1
|
Church DD, Zamir A, Escalante G, Ben-Zeev T, Levi C, Ferrando AA, Hoffman JR. Early Life Androgen Administration Attenuates Aging Related Declines in Muscle Protein Synthesis. Med Sci Sports Exerc 2024; 56:1118-1123. [PMID: 38376993 PMCID: PMC11373229 DOI: 10.1249/mss.0000000000003402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
PURPOSE This study examined the acute and long-term effects of nandrolone decanoate (ND) on fractional synthetic rates (FSR). METHODS Male C57BL/6 mice were randomized into ND ( n = 20) or sham ( n = 20) groups. ND injections (10 g·kg -1 ·wk -1 ) started at 7 months of ages and continued for 6 wk. Ten animals from each group were randomly separated and examined 1 wk following drug cessation. The remaining animals were examined at 16 months of age. Animals were injected IP with 1.5 mL of deuterated water 24 h before euthanasia. The kidney, liver, heart, gastrocnemius, and soleus were extracted. Samples were analyzed for deuterated alanine enrichment in the bound protein and intracellular fraction by liquid chromatography tandem mass spectrometry to measure estimated FSR (fraction/day (F/D)) of mixed tissue. RESULTS One-way ANOVA, with treatment and age as fixed factors, indicated that kidney FSR was greater ( P = 0.027) in ND (0.41 ± 0.02 F/D) than sham (0.36 ± 0.014F/D) and higher ( P = 0.003) in young (0.42 ± 0.2 F/D) than old (0.35 ± 0.01 F/D). Liver and heart FSR values were greater ( P ≤ 0.001) in young (0.79 ± 0.06 F/D and 0.13 ± 0.01 F/D, respectively) compared with old (0.40 ± 0.01 F/D and 0.09 ± 0.01 F/D, respectively), but not between ND and sham. Gastrocnemius FSR was ( P ≤ 0.001) greater in young (0.06 ± 0.01 F/D) compared with old (0.03 ± 0.002 F/D), and greater ( P = 0.006) in ND (0.05 ± 0.01 F/D) compared with sham (0.04 ± 0.003 F/D). Soleus FSR rates were greater ( P = 0.050) in young (0.13 ± 0.01 F/D) compared with old (0.11 ± 0.003 F/D), but not between ND (0.12 ± 0.01 F/D) and sham (0.12 ± 0.01 F/D). Old animals who had received ND displayed elevated FSR in the gastrocnemius ( P = 0.054) and soleus ( P = 0.024). CONCLUSIONS ND use in young adult animals appeared to maintain long-term elevations in FSR in muscle during aging.
Collapse
Affiliation(s)
- David D Church
- Donald W. Reynolds Institute on Aging, Center for Translational Research in Aging & Longevity, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Amit Zamir
- School of Health Sciences, Ariel University, Ariel, ISRAEL
| | - Guillermo Escalante
- Department of Kinesiology, California State University San Bernardino, San Bernardino, CA
| | - Tavor Ben-Zeev
- School of Health Sciences, Ariel University, Ariel, ISRAEL
| | - Chagai Levi
- School of Health Sciences, Ariel University, Ariel, ISRAEL
| | - Arny A Ferrando
- Donald W. Reynolds Institute on Aging, Center for Translational Research in Aging & Longevity, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Jay R Hoffman
- School of Health Sciences, Ariel University, Ariel, ISRAEL
| |
Collapse
|
2
|
