1
|
Tanyanskiy DA, Shavva VS, Dizhe EB, Oleinikova GN, Lizunov AV, Nekrasova EV, Mogilenko DA, Larionova EE, Orlov SV, Denisenko AD. Adiponectin Stimulates Apolipoprotein A-1 Gene Expression in HepG2 Cells via AMPK, PPARα, and LXRs Signaling Mechanisms. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1252-1259. [PMID: 36509728 DOI: 10.1134/s0006297922110049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Adiponectin is an adipose tissue hormone, participating in energy metabolism and involved in atherogenesis. Previously, it was found that adiponectin increases expression of the APOA1 (apolipoprotein A-1) gene in hepatocytes, but the mechanisms of this effect remained unexplored. Our aim was to investigate the role of adiponectin receptors AdipoR1/R2, AMP-activated protein kinase (AMPK), nuclear peroxisome proliferator-activated receptor alpha (PPARα) and liver X receptors (LXRs) in mediating the action of adiponectin on hepatic APOA1 expression in human hepatoma HepG2 cells. The level of APOA1 expression was determined by RT-qPCR and ELISA. We showed that the siRNA-mediated knockdown of genes coding for AdipoR1, AdipoR2, AMPK, PPARα, and LXRα and β prevented adiponectin-induced APOA1 expression in HepG2 cells and demonstrated that interaction of PPARα and LXRs with the APOA1 gene hepatic enhancer is important for the adiponectin-dependent APOA1 transcription. The results of this study point out to the involvement of both types of adiponectin receptors, AMPK, PPARα, and LXRs in the adiponectin-dependent upregulation of the APOA1 expression.
Collapse
Affiliation(s)
- Dmitry A Tanyanskiy
- Department of Biochemistry, Institute of Experimental Medicine, St. Petersburg, 197376, Russia. .,Department of Fundamental Problems of Medicine and Medical Technologies, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - Vladimir S Shavva
- Department of Biochemistry, Institute of Experimental Medicine, St. Petersburg, 197376, Russia
| | - Ella B Dizhe
- Department of Biochemistry, Institute of Experimental Medicine, St. Petersburg, 197376, Russia
| | - Galina N Oleinikova
- Department of Biochemistry, Institute of Experimental Medicine, St. Petersburg, 197376, Russia
| | - Alexey V Lizunov
- Department of Biochemistry, Institute of Experimental Medicine, St. Petersburg, 197376, Russia.,Department of Embryology, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - Ekaterina V Nekrasova
- Department of Biochemistry, Institute of Experimental Medicine, St. Petersburg, 197376, Russia
| | - Denis A Mogilenko
- Department of Biochemistry, Institute of Experimental Medicine, St. Petersburg, 197376, Russia
| | - Ekaterina E Larionova
- Department of Biochemistry, Institute of Experimental Medicine, St. Petersburg, 197376, Russia
| | - Sergey V Orlov
- Department of Biochemistry, Institute of Experimental Medicine, St. Petersburg, 197376, Russia.,Department of Embryology, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - Alexander D Denisenko
- Department of Biochemistry, Institute of Experimental Medicine, St. Petersburg, 197376, Russia.,Department of Fundamental Problems of Medicine and Medical Technologies, St. Petersburg State University, St. Petersburg, 199034, Russia
| |
Collapse
|
2
|
Emerging evidences for the opposite role of apolipoprotein C3 and apolipoprotein A5 in lipid metabolism and coronary artery disease. Lipids Health Dis 2019; 18:220. [PMID: 31836003 PMCID: PMC6909560 DOI: 10.1186/s12944-019-1166-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 12/06/2019] [Indexed: 12/16/2022] Open
Abstract
Apolipoprotein C3 (apoC3) and apolipoprotein A5 (apoA5), encoded by APOA1/C3/A4/A5 gene cluster, are two critical regulators of plasma triglyceride (TG) metabolism. Deficiency of apoC3 or apoA5 led to significant decreased or increased plasma TG levels, respectively. Recent studies indicated apoC3 and apoA5 also played roles in plasma remnant cholesterol, high density lipoprotein (HDL) and hepatic TG metabolisms. Moreover, large scale population genetic studies indicated that loss of function mutations in APOC3 and APOA5 gene conferred decreased and increased risk of coronary artery disease (CAD), respectively. This manuscript mainly reviewed existing evidences suggesting the opposite role of apoC3 and apoA5 in lipid metabolism and CAD risk, and discussed the potential correlation between these two apolipoproteins.
