1
|
Lainez NM, Coss D. Leukemia Inhibitory Factor Represses GnRH Gene Expression via cFOS during Inflammation in Male Mice. Neuroendocrinology 2019; 108:291-307. [PMID: 30630179 PMCID: PMC6561803 DOI: 10.1159/000496754] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 01/09/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND The mechanisms whereby neuroinflammation negatively affects neuronal function in the hypothalamus are not clear. Our previous study determined that obesity-mediated chronic inflammation elicits sex-specific impairment in reproductive function via reduction in spine density in gonadotropin-releasing hormone (GnRH) neurons. Neuroinflammation and subsequent decrease in GnRH neuron spine density was specific for male mice, while protection in females was independent of ovarian estrogens. METHODS To examine if neuroinflammation-induced cytokines can directly regulate GnRH gene expression, herein we examined signaling pathways and mechanisms in males in vivo and in GnRH-expressing cell line, GT1-7. RESULTS GnRH neurons express cytokine receptors, and chronic or acute neuroinflammation represses GnRH gene expression in vivo. Leukemia inhibitory factor (LIF) in particular represses GnRH expression in GT1-7 cells, while other cytokines do not. STAT3 and MAPK pathways are activated following LIF treatment, but only MAPK pathway, specifically p38α, is sufficient to repress the GnRH gene. LIF induces cFOS that represses the GnRH gene via the -1,793 site in the enhancer region. In vivo, following high-fat diet, cFOS is induced in GnRH neurons and neurons juxtaposed to the leaky blood brain barrier of the organum vasculosum of the lamina terminalis, but not in the neurons further away. CONCLUSION Our results indicate that the increase in LIF due to neuroinflammation induces cFOS and represses the GnRH gene. Therefore, in addition to synaptic changes in GnRH neurons, neuroinflammatory cytokines directly regulate gene expression and reproductive function, and the specificity for neuronal targets may stem from the proximity to the fenestrated capillaries.
Collapse
Affiliation(s)
- Nancy M Lainez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Djurdjica Coss
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA,
| |
Collapse
|
2
|
Ding J, Wang J, Jin H, Xia T, Cheng Y, Wu J, Han X. Microcystin-LR reduces the synthesis of gonadotropin-releasing hormone by activating multiple signaling pathways resulting in decrease of testosterone in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:496-506. [PMID: 29945085 DOI: 10.1016/j.scitotenv.2018.06.123] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/29/2018] [Accepted: 06/10/2018] [Indexed: 06/08/2023]
Abstract
We previously reported Microcystin-LR (MC-LR) could enter the hypothalamus, reduce the expression of gonadotropin-releasing hormone (GnRH), and induce male reproductive barriers. However, the molecular mechanisms underlying in the hypothalamus have not been elucidated in detail. In this study, we further showed that MC-LR inhibited the synthesis of GnRH in GnRH neurons via activating protein kinase a (PKA), cAMP-response element binding protein (Creb), protein kinase c (PKC), nuclear factor kappa B (NF-κB), extracellular regulated protein kinases (Erk) and P38 protein, and thus resulted in the change of activity of transcriptional enhancers or suppressors such as Oct-1, Otx-2, Pbx1a, Dlx-2, c-Jun and c-Fos. Following exposure, MC-LR-treated mice exhibited decreased GnRH level. Our data demonstrated that MC-LR can stimulate intracellular Ca2+ and cAMP to activate PKC, PKA and MAPK signaling pathways in GnRH neurons, and then inhibit Pbx1a, Oct-1, Dlx-2, Otx-2 and upregulate c-Jun and c-Fos to initiate the transcription of GnRH, which provides novel insights to explore the mechanism associated with MC-LR-induced male reproductive barriers.
