1
|
Massa C, Wang Y, Marr N, Seliger B. Interferons and Resistance Mechanisms in Tumors and Pathogen-Driven Diseases—Focus on the Major Histocompatibility Complex (MHC) Antigen Processing Pathway. Int J Mol Sci 2023; 24:ijms24076736. [PMID: 37047709 PMCID: PMC10095295 DOI: 10.3390/ijms24076736] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 04/08/2023] Open
Abstract
Interferons (IFNs), divided into type I, type II, and type III IFNs represent proteins that are secreted from cells in response to various stimuli and provide important information for understanding the evolution, structure, and function of the immune system, as well as the signaling pathways of other cytokines and their receptors. They exert comparable, but also distinct physiologic and pathophysiologic activities accompanied by pleiotropic effects, such as the modulation of host responses against bacterial and viral infections, tumor surveillance, innate and adaptive immune responses. IFNs were the first cytokines used for the treatment of tumor patients including hairy leukemia, renal cell carcinoma, and melanoma. However, tumor cells often develop a transient or permanent resistance to IFNs, which has been linked to the escape of tumor cells and unresponsiveness to immunotherapies. In addition, loss-of-function mutations in IFN signaling components have been associated with susceptibility to infectious diseases, such as COVID-19 and mycobacterial infections. In this review, we summarize general features of the three IFN families and their function, the expression and activity of the different IFN signal transduction pathways, and their role in tumor immune evasion and pathogen clearance, with links to alterations in the major histocompatibility complex (MHC) class I and II antigen processing machinery (APM). In addition, we discuss insights regarding the clinical applications of IFNs alone or in combination with other therapeutic options including immunotherapies as well as strategies reversing the deficient IFN signaling. Therefore, this review provides an overview on the function and clinical relevance of the different IFN family members, with a specific focus on the MHC pathways in cancers and infections and their contribution to immune escape of tumors.
Collapse
Affiliation(s)
- Chiara Massa
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany
- Institute for Translational Immunology, Brandenburg Medical School Theodor Fontane, Hochstr. 29, 14770 Brandenburg an der Havel, Germany
| | - Yuan Wang
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany
| | - Nico Marr
- Institute for Translational Immunology, Brandenburg Medical School Theodor Fontane, Hochstr. 29, 14770 Brandenburg an der Havel, Germany
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar
| | - Barbara Seliger
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany
- Institute for Translational Immunology, Brandenburg Medical School Theodor Fontane, Hochstr. 29, 14770 Brandenburg an der Havel, Germany
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstr. 1, 04103 Leipzig, Germany
| |
Collapse
|
2
|
Regulation of the antigen presentation machinery in cancer and its implication for immune surveillance. Biochem Soc Trans 2022; 50:825-837. [PMID: 35343573 PMCID: PMC9162455 DOI: 10.1042/bst20210961] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/10/2022] [Accepted: 03/14/2022] [Indexed: 12/20/2022]
Abstract
Evading immune destruction is one of the hallmarks of cancer. A key mechanism of immune evasion deployed by tumour cells is to reduce neoantigen presentation through down-regulation of the antigen presentation machinery. MHC-I and MHC-II proteins are key components of the antigen presentation machinery responsible for neoantigen presentation to CD8+ and CD4+ T lymphocytes, respectively. Their expression in tumour cells is modulated by a complex interplay of genomic, transcriptomic and post translational factors involving multiple intracellular antigen processing pathways. Ongoing research investigates mechanisms invoked by cancer cells to abrogate MHC-I expression and attenuate anti-tumour CD8+ cytotoxic T cell response. The discovery of MHC-II on tumour cells has been less characterized. However, this finding has triggered further interest in utilising tumour-specific MHC-II to harness sustained anti-tumour immunity through the activation of CD4+ T helper cells. Tumour-specific expression of MHC-I and MHC-II has been associated with improved patient survival in most clinical studies. Thus, their reactivation represents an attractive way to unleash anti-tumour immunity. This review provides a comprehensive overview of physiologically conserved or novel mechanisms utilised by tumour cells to reduce MHC-I or MHC-II expression. It outlines current approaches employed at the preclinical and clinical trial interface towards reversing these processes in order to improve response to immunotherapy and survival outcomes for patients with cancer.
Collapse
|
3
|
Ruan P, Wang S. DiSNEP: a Disease-Specific gene Network Enhancement to improve Prioritizing candidate disease genes. Brief Bioinform 2020; 22:5925270. [PMID: 33064143 DOI: 10.1093/bib/bbaa241] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/25/2020] [Accepted: 08/29/2020] [Indexed: 12/27/2022] Open
Abstract
Biological network-based strategies are useful in prioritizing genes associated with diseases. Several comprehensive human gene networks such as STRING, GIANT and HumanNet were developed and used in network-assisted algorithms to identify disease-associated genes. However, none of these networks are disease-specific and may not accurately reflect gene interactions for a specific disease. Aiming to improve disease gene prioritization using networks, we propose a Disease-Specific Network Enhancement Prioritization (DiSNEP) framework. DiSNEP first enhances a comprehensive gene network specifically for a disease through a diffusion process on a gene-gene similarity matrix derived from disease omics data. The enhanced disease-specific gene network thus better reflects true gene interactions for the disease and may improve prioritizing disease-associated genes subsequently. In simulations, DiSNEP that uses an enhanced disease-specific network prioritizes more true signal genes than comparison methods using a general gene network or without prioritization. Applications to prioritize cancer-associated gene expression and DNA methylation signal genes for five cancer types from The Cancer Genome Atlas (TCGA) project suggest that more prioritized candidate genes by DiSNEP are cancer-related according to the DisGeNET database than those prioritized by the comparison methods, consistently across all five cancer types considered, and for both gene expression and DNA methylation signal genes.
Collapse
|
4
|
Gattelli A, Hynes NE, Schor IE, Vallone SA. Ret Receptor Has Distinct Alterations and Functions in Breast Cancer. J Mammary Gland Biol Neoplasia 2020; 25:13-26. [PMID: 32080788 DOI: 10.1007/s10911-020-09445-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/06/2020] [Indexed: 12/15/2022] Open
Abstract
Ret receptor tyrosine kinase is a proto-oncogene that participates in development of various cancers. Several independent studies have recently identified Ret as a key player in breast cancer. Although Ret overexpression and function have been under investigation, mainly in estrogen receptor positive breast cancer, a more comprehensive analysis of the impact of recurring Ret alterations in breast cancer is needed. This review consolidates the current knowledge of Ret alterations and their potential effects in breast cancer. We discuss and integrate data on Ret changes in different breast cancer subtypes and potential function in progression, as well as the participation of distinct Ret network signaling partners in these processes. We propose that it will be essential to define a shared molecular feature of tumors with alteration in Ret receptor, be this at the genetic level or via overexpression in order to design effective therapies to target the Ret pathway. Here we review experimental evidence from basic research and pre-clinical studies concentrating on Ret alterations as potential biomarkers for recurrence, and we discuss the possibility that targeting the Ret pathway might in the future become a treatment for breast cancer.
