1
|
Ma C, Yu L, Chen S, Wu X, Yang Y, Xie H, Chen X, Liang X, Peng Q, Huang B, Fan S, Chen H, Li G, He R. Investigating the self-healing potential of polycystic ovary syndrome in a mouse model: Implications for offspring health. Biochem Biophys Res Commun 2024; 747:151266. [PMID: 39787790 DOI: 10.1016/j.bbrc.2024.151266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/08/2024] [Accepted: 12/29/2024] [Indexed: 01/12/2025]
Abstract
Polycystic ovarian syndrome (PCOS) is a prevalent metabolic endocrine disorder in reproductive-aged women. This study aims to investigate the self-healing ability of PCOS and its potential impact on offspring. Methods: Female C57 BL/6J mice aged 4-5 weeks were administered letrozole (1 mg/kg/d) and a high-fat diet for 21 days to establish a PCOS model, and a control group was established. After modeling, the mice were divided into a PCOS model group and a self-healing group. After 14 days, the mice were mated, and the growth of their offspring was recorded. Subsequently, all mice were euthanized to collect serum, ovaries, and testes. The results showed that the self-healing group PCOS phenotype has shown improvement when compared to the model group. The findings from the offspring study indicate that all offspring in the model group died, while the self-healing group had offspring with a lower weight at 7 days and higher blood glucose levels. Additionally, the testicular morphology of male offspring in the self-healing group was poor. The conclusion drawn is that, after removing the pathogenic factors, the PCOS model group can self-heal. However, fertility remains impaired, which has an impact on their offspring.
Collapse
Affiliation(s)
- Cunling Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Leyi Yu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Shensi Chen
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xin Wu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yuanyuan Yang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Haibo Xie
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xiaojiang Chen
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xiaoxia Liang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Qingjie Peng
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Bincheng Huang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; General Hospital of Ningxia Medical University, Yinchuan, China
| | - Shuzhe Fan
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Hua Chen
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; General Hospital of Ningxia Medical University, Yinchuan, China
| | - Guangyong Li
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; General Hospital of Ningxia Medical University, Yinchuan, China
| | - Rui He
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
2
|
Naigaonkar A, Dadachanji R, Kumari M, Mukherjee S. Insight into metabolic dysregulation of polycystic ovary syndrome utilizing metabolomic signatures: a narrative review. Crit Rev Clin Lab Sci 2024:1-28. [PMID: 39697160 DOI: 10.1080/10408363.2024.2430775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/15/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a complex multifactorial endocrinopathy affecting reproductive aged women globally, whose presentation is strongly influenced by genetic makeup, ethnic, and geographic diversity leaving these affected women substantially predisposed to reproductive and metabolic perturbations. Sophisticated techniques spanning genomics, proteomics, epigenomics, and transcriptomics have been harnessed to comprehensively understand the enigmatic pathophysiology of PCOS, however, conclusive markers for PCOS are still lacking today. Metabolomics represents a paradigm shift in biotechnological advances enabling the simultaneous identification and quantification of metabolites and the use of this approach has added yet another dimension to help unravel the strong metabolic component of PCOS. Reports dissecting the metabolic signature of PCOS have revealed disparate levels of metabolites such as pyruvate, lactate, triglycerides, free fatty acids, carnitines, branched chain and essential amino acids, and steroid intermediates in major biological compartments. These metabolites have been shown to be altered in women with PCOS overall, after phenotypic subgrouping, in animal models of PCOS, and also following therapeutic intervention. This review seeks to supplement previous reviews by highlighting the aforementioned aspects and to provide easy, coherent and elementary access to significant findings and emerging trends. This will in turn help to delineate the metabolic plot in women with PCOS in various biological compartments including plasma, urine, follicular microenvironment, and gut. This may pave the way to design additional studies on the quest of unraveling the etiology of PCOS and delving into novel biomarkers for its diagnosis, prognosis and management.