Bischoff-Ferrari HA, Kistler-Fischbacher M, Gaengler S, Münzer T, Dawson-Hughes B, Lang W, Theiler R, Egli A, Orav EJ, Freystaetter G. Effects of testosterone and vitamin D on fall risk in pre-frail hypogonadal men: a factorial design RCT. J Nutr Health Aging 2024; 28:100217. [PMID: 38552276 DOI: 10.1016/j.jnha.2024.100217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 06/03/2024]
Abstract
OBJECTIVE To test whether transdermal testosterone at a dose of 75 mg per day and/or monthly 24'000 IU Vitamin D reduces the fall risk in pre-frail hypogonadal men aged 65 and older. DESIGN 2 × 2 factorial design randomized controlled trial, follow up of 12 months. METHODS Hypogonadism was defined as total testosterone <11.3 nmol/L and pre-frailty as ≥1 Fried- frailty criteria and/or being at risk for falling at the time of screening. The primary outcomes were number of fallers and the rate of falls, assessed prospectively. Secondary outcomes were appendicular lean mass (ALM), sit-to-stand, gait speed, and the short physical performance test battery. Analyses were adjusted for age, BMI, fall history and the respective baseline measurement. RESULTS We aimed to recruit 168 men and stopped at 91 due to unexpected low recruitment rate (1266 men were pre-screened). Mean age was 72.2 years, serum total testosterone was 10.8 ± 3.0 nmol/l, and 20.9% had 25(OH)D levels below 20 ng/mL. Over 12 months, 37 participants had 72 falls. Neither the odds of falling nor the rate of falls were reduced by testosterone or by vitamin D. Testosterone improved ALM compared to no testosterone (0.21 kg/m2 [0.06, 0.37]), and improved gait speed (0.11 m/s, [0.03, 0.20]) compared to placebo. CONCLUSION Transdermal testosterone did not reduce fall risk but improved ALM and gait speed in pre-frail older men. Monthly vitamin D supplementation had no benefit.
Collapse
Affiliation(s)
- Heike A Bischoff-Ferrari
- Centre on Aging and Mobility, University of Zurich, Zurich, Switzerland; Department of Aging Medicine and Aging Research, University of Zurich, Zurich, Switzerland; IHU HealthAge, University Hospital Toulouse and University III Paul Sabatier, Toulouse, France.
| | - Melanie Kistler-Fischbacher
- Centre on Aging and Mobility, University of Zurich, Zurich, Switzerland; Department of Aging Medicine and Aging Research, University of Zurich, Zurich, Switzerland.
| | - Stephanie Gaengler
- Centre on Aging and Mobility, University of Zurich, Zurich, Switzerland; Department of Aging Medicine and Aging Research, University of Zurich, Zurich, Switzerland.
| | - Thomas Münzer
- Geriatrische Klinik St. Gallen, St. Gallen, Switzerland.
| | - Bess Dawson-Hughes
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts.
| | - Wei Lang
- Centre on Aging and Mobility, University of Zurich, Zurich, Switzerland; Department of Aging Medicine and Aging Research, University of Zurich, Zurich, Switzerland.
| | - Robert Theiler
- Centre on Aging and Mobility, University of Zurich, Zurich, Switzerland; Department of Aging Medicine and Aging Research, University of Zurich, Zurich, Switzerland.
| | - Andreas Egli
- Centre on Aging and Mobility, University of Zurich, Zurich, Switzerland; Department of Aging Medicine and Aging Research, University of Zurich, Zurich, Switzerland.
| | - E John Orav
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.