Collapse
Affiliation(s)
- Albana Gattelli
- CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad Universitaria, C1428EGA CABA, Buenos Aires, Argentina.
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria C1428EGA CABA, Buenos Aires, Argentina.
| | - Nancy E Hynes
- Friedrich Miescher Institute for Biomedical Research (FMI), Maulbeerstrasse 66, CH-4058, Basel, Switzerland
- University of Basel, CH-4002, Basel, Switzerland
| | - Ignacio E Schor
- CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad Universitaria, C1428EGA CABA, Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Ciudad Universitaria, C1428EGA, CABA, Argentina
| | - Sabrina A Vallone
- CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad Universitaria, C1428EGA CABA, Buenos Aires, Argentina
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria C1428EGA CABA, Buenos Aires, Argentina
| |
Collapse
|
5
|
Recent progress on pathophysiology, inflammation and defense mechanism of mast cells against invading microbes: inhibitory effect of IL-37. Cent Eur J Immunol 2020; 44:447-454. [PMID: 32140058 PMCID: PMC7050054 DOI: 10.5114/ceji.2019.92807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/26/2017] [Indexed: 11/21/2022] Open
Abstract
Mast cells (MCs) have historically been considered masters of allergy, but there is substantial evidence supporting their contribution to tissue microorganism clearance. Their activation through the cross-linking of bound IgE provokes mast cell degranulation and activates tyrosine kinase (Syk and Lyn), leading to cytokine/chemokine generation and release. Current consensus holds that mast cells participate in the body’s defense against numerous pathogens, including bacteria, fungi, viruses and parasites, but also contribute to the inflammatory response induced by these biological agents. In the light of the latest findings, we describe the cross-talk between mast cells and pathogenic microorganisms. This review summarizes our current understanding of the host immune response, with emphasis on the roles of MCs and the cytokine/chemokine network in provoking inflammation and generating protective immunity. This review addresses the ability of microorganisms to activate MCs provoking inflammation. We describe some MC-specific biological activities related to infections and discuss the evidence of MC mechanisms involved in the microbial activation which cause cytokine/chemokine generation-mediated inflammation, and provide a description of novel functions of mast cells during microbial infection. Interleukin (IL)-37 binds the α chain of the IL-18 receptor and suppresses MyD88-mediated inflammatory responses. IL-37 plays a pathological role in certain infections by inhibiting the production of pro-inflammatory cytokines, such as IL-1 and TNF. Here we report the interrelationship between IL-37, inflammatory cytokines and mast cells. Our report offers opportunities for the design of new therapeutic interventions in inflamed tissue induced by microorganism infections, acting on manipulation of mast cells and/or inflammatory cytokine blockage.
Collapse
|
6
|
Rashid FA, Mansoor Q, Tabassum S, Aziz H, Arfat WO, Naoum GE, Ismail M, Farooqi AA. Signaling cascades in thyroid cancer: Increasing the armory of archers to hit bullseye. J Cell Biochem 2018; 119:3798-3808. [PMID: 29243843 DOI: 10.1002/jcb.26620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/12/2017] [Indexed: 12/18/2022]
Abstract
Thyroid cancer is a multifaceted and therapeutically challenging disease and rapidly accumulating experimentally verified findings have considerably improve our understanding of the molecular mechanisms which underlie its development. Substantial fraction of information has been added into existing landscape of molecular oncology and we have started to develop a sharper understanding of the underlying mechanisms of thyroid cancer. Wealth of information demystified different intracellular signaling cascades which are frequently deregulated in thyroid cancer. In vitro assays and xenografted mice based studies have helped us to identify drug targets and different synthetic and natural products are currently being tested to effectively treat thyroid cancer. Cabozantinib and vandetanib have been approved to treat medullary thyroid cancer (MTC) and two agents (lenvatinib and sorafenib) are also being used to treat radioactive-iodine refractory differentiated thyroid cancer. This review comprehensively summarizes most recent advancements in our knowledge related to dysregulated intracellular signaling cascades in thyroid cancer and how different proteins can be therapeutically exploited. (1) We discuss how loss of TRAIL mediated apoptosis occurred in thyroid cancer cells and how different strategies can be used to restore apoptosis in resistant cancer cells; (2) We provide detailed account of seemingly opposite roles of NOTCH signaling in thyroid cancers; (3) TGF/SMAD mediated signaling also needs detailed research because of context dependent role in thyroid cancer. Researchers have only begun to scratch the surface of how TGF signaling works in thyroid cancer and metastasis; and (4) Role of SHH signaling in thyroid cancer stem cells is also well appreciated and targeting of SHH pathway will be an important aspect in treatment of thyroid cancer. Better concepts and improved knowledge will be helpful for clinicians in getting a step closer to individualized medicine.
Collapse
Affiliation(s)
- Faiza Abdul Rashid
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan.,Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan
| | - Qaisar Mansoor
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
| | - Sobia Tabassum
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan
| | - Hafsa Aziz
- Nuclear Medicine, Oncology and Radiotherapy Institute, H-10 Campus, Islamabad, Pakistan
| | - Waleed O Arfat
- Alexandria Comprehensive Cancer Center, Alexandria, Egypt.,Department of Radiation Oncology, Alexandria University, Alexandria, Egypt
| | - George E Naoum
- Alexandria Comprehensive Cancer Center, Alexandria, Egypt.,Department of Radiation oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Muhammad Ismail
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
| | | |
Collapse
|
7
|
Yi HS, Chang JY, Kim KS, Shong M. Oncogenes, mitochondrial metabolism, and quality control in differentiated thyroid cancer. Korean J Intern Med 2017; 32:780-789. [PMID: 28823142 PMCID: PMC5583459 DOI: 10.3904/kjim.2016.420] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/07/2017] [Indexed: 02/02/2023] Open
Abstract
Thyroid cancer is one of the most common malignancies of endocrine organs, and its incidence rate has increased steadily over the past several decades. Most differentiated thyroid tumors derived from thyroid epithelial cells exhibit slow-growing cancers, and patients with these tumors can achieve a good prognosis with surgical removal and radioiodine treatment. However, a small proportion of patients present with advanced thyroid cancer and are unusually resistant to current drug treatment modalities. Thyroid tumorigenesis is a complex process that is regulated by the activation of oncogenes, inactivation of tumor suppressors, and alterations in programmed cell death. Mitochondria play an essential role during tumor formation, progression, and metastasis of thyroid cancer. Recent studies have successfully observed the mitochondrial etiology of thyroid carcinogenesis. This review focuses on the recent progress in understanding the molecular mechanisms of thyroid cancer relating to altered mitochondrial metabolism.
