1
|
Guercio G, Saraco N, Costanzo M, Marino R, Ramirez P, Berensztein E, Rivarola MA, Belgorosky A. Estrogens in Human Male Gonadotropin Secretion and Testicular Physiology From Infancy to Late Puberty. Front Endocrinol (Lausanne) 2020; 11:72. [PMID: 32158430 PMCID: PMC7051936 DOI: 10.3389/fendo.2020.00072] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/03/2020] [Indexed: 12/13/2022] Open
Abstract
Several reports in humans as well as transgenic mouse models have shown that estrogens play an important role in male reproduction and fertility. Estrogen receptor alpha (ERα) and beta (ERβ) are expressed in different male tissues including the brain. The estradiol-binding protein GPER1 also mediates estrogen action in target tissues. In human testes a minimal ERα expression during prepuberty along with a marked pubertal up-regulation in germ cells has been reported. ERβ expression was detected mostly in spermatogonia, primary spermatocytes, and immature spermatids. In Sertoli cells ERβ expression increases with age. The aromatase enzyme (cP450arom), which converts androgens to estrogens, is widely expressed in human tissues (including gonads and hypothalamus), even during fetal life, suggesting that estrogens are also involved in human fetal physiology. Moreover, cP450arom is expressed in the early postnatal testicular Leydig cells and spermatogonia. Even though the aromatase complex is required for estrogen synthesis, its biological relevance is also related to the regulation of the balance between androgens and estrogens in different tissues. Knockout mouse models of aromatase (ArKO) and estrogen receptors (ERKOα, ERKOβ, and ERKOαβ) provide an important tool to study the effects of estrogens on the male reproductive physiology including the gonadal axis. High basal serum FSH levels were reported in adult aromatase-deficient men, suggesting that estrogens are involved in the negative regulatory gonadotropin feedback. However, normal serum gonadotropin levels were observed in an aromatase-deficient boy, suggesting a maturational pattern role of estrogen in the regulation of gonadotropin secretion. Nevertheless, the role of estrogens in primate testis development and function is controversial and poorly understood. This review addresses the role of estrogens in gonadotropin secretion and testicular physiology in male humans especially during childhood and puberty.
Collapse
Affiliation(s)
- Gabriela Guercio
- Endocrinology Department, Hospital de Pediatría “Prof. Dr. Juan P. Garrahan”, Buenos Aires, Argentina
- Research Institute Garrahan-CONICET, Hospital de Pediatría “Prof. Dr. Juan P. Garrahan”, Buenos Aires, Argentina
| | - Nora Saraco
- Endocrinology Department, Hospital de Pediatría “Prof. Dr. Juan P. Garrahan”, Buenos Aires, Argentina
- Research Institute Garrahan-CONICET, Hospital de Pediatría “Prof. Dr. Juan P. Garrahan”, Buenos Aires, Argentina
| | - Mariana Costanzo
- Endocrinology Department, Hospital de Pediatría “Prof. Dr. Juan P. Garrahan”, Buenos Aires, Argentina
| | - Roxana Marino
- Endocrinology Department, Hospital de Pediatría “Prof. Dr. Juan P. Garrahan”, Buenos Aires, Argentina
| | - Pablo Ramirez
- Endocrinology Department, Hospital de Pediatría “Prof. Dr. Juan P. Garrahan”, Buenos Aires, Argentina
| | - Esperanza Berensztein
- Endocrinology Department, Hospital de Pediatría “Prof. Dr. Juan P. Garrahan”, Buenos Aires, Argentina
- Facultad de Medicina, Department of Cellular Biology and Histology, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marco A. Rivarola
- Endocrinology Department, Hospital de Pediatría “Prof. Dr. Juan P. Garrahan”, Buenos Aires, Argentina
- Research Institute Garrahan-CONICET, Hospital de Pediatría “Prof. Dr. Juan P. Garrahan”, Buenos Aires, Argentina
| | - Alicia Belgorosky
- Endocrinology Department, Hospital de Pediatría “Prof. Dr. Juan P. Garrahan”, Buenos Aires, Argentina
- Research Institute Garrahan-CONICET, Hospital de Pediatría “Prof. Dr. Juan P. Garrahan”, Buenos Aires, Argentina
- *Correspondence: Alicia Belgorosky
| |
Collapse
|
2
|
