1
|
Banks CM, Trott JF, Hovey RC. The prolactin receptor: A cross-species comparison of gene structure, transcriptional regulation, tissue-specificity, and genetic variation. J Neuroendocrinol 2024; 36:e13385. [PMID: 38586906 DOI: 10.1111/jne.13385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/25/2024] [Accepted: 03/13/2024] [Indexed: 04/09/2024]
Abstract
The conserved and multifaceted functions of prolactin (PRL) are coordinated through varied distribution and expression of its cell-surface receptor (PRLR) across a range of tissues and physiological states. The resultant heterogeneous expression of PRLR mRNA and protein across different organs and cell types supports a wide range of PRL-regulated processes including reproduction, lactation, development, and homeostasis. Genetic variation within the PRLR gene also accounts for several phenotypes impacting agricultural production and human pathology. The goal of this review is to highlight the many elements that control differential expression of the PRLR across tissues, and the various phenotypes that exist across species due to variation in the PRLR gene.
Collapse
Affiliation(s)
- Carmen M Banks
- Department of Animal Science, University of California, Davis, Davis, California, USA
| | - Josephine F Trott
- Department of Animal Science, University of California, Davis, Davis, California, USA
| | - Russell C Hovey
- Department of Animal Science, University of California, Davis, Davis, California, USA
| |
Collapse
|
2
|
Kavarthapu R, Dufau ML. Prolactin receptor gene transcriptional control, regulatory modalities relevant to breast cancer resistance and invasiveness. Front Endocrinol (Lausanne) 2022; 13:949396. [PMID: 36187116 PMCID: PMC9520000 DOI: 10.3389/fendo.2022.949396] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/19/2022] [Indexed: 12/04/2022] Open
Abstract
The prolactin receptor (PRLR) is a member of the lactogen/cytokine receptor family, which mediates multiple actions of prolactin (PRL). PRL is a major hormone in the proliferation/differentiation of breast epithelium that is essential for lactation. It is also involved in breast cancer development, tumor growth and chemoresistance. Human PRLR expression is controlled at the transcriptional level by multiple promoters. Each promoter directs transcription/expression of a specific non-coding exon 1, a common non-coding exon 2 and coding exons E3-11. The identification of exon 11 of PRLR led to finding of alternative spliced products and two novel short forms (SF) that can inhibit the long form (LF) of PRLR activity with relevance in physiological regulation and breast cancer. Homo and heterodimers of LF and SF are formed in the absence of PRL that acts as a conformational modifier. Heterodimerization of SF with LF is a major mechanism through which SF inhibits some signaling pathways originating at the LF. Biochemical/molecular modeling approaches demonstrated that the human PRLR conformation stabilized by extracellular intramolecular S-S bonds and several amino acids in the extracellular D1 domain of PRLR SF are required for its inhibitory actions on PRLR LF-mediated functions. Studies in breast cancer cells demonstrated that the transcription of PRLR was directed by the preferentially utilized PIII promoter, which lacks an estrogen responsive element. Complex formation of non-DNA bound ERα dimer with Sp1 and C/EBPβ dimers bound to their sites at the PRLR promoter is required for basal activity. Estradiol induces transcriptional activation/expression of the PRLR gene, and subsequent studies revealed the essential role of autocrine PRL released by breast cancer cells and CDK7 in estradiol-induced PRLR promoter activation and upregulation. Other studies revealed stimulation of the PRLR promoter activity and PRLR LF protein by PRL in the absence of estrogen via the STAT5/phospho-ERα activation loop. Additionally, EGF/ERBB1 can induce the transcription of PRLR independent of estrogen and prolactin. The various regulatory modalities contributing to the upregulation of PRLR provide options for the development of therapeutic approaches to mitigate its participation in breast cancer progression and resistance.
Collapse
Affiliation(s)
| | - Maria L. Dufau
- Section on Molecular Endocrinology, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
3
|
Abramicheva PA, Smirnova OV. Prolactin Receptor Isoforms as the Basis of Tissue-Specific Action of Prolactin in the Norm and Pathology. BIOCHEMISTRY (MOSCOW) 2019; 84:329-345. [PMID: 31228925 DOI: 10.1134/s0006297919040011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The review describes functional and structural features of different isoforms of prolactin receptor, mechanisms of signaling pathway activation, and molecular messengers involved in the transmission and termination of signal from the prolactin receptor isoforms. Changes in the ratio between prolactin receptor isoforms, key mediators of prolactin signal transduction and termination in various organs and tissues, are analyzed. Special attention is given to the role of molecular mediators and the ratio between the isoforms in normal physiological functions and pathologies. Approaches for therapeutic correction of prolactin signaling impairments are discussed.
Collapse
Affiliation(s)
- P A Abramicheva
- Lomonosov Moscow State University, Biological Faculty, Moscow, 119991, Russia.
| | - O V Smirnova
- Lomonosov Moscow State University, Biological Faculty, Moscow, 119991, Russia
| |
Collapse
|
4
|
Wallis M. Molecular evolution of prolactin in Chiroptera: Accelerated evolution and a large insertion in vespertilionid bats. Gen Comp Endocrinol 2018; 269:102-111. [PMID: 30172709 DOI: 10.1016/j.ygcen.2018.08.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 11/15/2022]
Abstract
Pituitary prolactin (PRL) shows an episodic pattern of evolution in mammals, with a slow underlying rate (near stasis) and periods of rapid change in some groups. PRL evolution in bats, the second most speciose mammalian order, has not previously been studied, and is examined here. Slow basal evolution of PRL is seen in some bats, particularly megabats, but in most microbat groups evolution of PRL is more rapid. Accelerated evolution of PRL is particularly notable in the family Vespertilionidae, where analysis of nonsynonymous and synonymous substitutions indicates that it reflects adaptive evolution/positive selection. Remarkably, vespertilionid bats also show a large sequence insertion, of variable length, into exon 4 of PRL, giving a protein sequence 18-60 amino acids longer than normal, with the longest insertions in bats of the genus Myotis. An equivalent insertion has not been reported in PRL of any other vertebrate group. In the 3-dimensional structure of the complex between PRL and the extracellular domain (ecd) of its receptor (PRL:PRLR2) the inserted sequence is seen to be introduced in the short loop between helices 2 and 3 of PRL; it is far removed from the receptor-binding sites, and may not interfere with binding. The ecd of the receptor also shows variable rates of evolution, with a higher rate in the Vespertilionidae, but this is much less marked than for the hormone. The distribution of substitutions introduced into PRL during vespertilionid evolution appears to be non-random, and this and the evidence for positive selection suggests that the rapid evolution and insert sequence introduction were associated with a significant change in the biological properties of the hormone.
