1
|
Swislocki ALM, Eisenberg ML. A Review on Testosterone: Estradiol Ratio-Does It Matter, How Do You Measure It, and Can You Optimize It? World J Mens Health 2024; 42:42.e75. [PMID: 39344113 DOI: 10.5534/wjmh.240029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/15/2024] [Accepted: 06/12/2024] [Indexed: 10/01/2024] Open
Abstract
There is a natural balance between the major sex steroids, testosterone and estradiol, controlled by gonadal secretion and peripheral conversion by aromatase. This balance is impacted by a variety of inborn and acquired conditions, and, more recently, by a growing use of exogenous testosterone therapy and off-label aromatase use under the guise of "men's health." We summarize reported testosterone:estradiol ratios, both naturally occurring and with pharmacologic manipulation and consider the ramifications of significant changes in these ratios. However, significant limitations exist in terms of steroid separation and measurement techniques, timing of samples, and lack of consistency from one assay to another, as well as definition of normative data. Limited data on the testosterone:estradiol ratio in men exists, particularly due to the scan data on concurrent estradiol values in men receiving testosterone therapy or aromatase inhibitors. Nonetheless, there seems to be a range of apparently beneficial values of the testosterone: estradiol radio at between 10 and 30, calculated as: testosterone in ng/dL/estradiol in pg/mL. Higher values appear to be associated with improved spermatogenesis and reduced bone density while lower values are associated with thyroid dysfunction. While there is growing awareness of the significance of the testosterone:estradiol ratio, and a sense of a desired range, the optimal value has not yet been determined. Further work is needed to clarify the measurement strategies and clearly-defined outcome measures related to the testosterone:estradiol ratio.
Collapse
Affiliation(s)
- Arthur L M Swislocki
- Medical Service, VA Northern California Health Care System, Martinez, CA, USA
- Department of Medicine, UC Davis School of Medicine, Sacramento, CA, USA.
| | - Michael L Eisenberg
- Urology Department, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
2
|
Zhou XY, Ma JN, Shen YY, Xie XR, Ren W. Effects of Growth Hormone on Adult Human Gonads: Action on Reproduction and Sexual Function. Int J Endocrinol 2023; 2023:7492696. [PMID: 37064267 PMCID: PMC10104746 DOI: 10.1155/2023/7492696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/20/2023] [Accepted: 03/08/2023] [Indexed: 04/18/2023] Open
Abstract
Growth hormone (GH), which is commonly considered to be a promoter of growth and development, has direct and indirect effects on adult gonads that influence reproduction and sexual function of humans and nonhumans. GH receptors are expressed in adult gonads in some species including humans. For males, GH can improve the sensitivity of gonadotropins, contribute to testicular steroidogenesis, influence spermatogenesis possibly, and regulate erectile function. For females, GH can modulate ovarian steroidogenesis and ovarian angiogenesis, promote the development of ovarian cells, enhance the metabolism and proliferation of endometrial cells, and ameliorate female sexual function. Insulin-like growth factor-1 (IGF-1) is the main mediator of GH. In vivo, a number of the physiological effects of GH are mediated by GH-induced hepatic IGF-1 and local IGF-1. In this review, we highlight the roles of GH and IGF-1 in adult human gonads, clarify potential mechanisms, and explore the efficacy and the risk of GH supplementation in associated deficiency and assisted reproductive technologies. Besides, the effects of excess GH on adult human gonads are discussed as well.
