1
|
Claude F, Ubertini G, Szinnai G. Endocrine Disorders in Children with Brain Tumors: At Diagnosis, after Surgery, Radiotherapy and Chemotherapy. CHILDREN (BASEL, SWITZERLAND) 2022; 9:1617. [PMID: 36360345 PMCID: PMC9688119 DOI: 10.3390/children9111617] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 10/28/2023]
Abstract
INTRODUCTION Brain tumors are the second most frequent type of all pediatric malignancies. Depending on their localization, patients with brain tumors may present neurological or ophthalmological symptoms, but also weight anomalies and endocrine disorders ranging from growth hormone deficiency, anomalies of puberty, diabetes insipidus to panhypopituitarism. Immediately at diagnosis, all patients with brain tumors require a complete assessment of the hypothalamic-pituitary function in order to address eventual endocrine disorders. Moreover, children and adolescents undergoing brain surgery must receive peri- and postoperative hydrocortisone stress therapy. Post-operative disorders of water homeostasis are frequent, ranging from transient diabetes insipidus, as well as syndrome of inappropriate antidiuretic hormone secretion to persistent diabetes insipidus. Late endocrine disorders may result from surgery near or within the hypothalamic-pituitary region. Pituitary deficits are frequent after radiotherapy, especially growth hormone deficiency. Thyroid nodules or secondary thyroid cancers may arise years after radiotherapy. Gonadal dysfunction is frequent after chemotherapy especially with alkylating agents. CONCLUSION Early detection and treatment of specific endocrine disorders at diagnosis, perioperatively, and during long-term follow-up result in improved general and metabolic health and quality of life.
Collapse
Affiliation(s)
- Fabien Claude
- Department of Pediatric Endocrinology and Diabetology, University Children’s Hospital Basel, University of Basel, 4056 Basel, Switzerland
| | - Graziamaria Ubertini
- Department of Pediatric Endocrinology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| | - Gabor Szinnai
- Department of Pediatric Endocrinology and Diabetology, University Children’s Hospital Basel, University of Basel, 4056 Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
2
|
van Iersel L, Mulder RL, Denzer C, Cohen LE, Spoudeas HA, Meacham LR, Sugden E, Schouten-van Meeteren AYN, Hoving EW, Packer RJ, Armstrong GT, Mostoufi-Moab S, Stades AM, van Vuurden D, Janssens GO, Thomas-Teinturier C, Murray RD, Di Iorgi N, Neggers SJCMM, Thompson J, Toogood AA, Gleeson H, Follin C, Bardi E, Torno L, Patterson B, Morsellino V, Sommer G, Clement SC, Srivastava D, Kiserud CE, Fernandez A, Scheinemann K, Raman S, Yuen KCJ, Wallace WH, Constine LS, Skinner R, Hudson MM, Kremer LCM, Chemaitilly W, van Santen HM. Hypothalamic-Pituitary and Other Endocrine Surveillance Among Childhood Cancer Survivors. Endocr Rev 2022; 43:794-823. [PMID: 34962573 DOI: 10.1210/endrev/bnab040] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Indexed: 12/12/2022]
Abstract
Endocrine disorders in survivors of childhood, adolescent, and young adult (CAYA) cancers are associated with substantial adverse physical and psychosocial effects. To improve appropriate and timely endocrine screening and referral to a specialist, the International Late Effects of Childhood Cancer Guideline Harmonization Group (IGHG) aims to develop evidence and expert consensus-based guidelines for healthcare providers that harmonize recommendations for surveillance of endocrine disorders in CAYA cancer survivors. Existing IGHG surveillance recommendations for premature ovarian insufficiency, gonadotoxicity in males, fertility preservation, and thyroid cancer are summarized. For hypothalamic-pituitary (HP) dysfunction, new surveillance recommendations were formulated by a guideline panel consisting of 42 interdisciplinary international experts. A systematic literature search was performed in MEDLINE (through PubMed) for clinically relevant questions concerning HP dysfunction. Literature was screened for eligibility. Recommendations were formulated by drawing conclusions from quality assessment of all evidence, considering the potential benefits of early detection and appropriate management. Healthcare providers should be aware that CAYA cancer survivors have an increased risk for endocrine disorders, including HP dysfunction. Regular surveillance with clinical history, anthropomorphic measures, physical examination, and laboratory measurements is recommended in at-risk survivors. When endocrine disorders are suspected, healthcare providers should proceed with timely referrals to specialized services. These international evidence-based recommendations for surveillance of endocrine disorders in CAYA cancer survivors inform healthcare providers and highlight the need for long-term endocrine follow-up care in subgroups of survivors and elucidate opportunities for further research.
