate (FDR)-adjusted p < 5.0 × 10−2. Our findings suggest that the variants may be genetic determinants associated with increased plasma ceramides in individuals with MetS.
Collapse
|
12
|
Malhotra S, Sivasubramanian R, Srivastava G. Evaluation and Management of Early Onset Genetic Obesity in Childhood. J Pediatr Genet 2021; 10:194-204. [PMID: 34504723 DOI: 10.1055/s-0041-1731035] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/16/2021] [Indexed: 01/10/2023]
Abstract
One in five children and adolescents in the United States are diagnosed with obesity and nearly 6% of them are being classified under the severe obesity category. With over 7% of severe obesity being attributed to genetic disorders, in this review we aim to focus on monogenic and syndromic obesity: its etiology, wide spectrum of clinical presentation, criticalness of early identification, and limited management options. Advanced genetic testing methods including microarray and whole genome sequencing are imperative to identify the spectrum of mutations and develop targeted treatment strategies including personalized multidisciplinary care, use of investigational drugs, and explore surgical options in this unique subset of severe pediatric obesity.
Collapse
Affiliation(s)
- Sonali Malhotra
- Department of Pediatric Endocrinology, Massachusetts General Hospital for Children, Harvard Medical School, Boston, Massachusetts, United States
| | - Ramya Sivasubramanian
- Division of Pediatric Nephrology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Gitanjali Srivastava
- Department of Medicine; Department of Pediatrics; Department of Surgery; Division of Endocrinology, Diabetes & Metabolism, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| |
Collapse
|
13
|
Impaired Leptin Signalling in Obesity: Is Leptin a New Thermolipokine? Int J Mol Sci 2021; 22:ijms22126445. [PMID: 34208585 PMCID: PMC8235268 DOI: 10.3390/ijms22126445] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/03/2021] [Accepted: 06/10/2021] [Indexed: 12/17/2022] Open
Abstract
Leptin is a principal adipose-derived hormone mostly implicated in the regulation of energy balance through the activation of anorexigenic neuronal pathways. Comprehensive studies have established that the maintenance of certain concentrations of circulating leptin is essential to avoid an imbalance in nutrient intake. Indeed, genetic modifications of the leptin/leptin receptor axis and the obesogenic environment may induce changes in leptin levels or action in a manner that accelerates metabolic dysfunctions, resulting in a hyperphagic status and adipose tissue expansion. As a result, a vicious cycle begins wherein hyperleptinaemia and leptin resistance occur, in turn leading to increased food intake and fat enlargement, which is followed by leptin overproduction. In addition, in the context of obesity, a defective thermoregulatory response is associated with impaired leptin signalling overall within the ventromedial nucleus of the hypothalamus. These recent findings highlight the role of leptin in the regulation of adaptive thermogenesis, thus suggesting leptin to be potentially considered as a new thermolipokine. This review provides new insight into the link between obesity, hyperleptinaemia, leptin resistance and leptin deficiency, focusing on the ability to restore leptin sensitiveness by way of enhanced thermogenic responses and highlighting novel anti-obesity therapeutic strategies.
Collapse
|
14
|
Vaxillaire M, Bonnefond A, Liatis S, Ben Salem Hachmi L, Jotic A, Boissel M, Gaget S, Durand E, Vaillant E, Derhourhi M, Canouil M, Larcher N, Allegaert F, Medlej R, Chadli A, Belhadj A, Chaieb M, Raposo JF, Ilkova H, Loizou D, Lalic N, Vassallo J, Marre M, Froguel P. Monogenic diabetes characteristics in a transnational multicenter study from Mediterranean countries. Diabetes Res Clin Pract 2021; 171:108553. [PMID: 33242514 DOI: 10.1016/j.diabres.2020.108553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/01/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Diagnosis of monogenic diabetes has important clinical implications for treatment and health expenditure. However, its prevalence remains to be specified in many countries, particularly from South Europe, North Africa and Middle-East, where non-autoimmune diabetes in young adults is increasing dramatically. AIMS To identify cases of monogenic diabetes in young adults from Mediterranean countries and assess the specificities between countries. METHODS We conducted a transnational multicenter study based on exome sequencing in 204 unrelated patients with diabetes (age-at-diagnosis: 26.1 ± 9.1 years). Rare coding variants in 35 targeted genes were evaluated for pathogenicity. Data were analyzed using one-way ANOVA, chi-squared test and factor analysis of mixed data. RESULTS Forty pathogenic or likely pathogenic variants, 14 of which novel, were identified in 36 patients yielding a genetic diagnosis rate of 17.6%. The majority of cases were due to GCK, HNF1A, ABCC8 and HNF4A variants. We observed highly variable diagnosis rates according to countries, with association to genetic ancestry. Lower body mass index and HbA1c at study inclusion, and less frequent insulin treatment were hallmarks of pathogenic variant carriers. Treatment changes following genetic diagnosis have been made in several patients. CONCLUSIONS Our data from patients in several Mediterranean countries highlight a broad clinical and genetic spectrum of diabetes, showing the relevance of wide genetic testing for personalized care of early-onset diabetes.