Collapse
Affiliation(s)
- Xin-Yi Zhou
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jia-Ni Ma
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ya-Yin Shen
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xue-Rui Xie
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Ren
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
3
|
Salehisedeh N, Parhizkar A, Yaghmaei P, Sabbaghian M. Male Idiopathic Hypogonadotropic Hypogonadism: Serum Insulin-like Growth Factor-1 and Oestradiol Levels. J Hum Reprod Sci 2022; 15:351-356. [PMID: 37033129 PMCID: PMC10077747 DOI: 10.4103/jhrs.jhrs_132_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 04/11/2023] Open
Abstract
Background Idiopathic hypogonadotropic hypogonadism (IHH) is a form of male infertility caused by a congenital defect in the secretion or action of gonadotropin-releasing hormone from the hypothalamus. Oestradiol emerged as the main sex steroid in the regulation of the hypothalamic-pituitary-testicular axis, reproductive function and growth hormone/insulin-like growth factor-1 (GH/IGF-1) axis in men. Moreover, GH/IGF-1 axis has been suggested to play a role in IHH. Aims This study evaluated serum IGF-1 in IHH men and controls. Furthermore, we evaluated the association between serum total oestradiol (TE2) and IGF-1 levels in patients and controls. Parameters including age, body mass index and fertility history were analysed. Settings and Design This prospective study was conducted at the Royan institute. Materials and Methods In 20 men with IHH and 20 controls, serum IGF-1 levels were estimated using chemiluminescence immunoassay and serum E2 levels were assessed by means of the electrochemiluminescence method. Statistical Analysis Used Kolmogorov-Smirnov test, parametric t-test or the Mann-Whitney and the Pearson correlation coefficient were performed. SPSS version 22 was used for the analysis of data. Results There was a significant decrease in serum IGF-1 levels in IHH patients compared with controls (145.1 ± 8.9 ng/ml vs. 229.6 ± 7.3 ng/ml P < 0.001, respectively). Furthermore, a significant decrease was observed in TE2 levels in IHH male patients (12.3 ± 2.5 pg/ml) compared with controls (31.9 ± 5.3 pg/ml P < 0.001). A positive correlation was observed between serum IGF-1 and TE2 levels in the total number of participants, suggesting that E2 deficiency in IHH cases can explain the lower levels of serum IGF-1. Conclusions These findings suggest that the reduction in IGF-1 levels may be associated with the influence of E2 on the GH/IGF-1 axis, and may confirm the role of the GH/IGF-1 axis in IHH. Further investigations will be required to determine the exact mechanisms by which E2 and IGF-1 affect the reproductive neuroendocrine function.
Collapse
Affiliation(s)
- Nastaran Salehisedeh
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Department of Biology, Science and Research Branch Islamic Azad University, Tehran, Iran
| | - Amir Parhizkar
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Parichehreh Yaghmaei
- Department of Biology, Science and Research Branch Islamic Azad University, Tehran, Iran
| | - Marjan Sabbaghian
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
4
|
Bromek E, Danek PJ, Wójcikowski J, Basińska-Ziobroń A, Pukło R, Solich J, Dziedzicka-Wasylewska M, Daniel WA. The impact of noradrenergic neurotoxin DSP-4 and noradrenaline transporter knockout (NET-KO) on the activity of liver cytochrome P450 3A (CYP3A) in male and female mice. Pharmacol Rep 2022; 74:1107-1114. [PMID: 36018449 PMCID: PMC9584982 DOI: 10.1007/s43440-022-00406-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/08/2022] [Accepted: 08/14/2022] [Indexed: 11/05/2022]
Abstract
Background Our earlier studies have shown that the brain noradrenergic system regulates cytochrome P450 (CYP) in rat liver via neuroendocrine mechanism. In the present work, a comparative study on the effect of intraperitoneal administration of the noradrenergic neurotoxin DSP-4 and the knockout of noradrenaline transporter (NET-KO) on the CYP3A in the liver of male and female mice was performed.
Methods The experiments were conducted on C57BL/6J WT and NET–/– male/female mice. DSP-4 was injected intraperitoneally as a single dose (50 mg/kg ip.) to WT mice. The activity of CYP3A was measured as the rate of 6β-hydroxylation of testosterone in liver microsomes. The CYP3A protein level was estimated by Western blotting. Results DSP-4 evoked a selective decrease in the noradrenaline level in the brain of male and female mice. At the same time, DSP-4 reduced the CYP3A activity in males, but not in females. The level of CYP3A protein was not changed. The NET knockout did not affect the CYP3A activity/protein in both sexes. Conclusions The results with DSP-4 treated mice showed sex-dependent differences in the regulation of liver CYP3A by the brain noradrenergic system (with only males being responsive), and revealed that the NET knockout did not affect CYP3A in both sexes. Further studies into the hypothalamic–pituitary–gonadal hormones in DSP-4 treated mice may explain sex-specific differences in CYP3A regulation, whereas investigation of monoaminergic receptor sensitivity in the hypothalamic/pituitary areas of NET–/– mice will allow for understanding a lack of changes in the CYP3A activity in the NET-KO animals. Supplementary Information The online version contains supplementary material available at 10.1007/s43440-022-00406-8.
