1
|
Vasilatis DM, Batra N, Lucchesi CA, Abria CJ, Packeiser EM, Murua Escobar H, Ghosh PM. Alterations in Tumor Aggression Following Androgen Receptor Signaling Restoration in Canine Prostate Cancer Cell Lines. Int J Mol Sci 2024; 25:8628. [PMID: 39201315 PMCID: PMC11354774 DOI: 10.3390/ijms25168628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
In prostate cancer (PCa), androgens upregulate tumorigenesis, whereas in benign tissue, the revival of androgen receptor (AR) signaling suppresses aggressive behaviors, suggesting therapeutic potential. Dogs, natural PCa models, often lack AR in PCa. We restored AR in dog PCa to investigate resultant characteristics. Three AR-null canine PCa lines (1508, Leo, 1258) were transfected with canine wild-type AR and treated with dihydrotestosterone (DHT). In 1508, AR restoration decreased clonogenicity (p = 0.03), viability (p = 0.004), migration (p = 0.03), invasion (p = 0.01), and increased expression of the tumor suppressor NKX3.1, an AR transcriptional target (p = 0.001). In Leo, AR decreased clonogenicity (p = 0.04) and the expression of another AR transcriptional target FOLH1 (p < 0.001) and increased the expression of NKX3.1 (p = 0.01). In 1258, AR increased migration (p = 0.006) and invasion (p = 0.03). Epithelial-mesenchymal transition (EMT) marker (Vimentin, N-cadherin, SNAIL1) expression increased with AR restoration in Leo and 1258 but not 1508; siRNA vimentin knockdown abrogated AR-induced 1258 migration only. Overall, 1508 showed AR-mediated tumor suppression; AR affected proliferation in Leo but not migration or invasion; and EMT and AR regulated migration and invasion in 1258 but not proliferation. This study highlights the heterogeneous nature of PCa in dogs and cell line-specific effects of AR abrogation on aggressive behaviors.
Collapse
Affiliation(s)
- Demitria M. Vasilatis
- Department of Urologic Surgery, School of Medicine, University of California Davis, Sacramento, CA 95718, USA; (D.M.V.); (C.A.L.)
- Veterans Affairs (VA)—Northern California Healthcare System, Mather, CA 95655, USA; (N.B.); (C.J.A.)
| | - Neelu Batra
- Veterans Affairs (VA)—Northern California Healthcare System, Mather, CA 95655, USA; (N.B.); (C.J.A.)
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95718, USA
| | - Christopher A. Lucchesi
- Department of Urologic Surgery, School of Medicine, University of California Davis, Sacramento, CA 95718, USA; (D.M.V.); (C.A.L.)
- Veterans Affairs (VA)—Northern California Healthcare System, Mather, CA 95655, USA; (N.B.); (C.J.A.)
| | - Christine J. Abria
- Veterans Affairs (VA)—Northern California Healthcare System, Mather, CA 95655, USA; (N.B.); (C.J.A.)
| | - Eva-Maria Packeiser
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Hugo Murua Escobar
- Department of Medicine, Medical Clinic III, Hematology Oncology and Palliative Medicine, University Medical Center Rostock, 18057 Rostock, Germany;
| | - Paramita M. Ghosh
- Department of Urologic Surgery, School of Medicine, University of California Davis, Sacramento, CA 95718, USA; (D.M.V.); (C.A.L.)
- Veterans Affairs (VA)—Northern California Healthcare System, Mather, CA 95655, USA; (N.B.); (C.J.A.)
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95718, USA
| |
Collapse
|
2
|
Lisberg A, Liu Y, Merry DE. Blocking the dimerization of polyglutamine-expanded androgen receptor protects cells from DHT-induced toxicity by increasing AR turnover. J Biol Chem 2024; 300:107246. [PMID: 38556081 PMCID: PMC11067348 DOI: 10.1016/j.jbc.2024.107246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/06/2024] [Accepted: 03/15/2024] [Indexed: 04/02/2024] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular degenerative disease caused by a polyglutamine expansion in the androgen receptor (AR). This mutation causes AR to misfold and aggregate, contributing to toxicity in and degeneration of motor neurons and skeletal muscle. There is currently no effective treatment or cure for this disease. The role of an interdomain interaction between the amino- and carboxyl-termini of AR, termed the N/C interaction, has been previously identified as a component of androgen receptor-induced toxicity in cell and mouse models of SBMA. However, the mechanism by which this interaction contributes to disease pathology is unclear. This work seeks to investigate this mechanism by interrogating the role of AR homodimerization- a unique form of the N/C-interaction- in SBMA. We show that, although the AR N/C-interaction is reduced by polyglutamine-expansion, homodimers of 5α-dihydrotestosterone (DHT)-bound AR are increased. Additionally, blocking homodimerization results in decreased AR aggregation and toxicity in cell models. Blocking homodimerization results in the increased degradation of AR, which likely plays a role in the protective effects of this mutation. Overall, this work identifies a novel mechanism in SBMA pathology that may represent a novel target for the development of therapeutics for this disease.
Collapse
Affiliation(s)
- Allison Lisberg
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Yuhong Liu
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Diane E Merry
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
3
|
Habault J, Schneider JA, Ha S, Ruoff R, Pereira LD, Puccini J, Ranieri M, Ayasun R, Deng J, Kasper AC, Bar-Sagi D, Wong KK, Zoubeidi A, Claessens F, Wise DR, Logan SK, Kirshenbaum K, Garabedian MJ. A Multivalent Peptoid Conjugate Modulates Androgen Receptor Transcriptional Activity to Inhibit Therapy-resistant Prostate Cancer. Mol Cancer Ther 2023; 22:1166-1181. [PMID: 37486978 PMCID: PMC10592247 DOI: 10.1158/1535-7163.mct-23-0196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/07/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
Prostate cancers adapt to androgen receptor (AR) pathway inhibitors and progress to castration resistance due to ongoing AR expression and function. To counter this, we developed a new approach to modulate the AR and inhibit castration-resistant prostate cancer (CRPC) using multivalent peptoid conjugates (MPC) that contain multiple copies of the AR-targeting ligand ethisterone attached to a peptidomimetic scaffold. Here, we investigated the antitumor effects of compound MPC309, a trivalent display of ethisterone conjugated to a peptoid oligomer backbone that binds to the AR with nanomolar affinity. MPC309 exhibited potent antiproliferative effects on various enzalutamide-resistant prostate cancer models, including those with AR splice variants, ligand-binding mutations, and noncanonical AR gene expression programs, as well as mouse prostate organoids harboring defined genetic alterations that mimic lethal human prostate cancer subtypes. MPC309 is taken up by cells through macropinocytosis, an endocytic process more prevalent in cancer cells than in normal ones, thus providing an opportunity to target tumors selectively. MPC309 triggers a distinct AR transcriptome compared with DHT and enzalutamide, a clinically used antiandrogen. Specifically, MPC309 enhances the expression of differentiation genes while reducing the expression of genes needed for cell division and metabolism. Mechanistically, MPC309 increases AR chromatin occupancy and alters AR interactions with coregulatory proteins in a pattern distinct from DHT. In xenograft studies, MPC309 produced significantly greater tumor suppression than enzalutamide. Altogether, MPC309 represents a promising new AR modulator that can combat resistant disease by promoting an AR antiproliferative gene expression program.
Collapse
Affiliation(s)
- Justine Habault
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Jeffrey A. Schneider
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Susan Ha
- Department of Urology, NYU Grossman School of Medicine, New York, NY, USA
| | - Rachel Ruoff
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Luiza D. Pereira
- Department of Medicine, Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Joseph Puccini
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Michela Ranieri
- Department of Medicine, Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Ruveyda Ayasun
- Department of Medicine, Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Jiehui Deng
- Department of Medicine, Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Dafna Bar-Sagi
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Kwok-Kin Wong
- Department of Medicine, Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Amina Zoubeidi
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Frank Claessens
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - David R. Wise
- Department of Medicine, Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Susan K. Logan
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
- Department of Urology, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Michael J. Garabedian
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
- Department of Urology, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
4
|
Fancher AT, Hua Y, Close DA, Xu W, McDermott LA, Strock CJ, Santiago U, Camacho CJ, Johnston PA. Characterization of allosteric modulators that disrupt androgen receptor co-activator protein-protein interactions to alter transactivation-Drug leads for metastatic castration resistant prostate cancer. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 28:325-343. [PMID: 37549772 DOI: 10.1016/j.slasd.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/06/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Three series of compounds were prioritized from a high content screening campaign that identified molecules that blocked dihydrotestosterone (DHT) induced formation of Androgen Receptor (AR) protein-protein interactions (PPIs) with the Transcriptional Intermediary Factor 2 (TIF2) coactivator and also disrupted preformed AR-TIF2 PPI complexes; the hydrobenzo-oxazepins (S1), thiadiazol-5-piperidine-carboxamides (S2), and phenyl-methyl-indoles (S3). Compounds from these series inhibited AR PPIs with TIF2 and SRC-1, another p160 coactivator, in mammalian 2-hybrid assays and blocked transcriptional activation in reporter assays driven by full length AR or AR-V7 splice variants. Compounds inhibited the growth of five prostate cancer cell lines, with many exhibiting differential cytotoxicity towards AR positive cell lines. Representative compounds from the 3 series substantially reduced both endogenous and DHT-enhanced expression and secretion of the prostate specific antigen (PSA) cancer biomarker in the C4-2 castration resistant prostate cancer (CRPC) cell line. The comparatively weak activities of series compounds in the H3-DHT and/or TIF2 box 3 LXXLL-peptide binding assays to the recombinant ligand binding domain of AR suggest that direct antagonism at the orthosteric ligand binding site or AF-2 surface respectively are unlikely mechanisms of action. Cellular enhanced thermal stability assays (CETSA) indicated that compounds engaged AR and reduced the maximum efficacy and right shifted the EC50 of DHT-enhanced AR thermal stabilization consistent with the effects of negative allosteric modulators. Molecular docking of potent representative hits from each series to AR structures suggest that S1-1 and S2-6 engage a novel binding pocket (BP-1) adjacent to the orthosteric ligand binding site, while S3-11 occupies the AR binding function 3 (BF-3) allosteric pocket. Hit binding poses indicate spaces and residues adjacent to the BP-1 and BF-3 pockets that will be exploited in future medicinal chemistry optimization studies. Small molecule allosteric modulators that prevent/disrupt AR PPIs with coactivators like TIF2 to alter transcriptional activation in the presence of orthosteric agonists might evade the resistance mechanisms to existing prostate cancer drugs and provide novel starting points for medicinal chemistry lead optimization and future development into therapies for metastatic CRPC.