Collapse
Affiliation(s)
- Laura van Iersel
- Department of Pediatric Endocrinology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Renee L Mulder
- Princess Máxima Center for Pediatric Oncology, Department of Neuro-oncology, Utrecht, The Netherlands
| | - Christian Denzer
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics & Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Laurie E Cohen
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA.,Dana Farber/Boston Children's Cancer and Blood Disorder Center, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Helen A Spoudeas
- The London Centre for Pediatric Endocrinology & Diabetes, London, UK.,Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.,The London Centre for Pediatric Endocrinology and Diabetes, University College London Hospital, London, UK
| | - Lillian R Meacham
- Emory University School of Medicine; Atlanta, GA, USA.,Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Atlanta, GA,USA
| | | | | | - Eelco W Hoving
- Princess Máxima Center for Pediatric Oncology, Department of Neuro-oncology, Utrecht, The Netherlands
| | - Roger J Packer
- The Brain Tumor Institute, Center for Neuroscience and Behavioral Medicine, Children's National Health System, Washington, DC, USA
| | - Gregory T Armstrong
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis TN, USA
| | - Sogol Mostoufi-Moab
- Department of Pediatrics, The Children's Hospital of Philadelphia, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA,USA
| | - Aline M Stades
- Department of Endocrinology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dannis van Vuurden
- Princess Máxima Center for Pediatric Oncology, Department of Neuro-oncology, Utrecht, The Netherlands
| | - Geert O Janssens
- Princess Máxima Center for Pediatric Oncology, Department of Neuro-oncology, Utrecht, The Netherlands.,Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cécile Thomas-Teinturier
- Radiation Epidemiology Group, Center for Research in Epidemiology and Population Health (CESP), Université Paris-Sud XI, Villejuif, France.,Department of Pediatric Endocrinology, APHP, Hôpitaux Paris-Sud, Site Bicetre, Le Kremlin-Bicetre, France
| | - Robert D Murray
- Department of Endocrinology, Leeds Centre for Diabetes & Endocrinology, Leeds Teaching Hospitals NHS Trust, Leeds, UK.,Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Natascia Di Iorgi
- Department of Pediatrics, Istituto Giannina Gaslini, University of Genova, Genova, Italy
| | - Sebastian J C M M Neggers
- Department of Internal Medicine, Endocrinology Section, Pituitary Center Rotterdam, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Joel Thompson
- Division of Hematology/Oncology/BMT, Children's Mercy Hospitals and Clinics, Kansas City, Missouri, USA
| | - Andrew A Toogood
- Department of Endocrinology, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | - Helena Gleeson
- Department of Endocrinology, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | - Cecilia Follin
- Department of Oncology, Skåne University Hospital, Lund, Sweden
| | - Edit Bardi
- Department of Pediatrics and Adolescent Medicine, Kepler Universitätsklinikum, Linz, Austria.,St Anna Childrens Hospital, Vienna, Austria
| | - Lilibeth Torno
- Division of Pediatric Oncology, CHOC Children's Hospital/University of California, Orange, CA, USA
| | - Briana Patterson
- Emory University School of Medicine; Atlanta, GA, USA.,Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Atlanta, GA,USA
| | - Vera Morsellino
- DOPO Clinic, Division of Pediatric Hematology/Oncology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Grit Sommer
- Swiss Childhood Cancer Registry, Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.,Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Bern University Hospital, University of Bern, Switzerland
| | - Sarah C Clement
- Department of Pediatrics, Amsterdam University Medical Center, location VU University Medical Center, Amsterdam, The Netherlands
| | - Deokumar Srivastava
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis TN, USA
| | - Cecilie E Kiserud
- Department of Oncology, National Advisory Unit on Late Effects after Cancer Treatment, Oslo University Hospital, Oslo, Norway
| | - Alberto Fernandez
- Endocrinology Department, Hospital Universitario de Mostoles, Madrid, Spain
| | - Katrin Scheinemann
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Kantonsspital Aarau, Aarau, Switzerland.,Division of Pediatric Hematology/Oncology, University Children's Hospital Basel and University of Basel, Basel, Switzerland.,Division of Pediatric Hematology/Oncology, McMaster Children's Hospital and McMaster University, Hamilton, ON, Canada
| | - Sripriya Raman
- Division of Pediatric Endocrinology and Diabetes, Children's Hospital of Pittsburgh, Pittsburgh, PA,USA
| | - Kevin C J Yuen
- Department of Neuroendocrinology and Neurosurgery, Barrow Pituitary Center, Barrow Neurological Institute, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - W Hamish Wallace
- Department of Paediatric Oncology, Royal Hospital for Sick Children, Edinburgh, UK
| | - Louis S Constine
- Departments of Radiation Oncology and Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Roderick Skinner
- Department of Paediatric and Adolescent Haematology/Oncology, Great North Children's Hospital and Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Melissa M Hudson
- Department of Epidemiology and Cancer Control, and Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Leontien C M Kremer
- Princess Máxima Center for Pediatric Oncology, Department of Neuro-oncology, Utrecht, The Netherlands.,Department of Pediatric Oncology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Wassim Chemaitilly
- Division of Endocrinology and Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hanneke M van Santen
- Department of Pediatric Endocrinology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
3
|