| | - Gregor Freystaetter
- Centre on Aging and Mobility, University of Zurich, Zurich, Switzerland; Department of Aging Medicine and Aging Research, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Zhang D, Guo X, Feng M, Bao X, Deng K, Yao Y, Lian W, Xing B, Wang H. Preoperative and postoperative blood testosterone levels in patients with acromegaly: a prospective study. Front Endocrinol (Lausanne) 2023; 14:1259529. [PMID: 37886642 PMCID: PMC10598850 DOI: 10.3389/fendo.2023.1259529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/11/2023] [Indexed: 10/28/2023] Open
Abstract
Purpose To investigate the prevalence of low blood testosterone level (LTL) and its determinant factors among active male acromegaly patients, as well as the effect of surgery on LTL in male acromegaly patients. Methods A retrospective, single-center study focused on 252 male acromegaly patients aged 18 years-60 years diagnosed in the Peking Union Medical College Hospital from January 2015 to December 2018 was carried out. The measurements of preoperative and postoperative testosterone levels, serum growth hormone (GH), insulin-like growth factor 1 (IGF-1), and other clinical data were analyzed. Results Forty per cent of subjects included were diagnosed with LTL pre surgery. Patients were divided into normal testosterone level (NTL) and LTL groups based on their testosterone level. There were significant differences (p < 0.01) between groups in the presence of macroadenomas, invasion of the cavernous sinus, compression of the optic chiasm, and serum GH and prolactin levels pre surgery. Invasion of the cavernous sinus [odds ratio (OR) = 4.299; p = 0.000] and serum prolactin level (OR = 1.023, p = 0.001) were independent predictors of LTLs in male patients before surgical intervention. A total of 67.9% of LTL patients recovered during the follow-up, with a new-onset rate of 3.4%. Body mass index, invasion of the cavernous sinus, GH, IGF-1, and prolactin levels, the presence of a prolactin-secreting tumor, and recovery from acromegaly were significantly different (p < 0.05) in the NTL group and in the LTL group during the follow-up. The presence of a prolactin-secreting tumor (OR = 0.224; p = 0.001) and recovery from acromegaly (OR = 0.168; p = 0.006) were independent predictors of LTLs in male acromegaly patients during the follow-up. Conclusion The invasiveness of tumor and levels of blood prolactin are independent factors for LTLs before surgery, whereas GH and IGF-1 levels are not. Most male patients can recover from LTL after tumor restriction surgery: those who recover from acromegaly have a better chance of recovering from LTL.
Collapse
Affiliation(s)
- Duoxing Zhang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaopeng Guo
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Endocrinology, China Pituitary Adenoma Specialist Council, Beijing, China
| | - Ming Feng
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Endocrinology, China Pituitary Adenoma Specialist Council, Beijing, China
| | - Xinjie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Endocrinology, China Pituitary Adenoma Specialist Council, Beijing, China
| | - Kan Deng
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Endocrinology, China Pituitary Adenoma Specialist Council, Beijing, China
| | - Yong Yao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Endocrinology, China Pituitary Adenoma Specialist Council, Beijing, China
| | - Wei Lian
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Endocrinology, China Pituitary Adenoma Specialist Council, Beijing, China
| | - Bing Xing
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Endocrinology, China Pituitary Adenoma Specialist Council, Beijing, China
| | - Hanbi Wang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
4
|
Buratto J, Kirk B, Phu S, Vogrin S, Duque G. Safety and Efficacy of Testosterone Therapy on Musculoskeletal Health and Clinical Outcomes in Men: A Systematic Review and Meta-Analysis of Randomized Placebo-Controlled Trials. Endocr Pract 2023; 29:727-734. [PMID: 37164187 DOI: 10.1016/j.eprac.2023.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/12/2023]
Abstract
OBJECTIVE Age-related declines in muscle and bone, alongside a shift toward greater adiposity, contribute to falls and fracture risk. Testosterone is osteogenic, myogenic, and catabolic to fat. As such, we examined the effects of testosterone therapy on musculoskeletal health and clinical outcomes in men. METHODS Electronic databases (Medline, Embase, Web of Science, Central) were systematically searched for randomized controlled trials (RCTs) reporting on the effects of testosterone therapy versus placebo on any primary outcome (bone density, muscle mass, fat mass, muscle strength/physical performance) or secondary outcome (falls, fractures, disability, adverse events) in men (≥18 years). A random effects meta-regression examined the effects of testosterone on prespecified outcomes. RESULTS One thousand seven hundred twenty-eight men across 16 RCTs were included (mean age: 77.1 ± 7.6 years). Baseline mean serum testosterone ranged from 7.5 ± 0.3 to 18.9 ± 1.2 nmol/L. Compared to placebo, 6 months of testosterone therapy increased hip bone density and total lean mass, but effects for handgrip and total fat mass did not reach statistical significance. No significant effects of testosterone therapy on musculoskeletal outcomes were evident at 12 months. The limited number of RCTs reporting on adverse events/clinical outcomes, and the low incidence of these events across RCTs, prohibited statistical comparisons. CONCLUSION After 6 months, testosterone effectively increases hip bone density and total lean mass in men, but its effects are unclear for lumbar spine bone density and handgrip strength. Further, RCTs are needed to clarify the safety and efficacy of testosterone on musculoskeletal health and clinical outcomes.