Collapse
Affiliation(s)
- Ashley T Fancher
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; Nucleus Global, 2 Ravinia Drive, Suite 605, Atlanta, GA 30346, USA
| | - Yun Hua
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - David A Close
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Wei Xu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Lee A McDermott
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; PsychoGenics Inc, 215 College Road, Paramus, NJ 07652, USA
| | | | - Ulises Santiago
- Department of Computational and Systems Biology, School of Medicine, at the University of Pittsburgh, USA
| | - Carlos J Camacho
- Department of Computational and Systems Biology, School of Medicine, at the University of Pittsburgh, USA
| | - Paul A Johnston
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA 15232, USA.
| |
Collapse
|
5
|
Rastinejad F. Retinoic acid receptor structures: the journey from single domains to full-length complex. J Mol Endocrinol 2022; 69:T25-T36. [PMID: 36069789 PMCID: PMC11376212 DOI: 10.1530/jme-22-0113] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/07/2022] [Indexed: 11/08/2022]
Abstract
The retinoic acid receptors (RARα, β, and γ) are multi-domain polypeptides that heterodimerize with retinoid X receptors (RXRα, β, and γ) to form functional transcription factors. Understanding the three-dimensional molecular organization of these nuclear receptors (NRs) began with RAR and RXR DNA-binding domains (DBDs), and were followed with studies on isolated ligand-binding domains (LBDs). The more complete picture emerged in 2017 with the multi-domain crystal structure of RXRα-RARβ on its response element with retinoic acid molecules and coactivator segments on both proteins. The analysis of that structure and its complementary studies have clarified the direct communication pathways within RXR-RAR polypeptides, through which DNA binding, protein-ligand, and protein-protein interactions are integrated for overall functional responses. Understanding the molecular connections in the RXR-RAR complex has benefited from direct observations of the multi-domain structures of RXRα-PPARγ, RXRα-LXRβ, HNF-4α homodimer, and androgen receptor homodimer, each bound to its response element. These comprehensive NR structures show unique quaternary architectures, yet all have DBD-DBD, LBD-LBD, and DBD-LBD domain-domain contacts within them. These convergence zones allow signals from discrete domains of their polypeptides to be propagated and integrated across their entire complex, shaping their overall responses in an allosteric fashion.
Collapse
Affiliation(s)
- Fraydoon Rastinejad
- Nuffield Department of Medicine, University of Oxford, Target Discovery Institute (NDM RB), Oxford, UK
| |
Collapse
|
6
|
El Kharraz S, Dubois V, Launonen KM, Helminen L, Palvimo JJ, Libert C, Smeets E, Moris L, Eerlings R, Vanderschueren D, Helsen C, Claessens F. N/C Interactions Are Dispensable for Normal In Vivo Functioning of the Androgen Receptor in Male Mice. Endocrinology 2022; 163:6652495. [PMID: 35908178 PMCID: PMC9756762 DOI: 10.1210/endocr/bqac104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 11/19/2022]
Abstract
The androgen receptor (AR) plays a central role in the development and maintenance of the male phenotype. The binding of androgens to the receptor induces interactions between the carboxyterminal ligand-binding domain and the highly conserved 23FQNLF27 motif in the aminoterminal domain. The role of these so-called N/C interactions in AR functioning is debated. In vitro assays show that mutating the AR in the 23FQNLF27 motif (called ARNoC) attenuates the AR transactivation of reporter genes, has no effect on ligand binding, but does affect protein-protein interactions with several AR coregulators. To test the in vivo relevance of the N/C interaction, we analyzed the consequences of the genomic introduction of the ARNoC mutation in mice. Surprisingly, the ARNoC/Y mice show a normal male development, with unaffected male anogenital distance and normal accessory sex glands, male circulating androgen levels, body composition, and fertility. The responsiveness of androgen target genes in kidney, prostate, and testes was also unaffected. We thus conclude that the N/C interactions in the AR are not essential for the development of a male phenotype under normal physiological conditions.
Collapse
Affiliation(s)
- Sarah El Kharraz
- Correspondence: Frank Claessens, PhD, Department of Cellular and Molecular Medicine, Molecular Endocrinology Laboratory, KU Leuven, Leuven, 3000, Belgium. . Reprint requests can be sent to or
| | - Vanessa Dubois
- Department of Chronic Diseases and Metabolism, Clinical and Experimental Endocrinology, KU Leuven, Leuven, 3000, Belgium
- Department of Basic and Applied Medical Sciences, Basic and Translational Endocrinology, Ghent University, Ghent, 9000, Belgium
| | - Kaisa-Mari Launonen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, 70210, Finland
| | - Laura Helminen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, 70210, Finland
| | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, 70210, Finland
| | - Claude Libert
- VIB Center for Inflammation Research, VIB, Ghent, 9052, Belgium
- Department for Biomedical Molecular Biology, Ghent University, Ghent, 9052, Belgium
| | - Elien Smeets
- Department of Cellular and Molecular Medicine, Molecular Endocrinology Laboratory, KU Leuven, Leuven, 3000, Belgium
| | - Lisa Moris
- Department of Cellular and Molecular Medicine, Molecular Endocrinology Laboratory, KU Leuven, Leuven, 3000, Belgium
| | - Roy Eerlings
- Department of Cellular and Molecular Medicine, Molecular Endocrinology Laboratory, KU Leuven, Leuven, 3000, Belgium
| | - Dirk Vanderschueren
- Department of Chronic Diseases and Metabolism, Clinical and Experimental Endocrinology, KU Leuven, Leuven, 3000, Belgium
| | - Christine Helsen
- Department of Cellular and Molecular Medicine, Molecular Endocrinology Laboratory, KU Leuven, Leuven, 3000, Belgium
| | - Frank Claessens
- Correspondence: Frank Claessens, PhD, Department of Cellular and Molecular Medicine, Molecular Endocrinology Laboratory, KU Leuven, Leuven, 3000, Belgium. . Reprint requests can be sent to or
| |
Collapse
|
7
|
Mobisson SK, Ikpi DE, Wopara I, Obembe AO, Omotuyi O. Inhibition of human androgen receptor by delta 9-tetrahydro-cannabinol and cannabidiol related to reproductive dysfunction: A computational study. Andrologia 2022; 54:e14454. [PMID: 35524041 DOI: 10.1111/and.14454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/04/2022] [Accepted: 04/19/2022] [Indexed: 12/01/2022] Open
Abstract
There have been conflicting reports on the impact of Cannabis sativa impact on reproductive function. Hence this study was aimed to ascertain the impact of tetrahydrocannabinol (THC) and cannabidiol (CBD) binding affinity on human androgen receptor (AR) via computational molecular dynamic simulation. The human AR coordinate in this study is derived from human AR in complex with the ligand metribolone (R18) (PBD ID: 1E3G) template using (MODELER version. 9.15). CBD (PubChem CID: 644019), and THC (PubChem CID: 16078) 2D structures were retrieved from PubChem and docked (Autodock-Vina inbuilt in PyMol into the active site of human AR using the coordinates of the co-crystalized ligand (R18). All atomic representations in this study were created using visual molecular dynamics (VMD) tools. The result revealed that neither CBD nor THC bear significant 2D similarity with R18. Despite the diversity within the chemical space, both CBD and THC poses bond flexibility required to bind avidly to AR with the docking scores comparable to R18. In fully bound state, the three compounds engage the AR pocket hydrophobic residues such as L701, L704, and L707, and aromatic residues such as F764. Polar contacts with T877 observed in R18 bound state is avoided in the THC and CBD bound states. Moreso, the results revealed that CBD has lesser binding energy compared to THC and R18 compound which serves as standard. This study hypothesized that CBD and THC binds complimentarily to the pocket AR, indicating a likely inhibition of reproductive function and prostate cancer progression.
Collapse
Affiliation(s)
- Samuel Kelechi Mobisson
- Department of Human Physiology, Faculty of Basic Medical Sciences, Madonna University, Elele, Rivers State, Nigeria
| | - Daniel Ewa Ikpi
- Department of Human Physiology, Faculty of Basic Medical Sciences, University of Calabar, Calabar, Cross River State, Nigeria
| | - Iheanyichukwu Wopara
- Department of Biochemistry, Faculty of Sciences, University of Port Harcourt, Port Harcourt, Rivers State, Nigeria
| | - Agona Odey Obembe
- Department of Human Physiology, Faculty of Basic Medical Sciences, University of Calabar, Calabar, Cross River State, Nigeria
| | - Olaposi Omotuyi
- Institute for Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, Ado Ekiti, Nigeria
| |
Collapse
|
8
|
Helsen C, Nguyen T, Vercruysse T, Wouters S, Daelemans D, Voet A, Claessens F. The T850D Phosphomimetic Mutation in the Androgen Receptor Ligand Binding Domain Enhances Recruitment at Activation Function 2. Int J Mol Sci 2022; 23:ijms23031557. [PMID: 35163481 PMCID: PMC8836279 DOI: 10.3390/ijms23031557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Several key functions of the androgen receptor (AR) such as hormone recognition and co-regulator recruitment converge in the ligand binding domain (LBD). Loss- or gain-of-function of the AR contributes to pathologies such as the androgen insensitivity syndrome and prostate cancer. Here, we describe a gain-of-function mutation of the surface-exposed threonine at position 850, located at the amino-terminus of Helix 10 (H10) in the AR LBD. Since T850 phosphorylation was reported to affect AR function, we created the phosphomimetic mutation T850D. The AR T850D variant has a 1.5- to 2-fold increased transcriptional activity with no effect on ligand affinity. In the androgen responsive LNCaP cell line grown in medium with low androgen levels, we observed a growth advantage for cells in which the endogenous AR was replaced by AR T850D. Despite the distance to the AF2 site, the AR T850D LBD displayed an increased affinity for coactivator peptides as well as the 23FQNLF27 motif of AR itself. Molecular Dynamics simulations confirm allosteric transmission of the T850D mutation towards the AF2 site via extended hydrogen bond formation between coactivator peptide and AF2 site. This mechanistic study thus confirms the gain-of-function character of T850D and T850 phosphorylation for AR activity and reveals details of the allosteric communications within the LBD.
Collapse
Affiliation(s)
- Christine Helsen
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, ON I, 3000 Leuven, Belgium;
- Correspondence: ; Tel.: +32-16377388
| | - Tien Nguyen
- Laboratory of Biomolecular Modelling and Design, Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium; (T.N.); (S.W.); (A.V.)
| | - Thomas Vercruysse
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium; (T.V.); (D.D.)
| | - Staf Wouters
- Laboratory of Biomolecular Modelling and Design, Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium; (T.N.); (S.W.); (A.V.)
| | - Dirk Daelemans
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium; (T.V.); (D.D.)
| | - Arnout Voet
- Laboratory of Biomolecular Modelling and Design, Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium; (T.N.); (S.W.); (A.V.)
| | - Frank Claessens
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, ON I, 3000 Leuven, Belgium;
| |
Collapse
|
9
|
Epigenetic Coregulation of Androgen Receptor Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:277-293. [DOI: 10.1007/978-3-031-11836-4_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Özgün F, Kaya Z, Morova T, Geverts B, Abraham TE, Houtsmuller AB, van Royen ME, Lack NA. DNA binding alters ARv7 dimer interactions. J Cell Sci 2021; 134:jcs258332. [PMID: 34318896 DOI: 10.1242/jcs.258332] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/02/2021] [Indexed: 11/20/2022] Open
Abstract
Androgen receptor (AR) splice variants are proposed to be a potential driver of lethal castration-resistant prostate cancer. AR splice variant 7 (ARv7) is the most commonly observed isoform and strongly correlates with resistance to second-generation anti-androgens. Despite this clinical evidence, the interplay between ARv7 and the highly expressed full-length AR (ARfl) remains unclear. In this work, we show that ARfl/ARv7 heterodimers readily form in the nucleus via an intermolecular N/C interaction that brings the four termini of the proteins in close proximity. Combining fluorescence resonance energy transfer and fluorescence recovery after photobleaching, we demonstrate that these heterodimers undergo conformational changes following DNA binding, indicating dynamic nuclear receptor interaction. Although transcriptionally active, ARv7 can only form short-term interactions with DNA at highly accessible high-occupancy ARfl binding sites. Dimerization with ARfl does not affect ARv7 binding dynamics, suggesting that DNA binding occupancy is determined by the individual protein monomers and not the homodimer or heterodimer complex. Overall, these biophysical studies reveal detailed properties of ARv7 dynamics as both a homodimer or heterodimer with ARfl.