Collapse
Affiliation(s)
- Hyon-Seung Yi
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Joon Young Chang
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea
| | - Koon Soon Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
- Correspondence to Minho Shong, M.D. Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, 266 Munhwa-ro, Jung-gu, Daejeon 35015, Korea Tel: +82-42-280-6994 Fax: +82-42-280-7995 E-mail:
| |
Collapse
|
8
|
Seliger B, Kloor M, Ferrone S. HLA class II antigen-processing pathway in tumors: Molecular defects and clinical relevance. Oncoimmunology 2017; 6:e1171447. [PMID: 28344859 DOI: 10.1080/2162402x.2016.1171447] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 01/21/2023] Open
Abstract
The human leukocyte antigen (HLA) class II antigen-processing machinery (APM) presents to cognate CD4+ T-cells antigenic peptides mainly generated from exogeneous proteins in the endocytic compartment. These CD4+ T cells exert helper function, but may also act as effector cells, thereby recognizing HLA class II antigen-expressing tumor cells. Thus, HLA class II antigen expression by tumor cells influences the tumor antigen (TA)-specific immune responses and, depending on the cancer type, the clinical course of the disease. Many types of human cancers express HLA class II antigens, although with marked differences in their frequency. Some types of cancer lack HLA class II antigen expression, which could be due to structural defects or deregulation affecting different components of the complex HLA class II APM and/or from lack of cytokine(s) in the tumor microenvironment. In this review, we have summarized the information about HLA class II antigen distribution in normal tissues, the structural organization of the HLA class II APM, their expression and regulation in malignant cells, the defects, which have been identified in malignant cells, and their functional and clinical relevance.
Collapse
Affiliation(s)
- Barbara Seliger
- Martin Luther-University Halle-Wittenberg, Institute of Medical Immunology , Halle, Germany
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Clinical Cooperation Unit Applied Tumor Biology, DKFZ (German Cancer Research Center) , Heidelberg, Germany
| | - Soldano Ferrone
- Departments of Surgery and Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School , Boston, MA, USA
| |
Collapse
|
9
|
Moretti S, Menicali E, Nucci N, Voce P, Colella R, Melillo RM, Liotti F, Morelli S, Fallarino F, Macchiarulo A, Santoro M, Avenia N, Puxeddu E. Signal Transducer and Activator of Transcription 1 Plays a Pivotal Role in RET/PTC3 Oncogene-induced Expression of Indoleamine 2,3-Dioxygenase 1. J Biol Chem 2017; 292:1785-1797. [PMID: 27994058 PMCID: PMC5290952 DOI: 10.1074/jbc.m116.745448] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 12/09/2016] [Indexed: 11/06/2022] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is a single chain oxidoreductase that catalyzes tryptophan degradation to kynurenine. In cancer, it exerts an immunosuppressive function as part of an acquired mechanism of immune escape. Recently, we demonstrated that IDO1 expression is significantly higher in all thyroid cancer histotypes compared with normal thyroid and that its expression levels correlate with T regulatory (Treg) lymphocyte densities in the tumor microenvironment. BRAFV600E- and RET/PTC3-expressing PcCL3 cells were used as cellular models for the evaluation of IDO1 expression in thyroid carcinoma cells and for the study of involved signal transduction pathways. BRAFV600E-expressing PcCL3 cells did not show IDO1 expression. Conversely, RET/PTC3-expressing cells were characterized by a high IDO1 expression. Moreover, we found that, the STAT1-IRF1 pathway was instrumental for IDO1 expression in RET/PTC3 expressing cells. In detail, RET/PTC3 induced STAT1 overexpression and phosphorylation at Ser-727 and Tyr-701. STAT1 transcriptional regulation appeared to require activation of the canonical NF-κB pathway. Conversely, activation of the MAPK and PI3K-AKT pathways primarily regulated Ser-727 phosphorylation, whereas a physical interaction between RET/PTC3 and STAT1, followed by a direct tyrosine phosphorylation event, was necessary for STAT1 Tyr-701 phosphorylation. These data provide the first evidence of a direct link between IDO1 expression and the oncogenic activation of RET in thyroid carcinoma and describe the involved signal transduction pathways. Moreover, they suggest possible novel molecular targets for the abrogation of tumor microenvironment immunosuppression. The detection of those targets is becoming increasingly important to yield the full function of novel immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Sonia Moretti
- From the Department of Medicine, University of Perugia, 06100 Perugia; the Research Centre of Thyroid Proteomics and Genomics (CRiProGeT), University of Perugia, 05100 Terni
| | - Elisa Menicali
- From the Department of Medicine, University of Perugia, 06100 Perugia; the Research Centre of Thyroid Proteomics and Genomics (CRiProGeT), University of Perugia, 05100 Terni
| | - Nicole Nucci
- From the Department of Medicine, University of Perugia, 06100 Perugia; the Research Centre of Thyroid Proteomics and Genomics (CRiProGeT), University of Perugia, 05100 Terni
| | - Pasquale Voce
- From the Department of Medicine, University of Perugia, 06100 Perugia; the Research Centre of Thyroid Proteomics and Genomics (CRiProGeT), University of Perugia, 05100 Terni
| | - Renato Colella
- Department of Experimental Medicine, University of Perugia, 06100 Perugia
| | - Rosa Marina Melillo
- the Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II,", 80131 Naples, Italy; Istituto per l'Endocrinologia e l'Oncologia Sperimentale, CNR, 80131 Naples, Italy
| | - Federica Liotti
- the Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II,", 80131 Naples, Italy
| | - Silvia Morelli
- From the Department of Medicine, University of Perugia, 06100 Perugia; the Research Centre of Thyroid Proteomics and Genomics (CRiProGeT), University of Perugia, 05100 Terni
| | | | | | - Massimo Santoro
- the Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II,", 80131 Naples, Italy
| | - Nicola Avenia
- the Research Centre of Thyroid Proteomics and Genomics (CRiProGeT), University of Perugia, 05100 Terni; Departments of Surgical and Biomedical Sciences, University of Perugia, 06100 Perugia
| | - Efisio Puxeddu
- From the Department of Medicine, University of Perugia, 06100 Perugia; the Research Centre of Thyroid Proteomics and Genomics (CRiProGeT), University of Perugia, 05100 Terni.