Collapse
Affiliation(s)
- Michael Wallis
- Biochemistry and Biomedicine Group, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK.
| |
Collapse
|
5
|
Kavarthapu R, Dufau ML. Essential role of endogenous prolactin and CDK7 in estrogen-induced upregulation of the prolactin receptor in breast cancer cells. Oncotarget 2018; 8:27353-27363. [PMID: 28423697 PMCID: PMC5432340 DOI: 10.18632/oncotarget.16040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/18/2017] [Indexed: 01/28/2023] Open
Abstract
Our early studies have shown that Estradiol (E2)/Estrogen Receptor α (ER) in a non-DNA dependent manner through complex formation with C/EBPβ/SP1 induced transcriptional activation of the generic hPIII promoter and expression of the Prolactin Receptor (PRLR) receptor in MCF-7 cells. Subsequent studies demonstrated effects of unliganded ERα with requisite participation of endogenous PRL on the activation of PRLR transcription. Also, EGF/ERBB1 in the absence of PRL and E2 effectively induced upregulation of the PRLR. In this study we have delineated the transcriptional mechanism of upregulation of PRLR receptor induced by E2 incorporating knowledge of the various transcriptional upregulation modalities from our previous studies. Here, we demonstrate an essential requirement of STAT5a induced by PRL via PRLR receptor which associates at the promoter and its interaction with phoshoERα S118. Knock-down of PRL by siRNA significantly reduced E2-induced PRLR promoter activity, mRNA and protein expression, recruitment of ERα to the complex at promoter, C/EBPβ association to its DNA site and productive complex formation at hPIII promoter. The specific CDK7 inhibitor (THZ1) that attenuates E2-induced ERα phosphorylation at S118 abrogated E2-induced PRLR promoter activation. Further studies demonstrated that E2 induced cell migration was inhibited by PRL siRNA and THZ1 indicating its dependence on PRL/PRLR and CDK7, respectively. Our studies have demonstrated the essential role of endogenous PRL and CDK7 in the upregulation of PRLR by E2 and provide insights for therapeutic approaches that will mitigate the transcription/expression of PRLR and its participation in breast cancer progression fueled by E2 and PRL via their cognate receptors.
Collapse
Affiliation(s)
- Raghuveer Kavarthapu
- Section on Molecular Endocrinology, Eunice Kennedy Schriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4510, USA
| | - Maria L Dufau
- Section on Molecular Endocrinology, Eunice Kennedy Schriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4510, USA
| |
Collapse
|
6
|
Kim JJ, Choi YM, Lee SK, Yang KM, Paik EC, Jeong HJ, Jun JK, Han AR, Hwang KR, Hong MA. Prolactin receptor gene polymorphism and the risk of recurrent pregnancy loss: a case-control study. J OBSTET GYNAECOL 2017; 38:261-264. [DOI: 10.1080/01443615.2017.1351932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jin Ju Kim
- Department of Obstetrics and Gynecology, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Korea
- The Institute of Reproductive Medicine and Population, Medical Research Centre, Seoul National University College of Medicine, Seoul, Korea
| | - Young Min Choi
- The Institute of Reproductive Medicine and Population, Medical Research Centre, Seoul National University College of Medicine, Seoul, Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Ki Lee
- Department of Obstetrics and Gynecology, Konyang University College of Medicine, Daejeon, Korea
| | - Kwang Moon Yang
- Department of Obstetrics and Gynecology, Cheil General Hospital & Women’s Healthcare Center, Dankook University College of Medicine, Seoul, Korea
| | - Eun Chan Paik
- Department of Obstetrics and Gynecology, Bundangcheil Women’s Hospital, Bundang, Korea
| | - Hyeon Jeong Jeong
- Department of Obstetrics and Gynecology, Seoul Rachel Fertility Center, Seoul, Korea
| | - Jong Kwan Jun
- The Institute of Reproductive Medicine and Population, Medical Research Centre, Seoul National University College of Medicine, Seoul, Korea
| | - Ae Ra Han
- Department of Obstetrics and Gynecology, Konyang University College of Medicine, Daejeon, Korea
| | - Kyu Ri Hwang
- Department of Obstetrics and Gynecology, Seoul Municipal Boramae Hospital, Seoul, Korea
| | - Min A Hong
- The Institute of Reproductive Medicine and Population, Medical Research Centre, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Kavarthapu R, Dufau ML. Role of EGF/ERBB1 in the transcriptional regulation of the prolactin receptor independent of estrogen and prolactin in breast cancer cells. Oncotarget 2016; 7:65602-65613. [PMID: 27564112 PMCID: PMC5323178 DOI: 10.18632/oncotarget.11579] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/13/2016] [Indexed: 12/29/2022] Open
Abstract
Prolactin receptor (PRLR) and epidermal growth factor receptor (EGFR/ERBB1) have important roles in the physiology of the human breast and in the etiology and progression of breast cancer. Our present studies in MCF-7 cells revealed that EGF induces up-regulation of PRLR via activation of EGFR signalling pathways leading to activation of estrogen receptor α (ERα). EGF treatment of MCF-7 cells cultured in absence of estradiol induced expression of PRLR that was consistent with the activation of PRLR generic promoter (hPIII). These were abolished by ERα antagonist and siRNA, indicating involvement of ERα in EGF-induced hPIII promoter activity. MEK/MAPK and PI3K/AKT pathways participate in the phosphorylation of ERα induced by EGF/EGFR. PI3K and MEK inhibitors abolished EGF-induced PRLR promoter activity. Increased recruitment of non-DNA bound unliganded ERα to Sp1 and C/EBPβ bound to their sites at hPIII induced by EGF was abrogated by ERα siRNA demonstrating the requisite role of phospho-ERα in PRLR upregulation. EGF/EGFR, independent of endogenous prolactin induced phosphorylation of STAT5b with participation of c-SRC and recruitment of STAT5b:STAT5b to a GAS site at hPIII. STAT5b interaction with ERα was essential for stable phospho-ERα recruitment to the SP1/CEBPβ complex. These studies indicate a role for paracrine EGF via EGFR independent of estrogen and prolactin in the transcriptional activation of PRLR gene expression and its contribution to high levels of PRLRs in breast cancer. These by maximizing the actions of endogenous prolactin could have a role in cancer progression and resistance to endocrine therapy.
Collapse
Affiliation(s)
- Raghuveer Kavarthapu
- Section on Molecular Endocrinology, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Maria L. Dufau
- Section on Molecular Endocrinology, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
Abstract
Prolactin is a hormone that is mainly secreted by lactotroph cells of the anterior pituitary gland, and is involved in many biological processes including lactation and reproduction. Animal models have provided insights into the biology of prolactin proteins and offer compelling evidence that the different prolactin isoforms each have independent biological functions. The major isoform, 23 kDa prolactin, acts via its membrane receptor, the prolactin receptor (PRL-R), which is a member of the haematopoietic cytokine superfamily and for which the mechanism of activation has been deciphered. The 16 kDa prolactin isoform is a cleavage product derived from native prolactin, which has received particular attention as a result of its newly described inhibitory effects on angiogenesis and tumorigenesis. The discovery of multiple extrapituitary sites of prolactin secretion also increases the range of known functions of this hormone. This Review summarizes current knowledge of the biology of prolactin and its receptor, as well as its physiological and pathological roles. We focus on the role of prolactin in human pathophysiology, particularly the discovery of the mechanism underlying infertility associated with hyperprolactinaemia and the identification of the first mutation in human PRLR.