Collapse
Affiliation(s)
- Ewa Bromek
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Przemysław Jan Danek
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Jacek Wójcikowski
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Agnieszka Basińska-Ziobroń
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Renata Pukło
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Joanna Solich
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Marta Dziedzicka-Wasylewska
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Władysława Anna Daniel
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland.
| |
Collapse
|
5
|
Le A, Huang KJ, Cirrincione LR. Regulation of drug-metabolizing enzymes by sex-related hormones: clinical implications for transgender medicine. Trends Pharmacol Sci 2022; 43:582-592. [PMID: 35487786 DOI: 10.1016/j.tips.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
Abstract
Transgender medicine is a diverse and growing clinical field with unmet gaps in pharmacological knowledge. Hormone therapy (testosterone or estrogen treatment), one part of the standard of medical care for transgender adults, aligns secondary sex characteristics with an individual's gender identity and expression. Despite established effects of sex steroids on drug-metabolizing enzyme expression and activity in vitro and in animal models, the effect of long-term, supraphysiological sex hormone treatment on drug metabolism in transgender adults is not yet established. Here, we synthesize available in vitro and animal model data with pharmacological concepts in transgender medicine to predict potential effects of sex steroids on drug-metabolizing enzymes, and their relationship with potential hormone-drug interactions, in transgender medicine.
Collapse
Affiliation(s)
- An Le
- Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kai J Huang
- Center for Transyouth Health and Development, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | | |
Collapse
|
6
|
Profka E, Rodari G, Giacchetti F, Giavoli C. GH Deficiency and Replacement Therapy in Hypopituitarism: Insight Into the Relationships With Other Hypothalamic-Pituitary Axes. Front Endocrinol (Lausanne) 2021; 12:678778. [PMID: 34737721 PMCID: PMC8560895 DOI: 10.3389/fendo.2021.678778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 09/27/2021] [Indexed: 12/25/2022] Open
Abstract
GH deficiency (GHD) in adult patients is a complex condition, mainly due to organic lesion of hypothalamic-pituitary region and often associated with multiple pituitary hormone deficiencies (MPHD). The relationships between the GH/IGF-I system and other hypothalamic-pituitary axes are complicated and not yet fully clarified. Many reports have shown a bidirectional interplay both at a central and at a peripheral level. Signs and symptoms of other pituitary deficiencies often overlap and confuse with those due to GH deficiency. Furthermore, a condition of untreated GHD may mask concomitant pituitary deficiencies, mainly central hypothyroidism and hypoadrenalism. In this setting, the diagnosis could be delayed and possible only after recombinant human Growth Hormone (rhGH) replacement. Since inappropriate replacement of other pituitary hormones may exacerbate many manifestations of GHD, a correct diagnosis is crucial. This paper will focus on the main studies aimed to clarify the effects of GHD and rhGH replacement on other pituitary axes. Elucidating the possible contexts in which GHD may develop and examining the proposed mechanisms at the basis of interactions between the GH/IGF-I system and other axes, we will focus on the importance of a correct diagnosis to avoid possible pitfalls.
Collapse
Affiliation(s)
- Eriselda Profka
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Giulia Rodari
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Federico Giacchetti
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Claudia Giavoli
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
7
|
Della Torre S. Beyond the X Factor: Relevance of Sex Hormones in NAFLD Pathophysiology. Cells 2021; 10:2502. [PMID: 34572151 PMCID: PMC8470830 DOI: 10.3390/cells10092502] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major health issue worldwide, being frequently associated with obesity, unbalanced dietary regimens, and reduced physical activity. Despite their greater adiposity and reduced physical activity, women show a lower risk of developing NAFLD in comparison to men, likely a consequence of a sex-specific regulation of liver metabolism. In the liver, sex differences in the uptake, synthesis, oxidation, deposition, and mobilization of lipids, as well as in the regulation of inflammation, are associated with differences in NAFLD prevalence and progression between men and women. Given the major role of sex hormones in driving hepatic sexual dimorphism, this review will focus on the role of sex hormones and their signaling in the regulation of hepatic metabolism and in the molecular mechanisms triggering NAFLD development and progression.