Di Iorgi N, Morana G, Cappa M, D’Incerti L, Garrè ML, Grossi A, Iughetti L, Matarazzo P, Parpagnoli M, Pozzobon G, Salerno M, Sardi I, Wasniewska MG, Zucchini S, Rossi A, Maghnie M. Expert Opinion on the Management of Growth Hormone Deficiency in Brain Tumor Survivors: Results From an Italian Survey. Front Endocrinol (Lausanne) 2022; 13:920482. [PMID: 35909559 PMCID: PMC9331278 DOI: 10.3389/fendo.2022.920482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Growth hormone deficiency (GHD) is the first and most common endocrine complication in pediatric brain tumor survivors (BTS). GHD can occur due to the presence of the tumor itself, surgery, or cranial radiotherapy (CRT). AIMS This study aimed to evaluate management and adherence to current guidelines of the Italian centers engaged in the diagnosis and follow-up of GHD patients with BTS. METHODS A multidisciplinary scientific board of pediatric endocrinologists, oncologists and radiologists with neuroimaging expertise discussed and reviewed the main issues relating to the management of GHD in pediatric BTS and developed a survey. The survey included questions relating to organizational aspects, risk factors, diagnosis, definition of stable disease, and treatment. The online survey was sent to an expanded panel of specialists dedicated to the care of pediatric BTS, distributed among the three specialty areas and throughout the country (23 Italian cities and 37 Centers). RESULTS The online questionnaire was completed by 86.5% (32 out of 37) of the Centers involved. Most had experience in treating these patients, reporting that they follow more than 50 BTS patients per year. Responses were analyzed descriptively and aggregated by physician specialty. Overall, the results of the survey showed some important controversies in real life adherence to the current guidelines, with discrepancies between endocrinologists and oncologists in the definition of risk factors, diagnostic work-up, decision-making processes and safety. Furthermore, there was no agreement on the neuroimaging definition of stable oncological disease and how to manage growth hormone therapy in patients with residual tumor and GHD. CONCLUSIONS The results of the first Italian national survey on the management of GHD in BTS highlighted the difference in management on some important issues. The time to start and stop rhGH treatment represent areas of major uncertainty. The definition of stable disease remains critical and represents a gap in knowledge that must be addressed within the international guidelines in order to increase height and to improve metabolic and quality of life outcomes in cancer survivors with GHD.
Collapse
Affiliation(s)
- Natascia Di Iorgi
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Endo-European Reference Networks (ERN) Center for Rare Endocrine Conditions, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Genoa, Italy
- *Correspondence: Natascia Di Iorgi,
| | - Giovanni Morana
- Department of Neurosciences, Neuroradiology Unit, University of Turin, Turin, Italy
| | - Marco Cappa
- Unit of Endocrinology, Bambino Gesù Children’s Hospital, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Ludovico D’Incerti
- Department of Pediatric Radiology, Meyer Children’s Hospital, Florence, Italy
| | | | - Armando Grossi
- Unit of Endocrine Pathology of Post-Tumoral and Chronic Diseases, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Lorenzo Iughetti
- Pediatric Unit, Department of Medical and Surgical Sciences of the Mother, Children and Adults. University of Modena and Reggio Emilia, Modena, Italy
| | - Patrizia Matarazzo
- Department of Pediatric Endocrinology, Regina Margherita Children’s Hospital, A.O.U. Città della Salute e della Scienza, Turin, Italy
| | - Maria Parpagnoli
- Health Sciences Department, Children With Clinical Complex Needs Meyer Children’s Hospital, Florence, Italy
| | - Gabriella Pozzobon
- Pediatric Unit, IRCCS San Raffaele Scientific Institute, Vita Salute San Raffaele University, Endo-European Reference Networks (ERN) Center for Rare Endocrine Conditions, Milan, Italy
| | - Mariacarolina Salerno
- Pediatric Unit, Department of Translational Medical Sciences, University Federico II, Naples, Italy
| | - Iacopo Sardi
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children’s Hospital, Florence, Italy
| | | | - Stefano Zucchini
- Pediatric Endocrine Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Endo-European Reference Networks (ERN) Center for Rare Endocrine Conditions, Bologna, Italy
| | - Andrea Rossi
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Mohamad Maghnie
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Endo-European Reference Networks (ERN) Center for Rare Endocrine Conditions, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Genoa, Italy
| |
Collapse
|
4
|
Pollock NI, Cohen LE. Growth Hormone Deficiency and Treatment in Childhood Cancer Survivors. Front Endocrinol (Lausanne) 2021; 12:745932. [PMID: 34745010 PMCID: PMC8569790 DOI: 10.3389/fendo.2021.745932] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/27/2021] [Indexed: 01/21/2023] Open
Abstract
Growth hormone (GH) deficiency is a common pituitary hormone deficiency in childhood cancer survivors (CCS). The identification, diagnosis, and treatment of those individuals at risk are important in order to minimize associated morbidities that can be ameliorated by treatment with recombinant human GH therapy. However, GH and insulin-like growth factor-I have been implicated in tumorigenesis, so there has been concern over the use of GH therapy in patients with a history of malignancy. Reassuringly, GH therapy has not been shown to increase risk of tumor recurrence. These patients have an increased risk for development of meningiomas, but this may be related to their history of cranial irradiation rather than to GH therapy. In this review, we detail the CCS who are at risk for GHD and the existing evidence on the safety profile of GH therapy in this patient population.