| |
Collapse
|
10
|
Global profiling of the signaling network of papillary thyroid carcinoma. Life Sci 2016; 147:9-14. [DOI: 10.1016/j.lfs.2016.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/26/2015] [Accepted: 01/04/2016] [Indexed: 01/01/2023]
|
11
|
Naghavi Gargari B, Behmanesh M, Shirvani Farsani Z, Pahlevan Kakhki M, Azimi AR. Vitamin D supplementation up-regulates IL-6 and IL-17A gene expression in multiple sclerosis patients. Int Immunopharmacol 2015; 28:414-9. [DOI: 10.1016/j.intimp.2015.06.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/18/2015] [Accepted: 06/30/2015] [Indexed: 10/23/2022]
|
12
|
Plaza-Menacho I, Mologni L, McDonald NQ. Mechanisms of RET signaling in cancer: current and future implications for targeted therapy. Cell Signal 2014; 26:1743-52. [PMID: 24705026 DOI: 10.1016/j.cellsig.2014.03.032] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 03/30/2014] [Indexed: 11/15/2022]
Abstract
De-regulation of RET signaling by oncogenic mutation, gene rearrangement, overexpression or transcriptional up-regulation is implicated in several human cancers of neuroendocrine and epithelial origin (thyroid, breast, lung). Understanding how RET signaling mechanisms associated with these oncogenic events are deregulated, and their impact in the biological processes driving tumor formation and progression, as well as response to treatment, will be crucial to find and develop better targeted therapeutic strategies. In this review we emphasie the distinct mechanisms of RET signaling in cancer and summarise current knowledge on small molecule inhibitors targeting the tyrosine kinase domain of RET as therapeutic drugs in RET-positive cancers.
Collapse
Affiliation(s)
- I Plaza-Menacho
- Structural Biology Laboratory, London Research Institute, Cancer Research UK, London, UK.
| | - L Mologni
- Dept. of Health Sciences, University of Milano-Bicocca, Italy
| | - N Q McDonald
- Structural Biology Laboratory, London Research Institute, Cancer Research UK, London, UK
| |
Collapse
|
13
|
Menicali E, Moretti S, Voce P, Romagnoli S, Avenia N, Puxeddu E. Intracellular signal transduction and modification of the tumor microenvironment induced by RET/PTCs in papillary thyroid carcinoma. Front Endocrinol (Lausanne) 2012; 3:67. [PMID: 22661970 PMCID: PMC3357465 DOI: 10.3389/fendo.2012.00067] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 04/30/2012] [Indexed: 01/06/2023] Open
Abstract
RET gene rearrangements (RET/PTCs) represent together with BRAF point mutations the two major groups of mutations involved in papillary thyroid carcinoma (PTC) initiation and progression. In this review, we will examine the mechanisms involved in RET/PTC-induced thyroid cell transformation. In detail, we will summarize the data on the molecular mechanisms involved in RET/PTC formation and in its function as a dominant oncogene, on the activated signal transduction pathways and on the induced gene expression modifications. Moreover, we will report on the effects of RET/PTCs on the tumor microenvironment. Finally, a short review of the literature on RET/PTC prognostic significance will be presented.
Collapse
Affiliation(s)
- Elisa Menicali
- Dipartimento di Medicina, University of PerugiaPerugia, Italy
- Centro di Proteomica e Genomica della Tiroide, University of PerugiaPerugia and Terni, Italy
| | - Sonia Moretti
- Dipartimento di Medicina, University of PerugiaPerugia, Italy
- Centro di Proteomica e Genomica della Tiroide, University of PerugiaPerugia and Terni, Italy
| | - Pasquale Voce
- Dipartimento di Medicina, University of PerugiaPerugia, Italy
- Centro di Proteomica e Genomica della Tiroide, University of PerugiaPerugia and Terni, Italy
| | | | - Nicola Avenia
- Centro di Proteomica e Genomica della Tiroide, University of PerugiaPerugia and Terni, Italy
- Dipartimento di Chirurgia, University of PerugiaPerugia, Italy
| | - Efisio Puxeddu
- Dipartimento di Medicina, University of PerugiaPerugia, Italy
- Centro di Proteomica e Genomica della Tiroide, University of PerugiaPerugia and Terni, Italy
- *Correspondence: Efisio Puxeddu, Dipartimento di Medicina, Sezione MIENDO, Via Enrico dal Pozzo – Padiglione X, 06126 Perugia, Italy. e-mail:
| |
Collapse
|
14
|
Wixted JHF, Rothstein JL, Eisenlohr LC. Identification of functionally distinct TRAF proinflammatory and phosphatidylinositol 3-kinase/mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (PI3K/MEK) transforming activities emanating from RET/PTC fusion oncoprotein. J Biol Chem 2011; 287:3691-703. [PMID: 22158616 DOI: 10.1074/jbc.m111.322677] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thyroid carcinomas that harbor RET/PTC oncogenes are well differentiated, relatively benign neoplasms compared with those expressing oncogenic RAS or BRAF mutations despite signaling through shared transforming pathways. A distinction, however, is that RET/PTCs induce immunostimulatory programs, suggesting that, in the case of this tumor type, the additional pro-inflammatory pathway reduces aggressiveness. Here, we demonstrate that pro-inflammatory programs are selectively activated by TRAF2 and TRAF6 association with RET/PTC oncoproteins. Eliminating this mechanism reduces pro-inflammatory cytokine production without decreasing transformation efficiency. Conversely, ablating MEK/ERK or PI3K/AKT signaling eliminates transformation but not pro-inflammatory cytokine secretion. Functional uncoupling of the two pathways demonstrates that intrinsic pro-inflammatory pathways are not required for cellular transformation and suggests a need for further investigation into the role inflammation plays in thyroid tumor progression.
Collapse
Affiliation(s)
- Josephine H F Wixted
- Immunology and Microbial Pathogenesis Program, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
15
|
Pharmacophore modeling and virtual screening to identify potential RET kinase inhibitors. Bioorg Med Chem Lett 2011; 21:4490-7. [DOI: 10.1016/j.bmcl.2011.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 05/25/2011] [Accepted: 06/01/2011] [Indexed: 11/23/2022]
|
16
|
Abstract
Interferons represent a protein family with pleiotropic functions including immunomodulatory, cytostatic, and cytotoxic activities. Based on these effects, interferons are involved in innate as well as adaptive immunity, thereby shaping the tumor host immune responses. These cytokines, alone or in combination, have been successfully implemented for the treatment of some malignancies. However, it has been recently demonstrated that tumor cells could be resistant to interferon treatment, which may be associated with an escape of tumor cells from immune surveillance. Therefore, the aim of this chapter is to summarize the frequency of impaired interferon signal transduction, their underlying molecular mechanisms, and their clinical relevance.
