1
|
Trinh B, Burkard T. The mTOR-inhibitor everolimus reduces hypervolemia in patients with primary aldosteronism. Minerva Endocrinol (Torino) 2024; 49:150-157. [PMID: 33792239 DOI: 10.23736/s2724-6507.21.03382-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND We recently showed in a proof-of-concept study that treating individuals with primary aldosteronism with the mTOR-inhibitor everolimus decreases home blood pressure and renin suppression overall, and markedly reduces aldosterone levels in a subset of individuals. Based on these findings, the question arose whether the effects of everolimus were also mediated via aldosterone-independent mechanisms. Here, we undertook an exploratory, secondary analysis of above-mentioned study to comprehensively investigate how everolimus impacted the hemodynamic status of the study participants, which in turn could elucidate these mechanisms. METHODS Hemodynamic parameters were measured in study participants with primary aldosteronism at baseline, after treatment with everolimus 0.75 mg orally twice daily for 2 weeks and after a 2-week wash-out. Of the 14 participants, 10 participants had complete data sets for peripheral and central blood pressure, heart rate and pulse wave velocity, and 7 participants had complete data sets for cardiac index, inotropic state index, left stroke work index and stroke systemic vascular resistance index that could be analyzed. Parameters were acquired by brachial oscillometry (Mobil-o-graph PWA) and thoracic electrical bioimpedance (HOTMAN® System). RESULTS After treatment with everolimus, peripheral (P=0.049) and central (P=0.037) diastolic blood pressure, as well as hypervolemia (P=0.008) were significantly decreased. Likewise, peripheral (P=0.073) and central systolic blood pressure (P=0.166) trended downwards. CONCLUSIONS Everolimus lowers central and peripheral blood pressure in individuals with primary aldosteronism, possibly by decreasing primary aldosteronism-induced hypervolemia and preload.
Collapse
Affiliation(s)
- Beckey Trinh
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland -
- Center for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark -
| | - Thilo Burkard
- ESH Hypertension Center of Excellence, Medical Outpatient Department and Cardiology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
2
|
Aljaibeji H, Heydarpour M, Stanton AM, Williams JS, Pojoga LH, Romero JR, Williams GH. Role of Raptor Gene Variants in Hypertension: Influence on Blood Pressure Independent of Salt Intake in White Population. Hypertension 2024; 81:1167-1177. [PMID: 38497230 PMCID: PMC11023780 DOI: 10.1161/hypertensionaha.123.22273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/29/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND The mTOR (mechanistic target of rapamycin) is an essential regulator of fundamental biological processes. mTOR forms 2 distinct complexes, mTORC1 (mTOR complex 1) when it binds with RAPTOR (Regulatory-associated Protein of mTOR) and mTORC2 (mTOR complex 2) when it associates with RICTOR (Rapamycin-insesitive companion of mTOR). Due to the previous link between the mTOR pathway, aldosterone, and blood pressure (BP), we anticipated that variants in the mTOR complex might be associated with salt-sensitive BP. METHODS BP and other parameters were assessed after a one-week liberal Na+ (200 mmol/d) and a one-week restricted Na+ (10 mmol/d) diet in 608 White subjects from the Hypertensive Pathotype cohort, single-nucleotide variants in MTOR, RPTOR, and RICTOR genes were obtained for candidate genes analyses. RESULTS The analysis revealed a significant association between a single nucleotide variants within the RPTOR gene and BP. Individuals carrying the RPTOR rs9901846 homozygous risk allele (AA) and heterozygous risk allele (GA) exhibited a 5 mm Hg increase in systolic BP on a liberal diet compared with nonrisk allele individuals (GG), but only in women. This single nucleotide variants effect was more pronounced on the restricted diet and present in both sexes, with AA carriers having a 9 mm Hg increase and GA carriers having a 5 mm Hg increase in systolic BP compared with GG. Interestingly, there were no significant associations between MTOR or RICTOR gene variants and BP. CONCLUSIONS The RPTOR gene variation is associated with elevated BP in White participants, regardless of salt intake, specifically in females.