Collapse
Affiliation(s)
- Martine Vaxillaire
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France.
| | - Amélie Bonnefond
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France; Department of Metabolism, Section of Genomics of Common Disease, Imperial College London, London, United Kingdom.
| | - Stavros Liatis
- First Department of Propaedeutic Medicine, National and Kapodistrian University of Athens Medical School, Diabetes Center, Laiko General Hospital, Athens, Greece
| | - Leila Ben Salem Hachmi
- Department of Endocrinology and Metabolic Diseases, National Institut of Nutrition, Tunis, Tunisia
| | - Aleksandra Jotic
- Department of Endocrinology, Diabetes and Metabolic Diseases, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Mathilde Boissel
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France
| | - Stefan Gaget
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France
| | - Emmanuelle Durand
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France
| | - Emmanuel Vaillant
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France
| | - Mehdi Derhourhi
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France
| | - Mickaël Canouil
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France
| | - Nicolas Larcher
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France
| | - Frédéric Allegaert
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France
| | | | - Asma Chadli
- Department of Endocrinology, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Azzedine Belhadj
- Department of Internal Medicine, CHU Dr Ben Badis University Hospital, Constantine, Algeria
| | - Molka Chaieb
- Department of Endocrinology, Farhat Hached Hospital, Sousse, Tunisia
| | | | - Hasan Ilkova
- Department of Endocrinology, School of Medicine, Istanbul University, Istanbul, Turkey
| | | | - Nebojsa Lalic
- Department of Endocrinology, Diabetes and Metabolic Diseases, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Josanne Vassallo
- Division of Endocrinology and University of Malta Medical School, Mater Dei Hospital; Centre of Molecular Medicine and Biobanking, University of Malta, Malta
| | - Michel Marre
- Department of Diabetology-Endocrinology-Nutrition, Hôpital Bichat, DHU FIRE, Assistance Publique Hôpitaux de Paris, Paris, France; Inserm U1138, Centre de Recherche des Cordeliers, Paris, France; UFR de Médecine, University Paris Diderot, Sorbonne Paris Cité, Paris, France.
| | - Philippe Froguel
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France; Department of Metabolism, Section of Genomics of Common Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
15
|
Rare genetic forms of obesity: From gene to therapy. Physiol Behav 2020; 227:113134. [DOI: 10.1016/j.physbeh.2020.113134] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 01/05/2023]
|
16
|
Obesity treatment effect in Danish children and adolescents carrying Melanocortin-4 Receptor mutations. Int J Obes (Lond) 2020; 45:66-76. [PMID: 32921795 PMCID: PMC7752754 DOI: 10.1038/s41366-020-00673-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 08/10/2020] [Accepted: 09/03/2020] [Indexed: 11/20/2022]
Abstract
Objectives To determine the prevalence of Melanocortin-4 Receptor (MC4R) mutations in a cohort of children and adolescents with overweight or obesity and to determine whether treatment responses differed between carriers and noncarriers. Methods Using target region capture sequencing, an MC4R mutation screen was performed in 1261 Danish children and adolescents enrolled at a tertiary multidisciplinary childhood obesity treatment center. Measurements of anthropometrics, blood pressure, fasting blood biochemistry including lipid and hormone levels, and dual-energy X-ray absorptiometry were performed at baseline and throughout treatment. Results Of 1209 children and adolescents that met all criteria to be included in the described analyses, 30 (2.5%) carried damaging or unresolved MC4R mutations. At baseline, mutation carriers exhibited higher concentrations of plasma thyroid-stimulating hormone (p = 0.003), and lower concentrations of plasma thyroxine (p = 0.010) compared to noncarriers. After a median of 1 year of treatment (range 0.5–4.0 years), body mass index (BMI) standard deviation score (SDS) was reduced in noncarriers but not in carriers, and this difference in treatment response was statistically significant (p = 0.005). Furthermore, HDL cholesterol was reduced in carriers, a response significantly different from that of noncarriers (p = 0.017). Conclusion Among Danish children and adolescents with overweight or obesity entering a tertiary lifestyle intervention, 2.5% carried damaging or unresolved MC4R mutations. In contrast to noncarriers, carriers of damaging or unresolved MC4R mutations failed to reduce their BMI SDS during obesity treatment, indicating a need for personalized treatment based on the MC4R genotype.