Collapse
Affiliation(s)
- Netanya I. Pollock
- Division of Endocrinology, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Laurie E. Cohen
- Division of Endocrinology, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA, United States
| |
Collapse
|
5
|
Boguszewski MCS, Cardoso-Demartini AA, Boguszewski CL, Chemaitilly W, Higham CE, Johannsson G, Yuen KCJ. Safety of growth hormone (GH) treatment in GH deficient children and adults treated for cancer and non-malignant intracranial tumors-a review of research and clinical practice. Pituitary 2021; 24:810-827. [PMID: 34304361 PMCID: PMC8416866 DOI: 10.1007/s11102-021-01173-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/12/2021] [Indexed: 11/24/2022]
Abstract
Individuals surviving cancer and brain tumors may experience growth hormone (GH) deficiency as a result of tumor growth, surgical resection and/or radiotherapy involving the hypothalamic-pituitary region. Given the pro-mitogenic and anti-apoptotic properties of GH and insulin-like growth factor-I, the safety of GH replacement in this population has raised hypothetical safety concerns that have been debated for decades. Data from multicenter studies with extended follow-up have generally not found significant associations between GH replacement and cancer recurrence or mortality from cancer among childhood cancer survivors. Potential associations with secondary neoplasms, especially solid tumors, have been reported, although this risk appears to decline with longer follow-up. Data from survivors of pediatric or adult cancers who are treated with GH during adulthood are scarce, and the risk versus benefit profile of GH replacement of this population remains unclear. Studies pertaining to the safety of GH replacement in individuals treated for nonmalignant brain tumors, including craniopharyngioma and non-functioning pituitary adenoma, have generally been reassuring with regards to the risk of tumor recurrence. The present review offers a summary of the most current medical literature regarding GH treatment of patients who have survived cancer and brain tumors, with the emphasis on areas where active research is required and where consensus on clinical practice is lacking.
Collapse
Affiliation(s)
- Margaret C S Boguszewski
- Departamento de Pediatria, Universidade Federal do Paraná, Avenida Agostinho Leão Junior, 285 - Alto da Glória, Curitiba, PR, 80030-110, Brazil.
| | | | - Cesar Luiz Boguszewski
- SEMPR, Serviço de Endocrinologia e Metabologia, Departamento de Clínica Médica, Hospital de Clínicas da Universidade Federal do Paraná, Curitiba, Brazil
| | - Wassim Chemaitilly
- Departments of Pediatric Medicine-Endocrinology and Epidemiology-Cancer Control, St. Jude Children's Research Hospital, Memphis, USA
| | - Claire E Higham
- Department of Endocrinology, Christie Hospital NHS Foundation Trust and University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Gudmundur Johannsson
- Department of Endocrinology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kevin C J Yuen
- Barrow Pituitary Center, Barrow Neurological Institute, Departments of Neuroendocrinology and Neurosurgery, University of Arizona College of Medicine and Creighton School of Medicine, Phoenix, AZ, USA
| |
Collapse
|
6
|
Cheng Y, Li W, Gui R, Wang C, Song J, Wang Z, Wang X, Shen Y, Wang Z, Hao L. Dual Characters of GH-IGF1 Signaling Pathways in Radiotherapy and Post-radiotherapy Repair of Cancers. Front Cell Dev Biol 2021; 9:671247. [PMID: 34178997 PMCID: PMC8220142 DOI: 10.3389/fcell.2021.671247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/17/2021] [Indexed: 12/02/2022] Open
Abstract
Radiotherapy remains one of the most important cancer treatment modalities. In the course of radiotherapy for tumor treatment, the incidental irradiation of adjacent tissues could not be completely avoided. DNA damage is one of the main factors of cell death caused by ionizing radiation, including single-strand (SSBs) and double-strand breaks (DSBs). The growth hormone-Insulin-like growth factor 1 (GH-IGF1) axis plays numerous roles in various systems by promoting cell proliferation and inhibiting apoptosis, supporting its effects in inducing the development of multiple cancers. Meanwhile, the GH-IGF1 signaling involved in DNA damage response (DDR) and DNA damage repair determines the radio-resistance of cancer cells subjected to radiotherapy and repair of adjacent tissues damaged by radiotherapy. In the present review, we firstly summarized the studies on GH-IGF1 signaling in the development of cancers. Then we discussed the adverse effect of GH-IGF1 signaling in radiotherapy to cancer cells and the favorable impact of GH-IGF1 signaling on radiation damage repair to adjacent tissues after irradiation. This review further summarized recent advances on research into the molecular mechanism of GH-IGF1 signaling pathway in these effects, expecting to specify the dual characters of GH-IGF1 signaling pathways in radiotherapy and post-radiotherapy repair of cancers, subsequently providing theoretical basis of their roles in increasing radiation sensitivity during cancer radiotherapy and repairing damage after radiotherapy.