Collapse
Affiliation(s)
- Barbara Seliger
- Martin Luther University Halle-Wittenberg, Institute of Medical Immunology, Halle, Germany
| | | | | |
Collapse
|
17
|
Antonelli A, Fallahi P, Ferrari SM, Carpi A, Berti P, Materazzi G, Minuto M, Guastalli M, Miccoli P. Dedifferentiated thyroid cancer: a therapeutic challenge. Biomed Pharmacother 2008; 62:559-63. [PMID: 18725177 DOI: 10.1016/j.biopha.2008.07.056] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 07/01/2008] [Indexed: 01/29/2023] Open
Abstract
Human papillary dedifferentiated thyroid cancer (HPDTC) represents a therapeutic dilemma. Targeted therapy (RET proto-oncogene or BRAF-targeting drugs) are promising treatments for HPDTC. Also PPARg agonists are another exciting field for redifferentiating therapy of HPDTC. However, even if many new approaches for the therapy of HPDTC are emerging, until now a significant clinical impact on survival by the use of these drugs is still lacking. In the future, the identification of patients who are likely to benefit from each therapeutic option will be important. In this view particular importance should be given to development of primary cells from the single patient by fine needle aspiration samples, as recently observed in anaplastic thyroid cancer. In fact, chemosensitivity tests in primary tumoral cells may help in detecting responsive patients and in preventing the administration of inactive drugs to those unresponsive.
Collapse
Affiliation(s)
- Alessandro Antonelli
- Department of Internal Medicine, University of Pisa, School of Medicine, Via Roma, 67, I-56100 Pisa, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Degeorge KC, Degeorge BR, Testa JS, Rothstein JL. Inhibition of oncogene-induced inflammatory chemokines using a farnesyltransferase inhibitor. JOURNAL OF INFLAMMATION-LONDON 2008; 5:3. [PMID: 18304343 PMCID: PMC2268934 DOI: 10.1186/1476-9255-5-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 02/27/2008] [Indexed: 11/22/2022]
Abstract
Background Farnesyltransferase inhibitors (FTI) are small molecule agents originally formulated to inhibit the oncogenic functions of Ras. Although subsequent analysis of FTI activity revealed wider effects on other pathways, the drug has been demonstrated to reduce Ras signaling by direct measurements. The purpose of the current study was to determine if FTI could be used to inhibit the inflammatory activities of a known Ras-activating human oncoprotein, RET/PTC3. RET/PTC3 is a fusion oncoprotein expressed in the thyroid epithelium of patients afflicted with thyroid autoimmune disease and/or differentiated thyroid carcinoma. Previous studies have demonstrated that RET/PTC3 signals through Ras and can provoke nuclear translocation of NFκB and the downstream release of pro-inflammatory mediators from thyroid follicular cells in vitro and in vivo, making it an ideal target for studies using FTI. Methods For the studies described here, an in vitro assay was developed to measure FTI inhibition of RET/PTC3 pro-inflammatory effects. Rat thyrocytes transfected with RET/PTC3 or vector control cDNA were co-cultured with FTI and examined for inhibition of chemokine expression and secretion measured by RT-PCR and ELISA. Immunoblot analysis was used to confirm the level at which FTI acts on RET/PTC3-expressing cells, and Annexin V/PI staining of cells was used to assess cell death in RET/PTC3-expressing cells co-cultured with FTI. Results These analyses revealed significant mRNA and protein inhibition of chemokines Ccl2 and Cxcl1 with nanomolar doses of FTI. Neither RET/PTC3 protein expression nor apoptosis were affected at any dose of FTI investigated. Conclusion These data suggest that FTI may be applied as an effective inhibitor for RET/PTC3-oncogene induced pro-inflammatory mediators.
Collapse
Affiliation(s)
- Katharine C Degeorge
- Department of Immunology and Microbiology/Otolaryngology-Head & Neck Surgery, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, PA 19107, USA.
| | | | | | | |
Collapse
|
19
|
Kang DY, Kim KH, Kim JM, Kim SH, Kim JY, Baik HW, Kim YS. High prevalence of RET, RAS, and ERK expression in Hashimoto's thyroiditis and in papillary thyroid carcinoma in the Korean population. Thyroid 2007; 17:1031-8. [PMID: 17900235 DOI: 10.1089/thy.2007.0035] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The RET/PTC-RAS-BRAF cascade is associated with papillary thyroid carcinoma (PTC). OBJECTIVE The relationship between PTC and Hashimoto's thyroiditis (HT) is still elusive. To determine whether thyrocytes showing oxyphil cell metaplasia in HT also express RET, RAS, and ERK proteins, which are associated with PTC. DESIGN We investigated the expression of RET, RAS, and ERK proteins in oxyphil cells in the vicinity of large lymphoid HT infiltrates and in malignant PTC cells. BRAF and N-RAS missense mutations were also examined in oxyphil cells of the HT. We used 47 PTC samples with no HT diagnosis, 28 PTC with HT, 39 HT with no PTC, and 36 HT with PTC. We also studied 75 normal portions of thyroid tissue from PTC specimens. Immunohistochemical analysis and polymerase chain reaction were used to determine activation of the RET/PTC-RAS-BRAF cascade in HT and PTC. MAIN OUTCOME In PTC cells, HT oxyphil cells, and normal thyrocytes, the frequency of high RET expression was 23/70 (32.9%), 36/57 (63.2%), and 1/57 (1.8%) (p = 0.000); that of high nuclear localized RAS expression (nuclearRAS) was 65/71 (91.5%), 52/58 (89.7%), and 5/58 (8.6%) (p = 0.000); and that of high ERK expression was 38/70 (54.3%), 34/61 (55.7%), and 0/61 (0.0%) (p = 0.000), respectively. Of 66 HT cases studied for BRAF mutation and 57 HT cases studied for N-RAS mutation, no BRAF exon 15 or N-RAS exon 2 mutations were found in the amplified DNA extracted from oxyphil cells excised by laser capture microdissection. CONCLUSION The expression of RET, nuclearRAS, and ERK proteins is greatly enhanced in PTC cells and HT oxyphil cells. Thus, the RET/PTC-RAS-BRAF cascade may be involved in the development of PTC and oxyphil cell metaplasia in HT. Our results show the possibility of a molecular link between oxyphil cell metaplasia in HT and the progression of PTC.