Collapse
Affiliation(s)
- Fatma Özgün
- School of Medicine, Koç University, Istanbul 34450, Turkey
| | - Zeynep Kaya
- School of Medicine, Koç University, Istanbul 34450, Turkey
| | - Tunç Morova
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Bart Geverts
- Erasmus Optical Imaging Centre, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Tsion E Abraham
- Erasmus Optical Imaging Centre, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Adriaan B Houtsmuller
- Erasmus Optical Imaging Centre, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
- Department of Pathology, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Martin E van Royen
- Erasmus Optical Imaging Centre, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
- Department of Pathology, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Nathan A Lack
- School of Medicine, Koç University, Istanbul 34450, Turkey
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
| |
Collapse
|
11
|
Hornig NC, Holterhus PM. Molecular basis of androgen insensitivity syndromes. Mol Cell Endocrinol 2021; 523:111146. [PMID: 33385475 DOI: 10.1016/j.mce.2020.111146] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Individuals with complete androgen insensitivity syndrome show a female genital phenotype despite 46, XY gonosomes and the presence of androgen producing testes. This clinical observation indicates the resistance of the body and its cells to androgens like testosterone. At the molecular level, this hormone resistance is caused by hemizygous loss of function mutations in the X-chromosomal androgen receptor (AR) gene. Partial forms of androgen insensitivity syndrome (PAIS) show different degrees of virilisation largely depending on the remaining activity of the AR. Nevertheless, the phenotypic outcome can be variable even in presence of the same mutation and in the same kindred indicating the presence of further influencing factors. Importantly, the majority of clinically diagnosed PAIS individuals do not bear a mutation in their AR gene. A recent assay using the androgen regulated gene apolipoprotein D as biomarker is able to detect androgen insensitivity on the cellular level even in absence of an AR gene mutation. Using this assay a class of AIS without an AR-gene mutation was defined as AIS type II and suggests that unidentified cofactors of the AR are responsible for the PAIS phenotype. Here we outline the scientific progress made from the first clinical definition of AIS over biochemical and molecular characterizations to the concept of AIS type II. This review is based on publications in the PubMed database of the National Institutes of Health using the search terms androgen insensitivity syndrome and androgen receptor mutation.
Collapse
Affiliation(s)
- Nadine C Hornig
- Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Kiel, Germany.
| | - Paul-Martin Holterhus
- Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
12
|
Eighty Years of Targeting Androgen Receptor Activity in Prostate Cancer: The Fight Goes on. Cancers (Basel) 2021; 13:cancers13030509. [PMID: 33572755 PMCID: PMC7865914 DOI: 10.3390/cancers13030509] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Prostate cancer is the second most common cancer in men world-wide, with nearly 1.3 million new cases each year, and over the next twenty years the incidence and death rate are predicted to nearly double. For decades, this lethal disease has been more or less successfully treated using hormonal therapy, which has the ultimate aim of inhibiting androgen signalling. However, prostate tumours can evade such hormonal therapies in a number of different ways and therapy resistant disease, so-called castration-resistant prostate cancer (CRPC) is the major clinical problem. Somewhat counterintuitively, the androgen receptor remains a key therapy target in CRPC. Here, we explain why this is the case and summarise both new hormone therapy strategies and the recent advances in knowledge of androgen receptor structure and function that underpin them. Abstract Prostate cancer (PCa) is the most common cancer in men in the West, other than skin cancer, accounting for over a quarter of cancer diagnoses in US men. In a seminal paper from 1941, Huggins and Hodges demonstrated that prostate tumours and metastatic disease were sensitive to the presence or absence of androgenic hormones. The first hormonal therapy for PCa was thus castration. In the subsequent eighty years, targeting the androgen signalling axis, where possible using drugs rather than surgery, has been a mainstay in the treatment of advanced and metastatic disease. Androgens signal via the androgen receptor, a ligand-activated transcription factor, which is the direct target of many such drugs. In this review we discuss the role of the androgen receptor in PCa and how the combination of structural information and functional screenings is continuing to be used for the discovery of new drug to switch off the receptor or modify its function in cancer cells.
Collapse
|
13
|
A detailed characterization of stepwise activation of the androgen receptor variant 7 in prostate cancer cells. Oncogene 2020; 40:1106-1117. [PMID: 33323969 PMCID: PMC7880901 DOI: 10.1038/s41388-020-01585-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/11/2020] [Accepted: 11/24/2020] [Indexed: 01/28/2023]
Abstract
Expression of the andrgogen receptor splice variant 7 (AR-V7) is frequently detected in castrate resistant prostate cancer and associated with resistance to AR-targeted therapies. While we have previously noted that homodimerization is required for the transcriptional activity of AR-V7 and that AR-V7 can also form heterodimers with the full-length AR (AR-FL), there are still many gaps of knowledge in AR-V7 stepwise activation. In the present study, we show that neither AR-V7 homodimerization nor AR-V7/AR-FL heterodimerization requires cofactors or DNA binding. AR-V7 can enter the nucleus as a monomer and drive a transcriptional program and DNA-damage repair as a homodimer. While forming a heterodimer with AR-FL to induce nuclear localization of unliganded AR-FL, AR-V7 does not need to interact with AR-FL to drive gene transcription or DNA-damage repair in prostate cancer cells that co-express AR-V7 and AR-FL. These data indicate that AR-V7 can function independently of its interaction with AR-FL in the true castrate state or “absence of ligand”, providing support for the utility of targeting AR-V7 in improving outcomes of patients with castrate resistant prostate cancer.
Collapse
|
14
|
Yu X, Yi P, Hamilton RA, Shen H, Chen M, Foulds CE, Mancini MA, Ludtke SJ, Wang Z, O'Malley BW. Structural Insights of Transcriptionally Active, Full-Length Androgen Receptor Coactivator Complexes. Mol Cell 2020; 79:812-823.e4. [PMID: 32668201 DOI: 10.1016/j.molcel.2020.06.031] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/01/2020] [Accepted: 06/18/2020] [Indexed: 01/15/2023]
Abstract
Steroid receptors activate gene transcription by recruiting coactivators to initiate transcription of their target genes. For most nuclear receptors, the ligand-dependent activation function domain-2 (AF-2) is a primary contributor to the nuclear receptor (NR) transcriptional activity. In contrast to other steroid receptors, such as ERα, the activation function of androgen receptor (AR) is largely dependent on its ligand-independent AF-1 located in its N-terminal domain (NTD). It remains unclear why AR utilizes a different AF domain from other receptors despite that NRs share similar domain organizations. Here, we present cryoelectron microscopy (cryo-EM) structures of DNA-bound full-length AR and its complex structure with key coactivators, SRC-3 and p300. AR dimerization follows a unique head-to-head and tail-to-tail manner. Unlike ERα, AR directly contacts a single SRC-3 and p300. The AR NTD is the primary site for coactivator recruitment. The structures provide a basis for understanding assembly of the AR:coactivator complex and its domain contributions for coactivator assembly and transcriptional regulation.
Collapse
Affiliation(s)
- Xinzhe Yu
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ping Yi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ross A Hamilton
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hong Shen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Muyuan Chen
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Charles E Foulds
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael A Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Steven J Ludtke
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhao Wang
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
15
|
Fancher AT, Hua Y, Strock CJ, Johnston PA. Assays to Interrogate the Ability of Compounds to Inhibit the AF-2 or AF-1 Transactivation Domains of the Androgen Receptor. Assay Drug Dev Technol 2019; 17:364-386. [PMID: 31502857 DOI: 10.1089/adt.2019.940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer is the leading cause of cancer and second leading cause of cancer-related death in men in the United States. Twenty percent of patients receiving the standard of care androgen deprivation therapy (ADT) eventually progress to metastatic and incurable castration-resistant prostate cancer (CRPC). Current FDA-approved drugs for CRPC target androgen receptor (AR) binding or androgen production, but only provide a 2- to 5-month survival benefit due to the emergence of resistance. Overexpression of AR coactivators and the emergence of AR splice variants, both promote continued transcriptional activation under androgen-depleted conditions and represent drug resistance mechanisms that contribute to CRPC progression. The AR contains two transactivation domains, activation function 2 (AF-2) and activation function 1 (AF-1), which serve as binding surfaces for coactivators involved in the transcriptional activation of AR target genes. Full-length AR contains both AF-2 and AF-1 surfaces, whereas AR splice variants only have an AF-1 surface. We have recently prosecuted a high-content screening campaign to identify hit compounds that can inhibit or disrupt the protein-protein interactions (PPIs) between AR and transcriptional intermediary factor 2 (TIF2), one of the coactivators implicated in CRPC disease progression. Since an ideal inhibitor/disruptor of AR-coactivator PPIs would target both the AF-2 and AF-1 surfaces, we describe here the development and validation of five AF-2- and three AF-1-focused assays to interrogate and prioritize hits that disrupt both transactivation surfaces. The assays were validated using a test set of seven known AR modulator compounds, including three AR antagonists and one androgen synthesis inhibitor that are FDA-approved ADTs, two investigational molecules that target the N-terminal domain of AR, and an inhibitor of the Hsp90 (heat shock protein) molecular chaperone.
Collapse
Affiliation(s)
- Ashley T Fancher
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yun Hua
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Paul A Johnston
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania.,Head and Neck Cancer, and Skin Cancer Specialized Programs of Research Excellence, University of Pittsburgh Hillman Cancer Center, Pittsburgh, Pennsylvania
| |
Collapse
|
16
|
Skowron KJ, Booker K, Cheng C, Creed S, David BP, Lazzara PR, Lian A, Siddiqui Z, Speltz TE, Moore TW. Steroid receptor/coactivator binding inhibitors: An update. Mol Cell Endocrinol 2019; 493:110471. [PMID: 31163202 PMCID: PMC6645384 DOI: 10.1016/j.mce.2019.110471] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/30/2019] [Accepted: 05/30/2019] [Indexed: 12/14/2022]
Abstract
The purpose of this review is to highlight recent developments in small molecules and peptides that block the binding of coactivators to steroid receptors. These coactivator binding inhibitors bind at the coregulator binding groove, also known as Activation Function-2, rather than at the ligand-binding site of steroid receptors. Steroid receptors that have been targeted with coactivator binding inhibitors include the androgen receptor, estrogen receptor and progesterone receptor. Coactivator binding inhibitors may be useful in some cases of resistance to currently prescribed therapeutics. The scope of the review includes small-molecule and peptide coactivator binding inhibitors for steroid receptors, with a particular focus on recent compounds that have been assayed in cell-based models.