Collapse
Affiliation(s)
- Hayat Aljaibeji
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, MA (H.A., M.H., A.M.S., J.S.W., L.H.P., J.R.R., G.H.W.)
| | - Mahyar Heydarpour
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, MA (H.A., M.H., A.M.S., J.S.W., L.H.P., J.R.R., G.H.W.)
| | - Ana Maria Stanton
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, MA (H.A., M.H., A.M.S., J.S.W., L.H.P., J.R.R., G.H.W.)
| | - Jonathan S Williams
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, MA (H.A., M.H., A.M.S., J.S.W., L.H.P., J.R.R., G.H.W.)
| | - Luminita H Pojoga
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, MA (H.A., M.H., A.M.S., J.S.W., L.H.P., J.R.R., G.H.W.)
| | - Jose R Romero
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, MA (H.A., M.H., A.M.S., J.S.W., L.H.P., J.R.R., G.H.W.)
| | - Gordon H Williams
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, MA (H.A., M.H., A.M.S., J.S.W., L.H.P., J.R.R., G.H.W.)
| |
Collapse
|
3
|
Ali Y, Gomez-Sanchez CE, Plonczynski M, Naray-Fejes-Toth A, Fejes-Toth G, Gomez-Sanchez EP. mTOR Regulates Mineralocorticoid Receptor Transcriptional Activity by ULK1-Dependent and -Independent Mechanisms. Endocrinology 2024; 165:bqae015. [PMID: 38325289 PMCID: PMC10887451 DOI: 10.1210/endocr/bqae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
The mineralocorticoid receptor (MR) is a transcription factor for genes mediating diverse, cell-specific functions, including trophic effects as well as promoting fluid/electrolyte homeostasis. It was reported that in intercalated cells, phosphorylation of the MR at serine 843 (S843) by Unc-51-like kinase (ULK1) inhibits MR activation and that phosphorylation of ULK1 by mechanistic target of rapamycin (mTOR) inactivates ULK1, and thereby prevents MR inactivation. We extended these findings with studies in M1 mouse cortical collecting duct cells stably expressing the rat MR and a reporter gene. Pharmacological inhibition of ULK1 dose-dependently increased ligand-induced MR transactivation, while ULK1 activation had no effect. Pharmacological inhibition of mTOR and CRISPR/gRNA gene knockdown of rapamycin-sensitive adapter protein of mTOR (Raptor) or rapamycin-insensitive companion of mTOR (Rictor) decreased phosphorylated ULK1 and ligand-induced activation of the MR reporter gene, as well as transcription of endogenous MR-target genes. As predicted, ULK1 inhibition had no effect on aldosterone-mediated transcription in M1 cells with the mutated MR-S843A (alanine cannot be phosphorylated). In contrast, mTOR inhibition dose-dependently decreased transcription in the MR-S843A cells, though not as completely as in cells with the wild-type MR-S843. mTOR, Raptor, and Rictor coprecipitated with the MR and addition of aldosterone increased their phosphorylated, active state. These results suggest that mTOR significantly regulates MR activity in at least 2 ways: by suppressing MR inactivation by ULK1, and by a yet ill-defined mechanism that involves direct association with MR. They also provide new insights into the diverse functions of ULK1 and mTOR, 2 key enzymes that monitor the cell's energy status.