Collapse
Affiliation(s)
- Dae-Young Kang
- Department of Pathology and Cancer Research Institute, Chungnam National University College of Medicine, Daejeon, Korea
| | | | | | | | | | | | | |
Collapse
|
20
|
Denning KM, Smyth PC, Cahill SF, Finn SP, Conlon E, Li J, Flavin RJ, Aherne ST, Guenther SM, Ferlinz A, O'Leary JJ, Sheils OM. A molecular expression signature distinguishing follicular lesions in thyroid carcinoma using preamplification RT-PCR in archival samples. Mod Pathol 2007; 20:1095-102. [PMID: 17660800 DOI: 10.1038/modpathol.3800943] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Follicular variant of papillary thyroid carcinoma is a lesion that frequently causes difficulties from a diagnostic perspective in the laboratory. The purpose of this study was to interrogate a cohort of archival thyroid lesions using gene expression analysis of a panel of markers proposed to have utility as adjunctive markers in the diagnosis of thyroid neoplasia and follicular variant of papillary thyroid carcinoma in particular. Laser Capture Microdissection was used to procure pure cell populations for extraction. In addition a novel, multiplex preamplification technique was used to facilitate analysis of multiple targets. The panel comprised: HLA-DMA, HLA-DBQ1, CD74, CSNK1G2, IRF3, KRAS2, LYN, MT1K, MT1X, RAB23, TGFB1 and TOP2A, with CDKN1B as an endogenous control. Expression profiles for each target were generated using TaqMan Real-Time PCR. HLA-DMA, HLA-DQB1, MT1X, CSNK1G2 and RAB23 were found to be differentially expressed (P<0.05) when comparing follicular adenoma and follicular variant of papillary thyroid carcinoma. Comparison of follicular adenoma and follicular thyroid carcinoma groups showed significant differential expression for MT1K, MT1X and RAB23 (P<0.05). Comparison of the papillary thyroid carcinoma group (classic and follicular variants) and the follicular adenoma group showed differential expression for CSNK1G2, HLA-DQB1, MT1X and RAB23 (P<0.05). Finally, KRAS2 was found to be differentially expressed (P<0.05) when comparing the papillary thyroid carcinoma and follicular thyroid carcinoma groups. This panel of molecular targets discriminates between follicular adenoma, papillary thyroid carcinoma, follicular variant of papillary thyroid carcinoma and follicular thyroid carcinoma by their expression repertoires. It may have utility for broader use in the setting of fine-needle aspiration cytology and could improve the definitive diagnosis of certain categories of thyroid malignancy.
Collapse
Affiliation(s)
- Karen M Denning
- Department of Histopathology, Trinity College, University of Dublin, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Rizzi E, Cassinelli G, Dallavalle S, Lanzi C, Cincinelli R, Nannei R, Cuccuru G, Zunino F. Synthesis and RET protein kinase inhibitory activity of 3-arylureidobenzylidene-indolin-2-ones. Bioorg Med Chem Lett 2007; 17:3962-8. [PMID: 17499504 DOI: 10.1016/j.bmcl.2007.04.091] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Accepted: 04/25/2007] [Indexed: 10/23/2022]
Abstract
A novel series of 3-arylureidobenzylidene-indolin-2-ones was synthesized and their inhibitory activity against Ret tyrosine kinase investigated in comparison with the Ret inhibitor RPI-1 as a reference compound for this series. A few compounds were able to revert the RETC634R oncogene-transformed morphologic phenotype of NIH3T3(MEN2A) cells and showed a selective antiproliferative activity against these cells as compared to parental NIH3T3 cells or NIH3T3 cells transformed with a non-tyrosine kinase oncogene (NIH3T3(H-RAS)). Inhibition of Ret enzyme activity by effective derivatives was confirmed in a kinase assay. Structure-activity relationship indicated a favourable activity for 5,6-dimethoxyindolinone derivatives with H, OH, or OMe in the para position of the distal aryl ring.
Collapse
Affiliation(s)
- Eleonora Rizzi
- Dipartimento di Scienze Molecolari Agroalimentari, Università di Milano, Via Celoria 2, 20133 Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Finn SP, Smyth P, Cahill S, Streck C, O’Regan EM, Flavin R, Sherlock J, Howells D, Henfrey R, Cullen M, Toner M, Timon C, O’Leary JJ, Sheils OM. Expression microarray analysis of papillary thyroid carcinoma and benign thyroid tissue: emphasis on the follicular variant and potential markers of malignancy. Virchows Arch 2007; 450:249-60. [PMID: 17252232 PMCID: PMC1888716 DOI: 10.1007/s00428-006-0348-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 11/02/2006] [Indexed: 02/07/2023]
Abstract
The most common sub-variant of papillary thyroid carcinoma (PTC) is the so-called follicular variant (FVPTC), which is a particularly problematic lesion and can be challenging from a diagnostic viewpoint even in resected lesions. Although fine needle aspiration cytology is very useful in the diagnosis of PTC, its accuracy and utility would be greatly facilitated by the development of specific markers for PTC and its common variants. We used the recently developed Applied Biosystems 1700 microarray system to interrogate a series of 11 benign thyroid lesions and conditions and 14 samples of PTC (six with classic morphology and eight with follicular variant morphology). TaqMan(R) reverse transcriptase-polymerase chain reaction was used to validate the expression portfolios of 50 selected transcripts. Our data corroborates potential biomarkers previously identified in the literature, such as LGALS3, S100A11, LYN, BAX, and cluster of differentiation 44 (CD44). However, we have also identified numerous transcripts never previously implicated in thyroid carcinogenesis, and many of which are not represented on other microarray platforms. Diminished expression of metallothioneins featured strongly among these and suggests a possible role for this family as tumour suppressors in PTC. Fifteen transcripts were significantly associated with FVPTC morphology. Surprisingly, these genes were associated with an extremely narrow repertoire of functions, including the major histocompatibility complex and cathepsin families.