Collapse
Affiliation(s)
- Jie Ding
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Jing Wang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Haibo Jin
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Tian Xia
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Yi Cheng
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Jiang Wu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
3
|
Hoffmann HM, Gong P, Tamrazian A, Mellon PL. Transcriptional interaction between cFOS and the homeodomain-binding transcription factor VAX1 on the GnRH promoter controls Gnrh1 expression levels in a GnRH neuron maturation specific manner. Mol Cell Endocrinol 2018; 461:143-154. [PMID: 28890143 PMCID: PMC5756504 DOI: 10.1016/j.mce.2017.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/23/2017] [Accepted: 09/05/2017] [Indexed: 12/18/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is required for pubertal onset and reproduction, thus the control of GnRH transcription is tightly regulated during development and adulthood. GnRH neuron development depends on transcription factors of the homeodomain family. For example, Ventral anterior homeobox 1 (Vax1) is necessary to maintain GnRH expression after embryonic day 13 in the mouse. To further our understanding of the mechanisms by which VAX1 regulates GnRH gene expression, we asked whether VAX1 interacts with other transcription factors to modify GnRH expression levels. Using the GnRH cell lines, GN11 and GT1-7, we found that activation of PKC enhances expression of the immediate early gene cFos in both GN11, and GT1-7, and represses expression of Vax1 in GT1-7. Further, VAX1 interacts with cFOS while bound to the GnRH promoter. In immature GN11 cells, VAX1 and cFOS enhance GnRH expression, whereas VAX1 and cFOS have a repressive role in the mature GT1-7 cells.
Collapse
Affiliation(s)
- Hanne M Hoffmann
- Department of Reproductive Medicine, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Ping Gong
- Department of Reproductive Medicine, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Anika Tamrazian
- Department of Reproductive Medicine, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Pamela L Mellon
- Department of Reproductive Medicine, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
4
|
Tran DQ, Ramos EH, Belsham DD. Induction of Gnrh mRNA expression by the ω-3 polyunsaturated fatty acid docosahexaenoic acid and the saturated fatty acid palmitate in a GnRH-synthesizing neuronal cell model, mHypoA-GnRH/GFP. Mol Cell Endocrinol 2016; 426:125-35. [PMID: 26923440 DOI: 10.1016/j.mce.2016.02.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 02/22/2016] [Accepted: 02/22/2016] [Indexed: 12/18/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) neurons coordinate reproduction. However, whether GnRH neurons directly sense free fatty acids (FFAs) is unknown. We investigated the individual effects of the FFAs docosahexaenoic acid (DHA), palmitate, palmitoleate, and oleate (100 μM each) on Gnrh mRNA expression in the mHypoA-GnRH/GFP neuronal cell model. We report that 2 h exposure to palmitate or DHA increases Gnrh transcription. Using the inhibitors AH7614, K252c, U0126, wortmannin, and LY294002, we demonstrate that the effect of DHA is mediated through GPR120 to downstream PKC/MAPK and PI3K signaling. Our results indicate that the effect of palmitate may depend on palmitoyl-coA synthesis and PI3K signaling. Finally, we demonstrate that both DHA and palmitate increase Gnrh enhancer-derived RNA levels. Overall, these studies provide evidence that GnRH neurons directly sense FFAs. This will advance our understanding of the mechanisms underlying FFA sensing in the brain and provides insight into the links between nutrition and reproductive function.
Collapse
Affiliation(s)
- Dean Q Tran
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ernesto H Ramos
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Denise D Belsham
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
5
|
Jin JM, Yang WX. Molecular regulation of hypothalamus-pituitary-gonads axis in males. Gene 2014; 551:15-25. [PMID: 25168889 DOI: 10.1016/j.gene.2014.08.048] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 07/24/2014] [Accepted: 08/24/2014] [Indexed: 10/24/2022]
Abstract
The hypothalamic-pituitary-gonadal axis (HPG) plays vital roles in reproduction and steroid hormone production in both sexes. The focus of this review is upon gene structures, receptor structures and the signaling pathways of gonadotropin-releasing hormone (GnRH), luteinizing hormone (LH) and follicle-stimulating hormone (FSH). The hormones' functions in reproduction as well as consequences resulting from mutations are also summarized. Specific characteristics of hormones such as the pulsatile secretions of GnRH are also covered. The different regulators of the HPG axis are introduced including kisspeptin, activin, inhibin, follistatin, androgens and estrogen. This review includes not only their basic information, but also their unique function in the HPG axis. Here we view the HPG axis as a whole, so relations between ligands and receptors are well described crossing different levels of the HPG axis. Hormone interactions and transformations are also considered. The major information of this article is depicted in three figures summarizing the current discoveries on the HPG axis. This article systematically introduces the basic knowledge of the HPG axis and provides information of the current advances relating to reproductive hormones.