Collapse
Affiliation(s)
- Valérie Bernard
- Inserm U1185, 63 rue Gabriel Péri, 94276 Le Kremlin-Bicêtre Cedex, France
| | - Jacques Young
- Hôpital Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, 78 rue du Général Leclerc 94275 Le Kremlin-Bicêtre Cedex, France
| | - Philippe Chanson
- Hôpital Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, 78 rue du Général Leclerc 94275 Le Kremlin-Bicêtre Cedex, France
| | - Nadine Binart
- Inserm U1185, 63 rue Gabriel Péri, 94276 Le Kremlin-Bicêtre Cedex, France
| |
Collapse
|
9
|
Kang JH, Hassan SA, Zhao P, Tsai-Morris CH, Dufau ML. Impact of subdomain D1 of the short form S1b of the human prolactin receptor on its inhibitory action on the function of the long form of the receptor induced by prolactin. Biochim Biophys Acta Gen Subj 2014; 1840:2272-80. [PMID: 24735798 DOI: 10.1016/j.bbagen.2014.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/11/2014] [Accepted: 04/08/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND Long-form (LF) homodimers of the human prolactin receptor (PRLR) mediate prolactin's diverse actions. Short form S1b inhibits the LF function through heterodimerization. Reduced S1b/LF-ratio in breast cancer could contribute to tumor development/progression. Current work defines the structural and functional relevance of the D1 domain of S1b on its inhibitory function on prolactin-induced LF function. METHODS Studies were conducted using mutagenesis, promoter/signaling analyses, bioluminescence resonance energy transfer (BRET) and molecular modeling approaches. RESULTS Mutation of E69 in D1 S1b or adjacent residues at the receptor surface near to the binding pocket (S) causes loss of its inhibitory effect while mutations away from this region (A) or in the D2 domain display inhibitory action as the wild-type. All S1b mutants preserved prolactin-induced Jak2 activation. BRET reveals an increased affinity in D1 mutated S1b (S) homodimers in transfected cells stably expressing LF. In contrast, affinity in S1b homodimers with either D1 (A) or D2 mutations remained unchanged. This favors LF mediated signaling induced by prolactin. Molecular dynamics simulations show that mutations (S) elicit major conformational changes that propagate downward to the D1/D2 interface and change their relative orientation in the dimers. CONCLUSIONS These findings demonstrate the essential role of D1 on the S1b structure and its inhibitory action on prolactin-induced LF-mediated function. GENERAL SIGNIFICANCE Major changes in receptor conformation and dimerization affinity are triggered by single mutations in critical regions of D1. Our structure-function/simulation studies provide a basis for modeling and design of small molecules to enhance inhibition of LF activation for potential use in breast cancer treatment.
Collapse
Affiliation(s)
- J-H Kang
- Section on Molecular Endocrinology, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4510, USA
| | - S A Hassan
- Center for Molecular Modeling, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892-4510, USA
| | - P Zhao
- Section on Molecular Endocrinology, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4510, USA
| | - C H Tsai-Morris
- Section on Molecular Endocrinology, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4510, USA
| | - M L Dufau
- Section on Molecular Endocrinology, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4510, USA.
| |
Collapse
|
10
|
Bu G, Ying Wang C, Cai G, Leung FC, Xu M, Wang H, Huang G, Li J, Wang Y. Molecular characterization of prolactin receptor (cPRLR) gene in chickens: gene structure, tissue expression, promoter analysis, and its interaction with chicken prolactin (cPRL) and prolactin-like protein (cPRL-L). Mol Cell Endocrinol 2013; 370:149-62. [PMID: 23499864 DOI: 10.1016/j.mce.2013.03.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 02/26/2013] [Accepted: 03/01/2013] [Indexed: 11/21/2022]
Abstract
In this study, gene structure, tissue expression, and promoter usage of prolactin receptor (PRLR) and its interaction with prolactin (PRL) and the newly identified prolactin-like protein (PRL-L) were investigated in chickens. The results showed that (1) PRLR gene was found to consist of at least 25 exons by 5'-RACE and RT-PCR assays; (2) multiple PRLR 5'-UTR sequences different in exon composition were isolated from chicken liver or intestine by 5'-RACE and could be subdivided into type I and type II transcripts according to the first exon used (exon 1G or exon 1A); (3) PRLR Type I transcripts with exon 1G were detected to be predominantly expressed in adult kidney and small intestine by RT-PCR, implying their expression is likely controlled by a tissue-specific promoter (P1). By contrast, PRLR type II transcripts containing exon 1A are widely expressed in adult and embryonic tissues examined and their expression is controlled by a generic promoter (P2) near exon 1A, which was demonstrated to display promoter activities in cultured DF-1, HEK293 and LoVo cells by the dual-luciferase reporter assay; (4) Using a 5×STAT5-luciferase reporter system, cPRLR expressed in HepG2 cells was shown to be activated by recombinant cPRL and cPRL-L via interaction with PRLR membrane-proximal ligand-binding domain, suggesting that like cPRL, cPRL-L is also a functional ligand of cPRLR. Collectively, characterization of cPRLR gene helps to elucidate the roles of PRLR and its ligands in birds and provides insights into the regulatory mechanisms of PRLR expression conserved in birds and mammals.
Collapse
Affiliation(s)
- Guixian Bu
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Complex formation and interactions between transcription factors essential for human prolactin receptor gene transcription. Mol Cell Biol 2011; 31:3208-22. [PMID: 21670145 DOI: 10.1128/mcb.05337-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protein association of estrogen receptor α ERα with DNA-bound SP1 and C/EBPβ is essential for the 17β-estradiol (E2)-induced activation of human prolactin receptor (hPRLR) gene transcription. Protein-protein interaction and complex formation at the hPIII promoter of hPRLR was investigated. The basic region and leucine zipper (bZIP) of C/EBPβ, zinc finger (ZF) motifs of SP1, and the DNA binding domain of ERα were identified as regions responsible for the interactions between transfactors. The E2-induced interaction was confirmed by bioluminescence resonance energy transfer (BRET) assays of live cells. The combination of BRET/bimolecular luminescence complementation assay revealed that ERα exists as a constitutive homodimer, and E2 induced a change(s) in ERα homodimer conformation favorable for its association with C/EBPβ and SP1. Chromatin immunoprecipitation and small interfering RNA knockdown of members of the complex in breast cancer cells demonstrated the endogenous recruitment of components of the complex onto the hPIII promoter of the hPRLR gene. SP1 is the preferred transfactor for the recruitment of ERα to the complex that facilitates the C/EBPβ association. The E2/ERα-induced hPRLR transcription was demonstrated in ERα-negative breast cancer cells. This study indicates that the enhanced complex formation of ERα dimer with SP1 and C/EBPβ by E2 has an essential role in the transcriptional activation of the hPRLR gene.
Collapse
|
12
|
Goldhar AS, Duan R, Ginsburg E, Vonderhaar BK. Progesterone induces expression of the prolactin receptor gene through cooperative action of Sp1 and C/EBP. Mol Cell Endocrinol 2011; 335:148-57. [PMID: 21238538 PMCID: PMC3045478 DOI: 10.1016/j.mce.2011.01.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 12/22/2010] [Accepted: 01/07/2011] [Indexed: 01/01/2023]
Abstract
Prolactin (Prl) and progesterone (P) cooperate synergistically during mammary gland development and tumorigenesis. We hypothesized that one mechanism for these effects may be through mutual induction of receptors (R). EpH4 mouse mammary epithelial cells stably transfected with PR-A express elevated levels of PrlR mRNA and protein compared to control EpH4 cells that lack the PR. Likewise, T47D human breast cancer cells treated with P overexpress the PrlR and activate PrlR promoter III. PrlR promoter III does not contain a classical P response element but contains several binding sites for transcription proteins, including C/EBP, Sp1 and AP1, which may also interact with the PR. Using promoter deletion and site directed mutagenesis analyses as well as gel shift assays, cooperative activation of the C/EBP and adjacent Sp1A, but not the Sp1B or AP1, sites by P is shown to confer P responsiveness leading to increased PrlR transcription.