Collapse
|
3
|
Luo F, Guo Y, Ruan GY, Peng R, Li XP. Estrogen lowers triglyceride via regulating hepatic APOA5 expression. Lipids Health Dis 2017; 16:72. [PMID: 28376804 PMCID: PMC5381129 DOI: 10.1186/s12944-017-0463-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 03/28/2017] [Indexed: 12/21/2022] Open
Abstract
Estrogen had been found to be negatively associated with serum triglyceride (TG) levels. Apolipoprotein A5 (APOA5), a novel member of apolipoprotein family, was reported to have a strong ability to decrease serum concentrations of TG. Clinical data found concentrations of APOA5 were higher in woman than that in men, and the negative relationship between APOA5 and TG levels was more significant in woman. These suggests APOA5 may involve in estrogen actions. Therefore, we hypothesize estrogen up-regulates serum concentrations of APOA5 and subsequently decreases serum TG levels. We will design the following experiments to test this hypothesis. (1) We will treat wild and APOA5-defeted ovariectomized hamster with or without estrogen to examine if estrogen could up-regulate concentrations of APOA5 and decrease TG levels. (2) We will treat HepG2 cells with estrogen and investigate the possible mechanisms.
Collapse
Affiliation(s)
- Fei Luo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
| | - Yuan Guo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
| | - Gui-Yun Ruan
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
| | - Ran Peng
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
| | - Xiang-Ping Li
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China.
| |
Collapse
|
4
|
Aatsinki SM, Buler M, Salomäki H, Koulu M, Pavek P, Hakkola J. Metformin induces PGC-1α expression and selectively affects hepatic PGC-1α functions. Br J Pharmacol 2014; 171:2351-63. [PMID: 24428821 DOI: 10.1111/bph.12585] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 12/19/2013] [Accepted: 12/27/2013] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE The objective of this study was to determine how the AMPK activating antidiabetic drug metformin affects the major activator of hepatic gluconeogenesis, PPARγ coactivator 1α (PGC-1α) and liver functions regulated by PGC-1α. EXPERIMENTAL APPROACH Mouse and human primary hepatocytes and mice in vivo were treated with metformin. Adenoviral overexpression, siRNA and reporter gene constructs were used for mechanistic studies. KEY RESULTS Metformin increased PGC-1α mRNA and protein expression in mouse primary hepatocytes. 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) (another AMPK activator) had the opposite effect. Metformin also increased PGC-1α in human primary hepatocytes; this effect of metformin was abolished by AMPK inhibitor compound C and sirtuin 1 siRNA. AMPK overexpression by AMPK-Ad also increased PGC-1α. Whereas metformin increased PGC-1α, it down-regulated gluconeogenic genes phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase). Furthermore, metformin attenuated the increase in PEPCK and G6Pase mRNAs induced by PGC-1α overexpression, but did not affect PGC-1α-mediated induction of mitochondrial genes. Metformin down-regulated several key transcription factors that mediate the effect of PGC-1α on gluconeogenic genes including Krüppel-like factor 15, forkhead box protein O1 and hepatocyte NF 4α, whereas it increased nuclear respiratory factor 1, which is involved in PGC-1α-mediated regulation of mitochondrial proteins. CONCLUSIONS AND IMPLICATIONS Down-regulation of PGC-1α is not necessary for suppression of gluconeogenic genes by metformin. Importantly, metformin selectively affects hepatic PGC-1α-mediated gene regulation and prevents activation of gluconeogenesis, but does not influence its regulation of mitochondrial genes. These results identify selective modulation of hepatic PGC-1α functions as a novel mechanism involved in the therapeutic action of metformin.