Collapse
Affiliation(s)
- Jared Buratto
- Department of Medicine, Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia; Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, Melbourne, Victoria, Australia
| | - Ben Kirk
- Department of Medicine, Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia; Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, Melbourne, Victoria, Australia
| | - Steven Phu
- Department of Medicine, Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia; Falls, Balance and Injury Research Centre, Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia; Faculty of Medicine and Health, School of Population Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Sara Vogrin
- Department of Medicine, Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia; Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, Melbourne, Victoria, Australia
| | - Gustavo Duque
- Department of Medicine, Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia; Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, Melbourne, Victoria, Australia; Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Dr. Joseph Kaufmann Chair in Geriatric Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
5
|
Thomasius F, Pesta D, Rittweger J. Adjuvant pharmacological strategies for the musculoskeletal system during long-term space missions. Br J Clin Pharmacol 2023. [PMID: 37559171 DOI: 10.1111/bcp.15877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023] Open
Abstract
Despite 2 h of daily exercise training, muscle wasting and bone loss are still present after 6-month missions to the international space station. Some crew members lose bone much faster than others. In preparation for missions to the Moon and Mars, space agencies are therefore reviewing their countermeasure portfolios. Here, we discuss the potential of current pharmacological strategies. Bone loss in space is fuelled by bone resorption. Alendronate, an oral bisphosphonate, reduced bone losses in experimental bed rest and space. However, gastrointestinal side effects precluded its further utilization in space. Zoledronate (a potent bisphosphonate), denosumab (RANKL antagonist) and romosozumab (sclerostin antagonist) are all administered via injection. They effectively suppress bone resorption and are routinely prescribed against osteoporosis. Their serious adverse effects, namely, osteonecrosis of the jaw and atypical femur fractures occur very rarely when the usage is limited to 1 or 2 years. Hence, utilization of one of these compounds may outweigh the bone risks of space travelling, in particular in those with high bone resorption rates. Muscle wasting in space is likely due to hampered muscle protein synthesis. Even though this might theoretically be countered by the synthesis-boosting effects of anabolic steroids, the practical grounds for such recommendation are currently weak. Moreover, they reveal their full potential only when combined with an anabolic exercise stimulus, for example, via strength training. It therefore seems that a combination of exercise and pharmacological countermeasures should be considered for musculoskeletal health on the way to the Moon and Mars and back.
Collapse
Affiliation(s)
| | - Dominik Pesta
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Centre for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Department of Pediatrics and Adolescent Medicine, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
6
|
Lee TW, Kao PY, Chen YC, Wang ST. Effects of Testosterone Replacement Therapy on Muscle Strength in Older Men with Low to Low-Normal Testosterone Levels: A Systematic Review and Meta-Analysis. Gerontology 2023; 69:1157-1166. [PMID: 37494893 DOI: 10.1159/000532062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND Previous studies and meta-analyses have explored the relationship among testosterone, muscle strength, and physical function, to the best of our knowledge, no meta-analysis has investigated the effects of testosterone replacement therapy (TRT) on subgroup of relatively hypogonadal older men. OBJECTIVE The aim of this study was to evaluate the effect of TRT in older men with low testosterone levels. METHODS PubMed, Embase, and Web of Science were systematically searched for articles published between January 1990 and April 2020. We included randomized controlled studies that investigated the effect of TRT and included older men (age >60 years) with relatively low testosterone levels. Studies were extracted following the PRISMA flowchart, and the included randomized controlled trials were evaluated using RoB 2.0. Our main outcome was muscle strength changes after TRT evaluated using a metaregression of confounding factors. Secondary outcomes included changes in physical performance and the risk ratio of adverse events. Random-effects meta-analyses of TRT on muscle strength and physical function were performed. RESULTS Thirteen studies with 2,043 patients were included. The mean age of subjects in various studies ranged from 65.9 years to 76 years. Transdermal testosterone dosages ranged from 5 to 10 g/day, while intramuscular options were 125 mg/week or 200 mg every 2 weeks. Oral testosterone supplementation was given at 160 mg/day in one study. Pooled meta-analyses revealed greater muscle strength improvement after TRT compared with placebo (Hedges' g = 0.21; 95% CI: = 0.15-0.28). Intramuscular administration of TRT had greater efficacy (Hedges' g = 0.74; 95% CI: = 0.34-1.14) than transdermal and oral TRT (p < 0.001). A metaregression revealed that baseline serum total testosterone was associated with muscle strength improvement (β = -0.004, p = 0.002). The risk ratios of adverse events, including elevated prostate-specific antigen, acute coronary syndrome, and prostate cancer, were not significantly different. CONCLUSION TRT improved muscle strength in older, relatively hypogonadal men. The effect was more pronounced in populations with lower baseline testosterone levels.