Collapse
Affiliation(s)
- Yusuf Ali
- Research Service, G. V. (Sonny) Montgomery VA Medical Center, Jackson, MS 39216, USA
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Celso E Gomez-Sanchez
- Research Service, G. V. (Sonny) Montgomery VA Medical Center, Jackson, MS 39216, USA
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Maria Plonczynski
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | - Geza Fejes-Toth
- Department of Physiology, Dartmouth Medical School, Lebanon, NH 03755, USA
| | - Elise P Gomez-Sanchez
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
4
|
Nicolaides NC. Angiotensin II-activated mTOR Pathway Passes Through Mitochondrion in Adrenocortical Cells: A Role of Acyl CoA Synthetase. Endocrinology 2023; 164:7076427. [PMID: 36912011 DOI: 10.1210/endocr/bqad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/26/2023] [Accepted: 03/06/2023] [Indexed: 03/14/2023]
Affiliation(s)
- Nicolas C Nicolaides
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, 11527, Greece
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
5
|
Lai MW, Chow N, Checco A, Kunar B, Redmond D, Rafii S, Rabbany SY. Systems Biology Analysis of Temporal Dynamics That Govern Endothelial Response to Cyclic Stretch. Biomolecules 2022; 12:1837. [PMID: 36551265 PMCID: PMC9775567 DOI: 10.3390/biom12121837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Endothelial cells in vivo are subjected to a wide array of mechanical stimuli, such as cyclic stretch. Notably, a 10% stretch is associated with an atheroprotective endothelial phenotype, while a 20% stretch is associated with an atheroprone endothelial phenotype. Here, a systems biology-based approach is used to present a comprehensive overview of the functional responses and molecular regulatory networks that characterize the transition from an atheroprotective to an atheroprone phenotype in response to cyclic stretch. Using primary human umbilical vein endothelial cells (HUVECs), we determined the role of the equibiaxial cyclic stretch in vitro, with changes to the radius of the magnitudes of 10% and 20%, which are representative of physiological and pathological strain, respectively. Following the transcriptome analysis of next-generation sequencing data, we identified four key endothelial responses to pathological cyclic stretch: cell cycle regulation, inflammatory response, fatty acid metabolism, and mTOR signaling, driven by a regulatory network of eight transcription factors. Our study highlights the dynamic regulation of several key stretch-sensitive endothelial functions relevant to the induction of an atheroprone versus an atheroprotective phenotype and lays the foundation for further investigation into the mechanisms governing vascular pathology. This study has significant implications for the development of treatment modalities for vascular disease.
Collapse
Affiliation(s)
- Michael W. Lai
- Bioengineering Program, DeMatteis School of Engineering and Applied Science, Hofstra University, New York, NY 11549, USA
| | - Nathan Chow
- Bioengineering Program, DeMatteis School of Engineering and Applied Science, Hofstra University, New York, NY 11549, USA
| | - Antonio Checco
- Bioengineering Program, DeMatteis School of Engineering and Applied Science, Hofstra University, New York, NY 11549, USA
| | - Balvir Kunar
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine (WCM), New York, NY 10065, USA
| | - David Redmond
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine (WCM), New York, NY 10065, USA
| | - Shahin Rafii
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine (WCM), New York, NY 10065, USA
| | - Sina Y. Rabbany
- Bioengineering Program, DeMatteis School of Engineering and Applied Science, Hofstra University, New York, NY 11549, USA
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine (WCM), New York, NY 10065, USA
| |
Collapse
|
6
|