Collapse
Affiliation(s)
- Sanna-Mari Aatsinki
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | | | | | | | | | | |
Collapse
|
5
|
Guardiola M, Oliva I, Guillaumet A, Martín-Trujillo Á, Rosales R, Vallvé JC, Sabench F, Del Castillo D, Zaina S, Monk D, Ribalta J. Tissue-specific DNA methylation profiles regulate liver-specific expression of the APOA1/C3/A4/A5 cluster and can be manipulated with demethylating agents on intestinal cells. Atherosclerosis 2014; 237:528-35. [PMID: 25463085 DOI: 10.1016/j.atherosclerosis.2014.10.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/17/2014] [Accepted: 10/19/2014] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The tissue-specific expression profiles of genes within the APOA1/C3/A4/A5 cluster play an important role in lipid metabolism regulation. We hypothesize that the tissue-specific expression of the APOA1/C3/A4/A5 gene cluster will show an inverse pattern with DNA methylation, and that repression in non- or low-expressing tissue, such as the intestine, can be reversed using epigenetic drugs. METHODS AND RESULTS We analyzed DNA samples from different human adult tissues (liver, intestine, leukocytes, brain, kidney, pancreas, muscle and sperm) using the Infinium HumanMethyation450 BeadChip array. DNA methylation profiles in APOA1/C3/A4/A5 gene cluster were confirmed by bisulfite PCR and pyrosequencing. To determine whether the observed tissue-specific methylation was associated with the expression profile we exposed intestinal TC7/Caco-2 cells to the demethylating agent 5-Aza-2'-deoxycytidine and monitored intestinal APOA1/C3/A4/A5 transcript re-expression by RT-qPCR. The promoters of APOA1, APOC3 and APOA5 genes were less methylated in liver compared to other tissues, and APOA4 gene was highly methylated in most tissues and partially methylated in liver and intestine. In TC7/Caco-2 cells, 5-Aza-2'-deoxycytidine treatment induced a decrease between 37 and 24% in the methylation levels of APOA1/C3/A4/A5 genes and a concomitant re-expression mainly in APOA1, APOA4 and APOA5 genes ranging from 22 to 600%. CONCLUSIONS We have determined the methylation patterns of the APOA1/C3/A4/A5 cluster that may be directly involved in the transcriptional regulation of this cluster. DNA demethylation of intestinal cells increases the RNA levels especially of APOA1, APOA4 and APOA5 genes.
Collapse
Affiliation(s)
- Montse Guardiola
- Unitat de Recerca en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, IISPV, CIBERDEM, Spain.
| | - Iris Oliva
- Unitat de Recerca en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, IISPV, CIBERDEM, Spain.
| | - Amy Guillaumet
- Imprinting and Cancer Group, Epigenetics and Cancer Biology Program (PEBC), Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain.
| | - Álex Martín-Trujillo
- Imprinting and Cancer Group, Epigenetics and Cancer Biology Program (PEBC), Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain.
| | - Roser Rosales
- Unitat de Recerca en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, IISPV, CIBERDEM, Spain.
| | - Joan Carles Vallvé
- Unitat de Recerca en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, IISPV, CIBERDEM, Spain.
| | - Fàtima Sabench
- Unitat de Recerca en Cirurgia, Universitat Rovira i Virgili, IISPV, Spain.
| | | | - Silvio Zaina
- Cancer Epigenetics Group, Epigenetics and Cancer Biology Program (PEBC), Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain; Department of Medical Sciences, Division of Health Sciences, León Campus, University of Guanajuato, Mexico.
| | - David Monk
- Imprinting and Cancer Group, Epigenetics and Cancer Biology Program (PEBC), Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain.
| | - Josep Ribalta
- Unitat de Recerca en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, IISPV, CIBERDEM, Spain.
| |
Collapse
|
6
|
Yang H, Garzel B, Heyward S, Moeller T, Shapiro P, Wang H. Metformin represses drug-induced expression of CYP2B6 by modulating the constitutive androstane receptor signaling. Mol Pharmacol 2013; 85:249-60. [PMID: 24252946 DOI: 10.1124/mol.113.089763] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Metformin is currently the most widely used drug for the treatment of type 2 diabetes. Mechanistically, metformin interacts with many protein kinases and transcription factors that alter the expression of numerous downstream target genes governing lipid metabolism, cell proliferation, and drug metabolism. The constitutive androstane receptor (CAR, NR1i3), a known xenobiotic sensor, has recently been recognized as a novel signaling molecule, in that its activation could be regulated by protein kinases in addition to the traditional ligand binding. We show that metformin could suppress drug-induced expression of CYP2B6 (a typical target gene of CAR) by modulating the phosphorylation status of CAR. In human hepatocytes, metformin robustly suppressed the expression of CYP2B6 induced by both indirect (phenobarbital) and direct CITCO [6-(4-chlorophenyl)imidazo[2,1-b]1,3thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime] activators of human CAR. Mechanistic investigation revealed that metformin specifically enhanced the phosphorylation of threonine-38 of CAR, which blocks CAR nuclear translocation and activation. Moreover, we showed that phosphorylation of CAR by metformin was primarily an AMP-activated protein kinase- and extracellular signal-regulated kinase 1/2-dependent event. Additional two-hybrid and coimmunoprecipitation assays demonstrated that metformin could also disrupt CITCO-mediated interaction between CAR and the steroid receptor coactivator 1 or the glucocorticoid receptor-interacting protein 1. Our results suggest that metformin is a potent repressor of drug-induced CYP2B6 expression through specific inhibition of human CAR activation. Thus, metformin may affect the metabolism and clearance of drugs that are CYP2B6 substrates.