Collapse
Affiliation(s)
- Ta-Wei Lee
- Department of Education, National Taiwan University Hospital, Taipei, Taiwan,
| | - Pei-Yu Kao
- Department of Education, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Yang-Ching Chen
- Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sen-Te Wang
- Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Health Management Center, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
7
|
Roop K, Coakley KE, Cohen D, Gonzales-Pacheco D. The Relationship Between Exogenous Testosterone and Resting Energy Expenditure in Adults. TOP CLIN NUTR 2023. [DOI: 10.1097/tin.0000000000000318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
8
|
Varanoske AN, Harris MN, Hebert C, Johannsen NM, Heymsfield SB, Greenway FL, Ferrando AA, Rood JC, Pasiakos SM. Bioelectrical impedance phase angle is associated with physical performance before but not after simulated multi-stressor military operations. Physiol Rep 2023; 11:e15649. [PMID: 36949577 PMCID: PMC10033850 DOI: 10.14814/phy2.15649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/24/2023] Open
Abstract
Physical performance decrements observed during multi-stressor military operations may be attributed, in part, to cellular membrane dysfunction, which is quantifiable using phase angle (PhA) derived from bioelectrical impedance analysis (BIA). Positive relationships between PhA and performance have been previously reported in cross-sectional studies and following longitudinal exercise training programs, but whether changes in PhA are indicative of acute decrements in performance during military operations is unknown. Data from the Optimizing Performance for Soldiers II study, a clinical trial examining the effects of exogenous testosterone administration on body composition and performance during military stress, was used to evaluate changes in PhA and their associations with physical performance. Recreationally active, healthy males (n = 34; 26.6 ± 4.3 years; 77.9 ± 12.4 kg) were randomized to receive testosterone undecanoate or placebo before a 20-day simulated military operation, which was followed by a 23-day recovery period. PhA of the whole-body (Whole) and legs (Legs) and physical performance were measured before (PRE) and after (POST) the simulated military operation as well as in recovery (REC). Independent of treatment, PhAWhole and PhALegs decreased from PRE to POST (p < 0.001), and PhALegs , but not PhAWhole , remained lower at REC than PRE. PhAWhole at PRE and REC were associated with vertical jump height and Wingate peak power (p < 0.001-0.050), and PhAWhole at PRE was also associated with 3-RM deadlift mass (p = 0.006). However, PhA at POST and changes in PhA from PRE to POST were not correlated with any performance measure (p > 0.05). Additionally, PhA was not associated with aerobic performance at any timepoint. In conclusion, reduced PhA from PRE to POST provides indirect evidence of cellular membrane disruption. Associations between PhA and strength and power were only evident at PRE and REC, suggesting PhA may be a useful indicator of strength and power, but not aerobic capacity, in non-stressed conditions, and not a reliable indicator of physical performance during severe physiological stress.