Collapse
Affiliation(s)
- Aalaap Naigaonkar
- Department of Molecular Endocrinology, National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research, Mumbai, India
| | - Roshan Dadachanji
- Department of Molecular Endocrinology, National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research, Mumbai, India
| | - Manisha Kumari
- Department of Molecular Endocrinology, National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research, Mumbai, India
| | - Srabani Mukherjee
- Department of Molecular Endocrinology, National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research, Mumbai, India
| |
Collapse
|
3
|
Dumesic DA, Rasouli MA, Katz JD, Lu GG, Dharanipragada D, Turcu AF, Grogan TR, Flores KE, Magyar CE, Abbott DH, Chazenbalk GD. The Subcutaneous Adipose Microenvironment as a Determinant of Body Fat Development in Polycystic Ovary Syndrome. J Endocr Soc 2024; 8:bvae162. [PMID: 39345868 PMCID: PMC11424691 DOI: 10.1210/jendso/bvae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Indexed: 10/01/2024] Open
Abstract
Context Adipose steroid metabolism modifies body fat development in polycystic ovary syndrome (PCOS). Objective To determine whether subcutaneous (SC) abdominal adipose aldo-keto reductase 1C3 (AKR1C3; a marker of testosterone generation) is increased in normal-weight women with PCOS vs age- and body mass index (BMI)-matched normoandrogenic ovulatory women (controls) and is related to SC abdominal adipose activator protein-1 (AP-1; a marker of adipocyte differentiation) and/or androgen receptor (AR) protein expression in predicting fat accretion. Design Prospective cohort study. Setting Academic center. Patients Eighteen normal-weight PCOS women; 17 age- and BMI-matched controls. Interventions Circulating hormone/metabolic determinations, intravenous glucose tolerance testing, total body dual-energy x-ray absorptiometry, SC abdominal fat biopsy, immunohistochemistry. Main Outcome Measures Clinical characteristics, hormonal concentrations, body fat distribution, SC adipose AKR1C3, AR, and AP-1 protein expression. Results Women with PCOS had significantly higher serum androgen levels and greater android/gynoid fat mass ratios than controls. SC adipose AKR1C3, AR, and AP-1 protein expressions were comparable between the study groups, but groups differed in correlations. In PCOS women vs controls, SC adipose AKR1C3 protein expression correlated positively with android and gynoid fat masses and negatively with SC adipose AP-1 protein expression. SC adipose AR protein expression correlated negatively with fasting serum free fatty acid and high-density lipoprotein levels. In both study groups, SC adipose AKR1C3 protein expression negatively correlated with serum cortisol levels. Conclusion In normal-weight PCOS women, SC abdominal adipose AKR1C3 protein expression, in combination with intra-adipose AP-1 and AR-dependent events, predicts fat accretion in the presence of physiological cortisol levels.
Collapse
Affiliation(s)
- Daniel A Dumesic
- Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Melody A Rasouli
- Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jessica D Katz
- Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gwyneth G Lu
- Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Devyani Dharanipragada
- Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Adina F Turcu
- Division of Metabolism, Endocrinology, Nutrition and Diabetes, University of Michigan, Ann Arbor, MI 48103, USA
| | - Tristan R Grogan
- Department of Medicine Statistics Core, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | - Kimberly E Flores
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Clara E Magyar
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - David H Abbott
- Department of Obstetrics and Gynecology, Wisconsin National Primate Research Center, University of Wisconsin, Madison, Madison, WI 53715, USA
| | - Gregorio D Chazenbalk
- Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Franza L, Caldarelli M, Villani ER, Cianci R. Sex Differences in Cardiovascular Diseases: Exploring the Role of Microbiota and Immunity. Biomedicines 2024; 12:1645. [PMID: 39200110 PMCID: PMC11352091 DOI: 10.3390/biomedicines12081645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 09/01/2024] Open
Abstract
Cardiovascular diseases (CVDs) are the most common cause of mortality and morbidity in Western countries, thus representing a global health concern. CVDs show different patterns in terms of the prevalence and presentation in men and women. The role of sex hormones has been extensively implicated in these sex-specific differences, due to the presence of the menstrual cycle and menopause in women. Moreover, the gut microbiota (GM) has been implicated in cardiovascular health, considering the growing evidence that it is involved in determining the development of specific diseases. In particular, gut-derived metabolites have been linked to CVDs and kidney disorders, which can in turn promote the progression of CVDs. Considering the differences in the composition of GM between men and women, it is possible that gut microbiota act as a mediator in regard to the sex disparities in CVDs. This narrative review aims to comprehensively review the interplay between sex, GM, and CVDs, discussing potential mechanisms and therapeutic options.