Collapse
Affiliation(s)
- Anita S Goldhar
- Mammary Biology and Tumorigenesis Laboratory, Center for Cancer Research, NCI, Bethesda, MD 20892-4254, USA
| | | | | | | |
Collapse
|
13
|
Intramolecular disulfide bonds of the prolactin receptor short form are required for its inhibitory action on the function of the long form of the receptor. Mol Cell Biol 2009; 29:2546-55. [PMID: 19273600 DOI: 10.1128/mcb.01716-08] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The short form (S1b) of the prolactin receptor (PRLR) silences prolactin-induced activation of gene transcription by the PRLR long form (LF). The functional and structural contributions of two intramolecular disulfide (S-S) bonds within the extracellular subdomain 1 (D1) of S1b to its inhibitory function on the LF were investigated. Mutagenesis of the paired cysteines eliminated the inhibitory action of S1b. The expression of the mutated S1b (S1bx) on the cell surface was not affected, indicating native-like folding of the receptor. The constitutive JAK2 phosphorylation observed in S1b was not present in cells expressing S1bx, and JAK2 association was disrupted. BRET(50) (BRET(50) represents the relative affinity as acceptor/donor ratio required to reach half-maximal BRET [bioluminescence resonance energy transfer] values) showed decreased LF/S1bx heterodimeric-association and increased affinity in S1bx homodimerization, thus favoring LF homodimerization and prolactin-induced signaling. Computer modeling based on the PRLR crystal structure showed that minor changes in the tertiary structure of D1 upon S-S bond disruption propagated to the quaternary structure of the homodimer, affecting the dimerization interface. These changes explain the higher homodimerization affinity of S1bx and provide a structural basis for its lack of inhibitory function. The PRLR conformation as stabilized by S-S bonds is required for the inhibitory action of S1b on prolactin-induced LF-mediated function and JAK2 association.
Collapse
|
14
|
Swaminathan G, Varghese B, Fuchs SY. Regulation of prolactin receptor levels and activity in breast cancer. J Mammary Gland Biol Neoplasia 2008; 13:81-91. [PMID: 18204982 PMCID: PMC2276629 DOI: 10.1007/s10911-008-9068-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 01/02/2008] [Indexed: 11/29/2022] Open
Abstract
From its traditional identity as a hormone involved in growth and differentiation of mammary epithelium and in lactation, to having a pertinent role in the development of mammary carcinoma, the peptide hormone/cytokine prolactin (PRL) has emerged as a versatile signaling molecule. There has been significant progress in our understanding of the fine working of PRL in the past several years. Notably, much effort has been concentrated on the mediator of PRL action, namely, the prolactin receptor (PRLr). The causal link between increased PRLr expression and breast cancer is being increasingly appreciated. Considering that the level of the receptor on the surface is a critical determinant of signaling output in response to PRL, the uncovering of regulatory elements that control receptor expression becomes important. The principle focus of this review is on the regulation of PRLr expression and activity in breast cancer with a brief overview of different isoforms of PRLr, their expression, signaling capabilities and the biological outcomes of PRL/PRLr signaling.
Collapse
Affiliation(s)
- G Swaminathan
- Department of Animal Biology and Mari Lowe Center for Comparative Oncology Research, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - B Varghese
- Department of Animal Biology and Mari Lowe Center for Comparative Oncology Research, University of Pennsylvania, Philadelphia, PA 19104, USA
- Cell and Molecular Biology Program, Biomedical Graduate School, University of Pennsylvania, PA 19104, USA
| | - SY Fuchs
- Department of Animal Biology and Mari Lowe Center for Comparative Oncology Research, University of Pennsylvania, Philadelphia, PA 19104, USA
- Address correspondence to: Dr. Serge Y. Fuchs, Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, 380 S. University Ave, Hill 316, Philadelphia, PA 19104. (215)-573-6949 (phone), (215)-746-2295 (fax), (email)
| |
Collapse
|
15
|
Lee SA, Haiman CA, Burtt NP, Pooler LC, Cheng I, Kolonel LN, Pike MC, Altshuler D, Hirschhorn JN, Henderson BE, Stram DO. A comprehensive analysis of common genetic variation in prolactin (PRL) and PRL receptor (PRLR) genes in relation to plasma prolactin levels and breast cancer risk: the multiethnic cohort. BMC MEDICAL GENETICS 2007; 8:72. [PMID: 18053149 PMCID: PMC2219987 DOI: 10.1186/1471-2350-8-72] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Accepted: 12/01/2007] [Indexed: 11/18/2022]
Abstract
Background Studies in animals and humans clearly indicate a role for prolactin (PRL) in breast epithelial proliferation, differentiation, and tumorigenesis. Prospective epidemiological studies have also shown that women with higher circulating PRL levels have an increase in risk of breast cancer, suggesting that variability in PRL may also be important in determining a woman's risk. Methods We evaluated genetic variation in the PRL and PRL receptor (PRLR) genes as predictors of plasma PRL levels and breast cancer risk among African-American, Native Hawaiian, Japanese-American, Latina, and White women in the Multiethnic Cohort Study (MEC). We selected single nucleotide polymorphisms (SNPs) from both the public (dbSNP) and private (Celera) databases to construct high density SNP maps that included up to 20 kilobases (kb) upstream of the transcription initiation site and 10 kb downstream of the last exon of each gene, for a total coverage of 59 kb in PRL and 210 kb in PRLR. We genotyped 80 SNPs in PRL and 173 SNPs in PRLR in a multiethnic panel of 349 unaffected subjects to characterize linkage disequilibrium (LD) and haplotype patterns. We sequenced the coding regions of PRL and PRLR in 95 advanced breast cancer cases (19 of each racial/ethnic group) to uncover putative functional variation. A total of 33 and 60 haplotype "tag" SNPs (tagSNPs) that allowed for high predictability (Rh2 ≥ 0.70) of the common haplotypes in PRL and PRLR, respectively, were then genotyped in a multiethnic breast cancer case-control study of 1,615 invasive breast cancer cases and 1,962 controls in the MEC. We also assessed the association of common genetic variation with circulating PRL levels in 362 postmenopausal controls without a history of hormone therapy use at blood draw. Because of the large number of comparisons being performed we used a relatively stringent type I error criteria (p < 0.0005) for evaluating the significance of any single association to correct for performing approximately 100 independent tests, close to the number of tagSNPs genotyped for both genes. Results We observed no significant associations between PRL and PRLR haplotypes or individual SNPs in relation to breast cancer risk. A nominally significant association was noted between prolactin levels and a tagSNP (tagSNP 44, rs2244502) in intron 1 of PRL. This SNP showed approximately a 50% increase in levels between minor allele homozygotes vs. major allele homozygotes. However, this association was not significant (p = 0.002) using our type I error criteria to correct for multiple testing, nor was this SNP associated with breast cancer risk (p = 0.58). Conclusion In this comprehensive analysis covering 59 kb of the PRL locus and 210 kb of the PRLR locus, we found no significant association between common variation in these candidate genes and breast cancer risk or plasma PRL levels. The LD characterization of PRL and PRLR in this multiethnic population provide a framework for studying these genes in relation to other disease outcomes that have been associated with PRL, as well as for larger studies of plasma PRL levels.