Collapse
Affiliation(s)
- Sara Della Torre
- Department of Pharmaceutical Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| |
Collapse
|
8
|
Tenuta M, Carlomagno F, Cangiano B, Kanakis G, Pozza C, Sbardella E, Isidori AM, Krausz C, Gianfrilli D. Somatotropic-Testicular Axis: A crosstalk between GH/IGF-I and gonadal hormones during development, transition, and adult age. Andrology 2020; 9:168-184. [PMID: 33021069 DOI: 10.1111/andr.12918] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/31/2020] [Accepted: 09/28/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND The hypothalamic-pituitary-gonadal (HPG) and hypothalamic-pituitary-somatotropic (HPS) axes are strongly interconnected. Interactions between these axes are complex and poorly understood. These interactions are characterized by redundancies in reciprocal influences at each level of regulation and the combination of endocrine and paracrine effects that change during development. OBJECTIVES To comprehensively review the crosstalk between the HPG and HPS axes and related pathological and clinical aspects during various life stages of male subjects. MATERIALS AND METHODS A thorough search of publications available in PubMed was performed using proper keywords. RESULTS Molecular studies confirmed the expressions of growth hormone (GH) and insulin-like growth factor-I (IGF-I) receptors on the HPG axis and reproductive organs, indicating a possible interaction between HPS and HPG axes at various levels. Insulin growth factors participate in sexual differentiation during fetal development, indicating that normal HPS axis activity is required for proper testicular development. IGF-I contributes to correct testicular position during minipuberty, determines linear growth during childhood, and promotes puberty onset and pace through gonadotropin-releasing hormone activation. IGF-I levels are high during transition age, even when linear growth is almost complete, suggesting its role in reproductive tract maturation. Patients with GH deficiency (GHD) and insensitivity (GHI) exhibit delayed puberty and impaired genital development; replacement therapy in such patients induces proper pubertal development. In adults, few studies have suggested that lower IGF-I levels are associated with impaired sperm parameters. DISCUSSION AND CONCLUSION The role of GH-IGF-I in testicular development remains largely unexplored. However, it is important to evaluate gonadic development in children with GHD. Additionally, HPS axis function should be evaluated in children with urogenital malformation or gonadal development alterations. Correct diagnosis and prompt therapeutic intervention are needed for healthy puberty, attainment of complete gonadal development during transition age, and fertility potential in adulthood.
Collapse
Affiliation(s)
- Marta Tenuta
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | | | - Biagio Cangiano
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - George Kanakis
- Athens Naval and Veterans Affairs Hospital, Athens, Greece
| | - Carlotta Pozza
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Emilia Sbardella
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Andrea M Isidori
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Csilla Krausz
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | | |
Collapse
|
9
|
Zhang G, Cui R, Kang Y, Qi C, Ji X, Zhang T, Guo Q, Cui H, Shi G. Testosterone propionate activated the Nrf2-ARE pathway in ageing rats and ameliorated the age-related changes in liver. Sci Rep 2019; 9:18619. [PMID: 31819135 PMCID: PMC6901587 DOI: 10.1038/s41598-019-55148-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 11/25/2019] [Indexed: 12/16/2022] Open
Abstract
The present study aimed to evaluate the protective efficacy of testosterone propionate (TP) on age-related liver changes via activation of the nuclear factor erythroid 2-related factor 2-antioxidant response element (Nrf2-ARE) pathway in aged rats. Aged rats received subcutaneous injections of TP (2 mg/kg/d, 84 days). Oxidative stress parameters and the expression levels of signal transducer and activator of transcription 5b (STAT5b), Kelch-like ECH associating protein-1 (Keap1), Nrf2, haem oxygenase-1 (HO-1) and NAD(P)H: quinone oxidoreductase-1 (NQO1) in liver tissues were examined to check whether the Nrf2-ARE pathway was involved in the age-related changes in liver. Our results showed that TP supplementation alleviated liver morphology, liver function and liver fibrosis; improved oxidative stress parameters; and increased the expression of STAT5b, Nrf2, HO-1 and NQO-1 and decreased the expression of Keap1 in the liver tissues of aged rats. These results suggested that TP increased the expression of STAT5b, and then activated the Nrf2-ARE pathway and promoted antioxidant mechanisms in aged rats. These findings may provide new therapeutic uses for TP in patients with age-related liver changes.