Zhu X, Chen C, Ye D, Guan D, Ye L, Jin J, Zhao H, Chen Y, Wang Z, Wang X, Xu Y. Diammonium glycyrrhizinate upregulates PGC-1α and protects against Aβ1-42-induced neurotoxicity. PLoS One 2012; 7:e35823. [PMID: 22540007 PMCID: PMC3335163 DOI: 10.1371/journal.pone.0035823] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 03/22/2012] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial dysfunction is a hallmark of beta-amyloid (Aβ)-induced neurotoxicity in Alzheimer's disease (AD), and is considered an early event in AD pathology. Diammonium glycyrrhizinate (DG), the salt form of Glycyrrhizin, is known for its anti-inflammatory effects, resistance to biologic oxidation and membranous protection. In the present study, the neuroprotective effects of DG on Aβ(1-42)-induced toxicity and its potential mechanisms in primary cortical neurons were investigated. Exposure of neurons to 2 µM Aβ(1-42) resulted in significant viability loss and cell apoptosis. Accumulation of reactive oxygen species (ROS), decreased mitochondrial membrane potential, and activation of caspase-9 and caspase-3 were also observed after Aβ(1-42) exposure. All these effects induced by Aβ(1-42) were markedly reversed by DG treatment. In addition, DG could alleviate lipid peroxidation and partially restore the mitochondrial function in Aβ(1-42)-induced AD mice. DG also significantly increased the PGC-1α expression in vivo and in vitro, while knocking down PGC-1α partially blocked the protective effects, which indicated that PGC-1α contributed to the neuroprotective effects of DG. Furthermore, DG significantly decreased the escape latency and search distance and increased the target crossing times of Aβ(1-42)-induced AD mice in the Morris water maze test. Therefore, these results demonstrated that DG could attenuate Aβ(1-42)-induced neuronal injury by preventing mitochondrial dysfunction and oxidative stress and improved cognitive impairment in Aβ(1-42)-induced AD mice, indicating that DG exerted potential beneficial effects on AD.
Collapse
Affiliation(s)
- Xiaolei Zhu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Cong Chen
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Dan Ye
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Dening Guan
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Lan Ye
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Jiali Jin
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Hui Zhao
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Yanting Chen
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Zhongyuan Wang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Xin Wang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
- The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, People's Republic of China
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing, People's Republic of China
- * E-mail:
| |
Collapse
|
3
|
Richardson AE, Hamilton N, Davis W, Brito C, De León D. Insulin-like growth factor-2 (IGF-2) activates estrogen receptor-α and -β via the IGF-1 and the insulin receptors in breast cancer cells. Growth Factors 2011; 29:82-93. [PMID: 21410323 PMCID: PMC3092021 DOI: 10.3109/08977194.2011.565003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The estrogen receptor (ER) is a primary target for breast cancer (BC) treatment. As BC progresses to estrogen-independent growth, the insulin-like growth factor-1 receptor (IGF-1R) and the ER interact in synergistic cross-talk mechanisms, which result in enhanced activation of both receptors' signaling cascades. Insulin-like growth factor-2 (IGF-2) is critical in BC progression and its actions are mediated by the IGF-1R. Our previous studies showed that IGF-2 regulates survival genes that protect the mitochondria and promote chemoresistance. In this study, we analyzed BC cells by subcellular fractionation, Western-Blot, qRT-PCR, and siRNA analysis. Our results demonstrate that IGF-2 activates ER-α and ER-β, and modulates their translocation to the nucleus, membrane organelles, and the mitochondria. IGF-2 actions are mediated by the IGF-1R and the insulin receptor. This novel mechanism of IGF-2 synergistic cross-talk signaling with ER-α and ER-β can promote estrogen-independent BC progression and provide new therapeutic targets for the treatment of BC patients.
