1
|
Zhang C, Du C, Ye J, Ye F, Wang R, Luo X, Liang Y. A novel deletion variant in TRAPPC2 causes spondyloepiphyseal dysplasia tarda in a five-generation Chinese family. BMC MEDICAL GENETICS 2020; 21:117. [PMID: 32471379 PMCID: PMC7260818 DOI: 10.1186/s12881-020-01052-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/19/2020] [Indexed: 11/25/2022]
Abstract
Background Spondyloepiphyseal dysplasia tarda (SEDT) is a rare X-linked recessive inherited osteochondrodysplasia caused by mutations in the TRAPPC2 gene. It is clinically characterized by disproportionate short stature and early onset of degenerative osteoarthritis. Clinical diagnosis can be challenging due to the late-onset of the disease and lack of systemic metabolic abnomalites. Genetic diagnosis is critical in both early diagnosis and management of the disease. Here we reported a five-generation Chinese SEDT family and described the novel molecular findings. Methods Detailed family history and clinical data were collected. Genomic DNA was extracted from venous blood samples of family members. The exons of genes known to be associated with skeletal disorders were captured and deep sequenced. Variants were annotated by ANNOVAR and associated with multiple databases. Putative variants were confirmed by Sanger sequencing. The identified variant was classified according to the American College of Medical Genetics (ACMG) criteria. Results The proband was a 27-year-old Chinese male who presented with short-trunk short stature and joint pain. His radiographs showed platyspondyly with posterior humping, narrow hip-joint surfaces, and pelvic osteosclerosis. A pedigree analysis of 5 generations with 6 affected males revealed an X-linked recessive mode of inheritance. Affected males were diagnosed as SEDT according to the clinical and radiological features. Next-generation sequencing identified a novel variant of c.216_217del in the exon 4 of TRAPPC2 gene in the proband and other affected males. This variant resulted in the shift of reading frame and early termination of protein translation (p.S73Gfs*15). The mother and maternal female relatives of the proband were heterozygous carriers of the same variant, while no variations were detected in this gene of his father and other unaffected males. Based on the ACMG criteria, the novel c.216_217del variant of the TRAPPC2 gene was the pathogenic variant of this SEDT family. Conclusion In this study we identified the novel pathogenic variant of of c.216_217del in the gene of TRAPPC2 in this five-generation Chinese SEDT family. Our findings expand the clinical and molecular spectrum of SEDT and helps the genetic diagnosis of SEDT patients.
Collapse
Affiliation(s)
- Cai Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Caiqi Du
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Ye
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Ye
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renfa Wang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Liang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Santos AJM, Raote I, Scarpa M, Brouwers N, Malhotra V. TANGO1 recruits ERGIC membranes to the endoplasmic reticulum for procollagen export. eLife 2015; 4. [PMID: 26568311 PMCID: PMC4709264 DOI: 10.7554/elife.10982] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/13/2015] [Indexed: 01/08/2023] Open
Abstract
Previously we showed that membrane fusion is required for TANGO1-dependent export of procollagen VII from the endoplasmic reticulum (ER) (Nogueira, et al., 2014). Along with the t-SNARE Syntaxin 18, we now reveal the complete complement of SNAREs required in this process, t-SNAREs BNIP1 and USE1, and v-SNARE YKT6. TANGO1 recruits YKT6-containing ER Golgi Intermediate Compartment (ERGIC) membranes to procollagen VII-enriched patches on the ER. Moreover residues 1214-1396, that include the first coiled coil of TANGO1, specifically recruit ERGIC membranes even when targeted to mitochondria. TANGO1 is thus pivotal in concentrating procollagen VII in the lumen and recruiting ERGIC membranes on the cytoplasmic surface of the ER. Our data reveal that growth of a mega transport carrier for collagen export from the ER is not by acquisition of a larger patch of ER membrane, but instead by addition of ERGIC membranes to procollagen-enriched domains of the ER by a TANGO1-mediated process. DOI:http://dx.doi.org/10.7554/eLife.10982.001
Collapse
Affiliation(s)
- António J M Santos
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Ishier Raote
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Margherita Scarpa
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Nathalie Brouwers
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Vivek Malhotra
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
3
|
Unlu G, Levic DS, Melville DB, Knapik EW. Trafficking mechanisms of extracellular matrix macromolecules: insights from vertebrate development and human diseases. Int J Biochem Cell Biol 2013; 47:57-67. [PMID: 24333299 DOI: 10.1016/j.biocel.2013.11.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 11/01/2013] [Accepted: 11/10/2013] [Indexed: 12/19/2022]
Abstract
Cellular life depends on protein transport and membrane traffic. In multicellular organisms, membrane traffic is required for extracellular matrix deposition, cell adhesion, growth factor release, and receptor signaling, which are collectively required to integrate the development and physiology of tissues and organs. Understanding the regulatory mechanisms that govern cargo and membrane flow presents a prime challenge in cell biology. Extracellular matrix (ECM) secretion remains poorly understood, although given its essential roles in the regulation of cell migration, differentiation, and survival, ECM secretion mechanisms are likely to be tightly controlled. Recent studies in vertebrate model systems, from fishes to mammals and in human patients, have revealed complex and diverse loss-of-function phenotypes associated with mutations in components of the secretory machinery. A broad spectrum of diseases from skeletal and cardiovascular to neurological deficits have been linked to ECM trafficking. These discoveries have directly challenged the prevailing view of secretion as an essential but monolithic process. Here, we will discuss the latest findings on mechanisms of ECM trafficking in vertebrates.