Collapse
Affiliation(s)
- Laura Franza
- Emergency, Anesthesiological and Reanimation Sciences Department, Fondazione Policlinico Universitario A. Gemelli-IRCCS of Rome, 00168 Rome, Italy;
- Emergency Department, Azienda Ospedaliero-Universitaria di Modena, Largo del Pozzo, 71, 41125 Modena, Italy
| | - Mario Caldarelli
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy;
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Emanuele Rocco Villani
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- UOC Geriatra-Disturbi Cognitivi e Demenze, Dipartimento di Cure Primarie, AUSL Modena, 41012 Modena, Italy
| | - Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy;
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| |
Collapse
|
5
|
Cen YK, Zhang L, Jiang Y, Meng XF, Li Y, Xiang C, Xue YP, Zheng YG. Not exclusively the activity, but the sweet spot: a dehydrogenase point mutation synergistically boosts activity, substrate tolerance, thermal stability and yield. Org Biomol Chem 2024; 22:3009-3018. [PMID: 38529785 DOI: 10.1039/d4ob00211c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Catalytic activity is undoubtedly a key focus in enzyme engineering. The complicated reaction conditions hinder some enzymes from industrialization even though they have relatively promising activity. This has occurred to some dehydrogenases. Hydroxysteroid dehydrogenases (HSDHs) specifically catalyze the conversion between hydroxyl and keto groups, and hold immense potential in the synthesis of steroid medicines. We underscored the importance of 7α-HSDH activity, and analyzed the overall robustness and underlying mechanisms. Employing a high-throughput screening approach, we comprehensively assessed a mutation library, and obtained a mutant with enhanced enzymatic activity and overall stability/tolerance. The superior mutant (I201M) was identified to harbor improved thermal stability, substrate susceptibility, cofactor affinity, as well as the yield. This mutant displayed a 1.88-fold increase in enzymatic activity, a 1.37-fold improvement in substrate tolerance, and a 1.45-fold increase in thermal stability when compared with the wild type (WT) enzyme. The I201M mutant showed a 2.25-fold increase in the kcat/KM ratio (indicative of a stronger binding affinity for the cofactor). This mutant did not exhibit the highest enzyme activity compared with all the tested mutants, but these improved characteristics contributed synergistically to the highest yield. When a substrate at 100 mM was present, the 24 h yield by I201M reached 89.7%, significantly higher than the 61.2% yield elicited by the WT enzyme. This is the first report revealing enhancement of the catalytic efficiency, cofactor affinity, substrate tolerance, and thermal stability of NAD(H)-dependent 7α-HSDH through a single-point mutation. The mutated enzyme reached the highest enzymatic activity of 7α-HSDH ever reported. High enzymatic activity is undoubtedly crucial for enabling the industrialization of an enzyme. Our findings demonstrated that, when compared with other mutants boasting even higher enzymatic activity, mutants with excellent overall robustness were superior for industrial applications. This principle was exemplified by highly active enzymes such as 7α-HSDH.