Collapse
Affiliation(s)
- Sulggi A Lee
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, Norris Comprehensive Cancer Center, Los Angeles, CA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Chen WH, Lv G, Lv C, Zeng C, Hu S. Systematic analysis of alternative first exons in plant genomes. BMC PLANT BIOLOGY 2007; 7:55. [PMID: 17941993 PMCID: PMC2174465 DOI: 10.1186/1471-2229-7-55] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2007] [Accepted: 10/17/2007] [Indexed: 05/23/2023]
Abstract
BACKGROUND Alternative splicing (AS) contributes significantly to protein diversity, by selectively using different combinations of exons of the same gene under certain circumstances. One particular type of AS is the use of alternative first exons (AFEs), which can have consequences far beyond the fine-tuning of protein functions. For example, AFEs may change the N-termini of proteins and thereby direct them to different cellular compartments. When alternative first exons are distant, they are usually associated with alternative promoters, thereby conferring an extra level of gene expression regulation. However, only few studies have examined the patterns of AFEs, and these analyses were mainly focused on mammalian genomes. Recent studies have shown that AFEs exist in the rice genome, and are regulated in a tissue-specific manner. Our current understanding of AFEs in plants is still limited, including important issues such as their regulation, contribution to protein diversity, and evolutionary conservation. RESULTS We systematically identified 1,378 and 645 AFE-containing clusters in rice and Arabidopsis, respectively. From our data sets, we identified two types of AFEs according to their genomic organisation. In genes with type I AFEs, the first exons are mutually exclusive, while most of the downstream exons are shared among alternative transcripts. Conversely, in genes with type II AFEs, the first exon of one gene structure is an internal exon of an alternative gene structure. The functionality analysis indicated about half and approximately 19% of the AFEs in Arabidopsis and rice could alter N-terminal protein sequences, and approximately 5% of the functional alteration in type II AFEs involved protein domain addition/deletion in both genomes. Expression analysis indicated that 20-66% of rice AFE clusters were tissue- and/or development- specifically transcribed, which is consistent with previous observations; however, a much smaller percentage of Arabidopsis AFEs was regulated in this manner, which suggests different regulation mechanisms of AFEs between rice and Arabidopsis. Statistical analysis of some features of AFE clusters, such as splice-site strength and secondary structure formation further revealed differences between these two species. Orthologous search of AFE-containing gene pairs detected only 19 gene pairs conserved between rice and Arabidopsis, accounting only for a few percent of AFE-containing clusters. CONCLUSION Our analysis of AFE-containing genes in rice and Arabidopsis indicates that AFEs have multiple functions, from regulating gene expression to generating protein diversity. Comparisons of AFE clusters revealed different features in the two plant species, which indicates that AFEs may have evolved independently after the separation of rice (a model monocot) and Arabidopsis (a model dicot).
Collapse
Affiliation(s)
- Wei-Hua Chen
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- Bioinformatics, Heinrich-Heine-University, Duesseldorf, Germany
| | - Guanting Lv
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- Graduate School of Chinese Academy of Sciences, Beijing, China
| | - Congying Lv
- Nanyang Institute of Technology, Henan, China
| | - Changqing Zeng
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Songnian Hu
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
San Martín R, Hurtado W, Quezada C, Reyes AE, Vera MI, Krauskopf M. Gene structure and seasonal expression of carp fish prolactin short receptor isoforms. J Cell Biochem 2007; 100:970-80. [PMID: 17131379 DOI: 10.1002/jcb.21081] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The complex adaptive mechanisms that eurythermal fish have evolved in response to the seasonal changes of the environment include the transduction of the physical parameter variations into neuroendocrine signals. Studies in carp (Cyprinus carpio) have indicated that prolactin (PRL) and growth hormone (GH) expression is associated with acclimatization, suggesting that the pituitary gland is a relevant physiological node in this adaptive process. Also, the distinctive pattern of expression that carp prolactin receptor (PRLr) protein depicts upon seasonal acclimatization supports the hypothesis that PRL and its receptor clearly are involved in the new homeostatic stage that the eurythermal fish needs to survive during the cyclical changes of its habitat. Here, we characterize the first prolactin receptor gene in a teleost and show that its expression is not associated with alternative promoters, unlike in humans and rodents. Using the regulatory region to direct the transcription of green fluorescent protein (GFP) in zebrafish embryos, we mapped the appearance of this hormone receptor during fish development. This is the first report identifying a fish prolactin receptor gene expressing transcript isoforms encoding for short forms of the protein (45 kDa). These have been found in osmoregulatory tissues of the carp and are regulated in connection with the seasonal acclimatization of the fish.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Western
- Carps/genetics
- Carps/metabolism
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Fish Proteins/genetics
- Fish Proteins/metabolism
- Gene Expression
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Male
- Microscopy, Fluorescence
- Models, Genetic
- Molecular Sequence Data
- Promoter Regions, Genetic/genetics
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Receptors, Prolactin/genetics
- Receptors, Prolactin/metabolism
- Seasons
- Sequence Analysis, DNA
- Zebrafish/embryology
- Zebrafish/genetics
- Zebrafish/metabolism
Collapse
Affiliation(s)
- Rody San Martín
- Department of Biological Sciences, Millennium Institute for Fundamental and Applied Biology, Universidad Andrés Bello, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
18
|
Kobayashi M, Suzuki M, Saito TR, Tanaka M. Developmental changes in the expression levels of alternative first exons of prolactin receptor gene in rat brain. Endocr Res 2007; 32:143-51. [PMID: 18092198 DOI: 10.1080/07435800701764022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
One of the alternative first exons, E1(4), of the rat prolactin receptor (PRLR) gene was identified 5.4 kb downstream of exon 2 by sequence analysis of a rat genomic clone. In female and male rat brains, expression levels of E1(4)-containing PRLR mRNA increased remarkably between 2 and 4 weeks of age during postnatal development, whereas the levels of PRLR mRNAs containing other first exons, E1(3) and E1(5), did not change throughout the development. The levels of E1(4)-containing PRLR mRNA in the female rats at 8 weeks of age decreased by ovariectomy, and recovered by the administration of 17beta-estradiol, whereas castration and following testosterone treatment showed no effect on the levels of E1(4)-containing PRLR mRNA in the male rats. The levels of E1(3)- and E1(5)-containing PRLR mRNAs were not affected by gonadectomy and following sex steroid hormone treatments in both sexes. These results indicate that expression of PRLR gene in the female and male rat brains increases during postnatal development due to the transcriptional activation of the E1(4) first exon.