Collapse
|
17
|
A systematic review of precision nutrition and Mediterranean Diet: A personalized nutrition approaches for prevention and management of obesity related disorders. Clin Nutr ESPEN 2020; 38:61-64. [PMID: 32690178 DOI: 10.1016/j.clnesp.2020.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS The Obesity is related to type 2 diabetes, and diseases with metabolic syndrome characteristics such as dyslipidemia, hypertension and cardiovascular illness. The nutrition is the most important environmental factor that modulates the phenotype type of obesity. The impacts of nutrients might modulate the gene expression. The recent studies have focused on the relationship between obesity in terms of gene-environment interactions. METHODS There is a relationship between genetic indicators, fat mass accumulation, body composition and Mediterranean diet. The evaluation of nutrition treatment or interventions together with the genetic state; provides to manage or prevent the development of chronic diseases. RESULTS As a result of nutrigenetic studies; specific nutrition factors in Mediterranean Diet have positive effects on gene expressions related to obesity. In the future, the rapidly-developing nutrition science and the optimal nutrition model special for individuals might play an important role in terms of health development and healing. CONCLUSION This metanalysis aimed to explain the current status and relationship between metabolic syndrome indicators that are related to obesity and the gene-nutrient interactions within the Mediterranean Diet.
Collapse
|
18
|
Leptin receptor-expressing neuron Sh2b1 supports sympathetic nervous system and protects against obesity and metabolic disease. Nat Commun 2020; 11:1517. [PMID: 32251290 PMCID: PMC7089966 DOI: 10.1038/s41467-020-15328-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/03/2020] [Indexed: 01/08/2023] Open
Abstract
Leptin stimulates the sympathetic nervous system (SNS), energy expenditure, and weight loss; however, the underlying molecular mechanism remains elusive. Here, we uncover Sh2b1 in leptin receptor (LepR) neurons as a critical component of a SNS/brown adipose tissue (BAT)/thermogenesis axis. LepR neuron-specific deletion of Sh2b1 abrogates leptin-stimulated sympathetic nerve activation and impairs BAT thermogenic programs, leading to reduced core body temperature and cold intolerance. The adipose SNS degenerates progressively in mutant mice after 8 weeks of age. Adult-onset ablation of Sh2b1 in the mediobasal hypothalamus also impairs the SNS/BAT/thermogenesis axis; conversely, hypothalamic overexpression of human SH2B1 has the opposite effects. Mice with either LepR neuron-specific or adult-onset, hypothalamus-specific ablation of Sh2b1 develop obesity, insulin resistance, and liver steatosis. In contrast, hypothalamic overexpression of SH2B1 protects against high fat diet-induced obesity and metabolic syndromes. Our results unravel an unrecognized LepR neuron Sh2b1/SNS/BAT/thermogenesis axis that combats obesity and metabolic disease.