Collapse
Affiliation(s)
- Guoliang Zhang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, P.R. China.,Department of Human Anatomy, Hebei Medical University, Shijiazhuang, 050017, P.R. China
| | - Rui Cui
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, 050017, P.R. China
| | - Yunxiao Kang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, P.R. China
| | - Chunxiao Qi
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, 050017, P.R. China
| | - Xiaoming Ji
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, P.R. China
| | - Tianyun Zhang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, P.R. China
| | - Qiqing Guo
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, P.R. China
| | - Huixian Cui
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, 050017, P.R. China.,Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, P.R. China
| | - Geming Shi
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, P.R. China. .,Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, P.R. China. .,Hebei Key Laboratory of Forensic Medicine, Department of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, P.R. China.
| |
Collapse
|
10
|
Birzniece V, McLean M, Reddy N, Ho KKY. Disparate Effect of Aromatization on the Central Regulation of GH Secretion by Estrogens in Men and Postmenopausal Women. J Clin Endocrinol Metab 2019; 104:2978-2984. [PMID: 30920620 DOI: 10.1210/jc.2019-00265] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/22/2019] [Indexed: 01/28/2023]
Abstract
CONTEXT Estrogen receptor antagonism by tamoxifen inhibits GH secretion in both men and postmenopausal women, suggesting that estrogen, albeit at low concentration, stimulates GH secretion. However, systemic estrogen replacement in postmenopausal women does not enhance GH secretion. To clarify the role of estrogen in mediating GH secretion, we investigated the effect of estrogen deprivation by using aromatase inhibitors. AIM To determine whether estrogens mediate GH secretion in men and postmenopausal women. DESIGN The effects of letrozole, an aromatase inhibitor, and tamoxifen were compared in an open-label crossover study. Eight men and 14 women received tamoxifen (20 mg/d) and letrozole (2.5 mg/d) for 2 weeks each. The primary endpoints were GH response to arginine stimulation and gonadal steroid levels. RESULTS In men, letrozole significantly (P < 0.05) reduced the peak GH response to arginine (mean ± SEM; Δ -49.4% ± 18.1%). Tamoxifen also reduced the mean peak GH, but this did not reach statistical significance. In postmenopausal women, letrozole did not affect peak GH, whereas tamoxifen significantly (P < 0.05) reduced peak GH (Δ -47.3% ± 10%). In men, letrozole reduced circulating estradiol (from 43.1 ± 2.8 to 12.7 ± 1.3 pmol/L; P < 0.001), whereas in women estradiol was undetectable (<11 pmol/L) at baseline and throughout letrozole therapy. CONCLUSION Because estrogen deprivation reduced circulating GH, we conclude that estrogens regulate GH secretion in men. In postmenopausal women, the neutral effect of aromatase inhibition is likely explained by pre-existing estrogen deficiency. The inhibition of GH secretion by tamoxifen in menopause suggests a non-estrogen receptor-mediated mechanism of action. In contrast to men, estrogen is unlikely to mediate GH secretion in postmenopausal women.
Collapse
Affiliation(s)
- Vita Birzniece
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Medicine, Western Sydney University, Penrith, New South Wales, Australia
- Department of Diabetes and Endocrinology, Blacktown Hospital, Blacktown, New South Wales, Australia
- School of Medicine, University of New South Wales, New South Wales, Australia
| | - Mark McLean
- School of Medicine, Western Sydney University, Penrith, New South Wales, Australia
| | - Navneeta Reddy
- Department of Diabetes and Endocrinology, Blacktown Hospital, Blacktown, New South Wales, Australia
| | - Ken K Y Ho
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| |
Collapse
|