Collapse
Affiliation(s)
- A E Richardson
- School of Medicine, Center for Health Disparities and Molecular Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | | | | | | | | |
Collapse
|
4
|
Liu M, Dziennis S, Hurn PD, Alkayed NJ. Mechanisms of gender-linked ischemic brain injury. Restor Neurol Neurosci 2009; 27:163-79. [PMID: 19531872 DOI: 10.3233/rnn-2009-0467] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Biological sex is an important determinant of stroke risk and outcome. Women are protected from cerebrovascular disease relative to men, an observation commonly attributed to the protective effect of female sex hormones, estrogen and progesterone. However, sex differences in brain injury persist well beyond the menopause and can be found in the pediatric population, suggesting that the effects of reproductive steroids may not completely explain sexual dimorphism in stroke. We review recent advances in our understanding of sex steroids (estradiol, progesterone and testosterone) in the context of ischemic cell death and neuroprotection. Understanding the molecular and cell-based mechanisms underlying sex differences in ischemic brain injury will lead to a better understanding of basic mechanisms of brain cell death and is an important step toward designing more effective therapeutic interventions in stroke.
Collapse
Affiliation(s)
- Mingyue Liu
- Department of Anesthesiology & Peri-Operative Medicine, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, UHS-2, Portland, OR 97239-3098, USA.
| | | | | | | |
Collapse
|
5
|
Gerstner B, Lee J, DeSilva TM, Jensen FE, Volpe JJ, Rosenberg PA. 17beta-estradiol protects against hypoxic/ischemic white matter damage in the neonatal rat brain. J Neurosci Res 2009; 87:2078-86. [PMID: 19224575 DOI: 10.1002/jnr.22023] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Developing oligodendrocytes (pre-OLs) are highly vulnerable to hypoxic-ischemic injury and associated excitotoxicity and oxidative stress. 17beta-Estradiol plays an important role in the development and function of the CNS and is neuroprotective. The sudden drop in circulating estrogen after birth may enhance the susceptibility of developing OLs to injury. Estrogen receptor (ER)-alpha and ER-beta are both expressed in OLs. We examined the effect of 17beta-estradiol on oxygen-glucose deprivation and oxidative stress-induced cell death in rat pre-OLs in vitro and on hypoxic-ischemic brain injury in vivo. Pre-OLs in culture were subjected to oxygen-glucose deprivation (OGD) or glutathione depletion in the presence or absence of 17beta-estradiol. LDH release, the Alamar blue assay, and phase-contrast microscopy were used to assess cell viability. Hypoxic-ischemic injury was generated in 6-day-old rats (P6) by unilateral carotid ligation and hypoxia (6% O(2) for 1 hr). Rat pups received one intraperitoneal injection of 300 or 600 microg/kg 17beta-estradiol or vehicle 12 hr prior to the surgical procedure. Injury was assessed by myelin basic protein (MBP) immunocytochemistry at P10. 17beta-Estradiol produced significant protection against OGD-induced cell death in primary OLs (EC(50) = 1.3 +/- 0.46 x 10(-9) M) and against oxidative stress. Moreover, 17beta-estradiol attenuated the loss of MBP labeling in P10 pups ipsilateral to the carotid ligation. These results suggest a potential role for estrogens in attenuation of hypoxic-ischemic and oxidative injury to developing OLs and in the prevention of periventricular leukomalacia.
Collapse
Affiliation(s)
- Bettina Gerstner
- Department of Neurology, Children's Hospital Boston, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
6
|
Micevych P, Dominguez R. Membrane estradiol signaling in the brain. Front Neuroendocrinol 2009; 30:315-27. [PMID: 19416735 PMCID: PMC2720427 DOI: 10.1016/j.yfrne.2009.04.011] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 04/22/2009] [Accepted: 04/23/2009] [Indexed: 12/16/2022]
Abstract
While the physiology of membrane-initiated estradiol signaling in the nervous system has remained elusive, a great deal of progress has been made toward understanding the activation of cell signaling. Membrane-initiated estradiol signaling activates G proteins and their downstream cascades, but the identity of membrane receptors and the proximal signaling mechanism(s) have been more difficult to elucidate. Mounting evidence suggests that classical intracellular estrogen receptor-alpha (ERalpha) and ERbeta are trafficked to the membrane to mediate estradiol cell signaling. Moreover, an interaction of membrane ERalpha and ERbeta with metabotropic glutamate receptors has been identified that explains the pleomorphic actions of membrane-initiated estradiol signaling. This review focuses on the mechanism of actions initiated by membrane estradiol receptors and discusses the role of scaffold proteins and signaling cascades involved in the regulation of nociception, sexual receptivity and the synthesis of neuroprogesterone, an important component in the central nervous system signaling.