Collapse
Affiliation(s)
- Jia-Min Jin
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Glidewell-Kenney CA, Shao PP, Iyer AK, Grove AMH, Meadows JD, Mellon PL. Neurokinin B causes acute GnRH secretion and repression of GnRH transcription in GT1-7 GnRH neurons. Mol Endocrinol 2013; 27:437-54. [PMID: 23393128 DOI: 10.1210/me.2012-1271] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Genetic studies in human patients with idiopathic hypogonadotropic hypogonadism (IHH) identified mutations in the genes that encode neurokinin B (NKB) and the neurokinin 3 receptor (NK3R). However, determining the mechanism whereby NKB regulates gonadotropin secretion has been difficult because of conflicting results from in vivo studies investigating the luteinizing hormone (LH) response to senktide, a NK3R agonist. NK3R is expressed in a subset of GnRH neurons and in kisspeptin neurons that are known to regulate GnRH secretion. Thus, one potential source of inconsistency is that NKB could produce opposing direct and indirect effects on GnRH secretion. Here, we employ the GT1-7 cell model to elucidate the direct effects of NKB on GnRH neuron function. We find that GT1-7 cells express NK3R and respond to acute senktide treatment with c-Fos induction and increased GnRH secretion. In contrast, long-term senktide treatment decreased GnRH secretion. Next, we focus on the examination of the mechanism underlying the long-term decrease in secretion and determine that senktide treatment represses transcription of GnRH. We further show that this repression of GnRH transcription may involve enhanced c-Fos protein binding at novel activator protein-1 (AP-1) half-sites identified in enhancer 1 and the promoter, as well as chromatin remodeling at the promoter of the GnRH gene. These data indicate that NKB could directly regulate secretion from NK3R-expressing GnRH neurons. Furthermore, whether the response is inhibitory or stimulatory toward GnRH secretion could depend on the history or length of exposure to NKB because of a repressive effect on GnRH transcription.
Collapse
Affiliation(s)
- Christine A Glidewell-Kenney
- Department of Reproductive Medicine and the Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA 92093-0674, USA
| | | | | | | | | | | |
Collapse
|
7
|
Brayman MJ, Pepa PA, Mellon PL. Androgen receptor repression of gonadotropin-releasing hormone gene transcription via enhancer 1. Mol Cell Endocrinol 2012; 363:92-9. [PMID: 22877652 PMCID: PMC3447085 DOI: 10.1016/j.mce.2012.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 07/25/2012] [Accepted: 07/26/2012] [Indexed: 01/27/2023]
Abstract
Gonadotropin-releasing hormone (GnRH) plays a major role in the hypothalamic-pituitary-gonadal (HPG) axis, and synthesis and secretion of GnRH are regulated by gonadal steroid hormones. Disruptions in androgen levels are involved in a number of reproductive defects, including hypogonadotropic hypogonadism and polycystic ovarian syndrome. Androgens down-regulate GnRH mRNA synthesis in vivo and in vitro via an androgen receptor (AR)-dependent mechanism. Methyltrienolone (R1881), a synthetic AR agonist, represses GnRH expression through multiple sites in the proximal promoter. In this study, we show AR also represses GnRH transcription via the major enhancer (GnRH-E1). A multimer of the -1800/-1766 region was repressed by R1881 treatment. Mutation of two bases, -1792 and -1791, resulted in decreased basal activity and a loss of AR-mediated repression. AR bound to the -1796/-1791 sequence in electrophoretic mobility shift assays, indicating a direct interaction with DNA or other transcription factors in this region. We conclude that AR repression of GnRH-E1 acts via multiple AR-responsive regions, including the site at -1792/-1791.