Collapse
Affiliation(s)
- Gokhan Unlu
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Daniel S Levic
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - David B Melville
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ela W Knapik
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
4
|
Tiller GE, Hannig VL, Dozier D, Carrel L, Trevarthen KC, Wilcox WR, Mundlos S, Haines JL, Gedeon AK, Gecz J. A recurrent RNA-splicing mutation in the SEDL gene causes X-linked spondyloepiphyseal dysplasia tarda. Am J Hum Genet 2001; 68:1398-407. [PMID: 11326333 PMCID: PMC1226126 DOI: 10.1086/320594] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2001] [Accepted: 02/23/2001] [Indexed: 11/03/2022] Open
Abstract
Spondyloepiphyseal dysplasia tarda (SEDL) is a genetically heterogeneous disorder characterized by mild-to-moderate short stature and early-onset osteoarthritis. Both autosomal and X-linked forms have been described. Elsewhere, we have reported the identification of the gene for the X-linked recessive form, which maps to Xp22.2. We now report characterization of an exon-skipping mutation (IVS3+5G-->A at the intron 3 splice-donor site) in two unrelated families with SEDL. Using reverse transcriptase (RT)-PCR, we demonstrated that the mutation resulted in elimination of the first 31 codons of the open reading frame. The mutation was not detected in 120 control X chromosomes. Articular cartilage from an adult who had SEDL and carried this mutation contained chondrocytes with abundant Golgi complexes and dilated rough endoplasmic reticulum (ER). RT-PCR experiments using mouse/human cell hybrids revealed that the SEDL gene escapes X inactivation. Homologues of the SEDL gene include a transcribed retropseudogene on chromosome 19, as well as expressed genes in mouse, rat, Drosophila melanogaster Caenorhabditis elegans, and Saccharomyces cerevisiae. The latter homologue, p20, has a putative role in vesicular transport from ER to Golgi complex. These data suggest that SEDL mutations may perturb an intracellular pathway that is important for cartilage homeostasis.
Collapse
Affiliation(s)
- G E Tiller
- Department of Pediatrics and Program in Human Genetics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Gedeon AK, Tiller GE, Le Merrer M, Heuertz S, Tranebjaerg L, Chitayat D, Robertson S, Glass IA, Savarirayan R, Cole WG, Rimoin DL, Kousseff BG, Ohashi H, Zabel B, Munnich A, Gecz J, Mulley JC. The molecular basis of X-linked spondyloepiphyseal dysplasia tarda. Am J Hum Genet 2001; 68:1386-97. [PMID: 11349230 PMCID: PMC1226125 DOI: 10.1086/320592] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2001] [Accepted: 03/23/2001] [Indexed: 11/03/2022] Open
Abstract
The X-linked form of spondyloepiphyseal dysplasia tarda (SEDL), a radiologically distinct skeletal dysplasia affecting the vertebrae and epiphyses, is caused by mutations in the SEDL gene. To characterize the molecular basis for SEDL, we have identified the spectrum of SEDL mutations in 30 of 36 unrelated cases of X-linked SEDL ascertained from different ethnic populations. Twenty-one different disease-associated mutations now have been identified throughout the SEDL gene. These include nonsense mutations in exons 4 and 5, missense mutations in exons 4 and 6, small (2-7 bp) and large (>1 kb) deletions, insertions, and putative splicing errors, with one splicing error due to a complex deletion/insertion mutation. Eight different frameshift mutations lead to a premature termination of translation and account for >43% (13/30) of SEDL cases, with half of these (7/13) being due to dinucleotide deletions. Altogether, deletions account for 57% (17/30) of all known SEDL mutations. Four recurrent mutations (IVS3+5G-->A, 157-158delAT, 191-192delTG, and 271-275delCAAGA) account for 43% (13/30) of confirmed SEDL cases. The results of haplotype analyses and the diverse ethnic origins of patients support recurrent mutations. Two patients with large deletions of SEDL exons were found, one with childhood onset of painful complications, the other relatively free of additional symptoms. However, we could not establish a clear genotype/phenotype correlation and therefore conclude that the complete unaltered SEDL-gene product is essential for normal bone growth. Molecular diagnosis can now be offered for presymptomatic testing of this disorder. Appropriate lifestyle decisions and, eventually, perhaps, specific SEDL therapies may ameliorate the prognosis of premature osteoarthritis and the need for hip arthroplasty.
Collapse
Affiliation(s)
- A K Gedeon
- Centre for Medical Genetics, Department of Cytogenetics and Molecular Genetics, Women's and Children's Hospital, and University of Adelaide Department of Paediatrics, Adelaide, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|