Collapse
Affiliation(s)
- S. P. Finn
- Department of Histopathology, University of Dublin, Trinity College, Dublin, Ireland
| | - P. Smyth
- Department of Histopathology, University of Dublin, Trinity College, Dublin, Ireland
| | - S. Cahill
- Department of Histopathology, University of Dublin, Trinity College, Dublin, Ireland
| | - C. Streck
- Applied Biosystems, Foster City, CA USA
| | | | - R. Flavin
- Department of Histopathology, University of Dublin, Trinity College, Dublin, Ireland
| | | | | | | | - M. Cullen
- Department of Endocrinology, St James’s Hospital, Dublin, Ireland
| | - M. Toner
- Dublin Dental School and Hospital, Dublin, Ireland
| | - C. Timon
- Department of Otolaryngology, St. James’s Hospital, Dublin, Ireland
| | - J. J. O’Leary
- Department of Histopathology, University of Dublin, Trinity College, Dublin, Ireland
| | - O. M. Sheils
- Department of Histopathology, University of Dublin, Trinity College, Dublin, Ireland
- Department of Histopathology, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St. James’s Hospital, Dublin 8, Ireland
| |
Collapse
|
23
|
Jo YS, Lee JC, Li S, Choi YS, Bai YS, Kim YJ, Lee IS, Rha SY, Ro HK, Kim JM, Shong M. Significance of the expression of major histocompatibility complex class II antigen, HLA-DR and -DQ, with recurrence of papillary thyroid cancer. Int J Cancer 2007; 122:785-90. [DOI: 10.1002/ijc.23167] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Eisenlohr LC, Rothstein JL. Oncogenic inflammation and autoimmune disease. Autoimmun Rev 2006; 6:107-14. [PMID: 17138254 DOI: 10.1016/j.autrev.2006.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Accepted: 04/14/2006] [Indexed: 01/12/2023]
Abstract
Many models exist to explain the induction and perpetuation of autoimmune diseases. Despite their validation in a variety of animal models, the basis for autoimmune disease in humans remains unknown. Here, we propose that an important aspect of autoimmune disease is the active participation of the target organ due to endogenously produced co-stimulatory factors that cause prolonged antigen presentation and lymphocyte activation. Evidence suggests that a major source of such endogenous signaling comes from newly transformed cells within the target organ that produce pro-inflammatory factors.
Collapse
Affiliation(s)
- Laurence C Eisenlohr
- Departments of Microbiology/Immunology and Otolaryngology-HNS, Kimmel Cancer Center, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA
| | | |
Collapse
|
25
|
Kim DW, Jo YS, Jung HS, Chung HK, Song JH, Park KC, Park SH, Hwang JH, Rha SY, Kweon GR, Lee SJ, Jo KW, Shong M. An orally administered multitarget tyrosine kinase inhibitor, SU11248, is a novel potent inhibitor of thyroid oncogenic RET/papillary thyroid cancer kinases. J Clin Endocrinol Metab 2006; 91:4070-6. [PMID: 16849418 DOI: 10.1210/jc.2005-2845] [Citation(s) in RCA: 227] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
CONTEXT The oncogenic RET/PTC tyrosine kinase causes papillary thyroid cancer (PTC). The use of inhibitors specific for RET/PTC may be useful for targeted therapy of PTC. OBJECTIVE The objective of the study was to evaluate the efficacies of the recently developed kinase inhibitors SU11248, SU5416, and SU6668 in inhibition of RET/PTC. DESIGN SU11248, SU5416, and SU6668 were synthesized, and their inhibitory potencies were evaluated using an in vitro RET/PTC kinase assay. The inhibitory effects of the compounds on RET/PTC were evaluated by quantifying the autophosphorylation of RET/PTC, signal transducer and activator of transcription (STAT)-3 activation, and the morphological reversal of RET/PTC-transformed cells. RESULTS An in vitro kinase assay revealed that SU5416, SU6668, and SU11248 inhibited phosphorylation of the synthetic tyrosine kinase substrate peptide E4Y by RET/PTC3 in a dose-dependent manner with IC(50) of approximately 944 nm for SU5416, 562 nm for SU6668, and 224 nm for SU11248. Thus, SU11248 effectively inhibits the kinase activity of RET/PTC3. RET/PTC-mediated Y705 phosphorylation of STAT3 was inhibited by addition of SU11248, and the inhibitory effects of SU11248 on the tyrosine phosphorylation and transcriptional activation of STAT3 were very closely correlated with decreased autophosphorylation of RET/PTC. SU11248 caused a complete morphological reversion of transformed NIH-RET/PTC3 cells and inhibited the growth of TPC-1 cells that have an endogenous RET/PTC1. CONCLUSION SU11248 is a highly effective tyrosine kinase inhibitor of the RET/PTC oncogenic kinase.
Collapse
Affiliation(s)
- Dong Wook Kim
- Laboratory of Endocrine Cell Biology, Department of Internal Medicine, Chungnam National University School of Medicine, 640 Daesadong Chungku, Daejon 301-721, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Mesa C, Mirza M, Mitsutake N, Sartor M, Medvedovic M, Tomlinson C, Knauf JA, Weber GF, Fagin JA. Conditional activation of RET/PTC3 and BRAFV600E in thyroid cells is associated with gene expression profiles that predict a preferential role of BRAF in extracellular matrix remodeling. Cancer Res 2006; 66:6521-9. [PMID: 16818623 DOI: 10.1158/0008-5472.can-06-0739] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Papillary thyroid cancers (PTC) are associated with nonoverlapping mutations of genes coding for mitogen-activated protein kinase signaling effectors (i.e., the TK receptors RET or NTRK and the signaling proteins RAS and BRAF). We examined the pattern of gene expression after activation of these oncoproteins in thyroid PCCL3 cells, with the goal of identifying pathways or gene subsets that may account for the phenotypic differences observed in human cancers. We hybridized cDNA from cells treated with or without doxycycline to induce expression of BRAF(V600E), RET/PTC3, or RET/PTC3 with small interfering RNA-mediated knockdown of BRAF, respectively, to slides arrayed with a rat 70-mer oligonucleotide library consisting of 27,342 oligos. Among the RET/PTC3-induced genes, 2,552 did not require BRAF as they were similarly regulated by RET/PTC3 with or without BRAF knockdown and not by expression of BRAF(V600E). Immune response and IFN-related genes were highly represented in this group. About 24% of RET/PTC3-regulated genes were BRAF dependent, as they were similarly modified by RET/PTC3 and BRAF(V600E) but not in cells expressing RET/PTC3 with knockdown of BRAF. A gene cluster coding for components of the mitochondrial electron transport chain pathway was down-regulated in this group, potentially altering regulation of cell viability. Metalloproteinases were also preferentially induced by BRAF, particularly matrix metalloproteinase 3 (MMP3), MMP9, and MMP13. Accordingly, conditional expression of BRAF was associated with markedly increased invasion into Matrigel compared with cells expressing RET/PTC3. The preferential induction of MMPs by BRAF could explain in part the more invasive behavior of thyroid cancers with BRAF mutations.