Collapse
Affiliation(s)
- Yunyun Cheng
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Wanqiao Li
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Ruirui Gui
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Chunli Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Jie Song
- College of Animal Science, Jilin University, Changchun, China
| | - Zhaoguo Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Xue Wang
- The First Hospital of Jilin University, Changchun, China
| | - Yannan Shen
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Zhicheng Wang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Linlin Hao
- College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
7
|
Sbardella E, Crocco M, Feola T, Papa F, Puliani G, Gianfrilli D, Isidori AM, Grossman AB. GH deficiency in cancer survivors in the transition age: diagnosis and therapy. Pituitary 2020; 23:432-456. [PMID: 32488760 DOI: 10.1007/s11102-020-01052-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Survival rates among childhood cancer survivors (CCSs) have significantly risen in the last 40 years due to substantial improvements in treatment protocols. However, this improvement has brought with it serious late effects that frequently involve the endocrine system. Of the endocrine disorders, GH deficiency (GHD) is the most common among CCSs as a consequence of a history of cancers, surgery, and/or radiotherapy involving the hypothalamo-pituitary region. METHODS A comprehensive search of English language articles regardless of age was conducted in the MEDLINE database between December 2018 and October 2019. We selected all studies on GH therapy in CCSs during the transition age regarding the most challenging topics: when to retest; which diagnostic tests and cut-offs to use; when to start GH replacement therapy (GHRT); what GH dose to use; safety; quality of life, compliance and adherence to GHRT; interactions between GH and other hormonal replacement treatments. RESULTS In the present review, we provide an overview of the current clinical management of challenges in GHD in cancer survivors in the transition age. CONCLUSIONS Endocrine dysfunction among CCSs has a high prevalence in the transition age and increase with time. Many endocrine disorders, including GHD, are often not diagnosed or under-diagnosed, probably due to the lack of specialized centers for the long-term follow-up. Therefore, it is crucial that transition specialized clinics should be increased in terms of number and specific skills in order to manage endocrine disorders in adolescence, a delicate and complex period of life. A multidisciplinary approach, also including psychological counseling, is essential in the follow-up and management of these patients in order to minimize their disabilities and maximize their quality of life.
Collapse
Affiliation(s)
- Emilia Sbardella
- Department of Experimental Medicine, Sapienza University of Rome, Viale del Policlinico, 155, 00161, Rome, Italy.
| | - Marco Crocco
- Department of Pediatrics, IRCCS Giannina Gaslini Institute, University of Genoa, Genoa, Italy
| | - Tiziana Feola
- Department of Experimental Medicine, Sapienza University of Rome, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Fortuna Papa
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| | - Giulia Puliani
- Department of Experimental Medicine, Sapienza University of Rome, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Daniele Gianfrilli
- Department of Experimental Medicine, Sapienza University of Rome, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Andrea M Isidori
- Department of Experimental Medicine, Sapienza University of Rome, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Ashley B Grossman
- Department of Endocrinology, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Oxford, OX3 7LE, UK
- Centre for Endocrinology, Barts and the London School of Medicine, London, EC1M 6BQ, UK
| |
Collapse
|
8
|
Seejore K, Kyriakakis N, Murray RD. Is Chemotherapy Implicated in the Development of Hypopituitarism in Childhood Cancer Survivors? J Clin Endocrinol Metab 2020; 105:5607976. [PMID: 31665329 DOI: 10.1210/clinem/dgz132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/18/2019] [Accepted: 10/11/2019] [Indexed: 11/19/2022]
Affiliation(s)
- Khyatisha Seejore
- Leeds Centre for Diabetes and Endocrinology, Department of Endocrinology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
- Leeds Institute for Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds, UK
| | - Nikolaos Kyriakakis
- Leeds Centre for Diabetes and Endocrinology, Department of Endocrinology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
- Leeds Institute for Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds, UK
| | - Robert D Murray
- Leeds Centre for Diabetes and Endocrinology, Department of Endocrinology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
- Leeds Institute for Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds, UK
| |
Collapse
|
9
|
Paetow U, Bader P, Chemaitilly W. A systematic approach to the endocrine care of survivors of pediatric hematopoietic stem cell transplantation. Cancer Metastasis Rev 2020; 39:69-78. [PMID: 31980968 DOI: 10.1007/s10555-020-09864-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Hematopoietic stem cell transplantation (HSCT) is used in children to treat a variety of malignant and nonmalignant hematologic conditions and certain inborn errors of metabolism. Survivors of HSCT are markedly affected by disease and treatment toxicity. Endocrine complications are among the most commonly reported chronic health conditions in this population. In this review, we summarize the most common endocrine late effects after pediatric HSCT. We also highlight the importance of systematic and longitudinal evaluations to achieve early diagnoses and treatment for these conditions and improve the long-term health outcomes for patients who received HSCT as children.