Collapse
Affiliation(s)
- Alyssa N. Varanoske
- Military Performance Division, U.S. Army Research Institute of Environmental MedicineNatickMassachusettsUSA
- Oak Ridge Institute for Science and EducationOak RidgeTennesseeUSA
| | - Melissa N. Harris
- Pennington Biomedical Research CenterLouisiana State UniversityBaton RougeLouisianaUSA
| | - Callie Hebert
- Pennington Biomedical Research CenterLouisiana State UniversityBaton RougeLouisianaUSA
| | - Neil M. Johannsen
- Pennington Biomedical Research CenterLouisiana State UniversityBaton RougeLouisianaUSA
| | - Steven B. Heymsfield
- Pennington Biomedical Research CenterLouisiana State UniversityBaton RougeLouisianaUSA
| | - Frank L. Greenway
- Pennington Biomedical Research CenterLouisiana State UniversityBaton RougeLouisianaUSA
| | - Arny A. Ferrando
- Department of Geriatrics, Donald W. Reynolds Institute on Aging, Center for Translational Research in Aging & LongevityUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Jennifer C. Rood
- Pennington Biomedical Research CenterLouisiana State UniversityBaton RougeLouisianaUSA
| | - Stefan M. Pasiakos
- Military Performance Division, U.S. Army Research Institute of Environmental MedicineNatickMassachusettsUSA
| |
Collapse
|
9
|
Cardaci TD, Machek SB, Wilburn DT, Heileson JL, Harris DR, Cintineo HP, Willoughby DS. LGD-4033 and MK-677 use impacts body composition, circulating biomarkers, and skeletal muscle androgenic hormone and receptor content: A case report. Exp Physiol 2022; 107:1467-1476. [PMID: 36303408 DOI: 10.1113/ep090741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/06/2022] [Indexed: 12/14/2022]
Abstract
NEW FINDINGS What is the main observation in this case? Co-administration of LGD-4033 and MK-677 increased body mass, lean mass and fat mass, while negatively impacting bone, serum lipids, liver enzymes, testosterone (total and free) and, probably, follicle-stimulating hormone. What insights does it reveal? Our cross-sectional data imply that these compounds might alter intramuscular androgenic hormone and receptor concentrations along with promoting muscular strength, when compared with previously published data from trained males. ABSTRACT LGD-4033, a selective androgen receptor modulator, and MK-677, a growth hormone secretagogue, are being used increasingly amongst recreationally active demographics. However, limited data exist describing their effects on health- and androgen-related biomarkers. The purpose of this case study was to determine changes in body composition and biomarkers during and after continued co-administration of LGD-4033 and MK-677. We also aimed to examine muscular strength and intramuscular androgen-associated biomarkers relative to non-users. A 25-year-old male ingested LGD-4033 (10 mg) and MK-677 (15 mg) daily for 5 weeks. Blood and body composition metrics were obtained pre-, on- and post-cycle. One-repetition maximum leg and bench press, in addition to intramuscular androgens and androgen receptor content, were analysed on-cycle. We observed pre- to on-cycle changes in body composition (body mass, +6.0%; total lean body mass, +3.1%; trunk lean body mass, +6.6%; appendicular lean body mass, +4.3%; total fat mass, +15.4%; trunk fat mass, +2.8%; and appendicular fat mass, +14.8%), bone (bone mineral content, -3.60%; area, -1.1%; and bone mineral density, -2.1%), serum lipid-associated biomarkers (cholesterol, +14.8%; triglycerides, +39.2%; low-density lipoprotein-cholesterol, +40.0%; and high-density lipoprotein-cholesterol, -36.4%), liver-associated biomarkers (aspartate aminotransferase, +95.8%; and alanine aminotransferase, +205.0%) and androgen-associated biomarkers (free testosterone, -85.7%; total testosterone, -62.3%; and sex hormone-binding globulin, -79.6%); however, all variables returned to pre-cycle values post-cycle, apart from total fat mass, appendicular fat mass, bone area, total cholesterol and low-density lipoprotein-cholesterol. Follicle-stimulating hormone was below clinical reference values on- (1.2 IU/L) and post-cycle (1.3 IU/L). Intramuscular androgen receptor (-44.6%), testosterone (+47.8%) and dihydrotestosterone (+34.4%), in addition to one-repetition maximum leg press and bench press (+39.2 and +32.0%, respectively), were different in the case subject compared with non-users. These data demonstrate that LGD-4033 and MK-677 increase several body composition parameters, whilst negatively impacting bone and several serum biomarkers. Given the sparsity of data in recreationally using demographics, further research is warranted to elucidate the acute and chronic physiological effects of these anabolic agents.