Ali Y, Gomez-Sanchez EP, Gomez-Sanchez CE. Mammalian Target of Rapamycin Inhibition Decreases Angiotensin II-Induced Steroidogenesis in HAC15 Human Adrenocortical Carcinoma Cells. Endocrinology 2022; 164:bqac185. [PMID: 36320101 PMCID: PMC9923797 DOI: 10.1210/endocr/bqac185] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Mammalian target of rapamycin (mTOR) inhibitors suppress adrenal cortical carcinoma cell proliferation and cortisol production; the relationship between mTOR and aldosterone production has not been examined. METHODS HAC15 cells were incubated with an mTOR activator and several inhibitors including AZD8055 (AZD) in the presence and absence of angiotensin II (AngII). The expression of rapamycin-sensitive adapter protein of mTOR (Raptor) and rapamycin-insensitive companion of mTOR (Rictor), adaptor proteins of mTOR complex 1 and 2, respectively, were studied in the HAC15 cells and deleted by CRISPR/gRNA. RESULTS The mTOR inhibitors decreased aldosterone induced by AngII. Inhibition of mTOR by AZD significantly suppressed AngII-induced aldosterone and cortisol formation in a dose-dependent manner, whereas the mTOR activator MHY had no effect. AZD did not alter forskolin-induced aldosterone production showing that it is specific to the AngII signaling pathway. AngII-mediated ERK and mTOR activation were suppressed by AZD, along with a concomitant dose-dependent reduction of AngII-induced steroidogenic enzymes including steroidogenic acute regulatory protein, 3β-hydroxysteroid dehydrogenase-type 2, CYP17A1, and aldosterone synthase protein. Furthermore, mTOR components ribosomal protein S6 kinase (P70S6K) and protein kinase B phosphorylation levels were decreased by AZD. As mTOR exerts its main effects by forming complexes with adaptor proteins Raptor and Rictor, the roles of these individual complexes were studied. We found an increase in the phosphorylation of Raptor and Rictor by AngII and that their CRISPR/gRNA-mediated knockdown significantly attenuated AngII-induced aldosterone and cortisol production. CONCLUSION mTOR signaling has a critical role in transducing the AngII signal initiating aldosterone and cortisol synthesis in HAC15 cells and that inhibition of mTOR could be a therapeutic option for conditions associated with excessive renin-angiotensin system-mediated steroid synthesis.
Collapse
Affiliation(s)
- Yusuf Ali
- G. V. (Sonny) Montgomery, VA Medical Center, Jackson, MS, USA
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Elise P Gomez-Sanchez
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Celso E Gomez-Sanchez
- G. V. (Sonny) Montgomery, VA Medical Center, Jackson, MS, USA
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
7
|
Progress on Genetic Basis of Primary Aldosteronism. Biomedicines 2021; 9:biomedicines9111708. [PMID: 34829937 PMCID: PMC8615950 DOI: 10.3390/biomedicines9111708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 11/23/2022] Open
Abstract
Primary aldosteronism (PA) is a heterogeneous group of disorders caused by the autonomous overproduction of aldosterone with simultaneous suppression of plasma renin activity (PRA). It is considered to be the most common endocrine cause of secondary arterial hypertension (HT) and is associated with a high rate of cardiovascular complications. PA is most often caused by a bilateral adrenal hyperplasia (BAH) or aldosterone-producing adenoma (APA); rarer causes of PA include genetic disorders of steroidogenesis (familial hyperaldosteronism (FA) type I, II, III and IV), aldosterone-producing adrenocortical carcinoma, and ectopic aldosterone-producing tumors. Over the last few years, significant progress has been made towards understanding the genetic basis of PA, classifying it as a channelopathy. Recently, a growing body of clinical evidence suggests that mutations in ion channels appear to be the major cause of aldosterone-producing adenomas, and several mutations within the ion channel encoding genes have been identified. Somatic mutations in four genes (KCNJ5, ATP1A1, ATP2B3 and CACNA1D) have been identified in nearly 60% of the sporadic APAs, while germline mutations in KCNJ5 and CACNA1H have been reported in different subtypes of familial hyperaldosteronism. These new insights into the molecular mechanisms underlying PA may be associated with potential implications for diagnosis and therapy.