Collapse
Affiliation(s)
- Paul Micevych
- Department of Neurobiology and the Laboratory of Neuroendocrinology David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1763, USA.
| | | |
Collapse
|
7
|
Icariin enhances neuronal survival after oxygen and glucose deprivation by increasing SIRT1. Eur J Pharmacol 2009; 609:40-4. [DOI: 10.1016/j.ejphar.2009.03.033] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 02/28/2009] [Accepted: 03/10/2009] [Indexed: 11/21/2022]
|
8
|
Lee SJ, Chae C, Wang MM. p150/glued modifies nuclear estrogen receptor function. Mol Endocrinol 2009; 23:620-9. [PMID: 19228793 DOI: 10.1210/me.2007-0477] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Estrogen modulates gene expression through interactions with estrogen receptors (ERs) that bind chromosomal target genes. Recent studies have suggested an interaction between the cytoskeletal system and estrogen signaling; these have implicated a role of cytoplasmic microtubules in scaffolding ERalpha and enhancing nongenomic function; in addition, other experiments demonstrate that dynein light chain 1 may chaperone ERalpha to the nucleus, indirectly increasing transcriptional potency. Actin/myosin and dynein light chain 1 are also required for estrogen-mediated chromosomal movement that is required for transcriptional up-regulation of ERalpha targets. We present evidence that the dynactin component, p150/glued, directly influences the potency of nuclear ER function. Increasing the stoichiometric ratio of p150/glued and ERalpha by overexpression enhances estrogen responses. ERalpha enhancement by p150/glued does not appear to be influenced by shifts in subcellular localization because microtubule disruption fails to increase nuclear ERalpha. Rather, we find that modest amounts of p150/glued reside in the nucleus of cells, suggesting that it plays a direct role in nuclear transcription. Notably, p150/glued is recruited to the pS2 promoter in the presence of hormone, and, in MCF-7 cells, knockdown of p150/glued levels reduces estrogen-dependent transcription. Our results suggest that p150/glued modulates estrogen sensitivity in cells through nuclear mechanisms.
Collapse
Affiliation(s)
- Soo Jung Lee
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-5622, USA
| | | | | |
Collapse
|
9
|
Jia J, Chen X, Zhu W, Luo Y, Hua Z, Xu Y. CART protects brain from damage through ERK activation in ischemic stroke. Neuropeptides 2008; 42:653-61. [PMID: 18644622 DOI: 10.1016/j.npep.2008.05.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 05/29/2008] [Accepted: 05/29/2008] [Indexed: 01/03/2023]
Abstract
Cocaine and amphetamine-regulated transcript (CART) is a neuropeptide that protects brains against ischemic injury in vivo and in vitro. By using small interference RNA against CART(CARTi), this study shows that CART knockdown by CARTi downregulated exogenous and endogenous CART mRNA and protein expression in vivo and in vitro. Consequently, CART knockdown exacerbated neuronal cell death induced by oxygen and glucose deprivation (OGD). It also showed that CART knockdown increased infarct size in a mouse middle cerebral artery occlusion model. CART's protective effects are most likely mediated through the ERK 1/2 pathway, since ERK 1/2 phosphorylation, not that of p38 or JNK is activated in CART-treated neurons after OGD. Furthermore, neuroprotection of CART is abolished by CART knockdown and by pretreatment with ERK antagonist PD98059 and U0126, but not with p38 or JNK antagonists SB203580 or SP600125. These results provide further evidence that CART is an endogenous neuroprotective peptide against cerebral ischemia and it does so through the MAPK/ERK signaling pathway. Therefore, CART may be developed into a therapeutic agent for stroke-related brain injury.