Collapse
Affiliation(s)
- Thomas D Cardaci
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, USA
| | - Steven B Machek
- Kinesiology Department, College of Health Sciences and Human Services, California State University, Monterey Bay, California, USA
| | - Dylan T Wilburn
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, Texas, USA
| | - Jeffery L Heileson
- Nutrition Services Division, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Dillon R Harris
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, Texas, USA
| | - Harry P Cintineo
- Department of Kinesiology, Lindenwood University, St. Charles, Missouri, USA
| | - Darryn S Willoughby
- School of Exercise and Sport Science, University of Mary Harden-Baylor, Belton, Texas, USA
| |
Collapse
|
10
|
Varanoske AN, Harris MN, Hebert C, Howard EE, Johannsen NM, Heymsfield SB, Greenway FL, Margolis LM, Lieberman HR, Beyl RA, Church DD, Ferrando AA, Pasiakos SM, Rood JC. Testosterone Undecanoate Administration Prevents Declines in Fat-Free Mass but not Physical Performance During Simulated Multi-Stressor Military Operations. J Appl Physiol (1985) 2022; 133:426-442. [PMID: 35796614 PMCID: PMC9359646 DOI: 10.1152/japplphysiol.00190.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CONTEXT Male military personnel conducting strenuous operations experience reduced testosterone, muscle mass, and performance. Pharmacological restoration of normal testosterone may attenuate performance decrements by mitigating muscle loss. Previously, administering testosterone enanthate (200 mg/week) during energy deficit prompted supraphysiological testosterone concentrations and lean mass gain without preventing isokinetic/isometric deterioration. Whether administering a practical dose of testosterone protects muscle and performance during strenuous operations is undetermined. OBJECTIVE Test the effects of a single dose of testosterone on body composition and military-relevant physical performance during a simulated operation. METHODS After a 7-day baseline phase (P1), 32 males (mean±SD; 77.1±12.3 kg, 26.5±4.4 years) received a single dose of either testosterone undecanoate (750 mg; TEST) or placebo (PLA) before a 20-day simulated military operation (P2), followed by a 23-day recovery (P3). Assessments included body composition and physical performance at the end of each phase and circulating endocrine biomarkers throughout the study. RESULTS Total and free testosterone concentrations in TEST were greater than PLA throughout most of P2 (p<0.05), but returned to P1 values during P3. Fat-free mass (FFM) was maintained from P1 to P2 in TEST (mean±SE; 0.41±0.65 kg, p=0.53), but decreased in PLA (-1.85±0.69 kg, p=0.01) and recovered in P3. Regardless of treatment, total body mass and fat mass decreased from P1 to P2 (p<0.05), but did not fully recover by P3. Physical performance decreased during P2 (p<0.05) and recovered by P3, regardless of treatment. CONCLUSIONS Administering testosterone undecanoate before a simulated military operation protected FFM but did not prevent decrements in physical performance.