Collapse
Affiliation(s)
- Yu-Ke Cen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Lin Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yue Jiang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiang-Fu Meng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yuan Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Chao Xiang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
6
|
Pan Y, Zhu L, Tan J, Lou D, Wang B. Engineering the cofactor binding site of 7α-hydroxysteroid dehydrogenase for improvement of catalytic activity, thermostability, and alteration of substrate preference. Int J Biol Macromol 2024; 258:128847. [PMID: 38123031 DOI: 10.1016/j.ijbiomac.2023.128847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Hydroxysteroid dehydrogenases (HSDHs) are crucial for bile acid metabolism and influence the size of the bile acid pool and gut microbiota composition. HSDHs with high activity, thermostability, and substrate selectivity are the basis for constructing engineered bacteria for disease treatment. In this study, we designed mutations at the cofactor binding site involving Thr15 and Arg16 residues of HSDH St-2-2. The T15A, R16A, and R16Q mutants exhibited 7.85-, 2.50-, and 4.35-fold higher catalytic activity than the wild type, respectively, while also displaying an altered substrate preference (from taurocholic acid (TCA) to taurochenodeoxycholic acid (TCDCA)). These mutants showed lower Km and higher kcat values, indicating stronger binding to the substrate and resulting in 3190-, 3123-, and 3093-fold higher kcat/Km values for TCDCA oxidation. Furthermore, the Tm values of the T15A, R16A, and R16Q mutants were found to increase by 4.3 °C, 6.0 °C, and 7.0 °C, respectively. Molecular structure analysis indicated that reshaped internal hydrogens and surface mutations could improve catalytic activity and thermostability, and altered interactions among the catalytic triad, cofactor binding sites, and substrates could change substrate preference. This work provides valuable insights into modifying substrate preference as well as enhancing the catalytic activity and thermostability of HSDHs by targeting the cofactor binding site.
Collapse
Affiliation(s)
- Yinping Pan
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing 400045, PR China
| | - Liancai Zhu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing 400045, PR China.
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological & Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China
| | - Deshuai Lou
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological & Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing 400045, PR China.
| |
Collapse
|
7
|
Wang K, Li Y, Chen Y. Androgen excess: a hallmark of polycystic ovary syndrome. Front Endocrinol (Lausanne) 2023; 14:1273542. [PMID: 38152131 PMCID: PMC10751361 DOI: 10.3389/fendo.2023.1273542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/22/2023] [Indexed: 12/29/2023] Open
Abstract
Polycystic ovarian syndrome (PCOS) is a metabolic, reproductive, and psychological disorder affecting 6-20% of reproductive women worldwide. However, there is still no cure for PCOS, and current treatments primarily alleviate its symptoms due to a poor understanding of its etiology. Compelling evidence suggests that hyperandrogenism is not just a primary feature of PCOS. Instead, it may be a causative factor for this condition. Thus, figuring out the mechanisms of androgen synthesis, conversion, and metabolism is relatively important. Traditionally, studies of androgen excess have largely focused on classical androgen, but in recent years, adrenal-derived 11-oxygenated androgen has also garnered interest. Herein, this Review aims to investigate the origins of androgen excess, androgen synthesis, how androgen receptor (AR) signaling mediates adverse PCOS traits, and the role of 11-oxygenated androgen in the pathophysiology of PCOS. In addition, it provides therapeutic strategies targeting hyperandrogenism in PCOS.
Collapse
Affiliation(s)
- Kexin Wang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanhua Li
- Department of General Practice, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu Chen
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
8
|
Altinkilic EM, du Toit T, Sakin Ö, Attar R, Groessl M, Flück CE. The serum steroid signature of PCOS hints at the involvement of novel pathways for excess androgen biosynthesis. J Steroid Biochem Mol Biol 2023; 233:106366. [PMID: 37499841 DOI: 10.1016/j.jsbmb.2023.106366] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/28/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