Collapse
Affiliation(s)
- Jia Jia
- Department of Neurology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, PR China
| | | | | | | | | | | |
Collapse
|
10
|
Wilson ME, Westberry JM, Prewitt AK. Dynamic regulation of estrogen receptor-alpha gene expression in the brain: a role for promoter methylation? Front Neuroendocrinol 2008; 29:375-85. [PMID: 18439661 PMCID: PMC2460564 DOI: 10.1016/j.yfrne.2008.03.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 02/29/2008] [Accepted: 03/04/2008] [Indexed: 12/31/2022]
Abstract
Estrogen has long been known to play an important role in coordinating the neuroendocrine events that control sexual development, sexual behavior and reproduction. Estrogen actions in other, non-reproductive areas of the brain have also been described. It is now known that estrogen can also influence learning, memory, and emotion and has neurotrophic and neuroprotective properties. The actions of estrogen are largely mediated through at least two intracellular estrogen receptors. Both estrogen receptor-alpha and estrogen receptor-beta are expressed in a wide variety of brain regions. Estrogen receptor-alpha (ERalpha), however, undergoes developmental and brain region-specific changes in expression. The precise molecular mechanisms that regulate its expression at the level of gene transcription are not well understood. Adding to the complexity of its regulation, the estrogen receptor gene contains multiple promoters that drive its expression. In the cortex in particular, the ERalpha mRNA expression is dynamically regulated during postnatal development and again following neuronal injury. Epigenetic modification of chromatin is increasingly being understood as a mechanism of neuronal gene regulation. This review examines the potential regulation of the ERalpha gene by such epigenetic mechanisms.
Collapse
Affiliation(s)
- Melinda E Wilson
- Department of Physiology, College of Medicine, University of Kentucky, 800 Rose Street, Lexington, KY 40536, USA.
| | | | | |
Collapse
|
11
|
Vasudevan N, Pfaff DW. Non-genomic actions of estrogens and their interaction with genomic actions in the brain. Front Neuroendocrinol 2008; 29:238-57. [PMID: 18083219 DOI: 10.1016/j.yfrne.2007.08.003] [Citation(s) in RCA: 255] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Accepted: 08/14/2007] [Indexed: 12/16/2022]
Abstract
Ligands for the nuclear receptor superfamily have at least two mechanisms of action: (a) classical transcriptional regulation of target genes (genomic mechanisms); and (b) non-genomic actions, which are initiated at the cell membrane, which could also impact transcription. Though transcriptional mechanisms are increasingly well understood, membrane-initiated actions of these ligands are incompletely understood. This has led to considerable debate over the physiological relevance of membrane-initiated actions of hormones versus genomic actions of hormones, with genomic actions predominating in the endocrine field. There is good evidence that the membrane-limited actions of hormones, particularly estrogens, involve the rapid activation of kinases and the release of calcium and that these are linked to physiologically relevant scenarios in the brain. We show evidence in this review, that membrane actions of estrogens, which activate these rapid signaling cascades, can also potentiate nuclear transcription in both the central nervous system and in non-neuronal cell lines. We present a theoretical scenario which can be used to understand this phenomenon. These signaling cascades may occur in parallel or in series but subsequently, converge at the modification of transcriptionally relevant molecules such as nuclear receptors and/or coactivators. In addition, other non-cognate hormones or neurotransmitters may also activate cascades to crosstalk with estrogen receptor-mediated transcription, though the relevance of this is less clear. The idea that coupling between membrane-initiated and genomic actions of hormones is a novel idea in neuroendocrinology and provides us with a unified view of hormone action in the central nervous system.
Collapse
Affiliation(s)
- Nandini Vasudevan
- Cell and Molecular Biology Department, Tulane University, LA 70118, USA.
| | | |
Collapse
|
12
|
Abstract
Hormonal ligands for the nuclear receptor superfamily have at least two interacting mechanisms of action: 1) classical transcriptional regulation of target genes (genomic mechanisms); and 2) nongenomic actions that are initiated at the cell membrane, which could impact transcription. Although transcriptional mechanisms are increasingly well understood, membrane-initiated actions of these ligands are incompletely understood. Historically, this has led to a considerable divergence of thought in the molecular endocrine field. We have attempted to uncover principles of hormone action that are relevant to membrane-initiated actions of estrogens. There is evidence that the membrane-limited actions of hormones, particularly estrogens, involve the rapid activation of kinases and the release of calcium. Membrane actions of estrogens, which activate these rapid signaling cascades, can also potentiate nuclear transcription. These signaling cascades may occur in parallel or in series but subsequently converge at the level of modification of transcriptionally relevant molecules such as nuclear receptors and/or coactivators. In addition, other hormones or neurotransmitters may also activate cascades to crosstalk with estrogen receptor-mediated transcription. The idea of synergistic coupling between membrane-initiated and genomic actions of hormones fundamentally revises the paradigms of cell signaling in neuroendocrinology.