Collapse
Affiliation(s)
- Alyssa N Varanoske
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States.,Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Melissa N Harris
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States
| | - Callie Hebert
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States
| | - Emily E Howard
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States.,Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Neil M Johannsen
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States
| | - Steven B Heymsfield
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States
| | - Frank L Greenway
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States
| | - Lee M Margolis
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Harris R Lieberman
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Robbie A Beyl
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States
| | - David D Church
- Department of Geriatrics, Donald W. Reynolds Institute on Aging, Center for Translational Research in Aging and Longevity, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Arny A Ferrando
- Department of Geriatrics, Donald W. Reynolds Institute on Aging, Center for Translational Research in Aging and Longevity, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Stefan M Pasiakos
- Military Performance Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Jennifer C Rood
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
11
|
Popp KL, Cooke LM, Bouxsein ML, Hughes JM. Impact of Low Energy Availability on Skeletal Health in Physically Active Adults. Calcif Tissue Int 2022; 110:605-614. [PMID: 35171303 DOI: 10.1007/s00223-022-00957-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/04/2022] [Indexed: 12/13/2022]
Abstract
For decades researchers reported that pre-menopausal women who engage in extensive endurance exercise and have menstrual dysfunction can develop low bone mineral density (BMD) or osteoporosis. More recently, low energy availability has been recognized as the initiating factor for low BMD in these women. Furthermore, the relationship between low energy availability and poor skeletal health is not exclusive to women engaging in endurance exercise. Rather, both males and females commonly experience endocrine dysfunction resulting from low energy availability and high exercise levels that degrades skeletal health. Consequences to skeletal health can range from short-term changes in bone metabolism and increased risk of bone stress injuries to long-term consequences of low BMD, such as osteoporosis and related fragility fractures. The degree to which low energy availability degrades skeletal health may be dependent on the length and extent of the energy deficit. However, the complex relationships between under-fueling, short- and long-term skeletal consequences and the factors that mediate these relationships are not well described. In this review, we discuss the consequences of low energy availability on sex hormones and skeletal health in two highly-active populations-athletes and military trainees-and provide a summary of existing knowledge gaps for future study.
Collapse
Affiliation(s)
- Kristin L Popp
- United States Army Research Institute of Environmental Medicine, 10 General Greene Ave, Natick, MA, 01760, USA.
- Massachusetts General Hospital, Boston, MA, 02114, USA.
- Harvard Medical School, Boston, MA, 02215, USA.
| | - Laura M Cooke
- Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Mary L Bouxsein
- United States Army Research Institute of Environmental Medicine, 10 General Greene Ave, Natick, MA, 01760, USA
- Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, 02215, USA
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Julie M Hughes
- United States Army Research Institute of Environmental Medicine, 10 General Greene Ave, Natick, MA, 01760, USA
| |
Collapse
|
12
|
Falqueto H, dos Santos MR, Manfredi LH. Anabolic-Androgenic Steroids and Exercise Training: Breaking the Myths and Dealing With Better Outcome in Sarcopenia. Front Physiol 2022; 13:838526. [PMID: 35370776 PMCID: PMC8969048 DOI: 10.3389/fphys.2022.838526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Sarcopenia is an emerging clinical condition determined by the reduction in physical function and muscle mass, being a health concern since it impairs quality of life and survival. Exercise training is a well-known approach to improve physical capacities and body composition, hence managing sarcopenia progression and worsening. However, it may be an ineffective treatment for many elderly with exercise-intolerant conditions. Thus, the use of anabolic-androgenic steroids (AAS) may be a plausible strategy, since these drugs can increase physical function and muscle mass. The decision to initiate AAS treatment should be guided by an evidence-based patient-centric perspective, once the balance between risks and benefits may change depending on the clinical condition coexisting with sarcopenia. This mini-review points out a critical appraisal of evidence and limitation of exercise training and AAS to treat sarcopenia.
Collapse
Affiliation(s)
- Hugo Falqueto
- Medical School, Federal University of Fronteira Sul, Chapecó, Brazil
- Graduate Program in Biomedical Sciences, UFFS, Chapecó, Brazil
| | | | - Leandro H. Manfredi
- Medical School, Federal University of Fronteira Sul, Chapecó, Brazil
- Graduate Program in Biomedical Sciences, UFFS, Chapecó, Brazil
- *Correspondence: Leandro H. Manfredi,
| |
Collapse
|