Collapse
Affiliation(s)
- Ulrich Paetow
- Pediatric Endocrinology-Diabetology, Klinik für Kinder- und Jugendmedizin, University Clinic of Frankfurt, Frankfurt am Main, Germany
| | - Peter Bader
- Division of Stem Cell Transplantation and Immunology, Klinik für Kinder- und Jugendmedizin, University Clinic of Frankfurt, Frankfurt am Main, Germany
| | - Wassim Chemaitilly
- Department of Pediatric Medicine, Division of Endocrinology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
10
|
Wit JM, Kamp GA, Oostdijk W. Towards a Rational and Efficient Diagnostic Approach in Children Referred for Growth Failure to the General Paediatrician. Horm Res Paediatr 2020; 91:223-240. [PMID: 31195397 DOI: 10.1159/000499915] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 03/25/2019] [Indexed: 11/19/2022] Open
Abstract
Based on a recent Dutch national guideline, we propose a structured stepwise diagnostic approach for children with growth failure (short stature and/or growth faltering), aiming at high sensitivity for pathologic causes at acceptable specificity. The first step is a detailed clinical assessment, aiming at obtaining relevant clinical clues from the medical history (including family history), physical examination (emphasising head circumference, body proportions and dysmorphic features) and assessment of the growth curve. The second step consists of screening: a radiograph of the hand and wrist (for bone age and assessment of anatomical abnormalities suggestive for a skeletal dysplasia) and laboratory tests aiming at detecting disorders that can present as isolated short stature (anaemia, growth hormone deficiency, hypothyroidism, coeliac disease, renal failure, metabolic bone diseases, renal tubular acidosis, inflammatory bowel disease, Turner syndrome [TS]). We advise molecular array analysis rather than conventional karyotyping for short girls because this detects not only TS but also copy number variants and uniparental isodisomy, increasing diagnostic yield at a lower cost. Third, in case of diagnostic clues for primary growth disorders, further specific testing for candidate genes or a hypothesis-free approach is indicated; suspicion of a secondary growth disorder warrants adequate further targeted testing.
Collapse
Affiliation(s)
- Jan M Wit
- Department of Paediatrics, Leiden University Medical Center, Leiden, The Netherlands,
| | - Gerdine A Kamp
- Department of Paediatrics, Tergooi Hospital, Blaricum, The Netherlands
| | - Wilma Oostdijk
- Department of Paediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
11
|
Antal Z, Balachandar S. Growth Disturbances in Childhood Cancer Survivors. Horm Res Paediatr 2019; 91:83-92. [PMID: 30739101 DOI: 10.1159/000496354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 12/14/2018] [Indexed: 11/19/2022] Open
Abstract
Survival from childhood cancer has improved dramatically over the last few decades, resulting in an increased need to address the long-term follow-up and care of childhood cancer survivors. Appropriate linear growth is an important measure of health, with alterations of growth in children and short adult height in those who have completed growth serving as potential indicators of the sequelae of the underlying diagnosis or the cancer treatments. It is therefore critical that clinicians, particularly endocrinologists, be familiar with the patterns of altered growth which may be seen following diagnosis and treatment for childhood cancer. In this article, we will review the growth alterations seen in childhood cancer survivors, focusing on risk factors and considerations in evaluation and care.
Collapse
Affiliation(s)
- Zoltan Antal
- Division of Pediatric Endocrinology, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA, .,Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA,
| | - Sadana Balachandar
- Department of Pediatrics, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| |
Collapse
|
12
|
Yuen KCJ, Biller BMK, Radovick S, Carmichael JD, Jasim S, Pantalone KM, Hoffman AR. AMERICAN ASSOCIATION OF CLINICAL ENDOCRINOLOGISTS AND AMERICAN COLLEGE OF ENDOCRINOLOGY GUIDELINES FOR MANAGEMENT OF GROWTH HORMONE DEFICIENCY IN ADULTS AND PATIENTS TRANSITIONING FROM PEDIATRIC TO ADULT CARE. Endocr Pract 2019; 25:1191-1232. [PMID: 31760824 DOI: 10.4158/gl-2019-0405] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objective: The development of these guidelines is sponsored by the American Association of Clinical Endocrinologists (AACE) Board of Directors and American College of Endocrinology (ACE) Board of Trustees and adheres with published AACE protocols for the standardized production of clinical practice guidelines (CPG). Methods: Recommendations are based on diligent reviews of clinical evidence with transparent incorporation of subjective factors, according to established AACE/ACE guidelines for guidelines protocols. Results: The Executive Summary of this 2019 updated guideline contains 58 numbered recommendations: 12 are Grade A (21%), 19 are Grade B (33%), 21 are Grade C (36%), and 6 are Grade D (10%). These detailed, evidence-based recommendations allow for nuance-based clinical decision-making that addresses multiple aspects of real-world care of patients. The evidence base presented in the subsequent Appendix provides relevant supporting information for the Executive Summary recommendations. This update contains 357 citations of which 51 (14%) are evidence level (EL) 1 (strong), 168 (47%) are EL 2 (intermediate), 61 (17%) are EL 3 (weak), and 77 (22%) are EL 4 (no clinical evidence). Conclusion: This CPG is a practical tool that practicing endocrinologists and regulatory bodies can refer to regarding the identification, diagnosis, and treatment of adults and patients transitioning from pediatric to adult-care