Collapse
|
8
|
Brooks DL, Garza AE, Caliskan Guzelce E, Gholami SK, Treesaranuwattana T, Maris S, Ranjit S, Tay CS, Lee JM, Romero JR, Adler GK, Pojoga LH, Williams GH. mTORC1 Deficiency Modifies Volume Homeostatic Responses to Dietary Sodium in a Sex-Specific Manner. Endocrinology 2020; 161:5802448. [PMID: 32154868 PMCID: PMC7391217 DOI: 10.1210/endocr/bqaa041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/06/2020] [Indexed: 12/21/2022]
Abstract
The mechanistic target of the rapamycin (mTOR) pathway plays a role in features common to both excess salt/aldosterone and cardiovascular/renal diseases. Dietary sodium can upregulate mTORC1 signaling in cardiac and renal tissue, and the inhibition of mTOR can prevent aldosterone-associated, salt-induced hypertension. The impact of sex and age on mTOR's role in volume homeostasis and the regulation of aldosterone secretion is largely unknown. We hypothesize that both age and sex modify mTOR's interaction with volume homeostatic mechanisms. The activity of 3 volume homeostatic mechanisms-cardiovascular, renal, and hormonal (aldosterone [sodium retaining] and brain natriuretic peptide [BNP; sodium losing])-were assessed in mTORC1 deficient (Raptor+/-) and wild-type male and female littermates at 2 different ages. The mice were volume stressed by being given a liberal salt (LibS) diet. Raptor+/-mice of both sexes when they aged: (1) reduced their blood pressure, (2) increased left ventricular internal diameter during diastole, (3) decreased renal blood flow, and (4) increased mineralocorticoid receptor expression. Aldosterone levels did not differ by sex in young Raptor+/- mice. However, as they aged, compared to their littermates, aldosterone decreased in males but increased in females. Finally, given the level of Na+ intake, BNP was inappropriately suppressed, but only in Raptor+/- males. These data indicate that Raptor+/- mice, when stressed with a LibS diet, display inappropriate volume homeostatic responses, particularly with aging, and the mechanisms altered, differing by sex.
Collapse
Affiliation(s)
- Danielle L Brooks
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA
| | - Amanda E Garza
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA
| | - Ezgi Caliskan Guzelce
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA
| | - Shadi K Gholami
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA
| | | | - Stephen Maris
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA
| | - Sanjay Ranjit
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA
| | - Chee Sin Tay
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA
| | - Jessica M Lee
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA
| | - Jose R Romero
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA
| | - Gail K Adler
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA
| | - Luminita H Pojoga
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA
| | - Gordon H Williams
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA
- Correspondence: Gordon H. Williams, MD, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, 221 Longwood Avenue, Boston Massachusetts 02115. E-mail:
| |
Collapse
|
9
|
Tevosian SG, Fox SC, Ghayee HK. Molecular Mechanisms of Primary Aldosteronism. Endocrinol Metab (Seoul) 2019; 34:355-366. [PMID: 31884735 PMCID: PMC6935778 DOI: 10.3803/enm.2019.34.4.355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/02/2019] [Accepted: 12/09/2019] [Indexed: 01/11/2023] Open
Abstract
Primary aldosteronism (PA) results from excess production of mineralocorticoid hormone aldosterone by the adrenal cortex. It is normally caused either by unilateral aldosterone-producing adenoma (APA) or by bilateral aldosterone excess as a result of bilateral adrenal hyperplasia. PA is the most common cause of secondary hypertension and associated morbidity and mortality. While most cases of PA are sporadic, an important insight into this debilitating disease has been derived through investigating the familial forms of the disease that affect only a minor fraction of PA patients. The advent of gene expression profiling has shed light on the genes and intracellular signaling pathways that may play a role in the pathogenesis of these tumors. The genetic basis for several forms of familial PA has been uncovered in recent years although the list is likely to expand. Recently, the work from several laboratories provided evidence for the involvement of mammalian target of rapamycin pathway and inflammatory cytokines in APAs; however, their mechanism of action in tumor development and pathophysiology remains to be understood.
Collapse
Affiliation(s)
- Sergei G Tevosian
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Shawna C Fox
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Hans K Ghayee
- Division of Endocrinology, Department of Medicine, Malcom Randall VA Medical Center, University of Florida, Gainesville, FL, USA.
| |
Collapse
|