Collapse
Affiliation(s)
- Kornelia J Skowron
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Kenneth Booker
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Changfeng Cheng
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Simone Creed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Brian P David
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Phillip R Lazzara
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Amy Lian
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Zamia Siddiqui
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Thomas E Speltz
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA; Department of Chemistry, University of Chicago, 929 E. 57th Street, E547, Chicago, IL, 60637, USA
| | - Terry W Moore
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA; University of Illinois Cancer Center, University of Illinois at Chicago, 1801 W. Taylor Street, Chicago, IL, 60612, USA.
| |
Collapse
|
17
|
Song T, Li J. New Insights into the Binding Mechanism of Co-regulator BUD31 to AR AF2 Site: Structural Determination and Analysis of the Mutation Effect. Curr Comput Aided Drug Des 2019; 16:45-53. [PMID: 31057123 PMCID: PMC6967182 DOI: 10.2174/1573409915666190502153307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 03/19/2019] [Accepted: 04/18/2019] [Indexed: 12/01/2022]
Abstract
Introduction Androgen Receptor (AR) plays a pivotal role in the development of male sex and contributes to prostate cancer growth. Different from other nuclear receptors that bind to the co-regulator LxxLL motif in coregulator peptide interaction, the AR Ligand Binding Domain (LBD) prefers to bind to the FxxLF motif. BUD31, a novel co-regulator with FxxLF motif, has been demonstrated to suppress wild-type and mutated AR-mediated prostate cancer growth. Methods To find out the interaction mechanisms of BUD31 with WT/T877A/W741L AR complex, molecular dynamics simulations were employed to study the complex BUD31 and WT/mutant ARs. The molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) results demonstrated that T877A and W741L point mutations can reduce the binding affinity between BUD31 and AR. The RMSF and dynamic cross-correlation analysis indicated that amino acid point mutations can affect the motions of loop residues in the AR structure. Results These results indicated that AR co-regulator binding site AF2 can serve as a target for drug discovery to solve the resistance problem.
Collapse
Affiliation(s)
- Tianqing Song
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., 730000 Lanzhou, China
| | - Jiazhong Li
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., 730000 Lanzhou, China
| |
Collapse
|
18
|
Kampa M, Notas G, Castanas E. Natural extranuclear androgen receptor ligands as endocrine disruptors of cancer cell growth. Mol Cell Endocrinol 2017; 457:43-48. [PMID: 28212843 DOI: 10.1016/j.mce.2017.02.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 01/08/2023]
Abstract
Even though the term endocrine disruption primarily designates environmental chemicals that can interfere with the action of hormones, in recent years it has been extended to include also plant derived compounds that can reach the human body, naturally, or have been identified and studied as alternative pharmaceutical agents. In fact, for a large number of them, their antihormonal action was appreciated by different traditional herbal medicines. In the present review we report the majority of the plant derived compounds that exhibit an antiandrogenic effect and the known mechanisms of action. These include a disruption at testosterone production level and at the classical androgen receptor triggered pathways, including membrane initiated ones. Finally, for the first time we describe the possible involvement of alternative cell membrane androgen receptor systems and the lipid signaling disruption by natural androgen, providing hints about a novel class of therapeutic involvement of androgens.
Collapse
Affiliation(s)
- Marilena Kampa
- Department of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece.
| | - George Notas
- Department of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece
| | - Elias Castanas
- Department of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece
| |
Collapse
|
19
|
Russo A, Manna SL, Novellino E, Malfitano AM, Marasco D. Molecular signaling involving intrinsically disordered proteins in prostate cancer. Asian J Androl 2017; 18:673-81. [PMID: 27212129 PMCID: PMC5000787 DOI: 10.4103/1008-682x.181817] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Investigations on cellular protein interaction networks (PINs) reveal that proteins that constitute hubs in a PIN are notably enriched in Intrinsically Disordered Proteins (IDPs) compared to proteins that constitute edges, highlighting the role of IDPs in signaling pathways. Most IDPs rapidly undergo disorder-to-order transitions upon binding to their biological targets to perform their function. Conformational dynamics enables IDPs to be versatile and to interact with a broad range of interactors under normal physiological conditions where their expression is tightly modulated. IDPs are involved in many cellular processes such as cellular signaling, transcriptional regulation, and splicing; thus, their high-specificity/low-affinity interactions play crucial roles in many human diseases including cancer. Prostate cancer (PCa) is one of the leading causes of cancer-related mortality in men worldwide. Therefore, identifying molecular mechanisms of the oncogenic signaling pathways that are involved in prostate carcinogenesis is crucial. In this review, we focus on the aspects of cellular pathways leading to PCa in which IDPs exert a primary role.
Collapse
Affiliation(s)
- Anna Russo
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| | - Sara La Manna
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| | - Ettore Novellino
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| | - Anna Maria Malfitano
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| | - Daniela Marasco
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| |
Collapse
|
20
|
Aurora A regulates expression of AR-V7 in models of castrate resistant prostate cancer. Sci Rep 2017; 7:40957. [PMID: 28205582 PMCID: PMC5311967 DOI: 10.1038/srep40957] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 12/13/2016] [Indexed: 01/02/2023] Open
Abstract
Androgen receptor variants (AR-Vs) provide a mechanism of therapy evasion in castrate-resistant prostate cancer (CRPC), yet mechanisms of regulation remain largely unknown. Here we investigate the role of Aurora A kinase on AR-Vs in models of CRPC and show depletion of Aurora A reduces AR-V target gene expression. Importantly, knockdown of Aurora A reconfigures splicing of AR pre-mRNA to discriminately down-regulate synthesis of AR-V transcripts, including AR-V7, without effecting full-length AR mRNA; and as a consequence, AR-V-driven proliferation and survival of CRPC cells is markedly reduced. Critically, these effects are reproduced by Aurora A inhibition. We show that Aurora A levels increase in advanced disease and AURKA is an AR-V target gene demonstrating a positive feedback mechanism of androgenic signalling in CRPC. In all, our data suggests that Aurora A plays a pivotal role in regulation of AR-V7 expression and represents a new therapeutic target in CRPC.
Collapse
|
21
|
Single-Chain Probes for Illuminating Androgenicity of Chemicals. Methods Mol Biol 2016. [PMID: 27424901 DOI: 10.1007/978-1-4939-3813-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The present protocol introduces a single-chain probe carrying a functional peptide in the N-terminal domain of the androgen receptor (AR NTD) for illuminating androgenicity of ligands. In the single-chain probe, a functional peptide in the AR NTD was genetically fused to the ligand-binding domain of AR (AR LBD) via a flexible linker, and then sandwiched between the N- and C-terminal fragments of split-firefly luciferase (FLuc) dissected at D415. This single-chain probe exerts (1) a high signal-to-background ratio and (2) sensitive discrimination between agonists and antagonists, where the dimerization of AR LBD is not involved. The present protocol guides a fundamental methodology on how to discriminate weak protein-protein (peptide) binding, and provides a new insight into the intramolecular folding inside monomeric AR.
Collapse
|
22
|
Biron E, Bédard F. Recent progress in the development of protein-protein interaction inhibitors targeting androgen receptor-coactivator binding in prostate cancer. J Steroid Biochem Mol Biol 2016. [PMID: 26196120 DOI: 10.1016/j.jsbmb.2015.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The androgen receptor (AR) is a key regulator for the growth, differentiation and survival of prostate cancer cells. Identified as a primary target for the treatment of prostate cancer, many therapeutic strategies have been developed to attenuate AR signaling in prostate cancer cells. While frontline androgen-deprivation therapies targeting either the production or action of androgens usually yield favorable responses in prostate cancer patients, a significant number acquire treatment resistance. Known as the castration-resistant prostate cancer (CRPC), the treatment options are limited for this advanced stage. It has been shown that AR signaling is restored in CRPC due to many aberrant mechanisms such as AR mutations, amplification or expression of constitutively active splice-variants. Coregulator recruitment is a crucial regulatory step in AR signaling and the direct blockade of coactivator binding to AR offers the opportunity to develop therapeutic agents that would remain effective in prostate cancer cells resistant to conventional endocrine therapies. Structural analyses of the AR have identified key surfaces involved in protein-protein interaction with coregulators that have been recently used to design and develop promising AR-coactivator binding inhibitors. In this review we will discuss the design and development of small-molecule inhibitors targeting the AR-coactivator interactions for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Eric Biron
- Faculty of Pharmacy and Centre de recherche en endocrinologie moléculaire et oncologique et génomique humaine, Université Laval, Canada; Laboratory of Medicinal Chemistry, CHU de Québec Research Centre, G1 V 4G2, Québec, QC, Canada.