services with growth hormone deficiency (GHD). It provides guidelines on assessment, screening, diagnostic testing, and treatment recommendations for a range of individuals with various causes of adult GHD. The recommendations emphasize the importance of considering testing patients with a reasonable level of clinical suspicion of GHD using appropriate growth hormone (GH) cut-points for various GH-stimulation tests to accurately diagnose adult GHD, and to exercise caution interpreting serum GH and insulin-like growth factor-1 (IGF-1) levels, as various GH and IGF-1 assays are used to support treatment decisions. The intention to treat often requires sound clinical judgment and careful assessment of the benefits and risks specific to each individual patient. Unapproved uses of GH, long-term safety, and the current status of long-acting GH preparations are also discussed in this document. LAY ABSTRACT This updated guideline provides evidence-based recommendations regarding the identification, screening, assessment, diagnosis, and treatment for a range of individuals with various causes of adult growth-hormone deficiency (GHD) and patients with childhood-onset GHD transitioning to adult care. The update summarizes the most current knowledge about the accuracy of available GH-stimulation tests, safety of recombinant human GH (rhGH) replacement, unapproved uses of rhGH related to sports and aging, and new developments such as long-acting GH preparations that use a variety of technologies to prolong GH action. Recommendations offer a framework for physicians to manage patients with GHD effectively during transition to adult care and adulthood. Establishing a correct diagnosis is essential before consideration of replacement therapy with rhGH. Since the diagnosis of GHD in adults can be challenging, GH-stimulation tests are recommended based on individual patient circumstances and use of appropriate GH cut-points. Available GH-stimulation tests are discussed regarding variability, accuracy, reproducibility, safety, and contraindications, among other factors. The regimen for starting and maintaining rhGH treatment now uses individualized dose adjustments, which has improved effectiveness and reduced reported side effects, dependent on age, gender, body mass index, and various other individual characteristics. With careful dosing of rhGH replacement, many features of adult GHD are reversible and side effects of therapy can be minimized. Scientific studies have consistently shown rhGH therapy to be beneficial for adults with GHD, including improvements in body composition and quality of life, and have demonstrated the safety of short- and long-term rhGH replacement. Abbreviations: AACE = American Association of Clinical Endocrinologists; ACE = American College of Endocrinology; AHSG = alpha-2-HS-glycoprotein; AO-GHD = adult-onset growth hormone deficiency; ARG = arginine; BEL = best evidence level; BMD = bone mineral density; BMI = body mass index; CI = confidence interval; CO-GHD = childhood-onset growth hormone deficiency; CPG = clinical practice guideline; CRP = C-reactive protein; DM = diabetes mellitus; DXA = dual-energy X-ray absorptiometry; EL = evidence level; FDA = Food and Drug Administration; FD-GST = fixed-dose glucagon stimulation test; GeNeSIS = Genetics and Neuroendocrinology of Short Stature International Study; GH = growth hormone; GHD = growth hormone deficiency; GHRH = growth hormone-releasing hormone; GST = glucagon stimulation test; HDL = high-density lipoprotein; HypoCCS = Hypopituitary Control and Complications Study; IGF-1 = insulin-like growth factor-1; IGFBP = insulin-like growth factor-binding protein; IGHD = isolated growth hormone deficiency; ITT = insulin tolerance test; KIMS = Kabi International Metabolic Surveillance; LAGH = long-acting growth hormone; LDL = low-density lipoprotein; LIF = leukemia inhibitory factor; MPHD = multiple pituitary hormone deficiencies; MRI = magnetic resonance imaging; P-III-NP = procollagen type-III amino-terminal pro-peptide; PHD = pituitary hormone deficiencies; QoL = quality of life; rhGH = recombinant human growth hormone; ROC = receiver operating characteristic; RR = relative risk; SAH = subarachnoid hemorrhage; SDS = standard deviation score; SIR = standardized incidence ratio; SN = secondary neoplasms; T3 = triiodothyronine; TBI = traumatic brain injury; VDBP = vitamin D-binding protein; WADA = World Anti-Doping Agency; WB-GST = weight-based glucagon stimulation test.
Collapse
|
13
|
Collett-Solberg PF, Jorge AAL, Boguszewski MCS, Miller BS, Choong CSY, Cohen P, Hoffman AR, Luo X, Radovick S, Saenger P. Growth hormone therapy in children; research and practice - A review. Growth Horm IGF Res 2019; 44:20-32. [PMID: 30605792 DOI: 10.1016/j.ghir.2018.12.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 12/24/2018] [Indexed: 01/15/2023]
Abstract
Short stature remains the most common reason for referral to a pediatric Endocrinologist and its management remains a challenge. One of the main controversies is the diagnosis of idiopathic short stature and the role of new technologies for genetic investigation of children with inadequate growth. Complexities in management of children with short stature includes selection of who should receive interventions such as recombinant human growth hormone, and how should this agent dose be adjusted during treatment. Should anthropometrical data be the primary determinant or should biochemical and genetic data be used to improve growth response and safety? Furthermore, what is considered a suboptimal response to growth hormone therapy and how should this be managed? Treatment of children with short stature remains a "hot" topic and more data is needed in several areas. These issues are reviewed in this paper.