CONTEXT Polycystic ovary syndrome (PCOS) is defined by androgen excess and ovarian dysfunction in the absence of a specific physiological diagnosis. The best clinical marker of androgen excess is hirsutism, while the best biochemical parameter is still a matter of debate. Current consensus guidelines recommend, among other hormones, serum free testosterone as an important serum parameter to measure androgen excess. Recently, however, novel active androgens and androgen metabolic pathways have been discovered. OBJECTIVE To assess the contribution of novel androgens and related steroid biosynthetic pathways to the serum steroid pool in PCOS women in comparison to healthy controls. DESIGN This is a case control study, wherein PCOS was diagnosed according to the AE-PCOS 2009 criteria. Serum steroid profiling was performed by liquid chromatography high-resolution mass spectrometry. SETTING Yeditepe University and associated clinics in Istanbul, Turkey, together with Bern University Hospital Inselspital, Bern, Switzerland. PARTICIPANTS 42 PCOS women and 42 matched, healthy control women. MAIN OUTCOME MEASURES Assessment of 34 steroids compartmentalized in four androgen related pathways: the classic androgen pathway, the backdoor pathway, the C11-oxy backdoor pathway, and the C11-oxy (11β-hydroxyandrostenedione) pathway. RESULTS Metabolites of all four pathways were identified in healthy and PCOS women. Highest concentrations were found for progesterone in controls and androstenedione in PCOS. Lowest levels were found for 11-ketotestosterone in controls compared to PCOS, and for 20α-hydroxyprogesterone in PCOS compared to controls. PCOS also had higher serum testosterone levels compared to the controls. PCOS women had overall higher levels of steroid metabolites of all four androgen pathways compared to healthy controls. CONCLUSIONS Novel alternative pathways contribute to the androgen production in healthy and PCOS women. Hyperandrogenism in PCOS is characterized by an overall increase of serum androgens in the classic, backdoor and C11-oxy pathways. While monogenetic disorders of steroid biosynthesis can be recognized by a specific pattern in the steroid profile, no diagnostic pattern or classifier was found in the serum for PCOS.
Collapse
Affiliation(s)
- Emre Murat Altinkilic
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland; Department of Biomedical Research, University of Bern, Switzerland
| | - Therina du Toit
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland; Department of Biomedical Research, University of Bern, Switzerland
| | - Önder Sakin
- Department of Obstetrics and Gynecology, Acıbadem Kozyatağı Hospital, Turkey
| | - Rukset Attar
- Department of Obstetrics and Gynecology, School of Medicine, Yeditepe University, Turkey
| | - Michael Groessl
- Department of Biomedical Research, University of Bern, Switzerland; Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Christa E Flück
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland; Department of Biomedical Research, University of Bern, Switzerland.
| |
Collapse
|
9
|
Dumesic DA, Abbott DH, Chazenbalk GD. An Evolutionary Model for the Ancient Origins of Polycystic Ovary Syndrome. J Clin Med 2023; 12:6120. [PMID: 37834765 PMCID: PMC10573644 DOI: 10.3390/jcm12196120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrinopathy of reproductive-aged women, characterized by hyperandrogenism, oligo-anovulation and insulin resistance and closely linked with preferential abdominal fat accumulation. As an ancestral primate trait, PCOS was likely further selected in humans when scarcity of food in hunter-gatherers of the late Pleistocene additionally programmed for enhanced fat storage to meet the metabolic demands of reproduction in later life. As an evolutionary model for PCOS, healthy normal-weight women with hyperandrogenic PCOS have subcutaneous (SC) abdominal adipose stem cells that favor fat storage through exaggerated lipid accumulation during development to adipocytes in vitro. In turn, fat storage is counterbalanced by reduced insulin sensitivity and preferential accumulation of highly lipolytic intra-abdominal fat in vivo. This metabolic adaptation in PCOS balances energy storage with glucose availability and fatty acid oxidation for optimal energy use during reproduction; its accompanying oligo-anovulation allowed PCOS women from antiquity sufficient time and strength for childrearing of fewer offspring with a greater likelihood of childhood survival. Heritable PCOS characteristics are affected by today's contemporary environment through epigenetic events that predispose women to lipotoxicity, with excess weight gain and pregnancy complications, calling for an emphasis on preventive healthcare to optimize the long-term, endocrine-metabolic health of PCOS women in today's obesogenic environment.
Collapse
Affiliation(s)
- Daniel A. Dumesic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Los Angeles, CA 90095, USA;
| | - David H. Abbott
- Department of Obstetrics and Gynecology, Wisconsin National Primate Research Center, University of Wisconsin, 1223 Capitol Court, Madison, WI 53715, USA;
| | - Gregorio D. Chazenbalk
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Los Angeles, CA 90095, USA;
| |
Collapse
|