| | - François Bédard
- Faculty of Pharmacy and Centre de recherche en endocrinologie moléculaire et oncologique et génomique humaine, Université Laval, Canada; Laboratory of Medicinal Chemistry, CHU de Québec Research Centre, G1 V 4G2, Québec, QC, Canada
| |
Collapse
|
23
|
|
24
|
Todd TW, Kokubu H, Miranda HC, Cortes CJ, La Spada AR, Lim J. Nemo-like kinase is a novel regulator of spinal and bulbar muscular atrophy. eLife 2015; 4:e08493. [PMID: 26308581 PMCID: PMC4577982 DOI: 10.7554/elife.08493] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 08/24/2015] [Indexed: 01/03/2023] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a progressive neuromuscular disease caused by polyglutamine expansion in the androgen receptor (AR) protein. Despite extensive research, the exact pathogenic mechanisms underlying SBMA remain elusive. In this study, we present evidence that Nemo-like kinase (NLK) promotes disease pathogenesis across multiple SBMA model systems. Most remarkably, loss of one copy of Nlk rescues SBMA phenotypes in mice, including extending lifespan. We also investigated the molecular mechanisms by which NLK exerts its effects in SBMA. Specifically, we have found that NLK can phosphorylate the mutant polyglutamine-expanded AR, enhance its aggregation, and promote AR-dependent gene transcription by regulating AR-cofactor interactions. Furthermore, NLK modulates the toxicity of a mutant AR fragment via a mechanism that is independent of AR-mediated gene transcription. Our findings uncover a crucial role for NLK in controlling SBMA toxicity and reveal a novel avenue for therapy development in SBMA. DOI:http://dx.doi.org/10.7554/eLife.08493.001 Spinal and bulbar muscular atrophy (SBMA) is an inherited disease that eventually leads to degeneration in motor neurons and weakness in muscles. It is caused by a specific genetic mutation in the gene that encodes the androgen receptor protein, which leads to the production of a mutant protein that is larger than normal. Similar mutations in other genes can lead to the development of other so-called ‘polyglutamine’ diseases such as Huntington's disease and spinocerebellar ataxia. However, the precise details of how these mutations lead to disease symptoms are not known, and there are currently no effective ways of treating these conditions. Previous research has shown that an enzyme called Nemo-like kinase (or NLK for short) regulates the normal androgen receptor in cancer cells. NLK has kinase activity, that is, it adds phosphate molecules to other proteins to regulate their activity. Todd et al. used human cells, fruit flies, and mice as model systems to investigate whether NLK is involved in the development of SBMA. The experiments show that NLK promotes the development of features associated with SBMA in all three models. The kinase activity of NLK is required for these features to develop. Todd et al. also found that NLK can bind to and add phosphate molecules to the mutant version of the androgen receptor protein. This causes the mutant androgen receptor proteins to accumulate and increases the ability of the mutant proteins to activate particular genes. Todd et al.'s findings suggest that NLK promotes the development of SBMA by interacting with the mutant androgen receptor. Previous studies have shown that NLK is able to modulate the development of spinocerebellar ataxia type 1, which suggests that NLK may also play an important role in other polyglutamine diseases. The next challenge will be to fully understand the role of NLK in these diseases, which may aid future efforts to develop new treatments. DOI:http://dx.doi.org/10.7554/eLife.08493.002
Collapse
Affiliation(s)
- Tiffany W Todd
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Genetics, Yale School of Medicine, New Haven, United States
| | - Hiroshi Kokubu
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Genetics, Yale School of Medicine, New Haven, United States
| | - Helen C Miranda
- Departments of Cellular and Molecular Medicine, Neurosciences, and Pediatrics, Division of Biological Sciences, Institute for Genomic Medicine, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, United States
| | - Constanza J Cortes
- Departments of Cellular and Molecular Medicine, Neurosciences, and Pediatrics, Division of Biological Sciences, Institute for Genomic Medicine, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, United States
| | - Albert R La Spada
- Departments of Cellular and Molecular Medicine, Neurosciences, and Pediatrics, Division of Biological Sciences, Institute for Genomic Medicine, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, United States
| | - Janghoo Lim
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Genetics, Yale School of Medicine, New Haven, United States
| |
Collapse
|
25
|
Pihlajamaa P, Sahu B, Jänne OA. Determinants of Receptor- and Tissue-Specific Actions in Androgen Signaling. Endocr Rev 2015; 36:357-84. [PMID: 26052734 DOI: 10.1210/er.2015-1034] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The physiological androgens testosterone and 5α-dihydrotestosterone regulate the development and maintenance of primary and secondary male sexual characteristics through binding to the androgen receptor (AR), a ligand-dependent transcription factor. In addition, a number of nonreproductive tissues of both genders are subject to androgen regulation. AR is also a central target in the treatment of prostate cancer. A large number of studies over the last decade have characterized many regulatory aspects of the AR pathway, such as androgen-dependent transcription programs, AR cistromes, and coregulatory proteins, mostly in cultured cells of prostate cancer origin. Moreover, recent work has revealed the presence of pioneer/licensing factors and chromatin modifications that are important to guide receptor recruitment onto appropriate chromatin loci in cell lines and in tissues under physiological conditions. Despite these advances, current knowledge related to the mechanisms responsible for receptor- and tissue-specific actions of androgens is still relatively limited. Here, we review topics that pertain to these specificity issues at different levels, both in cultured cells and tissues in vivo, with a particular emphasis on the nature of the steroid, the response element sequence, the AR cistromes, pioneer/licensing factors, and coregulatory proteins. We conclude that liganded AR and its DNA-response elements are required but are not sufficient for establishment of tissue-specific transcription programs in vivo, and that AR-selective actions over other steroid receptors rely on relaxed rather than increased stringency of cis-elements on chromatin.
Collapse
Affiliation(s)
- Päivi Pihlajamaa
- Department of Physiology (P.P., B.S., O.A.J.), and Research Programs Unit, Genome-Scale Biology (P.P., B.S.), Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland
| | - Biswajyoti Sahu
- Department of Physiology (P.P., B.S., O.A.J.), and Research Programs Unit, Genome-Scale Biology (P.P., B.S.), Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland
| | - Olli A Jänne
- Department of Physiology (P.P., B.S., O.A.J.), and Research Programs Unit, Genome-Scale Biology (P.P., B.S.), Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
26
|
Brooke GN, Powell SM, Lavery DN, Waxman J, Buluwela L, Ali S, Bevan CL. Engineered repressors are potent inhibitors of androgen receptor activity. Oncotarget 2015; 5:959-69. [PMID: 24659630 PMCID: PMC4011597 DOI: 10.18632/oncotarget.1360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Prostate cancer growth is dependent upon the Androgen Receptor (AR) pathway, hence therapies for this disease often target this signalling axis. Such therapies are successful in the majority of patients but invariably fail after a median of 2 years and tumours progress to a castrate resistant stage (CRPC). Much evidence exists to suggest that the AR remains key to CRPC growth and hence remains a valid therapeutic target. Here we describe a novel method to inhibit AR activity, consisting of an interaction motif, that binds to the AR ligand-binding domain, fused to repression domains. These ‘engineered repressors’ are potent inhibitors of AR activity and prostate cancer cell growth and importantly inhibit the AR under circumstances in which conventional therapies would be predicted to fail, such as AR mutation and altered cofactor levels.
Collapse
Affiliation(s)
- Greg N Brooke
- Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College London, W12 0NN, UK
| | | | | | | | | | | | | |
Collapse
|
27
|
Brooke GN, Gamble SC, Hough MA, Begum S, Dart DA, Odontiadis M, Powell SM, Fioretti FM, Bryan RA, Waxman J, Wait R, Bevan CL. Antiandrogens act as selective androgen receptor modulators at the proteome level in prostate cancer cells. Mol Cell Proteomics 2015; 14:1201-16. [PMID: 25693800 PMCID: PMC4424393 DOI: 10.1074/mcp.m113.036764] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Indexed: 11/06/2022] Open
Abstract
Current therapies for prostate cancer include antiandrogens, inhibitory ligands of the androgen receptor, which repress androgen-stimulated growth. These include the selective androgen receptor modulators cyproterone acetate and hydroxyflutamide and the complete antagonist bicalutamide. Their activity is partly dictated by the presence of androgen receptor mutations, which are commonly detected in patients who relapse while receiving antiandrogens, i.e. in castrate-resistant prostate cancer. To characterize the early proteomic response to these antiandrogens we used the LNCaP prostate cancer cell line, which harbors the androgen receptor mutation most commonly detected in castrate-resistant tumors (T877A), analyzing alterations in the proteome, and comparing these to the effect of these therapeutics upon androgen receptor activity and cell proliferation. The majority are regulated post-transcriptionally, possibly via nongenomic androgen receptor signaling. Differences detected between the exposure groups demonstrate subtle changes in the biological response to each specific ligand, suggesting a spectrum of agonistic and antagonistic effects dependent on the ligand used. Analysis of the crystal structures of the AR in the presence of cyproterone acetate, hydroxyflutamide, and DHT identified important differences in the orientation of key residues located in the AF-2 and BF-3 protein interaction surfaces. This further implies that although there is commonality in the growth responses between androgens and those antiandrogens that stimulate growth in the presence of a mutation, there may also be influential differences in the growth pathways stimulated by the different ligands. This therefore has implications for prostate cancer treatment because tumors may respond differently dependent upon which mutation is present and which ligand is activating growth, also for the design of selective androgen receptor modulators, which aim to elicit differential proteomic responses dependent upon cellular context.
Collapse
Affiliation(s)
- Greg N Brooke
- From the ‡Androgen Signalling Laboratory, Imperial College London, London W12 0NN, UK; §Molecular Oncology, School of Biological Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Simon C Gamble
- From the ‡Androgen Signalling Laboratory, Imperial College London, London W12 0NN, UK
| | - Michael A Hough
- §Molecular Oncology, School of Biological Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Shajna Begum
- ¶Kennedy Institute of Rheumatology, Imperial College London, London W6 8LH, UK
| | - D Alwyn Dart
- From the ‡Androgen Signalling Laboratory, Imperial College London, London W12 0NN, UK; ‖Cardiff University Peking University Cancer Institute, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Michael Odontiadis
- From the ‡Androgen Signalling Laboratory, Imperial College London, London W12 0NN, UK
| | - Sue M Powell
- From the ‡Androgen Signalling Laboratory, Imperial College London, London W12 0NN, UK
| | - Flavia M Fioretti
- From the ‡Androgen Signalling Laboratory, Imperial College London, London W12 0NN, UK
| | - Rosie A Bryan
- §Molecular Oncology, School of Biological Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Jonathan Waxman
- From the ‡Androgen Signalling Laboratory, Imperial College London, London W12 0NN, UK
| | - Robin Wait
- ¶Kennedy Institute of Rheumatology, Imperial College London, London W6 8LH, UK
| | - Charlotte L Bevan
- From the ‡Androgen Signalling Laboratory, Imperial College London, London W12 0NN, UK;
| |
Collapse
|
28
|
Hsu CL, Liu JS, Wu PL, Guan HH, Chen YL, Lin AC, Ting HJ, Pang ST, Yeh SD, Ma WL, Chen CJ, Wu WG, Chang C. Identification of a new androgen receptor (AR) co-regulator BUD31 and related peptides to suppress wild-type and mutated AR-mediated prostate cancer growth via peptide screening and X-ray structure analysis. Mol Oncol 2014; 8:1575-87. [PMID: 25091737 DOI: 10.1016/j.molonc.2014.06.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/12/2014] [Accepted: 06/12/2014] [Indexed: 12/26/2022] Open
Abstract
Treatment with individual anti-androgens is associated with the development of hot-spot mutations in the androgen receptor (AR). Here, we found that anti-androgens-mt-ARs have similar binary structure to the 5α-dihydrotestosterone-wt-AR. Phage display revealed that these ARs bound to similar peptides, including BUD31, containing an Fxx(F/H/L/W/Y)Y motif cluster with Tyr in the +5 position. Structural analyses of the AR-LBD-BUD31 complex revealed formation of an extra hydrogen bond between the Tyr+5 residue of the peptide and the AR. Functional studies showed that BUD31-related peptides suppressed AR transactivation, interrupted AR N-C interaction, and suppressed AR-mediated cell growth. Combination of peptide screening and X-ray structure analysis may serve as a new strategy for developing anti-ARs that simultaneously suppress both wt and mutated AR function.