Collapse
Affiliation(s)
- Momoko Kobayashi
- Department of Animal Science, Faculty of Applied Life Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | | | | | | |
Collapse
|
19
|
Dong J, Tsai-Morris CH, Dufau ML. A novel estradiol/estrogen receptor alpha-dependent transcriptional mechanism controls expression of the human prolactin receptor. J Biol Chem 2006; 281:18825-36. [PMID: 16651265 DOI: 10.1074/jbc.m512826200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Prolactin exerts diverse functions in target tissues through its membrane receptors, and is a potent mitogen in normal and neoplastic breast cells. Estradiol (E(2)) induces human prolactin receptor (hPRLR) gene expression through stimulation of its generic promoter (PIII). This study identifies a novel E(2)-regulated non-estrogen responsive element-dependent transcriptional mechanism that mediates E(2)-induced hPRLR expression. E(2) stimulated transcriptional activity in MCF7A(2) cells transfected with PIII lacking an estrogen responsive element, and increased hPRLR mRNA and protein. The abolition of the E(2) effect by mutation of Sp1 or C/EBP elements that bind Sp1/Sp3 and C/EBPbeta within PIII indicated the cooperation of these transfactors in E(2)-induced transcription of the hPRLR. DNA affinity protein assay showed that E(2) induced estrogen receptor alpha (ERalpha) binding to Sp1/Sp3 and C/EBPbeta DNA-protein complexes. The ligand-binding domain of ERalpha was essential for its physical interaction with C/EBPbeta, and E(2) promoted this association, and its DNA binding domain was required for transactivation of PIII. Co-immunoprecipitation studies revealed tethering of C/EBPbeta to Sp1 by E(2)-activated ERalpha. Chromatin immunoprecipitation analysis showed that E(2) induced recruitment of C/EBPbeta, ERalpha, SRC1, p300, pCAF, TFIIB, and Pol II, with no change in Sp1/Sp3. E(2) also induced promoter-associated acetylation of H3 and H4. These findings demonstrate that an E(2)/ERalpha, Sp1, and C/EBPbeta complex with recruitment of coactivators and TFIIB and Pol II are required for E(2)-activated transcriptional expression of the hPRLR through PIII. Estradiol produced in breast stroma and adipose tissue, which are major sources of estrogen in post-menopausal women, could up-regulate hPRLR gene expression and stimulate breast tumor growth.
Collapse
Affiliation(s)
- Juying Dong
- Section on Molecular Endocrinology, Endocrinology and Reproduction Research Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
20
|
Vaclavicek A, Hemminki K, Bartram CR, Wagner K, Wappenschmidt B, Meindl A, Schmutzler RK, Klaes R, Untch M, Burwinkel B, Försti A. Association of prolactin and its receptor gene regions with familial breast cancer. J Clin Endocrinol Metab 2006; 91:1513-9. [PMID: 16434456 DOI: 10.1210/jc.2005-1899] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT The contribution of prolactin (PRL) through its receptor (PRLR) to the pathogenesis and progression of human mammary tumors has received recent attention. OBJECTIVE We investigated whether genetic variation in the PRL and PRLR genes is associated with the risk of breast cancer (BC). DESIGN We conducted a case-control study with a total of seven single nucleotide polymorphisms (SNPs). SETTING The study was conducted at an academic research laboratory and university clinics. PATIENTS AND OTHER PARTICIPANTS A total of 441 German familial, unrelated BC cases and 552 controls matched by age, ethnicity, and geographical region participated in the study. INTERVENTION(S) There were no interventions. MAIN OUTCOME MEASURES(S) SNP genotype and haplotype distributions and haplotype interactions were correlated with the risk of BC. RESULTS Two SNPs (rs1341239 and rs12210179) within the PRL promoter regions were significantly associated with increased risk in homozygotes for the variant alleles [odds ratio (OR), 1.67 and 95% confidence interval (CI), 1.11-2.50; and OR, 2.09 and 95% CI, 1.23-3.52, respectively]. The PRL haplotype containing the variant alleles of the promoter SNPs increased significantly the risk of BC (OR 1.42, 95%CI 1.07-1.90). A PRLR haplotype was associated with a significant decrease in BC risk (OR 0.69, 95% CI 0.54-0.89). An increasing number of PRL and PRLR risk haplotypes led to a significant trend of increasing risk for BC (chi(2) = 12.15; P = 0.007). CONCLUSIONS Genetic variation in the PRL and PRLR genes was shown to influence BC risk. Additional studies are needed to further clarify the role of the PRL and PRLR genes in the risk of BC.
Collapse
Affiliation(s)
- Annika Vaclavicek
- Division of Molecular Genetic Epidemiology C050, German Cancer Research Center, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Qazi AM, Tsai-Morris CH, Dufau ML. Ligand-independent homo- and heterodimerization of human prolactin receptor variants: inhibitory action of the short forms by heterodimerization. Mol Endocrinol 2006; 20:1912-23. [PMID: 16556730 DOI: 10.1210/me.2005-0291] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Prolactin (PRL) acts through the long form (LF) of the human PRL receptor (hPRLR) to cause differentiation of mammary epithelial cells through activation of the Janus kinase-2 (JAK2)/signal transducer and activator of transcription 5 (STAT5) pathway and subsequent transcriptional events. To determine whether the inhibitory action of hPRLR short forms (SFs; S1a and S1b) on PRL-induced signal transduction through the LF results from heterodimerization, we studied complex formation among variant forms of the hPRLR. 3'-Tagged fusion constructs, with activities comparable to the wild-type species, were used to investigate homodimer and heterodimer formation. The LF and both SFs of the hPRLR formed homodimers under nonreducing conditions, independently of PRL, but formed only monomers under reducing conditions. Coimmunoprecipitation of the cotransfected LF with the SFs (S1a or S1b) in transfected cells showed ligand-independent heterodimerization of individual SFs with the LF. Bioluminescence resonance energy transfer analysis demonstrated homo- and heterodimeric associations of hPRLR variants in human embryonic kidney 293 cells. Biotin-avidin immunoprecipitation analysis revealed that hPRLR forms are cell surface receptors and that SFs do not influence the steady state or half-life of the LF. Significant homo- and heterodimerization of biotinylated membrane hPRLR forms was observed. These findings indicate that homo- and heterodimers of hPRLR are constitutively present, and that the bivalent hormone acts on the preformed LF homodimer to induce the active signal transduction configuration. Although SF homodimers and their heterodimers with LF mediate JAK2 activation, the SF heterodimer partner lacks cytoplasmic sequences essential for activation of the JAK2/signal transducer and activator of transcription 5 pathway. This prevents the heterodimeric LF from mediating activation of PRL-induced genes.
Collapse
Affiliation(s)
- Aamer M Qazi
- Section on Molecular Endocrinology, Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
22
|
Corbacho AM, Valacchi G, Kubala L, Olano-Martín E, Schock BC, Kenny TP, Cross CE. Tissue-specific gene expression of prolactin receptor in the acute-phase response induced by lipopolysaccharides. Am J Physiol Endocrinol Metab 2004; 287:E750-7. [PMID: 15186999 DOI: 10.1152/ajpendo.00522.2003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Acute inflammation can elicit a defense reaction known as the acute-phase response (APR) that is crucial for reestablishing homeostasis in the host. The role for prolactin (PRL) as an immunomodulatory factor maintaining homeostasis under conditions of stress has been proposed; however, its function during the APR remains unclear. Previously, it was shown that proinflammatory cytokines characteristic of the APR (TNF-alpha, IL-1beta, and IFNgamma) induced the expression of the PRL receptor (PRLR) by pulmonary fibroblasts in vitro. Here, we investigated the in vivo expression of PRLR during lipopolysaccharide (LPS)-induced APR in various tissues of the mouse. We show that PRLR mRNA and protein levels were downregulated in hepatic tissues after intraperitoneal LPS injection. Downregulation of PRLR in the liver was confirmed by immunohistochemistry. A suppressive effect on mRNA expression was also observed in prostate, seminal vesicle, kidney, heart, and lung tissues. However, PRLR mRNA levels were increased in the thymus, and no changes were observed in the spleen. The proportion of transcripts for the different receptor isoforms (long, S1, S2, and S3) in liver and thymus was not altered by LPS injection. These findings suggest a complex tissue-specific regulation of PRLR expression in the context of the APR.