Collapse
Affiliation(s)
- Paulo Ferrez Collett-Solberg
- Pediatric Endocrinology, Departamento de Medicina Interna, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil.
| | - Alexander A L Jorge
- Faculdade de Medicina, Universidade de São Paulo (FMUSP), the Endocrinology Division/Genetic Endocrinology Unit (LIM 25), Brazil.
| | | | - Bradley S Miller
- Pediatric Endocrinology, University of Minnesota Masonic Children's Hospital, USA.
| | - Catherine Seut Yhoke Choong
- Division of Pediatrics School of Medicine, Perth Childrens Hospital, University of Western Australia, Australia.
| | - Pinchas Cohen
- Dean, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| | - Andrew R Hoffman
- Senior Vice Chair for Academic Affairs, Department of Medicine, Stanford University, USA.
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Sally Radovick
- Department of Pediatrics, Senior Associate Dean for Clinical and Translational Research, Robert Wood Johnson Medical School, USA.
| | - Paul Saenger
- New York University Winthrop Hospital, 101 Mineola Boulevard, Mineola, NY 11201, USA.
| |
Collapse
|
14
|
Patti G, Noli S, Capalbo D, Allegri AME, Napoli F, Cappa M, Ubertini GM, Gallizia A, Notarnicola S, Ibba A, Crocco M, Parodi S, Salerno M, Loche S, Garré ML, Tornari E, Maghnie M, Di Iorgi N. Accuracy and Limitations of the Growth Hormone (GH) Releasing Hormone-Arginine Retesting in Young Adults With Childhood-Onset GH Deficiency. Front Endocrinol (Lausanne) 2019; 10:525. [PMID: 31417499 PMCID: PMC6684745 DOI: 10.3389/fendo.2019.00525] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/16/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Re-testing for GH secretion is needed to confirm the diagnosis of GH deficiency (GHD) after adult height achievement in childhood-onset GHD (COGHD). Aim: To define the cut-off of GH peak after retesting with GH-releasing hormone plus arginine (GHRHarg) in the diagnosis of permanent GHD in COGHD of different etiology. Patients and methods: Eighty-eight COGHD (median age 17.2 y), 29 idiopathic GHD (IGHD), 44 cancer survivors (TGHD) and 15 congenital GHD (CGHD) were enrolled in the study; 54 had isolated GHD (iGHD) and 34 had multiple pituitary hormone deficiencies (MPHD). All were tested with insulin tolerance test (ITT) and GHRHarg. IGHD with a GH response to ITT ≥6μg/L were considered true negatives and served as the control group, and patients with a GH response <6μg/L as true positives. Baseline IGF-I was also measured. The diagnostic accuracy of GHRHarg testing and of IGF-I SDS in patients with GHD of different etiologies was evaluated by ROC analysis. Results: Forty-six subjects with a GH peak to ITT ≥6μg/L and 42 with GH peak <6 μg/L showed a GH peak after GHRHarg between 8.8-124μg/L and 0.3-26.3μg/L, respectively; 29 IGHD were true negatives, 42 were true positives and 17 with a high likelihood GHD showed a GH peak to ITT ≥6μg/L. ROC analysis based on the etiology indicated the best diagnostic accuracy for peak GH cutoffs after GHRHarg of 25.3 μg/L in CGHD, 15.7 in TGHD, and 13.8 in MPHD, and for IGF-1 SDS at -2.1 in CGHD, -1.5 in TGHD, and -1.9 in MPHD. Conclusions: Our findings indicate that the best cut-off for GH peak after retesting with GHRHarg changes according to the etiology of GHD during the transition age. Based on these results the diagnostic accuracy of GHRHarg remains questionable.
Collapse
Affiliation(s)
- Giuseppa Patti
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini Institute, University of Genova, Genova, Italy
| | - Serena Noli
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini Institute, University of Genova, Genova, Italy
| | | | | | - Flavia Napoli
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini Institute, Genova, Italy
| | - Marco Cappa
- Unit of Endocrinology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Annalisa Gallizia
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini Institute, University of Genova, Genova, Italy
| | - Sara Notarnicola
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini Institute, University of Genova, Genova, Italy
| | - Anastasia Ibba
- SSD Endocrinologia Pediatrica, Ospedale Pediatrico Microcitemico "A. Cao," Azienda Ospedaliera Brotzu, Cagliari, Italy
| | - Marco Crocco
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini Institute, University of Genova, Genova, Italy
| | - Stefano Parodi
- Epidemiology and Biostatistics Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Mariacarolina Salerno
- Department of Translational Medical Sciences-Pediatric Section, University of Naples Federico II, Naples, Italy
| | - Sandro Loche
- SSD Endocrinologia Pediatrica, Ospedale Pediatrico Microcitemico "A. Cao," Azienda Ospedaliera Brotzu, Cagliari, Italy
| | - Maria Luisa Garré
- Dipartimento di Neuroncologia, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Elena Tornari
- Health Science Department (DISSAL), University of Genova, Genova, Italy
| | - Mohamad Maghnie
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini Institute, University of Genova, Genova, Italy
| | - Natascia Di Iorgi
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini Institute, University of Genova, Genova, Italy
| |
Collapse
|