Collapse
Affiliation(s)
- Cheng-Lung Hsu
- The George Whipple Lab for Cancer Research, Department of Pathology and Urology, University of Rochester Medical Center, Rochester, NY 14642, USA; Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan
| | - Jai-Shin Liu
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan; Department of Physics, Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Po-Long Wu
- National Synchrotron Radiation Center, Hsinchu 300, Taiwan
| | - Hong-Hsiang Guan
- National Synchrotron Radiation Center, Hsinchu 300, Taiwan; Department of Physics, Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Yuh-Ling Chen
- The George Whipple Lab for Cancer Research, Department of Pathology and Urology, University of Rochester Medical Center, Rochester, NY 14642, USA; Institute of Oral Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - An-Chi Lin
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan
| | - Huei-Ju Ting
- The George Whipple Lab for Cancer Research, Department of Pathology and Urology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - See-Tong Pang
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan
| | - Shauh-Der Yeh
- The George Whipple Lab for Cancer Research, Department of Pathology and Urology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Wen-Lung Ma
- The George Whipple Lab for Cancer Research, Department of Pathology and Urology, University of Rochester Medical Center, Rochester, NY 14642, USA; Sex Hormone Research Center, China Medical University/Hospital, Taichung 104, Taiwan
| | - Chung-Jung Chen
- National Synchrotron Radiation Center, Hsinchu 300, Taiwan; Department of Physics, Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Wen-Guey Wu
- National Synchrotron Radiation Center, Hsinchu 300, Taiwan; Department of Physics, Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Chawnshang Chang
- The George Whipple Lab for Cancer Research, Department of Pathology and Urology, University of Rochester Medical Center, Rochester, NY 14642, USA; Sex Hormone Research Center, China Medical University/Hospital, Taichung 104, Taiwan.
| |
Collapse
|
29
|
Jehle K, Cato L, Neeb A, Muhle-Goll C, Jung N, Smith EW, Buzon V, Carbó LR, Estébanez-Perpiñá E, Schmitz K, Fruk L, Luy B, Chen Y, Cox MB, Bräse S, Brown M, Cato ACB. Coregulator control of androgen receptor action by a novel nuclear receptor-binding motif. J Biol Chem 2014; 289:8839-51. [PMID: 24523409 DOI: 10.1074/jbc.m113.534859] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The androgen receptor (AR) is a ligand-activated transcription factor that is essential for prostate cancer development. It is activated by androgens through its ligand-binding domain (LBD), which consists predominantly of 11 α-helices. Upon ligand binding, the last helix is reorganized to an agonist conformation termed activator function-2 (AF-2) for coactivator binding. Several coactivators bind to the AF-2 pocket through conserved LXXLL or FXXLF sequences to enhance the activity of the receptor. Recently, a small compound-binding surface adjacent to AF-2 has been identified as an allosteric modulator of the AF-2 activity and is termed binding function-3 (BF-3). However, the role of BF-3 in vivo is currently unknown, and little is understood about what proteins can bind to it. Here we demonstrate that a duplicated GARRPR motif at the N terminus of the cochaperone Bag-1L functions through the BF-3 pocket. These findings are supported by the fact that a selective BF-3 inhibitor or mutations within the BF-3 pocket abolish the interaction between the GARRPR motif(s) and the BF-3. Conversely, amino acid exchanges in the two GARRPR motifs of Bag-1L can impair the interaction between Bag-1L and AR without altering the ability of Bag-1L to bind to chromatin. Furthermore, the mutant Bag-1L increases androgen-dependent activation of a subset of AR targets in a genome-wide transcriptome analysis, demonstrating a repressive function of the GARRPR/BF-3 interaction. We have therefore identified GARRPR as a novel BF-3 regulatory sequence important for fine-tuning the activity of the AR.
Collapse
Affiliation(s)
- Katja Jehle
- From the Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Brand LJ, Dehm SM. Androgen receptor gene rearrangements: new perspectives on prostate cancer progression. Curr Drug Targets 2014; 14:441-9. [PMID: 23410127 DOI: 10.2174/1389450111314040005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/14/2012] [Accepted: 02/06/2013] [Indexed: 11/22/2022]
Abstract
The androgen receptor (AR) is a master regulator transcription factor in normal and cancerous prostate cells. Canonical AR activation requires binding of androgen ligand to the AR ligand binding domain, translocation to the nucleus, and transcriptional activation of AR target genes. This regulatory axis is targeted for systemic therapy of advanced prostate cancer. However, a new paradigm for AR activation in castration-resistant prostate cancer (CRPC) has emerged wherein alternative splicing of AR mRNA promotes synthesis of constitutively active AR variants that lack the AR ligand binding domain (LBD). Recent work has indicated that structural alteration of the AR gene locus represents a key mechanism by which alterations in AR mRNA splicing arise. In this review, we examine the role of truncated AR variants (ARVs) and their corresponding genomic origins in models of prostate cancer progression, as well as the challenges they pose to the current standard of prostate cancer therapies targeting the AR ligand binding domain. Since ARVs lack the COOH-terminal LBD, the genesis of these AR gene rearrangements and their resulting ARVs provides strong rationale for the pursuit of new avenues of therapeutic intervention targeted at the AR NH2-terminal domain. We further suggest that genomic events leading to ARV expression could act as novel biomarkers of disease progression that may guide the optimal use of current and next-generation AR-targeted therapy.
Collapse
Affiliation(s)
- Lucas J Brand
- Graduate Program in Microbiology, Immunology, and Cancer Biology, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
31
|
Abstract
Androgenic steroids are important for male development in utero and secondary sexual characteristics at puberty. In addition, androgens play a role in non-reproductive tissues, such as bone and muscle in both sexes. The actions of the androgens testosterone and dihydrotestosterone are mediated by a single receptor protein, the androgen receptor. Over the last 60–70 years there has been considerable research interest in the development of inhibitors of androgen receptor for the management of diseases such as prostate cancer. However, more recently, there is also a growing appreciation of the need for selective androgen modulators that would demonstrate tissue-selective agonist or antagonist activity. The chemistry and biology of selective agonists, antagonists and selective androgen receptor modulators will be discussed in this review.
Collapse
|
32
|
van Royen ME, van de Wijngaart DJ, Cunha SM, Trapman J, Houtsmuller AB. A multi-parameter imaging assay identifies different stages of ligand-induced androgen receptor activation. Cytometry A 2013; 83:806-17. [DOI: 10.1002/cyto.a.22284] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 02/09/2013] [Accepted: 02/26/2013] [Indexed: 12/29/2022]
Affiliation(s)
- Martin E. van Royen
- Department of Pathology; Josephine Nefkens Institute; Erasmus MC; 3000 CA Rotterdam; The Netherlands
| | | | - Sónia M. Cunha
- Department of Pathology; Josephine Nefkens Institute; Erasmus MC; 3000 CA Rotterdam; The Netherlands
| | - Jan Trapman
- Department of Pathology; Josephine Nefkens Institute; Erasmus MC; 3000 CA Rotterdam; The Netherlands
| | - Adriaan B. Houtsmuller
- Department of Pathology; Josephine Nefkens Institute; Erasmus MC; 3000 CA Rotterdam; The Netherlands
| |
Collapse
|
33
|
Seoane MD, Petkau-Milroy K, Vaz B, Möcklinghoff S, Folkertsma S, Milroy LG, Brunsveld L. Structure–activity relationship studies of miniproteins targeting the androgen receptor–coactivator interaction. MEDCHEMCOMM 2013. [DOI: 10.1039/c2md20182h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Miniproteins featuring a stable α-helical motif allow exploring point mutations in and around FXXLF motifs to improve androgen receptor affinity.
Collapse
Affiliation(s)
| | - Katja Petkau-Milroy
- Laboratory of Chemical Biology
- Department of Biomedical Engineering
- Eindhoven University of Technology
- Eindhoven
- The Netherlands
| | - Belen Vaz
- Chemical Genomics Centre of the Max Planck Society
- 44227 Dortmund
- Germany
| | - Sabine Möcklinghoff
- Laboratory of Chemical Biology
- Department of Biomedical Engineering
- Eindhoven University of Technology
- Eindhoven
- The Netherlands
| | - Simon Folkertsma
- Computational Drug Discovery
- Centre for Molecular and Biomolecular Informatics
- Radboud University
- Nijmegen
- The Netherlands
| | - Lech-Gustav Milroy
- Laboratory of Chemical Biology
- Department of Biomedical Engineering
- Eindhoven University of Technology
- Eindhoven
- The Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology
- Department of Biomedical Engineering
- Eindhoven University of Technology
- Eindhoven
- The Netherlands
| |
Collapse
|
34
|
Elfferich P, van Royen M, van de Wijngaart D, Trapman J, Drop S, van den Akker E, Lusher S, Bosch R, Bunch T, Hughes I, Houtsmuller A, Cools M, Faradz S, Bisschop P, Bunck M, Oostdijk W, Brüggenwirth H, Brinkmann A. Variable Loss of Functional Activities of Androgen Receptor Mutants in Patients with Androgen Insensitivity Syndrome. Sex Dev 2013; 7:223-34. [DOI: 10.1159/000351820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2013] [Indexed: 01/05/2023] Open
|
35
|
Caboni L, Lloyd DG. Beyond the ligand-binding pocket: targeting alternate sites in nuclear receptors. Med Res Rev 2012; 33:1081-118. [PMID: 23344935 DOI: 10.1002/med.21275] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Nuclear receptors (NRs) are a family of ligand-modulated transcription factors with significant therapeutic relevance from metabolic disorders and inflammation to cancer, neurodegenerative, and psychiatric disorders. Drug discovery efforts are typically concentrated on modulating the natural ligand action within the ligand-binding pocket (LBP) in the C-terminal ligand-binding domain (LBD). Drawbacks of LBP-based strategies include physiological alterations due to disruption of ligand binding and difficulties in achieving tissue specificity. Furthermore, the lack of a "pure" and predictable mechanism of action predisposes such intervention toward drug resistance. Recent outstanding progress in our understanding of NR biology has shifted the focus of drug discovery efforts from inside to outside the LBP, affording consideration to the interaction between NRs and coactivator proteins, the interaction between NRs and DNA and the NRs' ligand-independent functions. This review encompasses such currently available NR non-LBP-based interventions and their potential application in therapy or as specific tools to probe NR biology.
Collapse
Affiliation(s)
- Laura Caboni
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | | |
Collapse
|
36
|
Clinckemalie L, Vanderschueren D, Boonen S, Claessens F. The hinge region in androgen receptor control. Mol Cell Endocrinol 2012; 358:1-8. [PMID: 22406839 DOI: 10.1016/j.mce.2012.02.019] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 02/21/2012] [Accepted: 02/22/2012] [Indexed: 01/19/2023]
Abstract
The region between the DNA-binding domain and the ligand-binding domain of nuclear receptors is termed the hinge region. Although this flexible linker is poorly conserved, diverse functions have been ascribed to it. For the androgen receptor (AR), the hinge region and in particular the (629)RKLKKL(634) motif, plays a central role in controlling AR activity, not only because it acts as the main part of the nuclear translocation signal, but also because it regulates the transactivation potential and intranuclear mobility of the receptor. It is also a target site for acetylation, ubiquitylation and methylation. The interplay between these different modifications as well as the phosphorylation at serine 650 will be discussed here. The hinge also has an important function in AR binding to classical versus selective androgen response elements. In addition, the number of coactivators/corepressors that might act via interaction with the hinge region is still growing. The importance of the hinge region is further illustrated by the different somatic mutations described in patients with androgen insensitivity syndrome and prostate cancer. In conclusion, the hinge region serves as an integrator for signals coming from different pathways that provide feedback to the control of AR activity.