Collapse
Affiliation(s)
- Nandini Vasudevan
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | |
Collapse
|
13
|
Fotovati A, Fujii T, Yamaguchi M, Kage M, Shirouzu K, Oie S, Basaki Y, Ono M, Yamana H, Kuwano M. 17β-Estradiol Induces Down-Regulation ofCap43/NDRG1/Drg-1, a Putative Differentiation-Related and Metastasis Suppressor Gene, in Human Breast Cancer Cells. Clin Cancer Res 2006; 12:3010-8. [PMID: 16707596 DOI: 10.1158/1078-0432.ccr-05-1962] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE Cap43 is known as a nickel- and calcium-inducible gene. In the present study, we examined whether 17beta-estradiol (E2) could affect the expression of Cap43 in breast cancer. EXPERIMENTAL DESIGN Real-time PCR, immunoblotting, and immunocytochemistry were used to examine the expression of Cap43 and estrogen receptor-alpha (ER-alpha) in breast cancer cell lines. MDA-MB-231 and SK-BR-3 cell lines were transfected with ER-alpha cDNA to establish cells overexpressing ER-alpha. Immunohistochemistry was used to evaluate the expression of the Cap43 protein in breast cancer patients (n = 96), and the relationship between Cap43 expression and clinicopathologic findings was examined. RESULTS Of the eight cell lines, four expressed higher levels of Cap43 with very low levels of ER-alpha, whereas the other four expressed lower levels of Cap43 with high ER-alpha levels. Treatment with E2 decreased the expression of Cap43 dose-dependently in ER-alpha-positive cell lines but not in ER-alpha-negative lines. Administration of antiestrogens, tamoxifen and ICI 182780, abrogated the E2-induced down-regulation of Cap43. Overexpression of ER-alpha in both ER-alpha-negative cell lines, SK-BR-3 and MDA-MB-231, resulted in down-regulation of Cap43. Immunostaining studies showed a significant correlation between Cap43 expression and the histologic grade of tumors (P = 0.0387). Furthermore, Cap43 expression was inversely correlated with the expression of ER-alpha (P = 0.0374). CONCLUSIONS E2-induced down-regulation of Cap43 seems to be mediated through ER-alpha-dependent pathways in breast cancer cells both in culture and in patients. Cap43 has potential as a molecular marker to determine the therapeutic efficacy of antiestrogenic anticancer agents in breast cancer.
Collapse
Affiliation(s)
- Abbas Fotovati
- Center for Innovative Cancer Therapy of the 21st Century Center of Excellence Program for Medical Science and Departments of Surgery and Pathology, Kurume University, Kurume, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Jacob J, Sebastian KS, Devassy S, Priyadarsini L, Farook MF, Shameem A, Mathew D, Sreeja S, Thampan RV. Membrane estrogen receptors: genomic actions and post transcriptional regulation. Mol Cell Endocrinol 2006; 246:34-41. [PMID: 16423448 DOI: 10.1016/j.mce.2005.11.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The primary cellular location of the nuclear estrogen receptor II (nER II) is the plasma membrane. A number of reports that have appeared in the recent past indicate that plasma membrane localized estrogen receptor alpha (ERalpha) also exists. Whether the membrane localized ERalpha represents the receptor that binds to the estrogen responsive element (ERE) remains to be known. The mechanisms that underlie the internalization of nER II (non-activated estrogen receptor, deglycosylated) have been identified to a certain extent. The question remains: is the primary location of the ERalpha also the plasma membrane? If that is the case, it will be a challenging task to identify the molecular events that underlie the plasma membrane-to-nucleus movement of ERalpha. The internalization mechanisms for the two 66kDa plasma membrane ERs, following hormone binding, appear to be distinct and without any overlaps. Interestingly, while the major gene regulatory role for ERalpha appears to be at the level of transcription, the nER II has its major functional role in post transcriptional mechanisms. The endoplasmic reticulum associated anchor protein-55 (ap55) that was recently reported from the author's laboratory needs a closer look. It is a high affinity estrogen binding protein that anchors the estrogen receptor activation factor (E-RAF) in an estrogen-mediated event. It will be interesting to examine whether ap55 bears any structural similarity with either ERalpha or ERbeta.
Collapse
Affiliation(s)
- Julie Jacob
- Division of Molecular Endocrinology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | | | | | | | | | | | | | | | | |
Collapse
|