Collapse
Affiliation(s)
- Ana M Corbacho
- Division of Pulmonary and Critical Care Medicine, University of California, Davis 95616, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Meng J, Tsai-Morris CH, Dufau ML. Human prolactin receptor variants in breast cancer: low ratio of short forms to the long-form human prolactin receptor associated with mammary carcinoma. Cancer Res 2004; 64:5677-82. [PMID: 15313907 DOI: 10.1158/0008-5472.can-04-1019] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prolactin plays an essential role in the development of rodent mammary tumors and is a potent mitogen in human normal and cancerous breast tissues/cells. In this study, we have analyzed the expression of prolactin receptors, including the long receptor form (LF; stimulatory) and two novel short forms (SFs; S1a and S1b) derived from alternative splicing that are inhibitory of the activation induced by prolactin through the LF. Southern analysis of breast cancer profiling arrays revealed that 29 patients (group I) expressed an elevated LF, 10 patients (group II) showed decreased LF, and 8 patients (group III) had no change relative to the adjacent normal tissue. Their respective SF expression was increased in 21 patients of group I and generally decreased in groups II and III. However, the ratio of SF to LF was significantly decreased in 76% of the breast tumors and distributed evenly among the groups. Quantification of differential expression of prolactin receptor variants by real-time PCR in 15 pairs of human normal and tumor breast-matched tissues revealed a similar significant decrease in the ratio of SF to LF in the tumor tissue. Consistent lower ratio of SFs to LFs was confirmed in 8 of ten different breast cancer cell lines compared with normal mammary Hs578Bst and MCF10A cells. Because SFs act as dominant negative regulators of the stimulatory actions of the LF in vitro, their relatively reduced expression in cancer could cause gradations of unopposed prolactin-mediated LF stimulatory function and contribute to breast tumor development/progression.
Collapse
Affiliation(s)
- Jianping Meng
- Section on Molecular Endocrinology, Endocrinology, and Reproduction Research Branch, National Institute of Child Health and Human Development, NIH, Bethesda, Maryland 20892-4510, USA
| | | | | |
Collapse
|
24
|
Cavaco JEB, Santos CRA, Ingleton PM, Canario AVM, Power DM. Quantification of prolactin (PRL) and PRL receptor messenger RNA in gilthead seabream (Sparus aurata) after treatment with estradiol-17beta. Biol Reprod 2003; 68:588-94. [PMID: 12533423 DOI: 10.1095/biolreprod.102.009209] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Prolactin (PRL) in fish is considered to be an osmoregulatory hormone, although some studies suggest that it may influence the production of steroid hormones in the gonads. The objective of the present study was to establish if PRL is involved in reproduction of the gilthead seabream-a protandrous hermaphrodite. Adult and juvenile gilthead seabream received implants of estradiol-17beta (E(2)) for 1 wk during the breeding season, and the mRNA expressions of PRL and PRL receptor (sbPRLR) were determined. Northern blot analysis revealed a single pituitary PRL transcript, the expression of which was significantly reduced by E(2) treatment in adults but significantly increased in juvenile fish. In adult gonads, four sbPRLR transcripts of 1.1, 1.3, 1.9, and 2.8 kilobases were observed. A competitive reverse transcription-polymerase chain reaction was developed and used to determine how E(2) treatment alters expression of the gonadal sbPRLR gene. Seabream PRLR was detectable in all samples analyzed by this assay. Levels of sbPRLR mRNA increased significantly (50-fold) after E(2) treatment in adults, but a 24-fold decrease was measured in juveniles. Immunohistochemistry using specific polyclonal antibodies raised against an oligopeptide from the extracellular domain of sbPRLR detected the receptor in spermatogonia and oocytes. Taken together, the preceding results suggest that in the seabream, PRL may act on both testis and ovary via its receptor and that the stage of maturity influences this process. The full characterization and relative importance of the different transcripts of sbPRLR in eliciting the action of PRL in the gonads remain to be elucidated.
Collapse
Affiliation(s)
- J Eduardo B Cavaco
- Centro de Ciências do MAR (CCMAR), Universidade do Algarve, Campus de Gambelas, 8000-117 Faro, Portugal
| | | | | | | | | |
Collapse
|
25
|
Jacobsen BM, Richer JK, Schittone SA, Horwitz KB. New human breast cancer cells to study progesterone receptor isoform ratio effects and ligand-independent gene regulation. J Biol Chem 2002; 277:27793-800. [PMID: 12021276 DOI: 10.1074/jbc.m202584200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
All known progesterone target cells coexpress two functionally different progesterone receptor (PR) isoforms: 120-kDa B-receptors (PR-B) and N-terminally truncated, 94-kDa A-receptors (PR-A). Their ratio varies in normal and malignant tissues. In human breast cancer cells, homodimers of progesterone-occupied PR-A or PR-B regulate different gene subsets. To study PR homo- and heterodimers, we constructed breast cancer cell lines in which isoform expression is controlled by an inducible system. PR-negative cells or cells that stably express one or the other isoform were used to construct five sets of cells: (i) PR-negative control cells (Y iNull), (ii) inducible PR-A cells (Y iA), (iii) inducible PR-B cells (Y iB), (iv) stable PR-B plus inducible PR-A cells (B iA), and (v) stable PR-A plus inducible PR-B cells (A iB). Expression levels of each isoform and/or the PR-A/PR-B ratios could be tightly controlled by the dose of inducer as demonstrated by immunoblotting and transcription studies. Induced PRs underwent normal progestin-dependent phosphorylation and down-regulation and regulated exogenous promoters as well as endogenous gene expression. Transcription of exogenous promoters was dependent on the PR-A/PR-B ratio, whereas transcription of endogenous genes was more complex. Finally, we have described several genes that are regulated by induced PR-A even in the absence of ligand.
Collapse
Affiliation(s)
- Britta M Jacobsen
- Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | | | |
Collapse
|
26
|
Tanaka M, Hayashida Y, Iguchi T, Nakao N, Suzuki M, Nakai N, Nakashima K. Identification of a novel first exon of prolactin receptor gene expressed in the rat brain. Endocrinology 2002; 143:2080-4. [PMID: 12021172 DOI: 10.1210/endo.143.6.8826] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A novel first exon, E1(4), whose sequence was distinct from those of the three known first exons, E1(1), E1(2), and E1(3), of the rat PRL receptor (PRL-R) gene was identified by cDNA cloning for the 5'-end region of PRL-R mRNA expressed in the rat brain. Sequence analysis revealed the presence of two different length E1(4) cDNAs. The longer cDNA contained the 243-bp E1(4) sequence, and the shorter cDNA lacked the 139-bp sequence at the 5'-end of the longer one. Neither E1(4) cDNA has a second exon sequence, indicating that the E1(4) first exon is extensively spliced to the third exon. E1(4)-containing PRL-R mRNAs were detected only in the brain by RT-PCR and ribonuclease protection assay. The longer E1(4) mRNA was expressed as the major PRL-R mRNA species in the brain and was greatly increased in pregnant (d 18) and lactating (d 5) rats. A genomic clone containing the E1(4) first exon together with its 5'- and 3'-flanking regions was isolated from a rat kidney genomic library. Ribonuclease protection assay revealed that the position corresponding to the 5'-end of the shorter E1(4) cDNA is the major transcription start point for the E1(4) exon. The 5'-flanking region of E1(4) contained a TATA box-like element 23 bp upstream of the major transcription start point. Other putative transcription factor-binding sites, such as CCAAT, Sp1, and glucocorticoid-responsive elements, were observed at further upstream regions. These results suggest that PRL-R gene expression in rat brain is controlled by the promoter for the E1(4) first exon.