Collapse
Affiliation(s)
- Liesbeth Clinckemalie
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O&N1, Herestraat 49, 3000 Leuven, Belgium
| | | | | | | |
Collapse
|
37
|
Evidence for DNA-binding domain--ligand-binding domain communications in the androgen receptor. Mol Cell Biol 2012; 32:3033-43. [PMID: 22645304 DOI: 10.1128/mcb.00151-12] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA binding as well as ligand binding by nuclear receptors has been studied extensively. Both binding functions are attributed to isolated domains of which the structure is known. The crystal structure of a complete receptor in complex with its ligand and DNA-response element, however, has been solved only for the peroxisome proliferator-activated receptor γ (PPARγ)-retinoid X receptor α (RXRα) heterodimer. This structure provided the first indication of direct interactions between the DNA-binding domain (DBD) and ligand-binding domain (LBD). In this study, we investigated whether there is a similar interface between the DNA- and ligand-binding domains for the androgen receptor (AR). Despite the structural differences between the AR- and PPARγ-LBD, a combination of in silico modeling and docking pointed out a putative interface between AR-DBD and AR-LBD. The surfaces were subjected to a point mutation analysis, which was inspired by known AR mutations described in androgen insensitivity syndromes and prostate cancer. Surprisingly, AR-LBD mutations D695N, R710A, F754S, and P766A induced a decrease in DNA binding but left ligand binding unaffected, while the DBD-residing mutations K590A, K592A, and E621A lowered the ligand-binding but not the DNA-binding affinity. We therefore propose that these residues are involved in allosteric communications between the AR-DBD and AR-LBD.
Collapse
|
38
|
Haendler B, Cleve A. Recent developments in antiandrogens and selective androgen receptor modulators. Mol Cell Endocrinol 2012; 352:79-91. [PMID: 21704118 DOI: 10.1016/j.mce.2011.06.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 05/16/2011] [Accepted: 06/03/2011] [Indexed: 11/30/2022]
Abstract
The androgens testosterone and dihydrotestosterone play an essential role in the development and maintenance of primary and secondary male characteristics. Androgens bind to a specific androgen receptor (AR), a ligand-dependent transcription factor which controls the expression of a large number of downstream target genes. The AR is an essential player in early and late prostate cancer, and may also be involved in some forms of breast cancer. It also represents a drug target for the treatment of hypogonadism. Recent studies furthermore indicate that targeting the AR in pathologies such as frailty syndrome, cachexia or polycystic ovary syndrome may have clinical benefit. Numerous AR ligands with very different pharmacological properties have been identified in the last 40 years and helped to treat several of these diseases. However, progress still needs to be made in order to find compounds with an improved profile with regard to efficacy, differentiation and side-effects. This will only be achieved through a better understanding of the mechanisms involved in normal and aberrant AR signaling.
Collapse
Affiliation(s)
- Bernard Haendler
- TRG Oncology, Global Drug Discovery, Bayer HealthCare, D-13342 Berlin, Germany.
| | | |
Collapse
|
39
|
van de Wijngaart DJ, Dubbink HJ, van Royen ME, Trapman J, Jenster G. Androgen receptor coregulators: recruitment via the coactivator binding groove. Mol Cell Endocrinol 2012; 352:57-69. [PMID: 21871527 DOI: 10.1016/j.mce.2011.08.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 08/08/2011] [Accepted: 08/10/2011] [Indexed: 02/08/2023]
Abstract
Androgens are key regulators of male sexual differentiation and essential for development and maintenance of male reproductive tissues. The androgens testosterone and dihydrotestosterone mediate their effect by binding to, and activation of the androgen receptor (AR). Upon activation, the AR is able to recognize specific DNA sequences in gene promoters and enhancers from where it recruits coregulators to orchestrate chromatin remodeling and transcription regulation. The number of proteins that bind to the AR has surpassed 200 and many of them enhance (coactivator) or repress (corepressor) its transactivating capacity. For most of these coregulators, their AR binding interface and their exact mode of action still needs to be elucidated, but for some of the more classical coactivators and corepressors, we gained insight in their working mechanisms. Of particular interest are specific sequences (LxxLL and FxxLF-like motifs) in a subset of coactivators that interact with the AR via a coactivator binding groove in the ligand-binding domain. As compared to other steroid receptors, the conformation of the AR coactivator binding pocket is unique and preferentially binds FxxLF-like motifs. This predisposition is expected to contribute to the regulation of specific sets of target genes via recruitment of selected coregulators. This review provides an overview of these (inter)actions with a focus on the unique characteristics of the AR coactivator binding groove.
Collapse
|
40
|
Kumar R, McEwan IJ. Allosteric modulators of steroid hormone receptors: structural dynamics and gene regulation. Endocr Rev 2012; 33:271-99. [PMID: 22433123 PMCID: PMC3596562 DOI: 10.1210/er.2011-1033] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Steroid hormones are synthesized from cholesterol primarily in the adrenal gland and the gonads and play vital roles in normal physiology, the control of development, differentiation, metabolic homeostasis, and reproduction. The actions of these small lipophilic molecules are mediated by intracellular receptor proteins. It is just over 25 yr since the first cDNA for steroid receptors were cloned, a development that led to the birth of a superfamily of ligand-activated transcription factors: the nuclear receptors. The receptor proteins share structurally and functionally related ligand binding and DNA-binding domains but possess distinct N-terminal domains and hinge regions that are intrinsically disordered. Since the original cloning experiments, considerable progress has been made in our understanding of the structure, mechanisms of action, and biology of this important class of ligand-activated transcription factors. In recent years, there has been interest in the structural plasticity and function of the N-terminal domain of steroid hormone receptors and in the allosteric regulation of protein folding and function in response to hormone, DNA response element architecture, and coregulatory protein binding partners. The N-terminal domain can exist as an ensemble of conformers, having more or less structure, which prime this region of the receptor to rapidly respond to changes in the intracellular environment through hormone binding and posttranslation modifications. In this review, we address the question of receptor structure and function dynamics with particular emphasis on the structurally flexible N-terminal domain, intra- and interdomain communications, and the allosteric regulation of receptor action.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, Pennsylvania 18510, USA
| | | |
Collapse
|
41
|
Hay CW, McEwan IJ. The impact of point mutations in the human androgen receptor: classification of mutations on the basis of transcriptional activity. PLoS One 2012; 7:e32514. [PMID: 22403669 PMCID: PMC3293822 DOI: 10.1371/journal.pone.0032514] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 01/27/2012] [Indexed: 11/30/2022] Open
Abstract
Androgen receptor mediated signaling drives prostate cancer cell growth and survival. Mutations within the receptor occur infrequently in prostate cancer prior to hormonal therapy but become prevalent in incurable androgen independent and metastatic tumors. Despite the determining role played by the androgen receptor in all stages of prostate cancer progression, there is a conspicuous dearth of comparable data on the consequences of mutations. In order to remedy this omission, we have combined an expansive study of forty five mutations which are predominantly associated with high Gleason scores and metastatic tumors, and span the entire length of the receptor, with a literature review of the mutations under investigation. We report the discovery of a novel prevalent class of androgen receptor mutation that possesses loss of function at low levels of androgen yet transforms to a gain of function at physiological levels. Importantly, mutations introducing constitutive gain of function are uncommon, with the majority of mutations leading to either loss of function or no significant change from wild-type activity. Therefore, the widely accepted supposition that androgen receptor mutations in prostate cancer result in gain of function is appealing, but mistaken. In addition, the transcriptional outcome of some mutations is dependent upon the androgen receptor responsive element. We discuss the consequences of these findings and the role of androgen receptor mutations for prostate cancer progression and current treatment options.
Collapse
Affiliation(s)
- Colin W. Hay
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Iain J. McEwan
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- * E-mail:
| |
Collapse
|
42
|
van Royen ME, van Cappellen WA, de Vos C, Houtsmuller AB, Trapman J. Stepwise androgen receptor dimerization. J Cell Sci 2012; 125:1970-9. [PMID: 22328501 DOI: 10.1242/jcs.096792] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Androgen-regulated gene expression is a highly coordinated dynamic process mediated by androgen receptor (AR) ligand binding and DNA binding, and by specific AR protein-protein interactions. The latter include DNA-binding domain (D-box) interactions in AR homodimers, and the interaction of the FQNLF motif in the AR N-terminal domain and the coactivator groove in the ligand-binding domain (N/C interaction). We have studied these interactions in AR homodimerization using quantitative imaging techniques. We found that the initial cytoplasmic intramolecular AR N/C interaction after ligand binding is followed by a D-box-dimerization-dependent transition to intermolecular N/C interaction in a proportion of nuclear ARs. The consecutive steps leading to homodimerization are initiated prior to DNA binding. Our data indicate the presence of nuclear pools of both AR homodimers and monomers. On the basis of AR-regulated reporter assays we propose specificity in regulation of gene expression by AR homodimers and monomers mediated by AR domain interactions. Moreover, our findings elucidate important steps in the spatiotemporal organization of AR intra- and inter-molecular interactions.
Collapse
Affiliation(s)
- Martin E van Royen
- Department of Pathology, Josephine Nefkens Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
43
|
Askew EB, Minges JT, Hnat AT, Wilson EM. Structural features discriminate androgen receptor N/C terminal and coactivator interactions. Mol Cell Endocrinol 2012; 348:403-10. [PMID: 21664945 PMCID: PMC3199032 DOI: 10.1016/j.mce.2011.03.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 03/25/2011] [Accepted: 03/31/2011] [Indexed: 11/20/2022]
Abstract
Human androgen receptor (AR) transcriptional activity involves interdomain and coactivator interactions with the agonist-bound AR ligand binding domain (LBD). Structural determinants of the AR NH(2)- and carboxyl-terminal interaction between the AR NH(2)-terminal FXXLF motif and activation function 2 (AF2) in the LBD were shown previously by crystallography. In this report, we provide evidence for a region in AR LBD helix 12 outside the AF2 binding cleft that facilitates interactions with the FXXLF and LXXLL motifs. Mutagenesis of glutamine 902 to alanine in AR LBD helix 12 (Q902A) disrupted AR FXXLF motif binding to AF2, but enhanced coactivator LXXLL motif binding. Functional compensation for defective FXXLF motif binding by AR-Q902A was suggested by the slower dissociation rate of bound androgen. Functional importance of glutamine 902 was indicated by the charged residue germline mutation Q902R that caused partial androgen insensitivity, and a similar somatic mutation Q902K reported in prostate cancer, both of which increased the androgen dissociation rate and decreased AR transcriptional activity. High affinity equilibrium androgen binding was retained by alanine substitution mutations at Tyr-739 in AR LBD helix 5 or Lys-905 in helix 12 structurally adjacent to AF2, whereas transcriptional activity decreased and the androgen dissociation increased. Deleterious effects of these loss of function mutations were rescued by the helix stabilizing AR prostate cancer somatic mutation H874Y. Sequence NH(2)-terminal to the AR FXXLF motif contributed to the AR NH(2)- and carboxyl-terminal interaction based on greater AR-2-30 FXXLF motif peptide binding to the agonist-bound AR LBD than a shorter AR-20-30 FXXLF motif peptide. We conclude that helix 12 residues outside the AF2 binding cleft modulate AR transcriptional activity by providing flexibility to accommodate FXXLF or LXXLL motif binding.