Collapse
|
19
|
Akıncı A, Türkkahraman D, Tekedereli İ, Özer L, Evren B, Şahin İ, Kalkan T, Çürek Y, Çamtosun E, Döğer E, Bideci A, Güven A, Eren E, Sangün Ö, Çayır A, Bilir P, Törel Ergür A, Ercan O. Novel Mutations in Obesity-related Genes in Turkish Children with Non-syndromic Early Onset Severe Obesity: A Multicentre Study. J Clin Res Pediatr Endocrinol 2019; 11:341-349. [PMID: 30991789 PMCID: PMC6878344 DOI: 10.4274/jcrpe.galenos.2019.2019.0021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Non syndromic monogenic obesity is a rare cause of early onset severe obesity in the childhood period. This form may not be distinguishable from other forms of severe obesity without genetic analysis, particularly if patients do not exibit any physical abnormalities or developmental delay. The aim of this study was to screen 41 different obesity-related genes in children with non-syndromic early onset severe obesity. METHODS Children with severe (body mass index-standard deviation score >3) and early onset (<7 years) obesity were screened by next-generation sequencing based, targeted DNA custom panel for 41 known-obesity-related genes and the results were confirmed by Sanger technique. RESULTS Six novel variants were identified in five candidate genes in seven out of 105 children with severe obesity; two in SIM1 (p.W306C and p.Q36X), one in POMC (p.Y160H), one in PCSK1 (p.W130G fs Ter8), two in MC4R (p.D126E) and one in LEPR (p.Q4H). Additionally, two previously known variations in MC4R were identified in four patients (p.R165W in three, and p.V166I in one). CONCLUSION We identified six novel and four previously described variants in six obesity-related genes in 11 out of 105 childrens with early onset severe obesity. The prevalence of monogenic obesity was 10.4% in our cohort.
Collapse
Affiliation(s)
- Ayşehan Akıncı
- nönü University Faculty of Medicine, Department of Pediatric Endocrinology and Diabetes, Malatya, Turkey,* Address for Correspondence: İnönü University Faculty of Medicine, Department of Pediatric Endocrinology and Diabetes, Malatya, Turkey Phone: +90 532 643 53 50 E-mail:
| | - Doğa Türkkahraman
- Antalya Training and Research Hospital, Clinic of Pediatric Endocrinology and Diabetes, Antalya, Turkey
| | - İbrahim Tekedereli
- İnönü University Faculty of Medicine, Department of Molecular Genetics, Malatya, Turkey
| | - Leyla Özer
- Yüksek İhtisas University Faculty of Medicine, Department of Molecular Genetics, Ankara, Turkey
| | - Bahri Evren
- İnönü University Faculty of Medicine, Department of Endocrinology and Diabetes, Malatya, Turkey
| | - İbrahim Şahin
- İnönü University Faculty of Medicine, Department of Endocrinology and Diabetes, Malatya, Turkey
| | - Tarkan Kalkan
- Antalya Training and Research Hospital, Clinic of Molecular Genetics, Antalya, Turkey
| | - Yusuf Çürek
- Antalya Training and Research Hospital, Clinic of Pediatric Endocrinology and Diabetes, Antalya, Turkey
| | - Emine Çamtosun
- nönü University Faculty of Medicine, Department of Pediatric Endocrinology and Diabetes, Malatya, Turkey
| | - Esra Döğer
- Gazi University Faculty of Medicine, Department of Pediatric Endocrinology and Diabetes, Ankara, Turkey
| | - Aysun Bideci
- Gazi University Faculty of Medicine, Department of Pediatric Endocrinology and Diabetes, Ankara, Turkey
| | - Ayla Güven
- Göztepe Training and Research Hospital, Clinic of Pediatric Endocrinology and Diabetes, İstanbul, Turkey
| | - Erdal Eren
- Uludağ University Faculty of Medicine, Department of Pediatric Endocrinology and Diabetes, Bursa, Turkey
| | - Özlem Sangün
- Başkent University Faculty of Medicine, Department of Pediatric Endocrinology and Diabetes, Adana, Turkey
| | - Atilla Çayır
- Erzurum Training and Reseach Hospital, Clinic of Pediatric Endocrinology and Diabetes, Erzurum, Turkey
| | - Pelin Bilir
- Ankara University Faculty of Medicine, Department of Pediatric Endocrinology and Diabetes, Ankara, Turkey
| | - Ayça Törel Ergür
- Ufuk University Faculty of Medicine, Department of Pediatric Endocrinology and Diabetes, Ankara, Turkey
| | - Oya Ercan
- İstanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, Departments of Pediatric Endocrinology and Diabetes, and Adolescent, İstanbul, Turkey
| |
Collapse
|
20
|
De Rosa MC, Chesi A, McCormack S, Zhou J, Weaver B, McDonald M, Christensen S, Liimatta K, Rosenbaum M, Hakonarson H, Doege CA, Grant SFA, Hirschhorn JN, Thaker VV. Characterization of Rare Variants in MC4R in African American and Latino Children With Severe Early-Onset Obesity. J Clin Endocrinol Metab 2019; 104:2961-2970. [PMID: 30811542 PMCID: PMC6546308 DOI: 10.1210/jc.2018-02657] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/20/2019] [Indexed: 12/15/2022]
Abstract