Collapse
Affiliation(s)
- Minoru Tanaka
- Department of Biochemistry, Faculty of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
PUTNOVA L, KNOLL A, DVORAK J, CEPICA S. A new HpaII PCR-RFLP within the porcine prolactin receptor (PRLR) gene and study of its effect on litter size and number of teats. J Anim Breed Genet 2002. [DOI: 10.1046/j.1439-0388.2002.00316.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Hu ZZ, Meng J, Dufau ML. Isolation and characterization of two novel forms of the human prolactin receptor generated by alternative splicing of a newly identified exon 11. J Biol Chem 2001; 276:41086-94. [PMID: 11518703 DOI: 10.1074/jbc.m102109200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have identified a novel exon 11 of the human prolactin receptor (hPRLR) gene that is distinct from its rodent counterparts and have demonstrated the presence of two novel short forms of the hPRLR (S1(a) and S1(b)), which are derived from alternative splicing of exons 10 and 11. S1(a) encodes 376 amino acids (aa) that contain partial exon 10 and a unique 39-aa C-terminal region encoded by exon 11. S1(b) encodes 288 aa that lack the entire exon 10 and contains 3 amino acids at the C terminus derived from exon 11 using a shifted reading frame. These short forms, which were found in several normal tissues and in breast cancer cell lines, were expressed as cell surface receptors and possessed binding affinities comparable with the long form. Unlike the long form, neither short form was able to mediate the activation of the beta-casein gene promoter induced by prolactin. Instead they acted as dominant negative forms when co-expressed with the long form in transfected cells. Due to a marked difference in the cellular levels between the two short forms in transfected cells, S1(b) was more effective in inhibiting the prolactin-induced activation of the beta-casein gene promoter mediated by the long form of the receptor. The low cellular level of S1(a) was due to its more rapid turnover than the S1(b) protein. This is attributable to specific residues within the C-terminal unique 39 amino acids of the S1(a) form and may represent a new mechanism by which the hPRLR is modulated at the post-translational level. Since both short forms contain abbreviated cytoplasmic domains with unique C termini, they may also exhibit distinct signaling pathways in addition to modulating the signaling from the long form of the receptor. These receptors may therefore play important roles in the diversified actions of prolactin in human tissues.
Collapse
Affiliation(s)
- Z Z Hu
- Section on Molecular Endocrinology, Endocrinology and Reproduction Research Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
29
|
Glasow A, Horn LC, Taymans SE, Stratakis CA, Kelly PA, Kohler U, Gillespie J, Vonderhaar BK, Bornstein SR. Mutational analysis of the PRL receptor gene in human breast tumors with differential PRL receptor protein expression. J Clin Endocrinol Metab 2001; 86:3826-32. [PMID: 11502819 DOI: 10.1210/jcem.86.8.7753] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PRL is a major growth and differentiating hormone in the human breast, with activation of the PRL-PRL receptor complex increasingly recognized as an important mechanism in the induction and progression of mammary tumors. Although constitutive activation of various hormone and growth factor receptors is newly recognized as a common cause of tumor development, the PRL receptor gene has not been analyzed for similar aberrations in breast and other tumors. Therefore, using bacterial artificial chromosomes containing the PRL receptor gene and intron-spanning PCR, we determined the exon-surrounding intron sequences providing primers for the first analysis of the entire coding region of the human PRL receptor gene. We examined the presence of PRL receptor in 41 breast tumors by immunohistochemistry and attempted a correlation of its expression to pathological grading of the disease. Then tumor cells were isolated by laser capture microdissection to examine DNA from 30 patients for PRL receptor mutations. The PRL receptor immunoreactive score did not correlate to the tumor size, histopathological grading, age, or family history of patients. PRL receptor immunoreactivity was predominantly found in steroid hormone receptor-positive tumors, but without overall correlation of immunoreactive score. In both PRL receptor-positive and PRL receptor- negative breast cancer cells, direct sequencing of the coding sequence of the PRL receptor gene did not detect any somatic or hereditary gene aberrations. In conclusion, PRL receptor mutations do not appear to be common in human breast cancer, suggesting that constitutive activation of the PRL receptor can be excluded as a major cause of mammary tumor genesis. The molecular structure of the PRL receptor seems to remain intact in tumor tissue, and systemic and local production of PRL may participate in tumor cell growth and proliferation through functional receptors.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Lobular/genetics
- Carcinoma, Lobular/pathology
- DNA Mutational Analysis
- DNA Primers
- DNA, Neoplasm/genetics
- Exons
- Female
- Humans
- Immunohistochemistry
- Introns
- Middle Aged
- Neoplasm Invasiveness
- Neoplasm Staging
- Polymerase Chain Reaction
- Receptors, Estrogen/analysis
- Receptors, Progesterone/analysis
- Receptors, Prolactin/analysis
- Receptors, Prolactin/genetics
Collapse
Affiliation(s)
- A Glasow
- Children's Hospital, University of Leipzig, 04317 Leipzig, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Laud K, Gourdou I, Belair L, Peyrat JP, Djiane J. Characterization and modulation of a prolactin receptor mRNA isoform in normal and tumoral human breast tissues. Int J Cancer 2000; 85:771-6. [PMID: 10709093 DOI: 10.1002/(sici)1097-0215(20000315)85:6<771::aid-ijc5>3.0.co;2-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The role of prolactin (PRL) and its specific receptor (R-PRL) in human breast tumorigenesis remains unclear. We have investigated here the presence of extracellular-deleted hPRL-R isoforms in normal human breast, fibrocystic disease, primary breast carcinoma (ductal carcinoma, ductulo-lobular and lobular) and breast cancer cell lines (T47-D and MCF-7). RT-PCR and Southern blot analysis demonstrated the expression of full-length hPRL-R transcript in all samples tested. We also detected a hPRL-R transcript generated by alternative exon 6 splicing. This isoform has a 170 bp deletion in its extracellular sub-domain that induces a frameshift. Thus, the predicted amino-acid sequence should encode a putative soluble protein with the N-terminal sub-domain of the hPRL-R and 10 additional carboxy-terminal residues. This isoform should not bind PRL as previously demonstrated by other experiments. Moreover, the ratio of full-length to deleted form of hPRL-R transcripts differs from normal to tumoral breast tissue. This ratio is higher in tumoral mammary gland than in normal tissue. Our data suggest that the alternative splicing of the hPRL-R gene towards the deleted transcript may be a mechanism to down- or up-regulate the expression of the native transcript of hPRL-R in accordance to the physiological or pathological state of the mammary gland.
Collapse
Affiliation(s)
- K Laud
- Unité d'Endocrinologie Moléculaire, Institut National de la Recherche Agronomique, Jouy-en -Josas, France.
| | | | | | | | | |
Collapse
|