Collapse
Affiliation(s)
| | | | | | - Elizabeth M. Wilson
- Corresponding author: EM Wilson, Laboratories for Reproductive Biology, University of North Carolina at Chapel Hill, NC 27599-7500 USA, TEL 919-966-5168, FAX 919-966-2203
| |
Collapse
|
44
|
Helsen C, Kerkhofs S, Clinckemalie L, Spans L, Laurent M, Boonen S, Vanderschueren D, Claessens F. Structural basis for nuclear hormone receptor DNA binding. Mol Cell Endocrinol 2012; 348:411-7. [PMID: 21801809 DOI: 10.1016/j.mce.2011.07.025] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 07/07/2011] [Accepted: 07/12/2011] [Indexed: 11/16/2022]
Abstract
The gene family of nuclear receptors is characterized by the presence of a typical, well conserved DNA-binding domain. In general, two zinc coordinating modules are folded such that an α-helix is inserted in the major groove of the DNA-helix displaying a sequence similar to one of two hexameric consensus motifs. Both zinc molecules coordinate four cysteines. Although the DNA-binding domains as well as the hormone response elements are very similar, each nuclear receptor will affect transcription of a specific set of target genes. This is in part due to some important receptor-specific variations on the general theme of DNA interaction. For most nuclear receptors, the DNA-binding domain dimerizes on DNA, which explains why most hormone response elements consist of a repeat of two hexamers. The hexamer dimers can be organized either as direct, inverted or everted repeats with spacers of varying lengths. The DNA can be bound by homodimers, heterodimers and for some orphan receptors, as monomer. Another key element for DNA binding by nuclear receptors is the carboxy-terminal extension of the DNA-binding domain extending into the hinge region. This part not only co-determines sequence specificity, but also affects other functions of the receptors like nuclear translocation, intranuclear mobility and transactivation potential. Moreover, allosteric signals passing through towards other receptor domains, explain why to some extent, the DNA elements can also be considered as controlling ligands.
Collapse
Affiliation(s)
- Christine Helsen
- Molecular Endocrinology Laboratory, Department Molecular Cell Biology, Campus GHB, ON1, Herestraat 49, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Jin F, Claessens F, Fondell JD. Regulation of androgen receptor-dependent transcription by coactivator MED1 is mediated through a newly discovered noncanonical binding motif. J Biol Chem 2011; 287:858-70. [PMID: 22102282 DOI: 10.1074/jbc.m111.304519] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Nuclear receptor (NR) activation by cognate ligand generally involves allosteric realignment of C-terminal α-helices thus generating a binding surface for coactivators containing canonical LXXLL α-helical motifs. The androgen receptor (AR) is uncommon among NRs in that ligand triggers an intramolecular interaction between its N- and C-terminal domains (termed the N/C interaction) and that coactivators can alternatively bind to surfaces in the AR N-terminal or hinge regions. The evolutionary conserved Mediator complex plays a key coregulatory role in steroid hormone-dependent transcription and is chiefly targeted to NRs via the LXXLL-containing MED1 subunit. Whereas MED1 has been demonstrated to serve as a key transcriptional coactivator for AR, the mechanisms by which AR recruits MED1 have remained unclear. Here we show that MED1 binds to a distinct AR N-terminal region termed transactivation unit-1 (Tau-1) via two newly discovered noncanonical α-helical motifs located between MED1 residues 505 and 537. Neither of the two MED1 LXXLL motifs is required for AR binding, whereas loss of the intramolecular AR N/C interaction decreases MED1 binding. We further demonstrate that mitogen-activated protein kinase phosphorylation of MED1 enhances the AR-MED1 interaction in prostate cancer cells. In sum, our findings reveal a novel AR-coactivator binding mechanism that may have clinical implications for AR activity in prostate cancer.
Collapse
Affiliation(s)
- Feng Jin
- Department of Physiology and Biophysics, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
46
|
Parodi S, Pennuto M. Neurotoxic effects of androgens in spinal and bulbar muscular atrophy. Front Neuroendocrinol 2011; 32:416-25. [PMID: 21745497 DOI: 10.1016/j.yfrne.2011.06.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 05/23/2011] [Accepted: 06/16/2011] [Indexed: 01/13/2023]
Abstract
Expansion of polyglutamine tracts in nine different genes causes selective neuronal degeneration through unknown mechanisms. Expansion of polyglutamine in the androgen receptor is responsible for spinal and bulbar muscular atrophy (SBMA), a neuromuscular disorder characterized by the loss of lower motor neurons in the brainstem and spinal cord. A unique feature of SBMA in the family of polyglutamine diseases is sex specificity. SBMA fully manifests only in males. SBMA is a disease triggered by the binding of polyglutamine androgen receptor to its natural ligand testosterone. Recent evidence has emerged showing that the expanded polyglutamine tract itself is not the only determinant of disease pathogenesis. There is evidence that both the native structure and function of the disease protein strongly influence the pathogenicity of mutant protein. Here, we review recent progress in the understanding of disease pathogenesis and advancements towards development of potential therapeutic strategies for SBMA.
Collapse
Affiliation(s)
- Sara Parodi
- Laboratorio di Genetica Molecolare, Istituto Giannina Gaslini, Genova 16148, Italy
| | | |
Collapse
|
47
|
Kim SB, Takenaka Y, Torimura M. A bioluminescent probe for salivary cortisol. Bioconjug Chem 2011; 22:1835-41. [PMID: 21838298 DOI: 10.1021/bc200220k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cortisol is a classical biomarker for the stress levels of human beings. We fabricated highly sensitive bioluminescent probes for salivary cortisol. The following strategies were contrived in the molecular design. Gaussia princeps luciferase (GLuc) was dissected into two fragments, between which an N-terminal-extended ligand binding domain of glucocorticoid receptor (GR HLBD), named Simgr4, was inserted. First, this unique single-chain probe was then situated downstream of a glucocorticoid response element (GRE) promoter in a reporter-gene system for constructing two ON-OFF switches for cortisol. Second, a circularly permutated (CP) variant of Simgr4 was formulated. The reporter-gene system exerted an improved signal-to-background (S/B) ratio of 8.5 to cortisol. Furthermore, a circularly permutated (CP) variant of Simgr4 exerted a 10× enhanced detection limit to cortisol and a long dynamic range from 10(-9) to 10(-6) M cortisol, covering all of the normal clinical ranges of serum, urine, and saliva. This optimized probe successfully determined daily fluctuations of salivary cortisol and the correlations with those by ELISA. This study is the first to investigate the contribution of the HLBD of a nuclear receptor and multiple ON-OFF switches for molecular probes and salivary cortisols.
Collapse
Affiliation(s)
- Sung Bae Kim
- Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Japan.
| | | | | |
Collapse
|
48
|
McEwan IJ. Intrinsic disorder in the androgen receptor: identification, characterisation and drugability. MOLECULAR BIOSYSTEMS 2011; 8:82-90. [PMID: 21822504 DOI: 10.1039/c1mb05249g] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The androgen receptor (AR) regulates networks of genes in response to the steroid hormones testosterone and dihydrotestosterone. The receptor protein is made up of both stably folded globular domains, involved in hormone and DNA binding, and regions of intrinsic disorder, including the N-terminal domain (NTD). The AR-NTD has a modular activation function (termed AF1) and is important for gene regulation, participating in multiple protein-protein interactions. Biophysical studies have revealed that AR-NTD/AF1 has limited stable secondary structure and conforms to a 'collapsed disordered' conformation. The AR-NTD/AF1 has the propensity to adopt an α-helical conformation in response to a natural osmolyte or a co-regulatory binding partner. The AR is a key drug target in the management of advanced prostate cancer and recently a small molecule inhibitor was identified that interacts with the NTD/AF1 and impairs protein-protein interactions and recruitment of the receptor to target genes. In this review the role of intrinsic disorder in AR function is discussed along with the potential to develop new drugs that will target the structurally plastic NTD.
Collapse
Affiliation(s)
- Iain J McEwan
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK.
| |
Collapse
|
49
|
Zakharov MN, Pillai BK, Bhasin S, Ulloor J, Istomin AY, Guo C, Godzik A, Kumar R, Jasuja R. Dynamics of coregulator-induced conformational perturbations in androgen receptor ligand binding domain. Mol Cell Endocrinol 2011; 341:1-8. [PMID: 21605623 DOI: 10.1016/j.mce.2011.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 02/24/2011] [Accepted: 03/02/2011] [Indexed: 11/22/2022]
Abstract
Androgen receptor (AR) coregulators modulate ligand-induced gene expression in a tissue specific manner. The molecular events that follow coactivator binding to AR and the mechanisms that govern the sequence-specific effects of AR coregulators are poorly understood. Using consensus coactivator sequence D11-FxxLF and biophysical techniques, we show that coactivator association is followed by conformational rearrangement in AR ligand binding domain (AR-LBD) that is enthalpically and entropically favorable with activation energy of 29.8±4.2 kJ/mol. Further characterization of ARA70 and SRC3-1 based consensus sequences reveal that each coactivator induces a distinct conformational state in the dihydrotestosterone:AR-LBD:coactivator complex. Complementary computational modeling revealed that coactivator induced specific alterations in the backbone flexibility of AR-LBD distant from the site of coactivator binding and that the intramolecular rearrangements in AR-LBD backbone induced by the two coactivator peptides were different. These data suggest that coactivators may impart specificity in the transcriptional machinery by changing the steady-state conformation of AR-LBD. These data provide direct evidence that even in the presence of same ligand, AR-LBD can occupy distinct conformational states depending on its interactions with specific coactivators in the tissues. We posit that this coactivator-specific conformational gating may then dictate subsequent binding partners and interaction/affinity for the DNA-response elements.
Collapse
Affiliation(s)
- Mikhail N Zakharov
- Section of Endocrinology, Boston University School of Medicine, 670 Albany St., Boston, MA 02118, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Brooke GN, Bevan CL. The role of androgen receptor mutations in prostate cancer progression. Curr Genomics 2011; 10:18-25. [PMID: 19721807 PMCID: PMC2699836 DOI: 10.2174/138920209787581307] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 10/11/2008] [Accepted: 10/20/2008] [Indexed: 12/03/2022] Open
Abstract
Prostate tumour growth is almost always dependent upon the androgen receptor pathway and hence therapies aimed at blocking this signalling axis are useful tools in the management of this disease. Unfortunately such therapies invariably fail; and the tumour progresses to an “androgen-independent” stage. In such cases androgen receptor expression is almost always maintained and much evidence exists to suggest that it may still be driving growth. One mechanism by which the receptor is thought to remain active is mutation. This review summarises the present data on androgen receptor mutations in prostate cancer, and how such substitutions offer a growth advantage by affecting cofactor interactions or by reducing ligand specificity. Such alterations appear to have a subsequent effect upon gene expression suggesting that tumours may “behave” differently dependent upon the ligand promoting growth and if a mutation is present.
Collapse
Affiliation(s)
- G N Brooke
- Androgen Signalling Laboratory, Department of Oncology, Imperial College London, London, W12 0NN, UK
| | | |
Collapse
|