CONTEXT Mutations in melanocortin receptor (MC4R) are the most common cause of monogenic obesity in children of European ancestry, but little is known about their prevalence in children from the minority populations in the United States. OBJECTIVE This study aims to identify the prevalence of MC4R mutations in children with severe early-onset obesity of African American or Latino ancestry. DESIGN AND SETTING Participants were recruited from the weight management clinics at two hospitals and from the institutional biobank at a third hospital. Sequencing of the MC4R gene was performed by whole exome or Sanger sequencing. Functional testing was performed to establish the surface expression of the receptor and cAMP response to its cognate ligand α-melanocyte-stimulating hormone. PARTICIPANTS Three hundred twelve children (1 to 18 years old, 50% girls) with body mass index (BMI) >120% of 95th percentile of Centers for Disease Control and Prevention 2000 growth charts at an age <6 years, with no known pathological cause of obesity, were enrolled. RESULTS Eight rare MC4R mutations (2.6%) were identified in this study [R7S, F202L (n = 2), M215I, G252D, V253I, I269N, and F284I], three of which were not previously reported (G252D, F284I, and R7S). The pathogenicity of selected variants was confirmed by prior literature reports or functional testing. There was no significant difference in the BMI or height trajectories of children with or without MC4R mutations in this cohort. CONCLUSIONS Although the prevalence of MC4R mutations in this cohort was similar to that reported for obese children of European ancestry, some of the variants were novel.
Collapse
Affiliation(s)
| | - Alessandra Chesi
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Shana McCormack
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Justin Zhou
- Division of Molecular Genetics, Columbia University Medical Center, New York, New York
| | - Benjamin Weaver
- School of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Molly McDonald
- Centers for Clinical and Translational Research, Boston Children’s Hospital, Boston, Massachusetts
| | - Sinead Christensen
- Centers for Clinical and Translational Research, Boston Children’s Hospital, Boston, Massachusetts
| | - Kalle Liimatta
- Division of Molecular Genetics, Columbia University Medical Center, New York, New York
| | - Michael Rosenbaum
- Division of Molecular Genetics, Columbia University Medical Center, New York, New York
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, New York
| | - Hakon Hakonarson
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Claudia A Doege
- Division of Molecular Genetics, Columbia University Medical Center, New York, New York
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, New York
- Columbia Stem Cell Initiative, Columbia University Medical Center, New York, New York
| | - Struan F A Grant
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Joel N Hirschhorn
- Center for Basic and Translational Obesity Research and Division of Endocrinology, Boston Children’s Hospital, Boston, Massachusetts
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, Massachusetts
- Departments of Pediatrics and Genetics, Harvard Medical School, Boston, Massachusetts
| | - Vidhu V Thaker
- Division of Molecular Genetics, Columbia University Medical Center, New York, New York
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, New York
- Correspondence and Reprint Requests: Vidhu V. Thaker, MD, Division of Molecular Genetics, Department of Pediatrics, Columbia University Medical Center, 1150 St. Nicholas Avenue, New York, New York 10032. E-mail:
| |
Collapse
|
21
|
Cooiman MI, Kleinendorst L, van der Zwaag B, Janssen IMC, Berends FJ, van Haelst MM. Genetic analysis in the bariatric clinic; impact of a PTEN gene mutation. Mol Genet Genomic Med 2019; 7:e00632. [PMID: 31055886 PMCID: PMC6565551 DOI: 10.1002/mgg3.632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/06/2019] [Accepted: 02/11/2019] [Indexed: 12/12/2022] Open
Abstract
Background Pathogenic PTEN gene mutations are known to cause PTEN tumor hamartoma syndrome. Recent studies also suggest a role for PTEN mutations in the pathogenesis of obesity. No PTEN mutations have been reported among bariatric surgery patients and obesity treatment results are unknown. Since preventive screening for associated tumors is offered to patients with molecular proven PTEN hamartoma tumor syndrome, recognition of this condition in the bariatric surgery clinic is important. Method We present a patient with morbid obesity who carries a known pathogenic PTEN mutation, identified at the bariatric surgery clinic using an obesity gene panel consisting of 52 obesity–associated genes. We analyzed the weight loss response during the first 3 years after Sleeve Gastrectomy. Results At 1, 2 and 3 years after surgery, the patient achieved a Total Body Weight Loss of 39.4%, 48.8% and 44.9%, respectively. This corresponds to the results of a control group of 18 female patients with normal genetic test results. Conclusion Our patient illustrates the importance of recognizing this serious genetic condition for which preventive cancer screening options are available. The positive weight loss results after Sleeve Gastrectomy suggest that this could be a successful treatment option for obesity patients with PTEN mutations.