Collapse
Affiliation(s)
- Cleo Mesa
- Division of Endocrinology and Metabolism, University of Cincinnati College of Medicine, 3125 Eden Avenue, Cincinnati, OH 45267, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hattori T, Eberspaecher H, Lu J, Zhang R, Nishida T, Kahyo T, Yasuda H, de Crombrugghe B. Interactions between PIAS Proteins and SOX9 Result in an Increase in the Cellular Concentrations of SOX9. J Biol Chem 2006; 281:14417-28. [PMID: 16554309 DOI: 10.1074/jbc.m511330200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have identified PIAS1 (protein inhibitor of activated STAT-1), -3, -xalpha, and -xbeta as SOX9-associated polypeptides using the Gal4-based yeast two-hybrid system and a cDNA library derived from a chondrocytic cell line. These PIAS proteins were shown to interact directly with SOX9 in two-hybrid, co-immunoprecipitation, and electrophoretic mobility shift assays. SOX9 was sumoylated in cotransfection experiments with COS-7 cells using PIAS and SUMO-1 (small ubiquitin-like modifier-1) expression vectors. SOX9 was also sumoylated in vitro by PIAS proteins in the presence of SUMO-1, the SUMO-activating enzyme, and the SUMO-conjugating enzyme. In COS-7 cells, PIAS proteins stimulated the SOX9-dependent transcriptional activity of a Col2a1 promoter-enhancer reporter. This increase in reporter activity was paralleled by an increase in the cellular levels of SOX9. Cotransfection with a SUMO-expressing vector further enhanced the transcriptional activity of this SOX9-dependent Col2a1 reporter in COS-7 cells, and this additional activation was inhibited in the presence of either SUMO-1 mutants or PIAS RING domain mutants or by coexpression of a desumoylation enzyme. Immunofluorescence microscopy of SOX9-transfected COS-7 cells showed that the subnuclear distribution of SOX9 became more diffuse in the presence of PIAS1 and SUMO-1. Our results suggest that, by controlling the cellular concentrations of SOX9, PIAS proteins and sumoylation may be part of a major regulatory system of SOX9 functions.
Collapse
Affiliation(s)
- Takako Hattori
- Department of Molecular Genetics, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Juhasz F, Kozma L, Stenszky V, Gyory F, Luckas G, Farid NR. Well differentiated thyroid carcinoma is associated with human lymphocyte antigen D-related 11 in Eastern Hungarians: a case of changing circumstances. Cancer 2006; 104:1603-8. [PMID: 16121403 DOI: 10.1002/cncr.21382] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Using serologic human lymphocyte antigen (HLA) typing, the authors previously described a strong association between well differentiated thyroid carcinoma and HLA D-related 1 (HLA-DR1) in a population of unselected patients from Eastern Hungary. METHODS In the current study, the authors used polymerase chain reaction-single strand conformational polymorphism to determine the HLA-DR type in 75 patients with well differentiated thyroid carcinoma from the same area as their previous population, and they compared the current results with the results from a group of 170 healthy controls. RESULTS A significant increase in HLA-DR11, rather than HLA-DR1, was observed in patients with well differentiated thyroid carcinoma among a population of patients from the same area that was studied previously. After excluding technical reasons to account for differences in disease association, they postulated that interim environmental factors, possibly radiation fall-out, may have resulted in differences in genetic susceptibility to thyroid carcinoma. Consideration of the potential antigenic peptides that may be restricted by the two HLA-DR alleles may have allowed for the binding of similar peptides to initiate an immune response, likely leading to progressive immunomodulation of the tumor. Discriminat function analysis indicated a significant relation between tumor size and metastases and less lymphocytic infiltration of the tumor, but this was not related to HLA-DR phenotypes. CONCLUSIONS The authors found that the study of major histocompatability complex alleles holds promise for understanding the events that initiate and maintain tumor immunomodulation.
Collapse
Affiliation(s)
- Ferenz Juhasz
- First Department of Surgey, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | |
Collapse
|
29
|
Jung HS, Kim DW, Jo YS, Chung HK, Song JH, Park JS, Park KC, Park SH, Hwang JH, Jo KW, Shong M. Regulation of Protein Kinase B Tyrosine Phosphorylation by Thyroid-Specific Oncogenic RET/PTC Kinases. Mol Endocrinol 2005; 19:2748-59. [PMID: 15994200 DOI: 10.1210/me.2005-0122] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Abstract
Papillary thyroid carcinoma (PTC) is a heterogenous disorder characterized by unique gene rearrangements and gene mutations that activate signaling pathways responsible for cellular transformation, survival, and antiapoptosis. Activation of protein kinase B (PKB) and its downstream signaling pathways appears to be an important event in thyroid tumorigenesis. In this study, we found that the thyroid-specific oncogenic RET/PTC tyrosine kinase is able to phosphorylate PKB in vitro and in vivo. RET/PTC-transfected cells showed tyrosine phosphorylation of endogenous and exogenous PKB, which was independent of phosphorylation of T308 and S473 regulated by the upstream kinases phosphoinositide-dependent kinase-1 and -2, respectively. The PKB Y315 residue, which is known to be phosphorylated by Src tyrosine kinase, was also a major site of phosphorylation by RET/PTC. RET/PTC-mediated tyrosine phosphorylation results in the activation of PKB kinase activity. The activation of PKB by RET/PTC blocked the activity of the forkhead transcription factor, FKHRL1, but a Y315F mutant of PKB failed to inhibit FKHRL1 activity. In summary, these observations suggest that RET/PTC is able to phosphorylate the Y315 residue of PKB, an event that results in maximal activation of PKB for RET/PTC-induced thyroid tumorigenesis.
Collapse
Affiliation(s)
- Hye Sook Jung
- Laboratory of Endocrine Cell Biology, National Research Laboratory Program, Department of Internal Medicine, Chungnam National University School of Medicine, 640 Daesadong Chungku, Daejeon 301-721, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Arighi E, Borrello MG, Sariola H. RET tyrosine kinase signaling in development and cancer. Cytokine Growth Factor Rev 2005; 16:441-67. [PMID: 15982921 DOI: 10.1016/j.cytogfr.2005.05.010] [Citation(s) in RCA: 313] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The variety of diseases caused by mutations in RET receptor tyrosine kinase provides a classic example of phenotypic heterogeneity. Gain-of-function mutations of RET are associated with human cancer. Gene rearrangements juxtaposing the tyrosine kinase domain to heterologous gene partners have been found in sporadic papillary carcinomas of the thyroid (PTC). These rearrangements generate chimeric RET/PTC oncogenes. In the germline, point mutations of RET are responsible for multiple endocrine neoplasia type 2 (MEN 2A and 2B) and familial medullary thyroid carcinoma (FMTC). Both MEN 2 mutations and PTC gene rearrangements potentiate the intrinsic tyrosine kinase activity of RET and, ultimately, activate the RET downstream targets. Loss-of-function mutations of RET cause Hirschsprung's disease (HSCR) or colonic aganglionosis. A deeper understanding of the molecular signaling of normal versus abnormal RET activity in cancer will enable the development of potential new treatments for patients with sporadic and inherited thyroid cancer or MEN 2 syndrome. We now review the role and mechanisms of RET signaling in development and carcinogenesis.
Collapse
Affiliation(s)
- Elena Arighi
- Developmental Biology, Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Finland
| | | | | |
Collapse
|