Collapse
Affiliation(s)
- Melissa J Brayman
- Department of Reproductive Medicine and the Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA 92093-0674, USA
| | | | | |
Collapse
|
8
|
Brayman MJ, Pepa PA, Berdy SE, Mellon PL. Androgen receptor repression of GnRH gene transcription. Mol Endocrinol 2012; 26:2-13. [PMID: 22074952 PMCID: PMC3248321 DOI: 10.1210/me.2011-1015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 10/13/2011] [Indexed: 11/19/2022] Open
Abstract
Alterations in androgen levels lead to reproductive defects in both males and females, including hypogonadotropic hypogonadism, anovulation, and infertility. Androgens have been shown to down-regulate GnRH mRNA levels through an androgen receptor (AR)-dependent mechanism. Here, we investigate how androgen regulates expression from the GnRH regulatory region in the GT1-7 cell line, a model of GnRH neurons. A synthetic androgen, R1881, repressed transcription from the GnRH promoter (GnRH-P) in an AR-dependent manner, and liganded AR associated with the chromatin at the GnRH-P in live GT1-7 cells. The three known octamer-binding transcription factor-1 (Oct-1) binding sites in GnRH-P were required for AR-mediated repression, although other sequences were also involved. Although a multimer of the consensus Oct-1 binding site was not repressed, a multimer of the cluster of Oct-1, Pre-B cell leukemia transcription factor (Pbx)/Prep, and NK2 homeobox 1 (Nkx2.1) binding sites, found at -106/-91 in GnRH-P, was sufficient for repression. In fact, overexpression of any of these factors disrupted the androgen response, indicating that a balance of factors in this tripartite complex is required for AR repression. AR bound to this region in EMSA, indicating a direct interaction of AR with DNA or with other transcription factors bound to GnRH-P at this sequence. Collectively, our data demonstrate that GnRH transcription is repressed by AR via multiple sequences in GnRH-P, including three Oct-1 binding sites, and that this repression requires the complex interaction of several transcription factors.
Collapse
Affiliation(s)
- Melissa J Brayman
- Department of Reproductive Medicine and The Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California 92093-0674, USA
| | | | | | | |
Collapse
|
9
|
Iyer AK, Brayman MJ, Mellon PL. Dynamic chromatin modifications control GnRH gene expression during neuronal differentiation and protein kinase C signal transduction. Mol Endocrinol 2011; 25:460-73. [PMID: 21239613 DOI: 10.1210/me.2010-0403] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
GnRH, a neuropeptide produced by rare, specialized hypothalamic secretory neurons, is critical for reproduction. During development, GnRH gene expression increases as neurons migrate from the olfactory placode to the hypothalamus, with highest levels in the mature, postmitotic state. While neuronal differentiation is known to be controlled by chromatin modulations, the role of chromatin dynamics in GnRH gene regulation has not been studied. Here, we use mature and immature GnRH neuronal cell models to show that both neuron-specific and protein kinase C regulation of GnRH expression are mediated by chromatin structure and histone modifications. Only in GT1-7 mature GnRH neuronal cells did GnRH regulatory elements display high sensitivity to DNase and enrichment of active histone markers histone-H3 acetylation and H3 lysine 4 trimethylation (H3K4-Me3), as well as RNA polymerase II (RNAPII) binding and enhancer RNA transcription. In contrast, H3K9-Me2, a marker of inactive chromatin, was highest in nonneuronal cells, low in GT1-7 cells, and intermediate in immature GnRH neuronal cells. The chromatin of the GnRH gene was therefore active in mature GnRH neuronal cells, inactive in nonneuronal cells, but not fully inactive in immature GnRH neuronal cells. Activation of protein kinase C (PKC) potently represses GnRH expression. PKC activation caused closing of the chromatin and decreased RNAPII occupancy at the GnRH minimal promoter (-278/-97). At GnRH-Enhancer-1 (-2404/-2100), PKC activation decreased phosphorylated-RNAPII binding, enhancer RNA transcription, and H3 acetylation, and reciprocally increased H3K9-Me2. Chromatin modifications therefore participate in the dynamic regulation and specification of GnRH expression to differentiated hypothalamic neurons.
Collapse
Affiliation(s)
- Anita K Iyer
- Department of Reproductive Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0674, USA
| | | | | |
Collapse
|
10
|
Wang P, Wang Q, Sun J, Wu J, Li H, Zhang N, Huang Y, Su B, Li RK, Liu L, Zhang Y, Elsholtz HP, Hu J, Gaisano HY, Jin T. POU homeodomain protein Oct-1 functions as a sensor for cyclic AMP. J Biol Chem 2009; 284:26456-65. [PMID: 19617623 PMCID: PMC2785334 DOI: 10.1074/jbc.m109.030668] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 07/15/2009] [Indexed: 01/30/2023] Open
Abstract
Cyclic AMP is a fundamentally important second messenger for numerous peptide hormones and neurotransmitters that control gene expression, cell proliferation, and metabolic homeostasis. Here we show that cAMP works with the POU homeodomain protein Oct-1 to regulate gene expression in pancreatic and intestinal endocrine cells. This ubiquitously expressed transcription factor is known as a stress sensor. We found that it also functions as a repressor of Cdx-2, a proglucagon gene activator. Through a mechanism that involves the activation of exchange protein activated by cyclic AMP, elevation of cAMP leads to enhanced phosphorylation and nuclear exclusion of Oct-1 and reduced interactions between Oct-1 or nuclear co-repressors and the Cdx-2 gene promoter, detected by chromatin immunoprecipitation. In rat primary pancreatic islet cells, cAMP elevation also reduces nuclear Oct-1 content, which causes increased proglucagon and proinsulin mRNA expression. Our study therefore identifies a novel mechanism by which cAMP regulates hormone-gene expression and suggests that ubiquitously expressed Oct-1 may play a role in metabolic homeostasis by functioning as a sensor for cAMP.