Collapse
Affiliation(s)
- Mellody I Cooiman
- Department of Bariatric Surgery, Rijnstate Hospital/Vitalys Clinic, Arnhem, The Netherlands.,Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Lotte Kleinendorst
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Bert van der Zwaag
- Department of Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Ignace M C Janssen
- Department of Bariatric Surgery, Rijnstate Hospital/Vitalys Clinic, Arnhem, The Netherlands
| | - Frits J Berends
- Department of Bariatric Surgery, Rijnstate Hospital/Vitalys Clinic, Arnhem, The Netherlands
| | - Mieke M van Haelst
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Kleinendorst L, Massink MPG, Cooiman MI, Savas M, van der Baan-Slootweg OH, Roelants RJ, Janssen ICM, Meijers-Heijboer HJ, Knoers NVAM, Ploos van Amstel HK, van Rossum EFC, van den Akker ELT, van Haaften G, van der Zwaag B, van Haelst MM. Genetic obesity: next-generation sequencing results of 1230 patients with obesity. J Med Genet 2018; 55:578-586. [PMID: 29970488 DOI: 10.1136/jmedgenet-2018-105315] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/21/2018] [Accepted: 06/10/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Obesity is a global and severe health problem. Due to genetic heterogeneity, the identification of genetic defects in patients with obesity can be time consuming and costly. Therefore, we developed a custom diagnostic targeted next-generation sequencing (NGS)-based analysis to simultaneously identify mutations in 52 obesity-related genes. The aim of this study was to assess the diagnostic yield of this approach in patients with suspected genetic obesity. METHODS DNA of 1230 patients with obesity (median BMI adults 43.6 kg/m2; median body mass index-SD children +3.4 SD) was analysed in the genome diagnostics section of the Department of Genetics of the UMC Utrecht (The Netherlands) by targeted analysis of 52 obesity-related genes. RESULTS In 48 patients pathogenic mutations confirming the clinical diagnosis were detected. The majority of these were observed in the MC4R gene (18/48). In an additional 67 patients a probable pathogenic mutation was identified, necessitating further analysis to confirm the clinical relevance. CONCLUSIONS NGS-based gene panel analysis in patients with obesity led to a definitive diagnosis of a genetic obesity disorder in 3.9% of obese probands, and a possible diagnosis in an additional 5.4% of obese probands. The highest yield was achieved in a selected paediatric subgroup, establishing a definitive diagnosis in 12 out of 164 children with severe early onset obesity (7.3%). These findings give a realistic insight in the diagnostic yield of genetic testing for patients with obesity and could help these patients to receive (future) personalised treatment.
Collapse
Affiliation(s)
- Lotte Kleinendorst
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
| | - Maarten P G Massink
- Department of Genetics, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Mellody I Cooiman
- Departmentof Bariatric Surgery, Rijnstate Hospital, Arnhem, The Netherlands
| | - Mesut Savas
- Department of Internal Medicine, division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Roosje J Roelants
- Child Obesity Expert Centre Amsterdam, Women and Child Clinic, VU Medical Center (previously Deptartment of Pediatrics Slotervaartziekenhuis), Amsterdam, The Netherlands
| | - Ignace C M Janssen
- Departmentof Bariatric Surgery, Rijnstate Hospital, Arnhem, The Netherlands
| | - Hanne J Meijers-Heijboer
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands.,Department of Clinical Genetics, VU Medical Center, Amsterdam, The Netherlands
| | - Nine V A M Knoers
- Department of Genetics, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | | | - Elisabeth F C van Rossum
- Department of Internal Medicine, division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Erica L T van den Akker
- Department of Pediatric Endocrinology, Sophia kinderziekenhuis Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Gijs van Haaften
- Department of Genetics, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Bert van der Zwaag
- Department of Genetics, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Mieke M van Haelst
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands.,Department of Clinical Genetics, VU Medical Center, Amsterdam, The Netherlands
| |
Collapse
|