Collapse
Affiliation(s)
| | - Qinghua Wang
- the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- the Division of Endocrinology and Metabolism, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada, and
| | - Jane Sun
- From the Division of Cell and Molecular Biology and
- the Departments of Laboratory Medicine and Pathobiology and
| | - Jing Wu
- the **Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Hang Li
- From the Division of Cell and Molecular Biology and
| | - Nina Zhang
- the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- the Division of Endocrinology and Metabolism, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada, and
| | - Yachi Huang
- the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Brenda Su
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Ren-ke Li
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Ling Liu
- From the Division of Cell and Molecular Biology and
| | - Yi Zhang
- the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | - Jim Hu
- the Departments of Laboratory Medicine and Pathobiology and
- the **Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Herbert Y. Gaisano
- the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Tianru Jin
- From the Division of Cell and Molecular Biology and
- the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- the Departments of Laboratory Medicine and Pathobiology and
- Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- the Department of Nutrition, School of Public Health, Sun Yat-sen University, 510080 Guangzhou, China
| |
Collapse
|
11
|
|
12
|
Hormonal regulation of clonal, immortalized hypothalamic neurons expressing neuropeptides involved in reproduction and feeding. Mol Neurobiol 2008; 35:182-94. [PMID: 17917107 DOI: 10.1007/s12035-007-0010-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 10/03/2006] [Accepted: 11/09/2006] [Indexed: 12/27/2022]
Abstract
The hypothalamus has been particularly difficult to study at the molecular level because of the inherent cellular heterogeneity and complexity of neuronal circuits within. We have generated a large number of immortalized, clonal cell lines through retroviral gene transfer of the oncogene SV40 T-Ag into primary murine hypothalamic neuronal cell cultures. A number of these neuronal cell lines express neuropeptides linked to the control of feeding behavior and reproduction, including neuropeptide Y (NPY) and neurotensin (NT). We review recent studies on the direct regulation of NPY gene expression by estrogen, and the leptin-mediated control of signal transduction pathways and NT transcription. These studies provide new insights into the direct control of neuropeptide synthesis by hormones and nutrients at a mechanistic level in the individual neuron, not yet possible in the whole brain. Using these novel cell models, we expect to contribute substantially to the understanding of how individual neuronal cell types control overall endocrine function, especially with regard to two of the most well-known roles of distinct peptidergic neurons; these being the control of reproduction and energy homeostasis.
Collapse
|
13
|
Egr-1 binds the GnRH promoter to mediate the increase in gene expression by insulin. Mol Cell Endocrinol 2007; 270:64-72. [PMID: 17379398 DOI: 10.1016/j.mce.2007.02.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 02/15/2007] [Accepted: 02/21/2007] [Indexed: 12/26/2022]
Abstract
Insulin increases gonadotropin-releasing hormone (GnRH) gene expression in in vitro models of GnRH neurons. Early growth response-1 (Egr-1) is a transcription factor that mediates the effect of insulin on target genes. In the GN11 cell line--an immortalized GnRH-secreting neuronal cell line--insulin maximally increases Egr-1 mRNA after 30min of treatment and Egr-1 protein and GnRH mRNA after 60min of treatment. Egr-1 small interfering RNA blocks the insulin-induced increase in GnRH promoter activity, measured as luciferase expression. Chromatin immunoprecipitation using Egr-1 antibody precipitates DNA in a proximal region of the GnRH promoter but not DNA in a distal region. Mutagenesis of a putative Egr-1 binding site within the proximal region blocks the insulin-induced increase in GnRH promoter activity. Thus, Egr-1 binds the GnRH promoter at a site between -67 and -76bp from the transcriptional start site to mediate the insulin-induced increase in GnRH gene transcription.
Collapse
|