Collapse
Affiliation(s)
- Hui Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland (H.Y., B.G., P.S., H.W.); and Bioreclamation In Vitro Technologies (S.H., T.M.), Baltimore, Maryland
| | | | | | | | | | | |
Collapse
|
7
|
Identification and characterization of cyclic AMP response element-binding protein H response element in the human apolipoprotein A5 gene promoter. BIOMED RESEARCH INTERNATIONAL 2013; 2013:892491. [PMID: 23957007 PMCID: PMC3730137 DOI: 10.1155/2013/892491] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 06/03/2013] [Accepted: 06/27/2013] [Indexed: 12/14/2022]
Abstract
The cyclic AMP response element-binding protein H (CREBH) plays important roles in hepatic lipogenesis, fatty acid oxidation, and lipolysis under metabolic stress. Here, we report CREBH as a novel regulator of human APOA5. Knockdown of endogenous CREBH expression via small interfering RNA resulted in the downregulation of human APOA5 mRNA expression in human hepatoma cells, HepG2. Sequence analysis suggested that putative CREBH response element (CREBHRE) is located in the human APOA5 promoter region and is highly conserved in both human and rodent. To clarify whether the human APOA5 promoter is regulated by CREBH, we analyzed the human APOA5 promoter region using a transient transfection assay and determined that transfection of CREBH induced human APOA5 promoter activity. Moreover, it was shown that CREBH directly regulated human APOA5 gene expression by binding to a unique CREBHRE located in the proximal human APOA5 promoter region, using 5′-deletion and mutagenesis of human APOA5 promoter analysis and chromatin immunoprecipitation assay. Taken together, our results demonstrated that human APOA5 is directly regulated by CREBH via CREBHRE and provided a new insight into the role of this liver-specific bZIP transcription factor in lipoprotein metabolism and triglyceride homeostasis.
Collapse
|
8
|
Transcriptional regulation of PCFT by KLF4, HNF4α, CDX2 and C/EBPα: implication in its site-specific expression in the small intestine. Biochem Biophys Res Commun 2013; 431:158-63. [PMID: 23313509 DOI: 10.1016/j.bbrc.2013.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 01/03/2013] [Indexed: 01/10/2023]
Abstract
Proton-coupled folate transporter (PCFT), which is responsible for the intestinal uptake of folates and analogs, is expressed only in the proximal region in the small intestine. The present study was to examine its transcriptional regulation, which may be involved in such a unique expression profile and potentially in its alteration, using dual-luciferase reporter assays in human embryonic kidney (HEK) 293 cells. The luciferase activity derived from the reporter construct containing the 5'-flanking sequence of -1695/+96 of the human PCFT gene was enhanced most extensively by the introduction of Krüppel-like factor 4 (KLF4). The KLF4-induced luciferase activity was further enhanced by hepatocyte nuclear factor 4α (HNF4α) synergistically. To the contrary, caudal-type homeobox transcription factor 2 (CDX2) and CCAAT/enhancer-binding protein α (C/EBPα) extensively suppressed the luciferase activity induced by KLF4 alone and also that induced by KLF4 and HNF4α. Western blot analysis using the rat small intestine indicated uniform expression of KLF4 along the intestinal tract, proximal-oriented expression of HNF4α, distal-oriented expression of CDX2 and C/EBPα. These results suggest that the activity of PCFT promoter is basically induced by KLF4 and the gradiented expression profile of PCFT may be at least in part accounted for by those of HNF4α, CDX2 and C/EBPα.
Collapse
|
9
|
Zheng XY, Zhao SP, Yan H. The role of apolipoprotein A5 in obesity and the metabolic syndrome. Biol Rev Camb Philos Soc 2012; 88:490-8. [PMID: 23279260 DOI: 10.1111/brv.12005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 11/10/2012] [Accepted: 11/20/2012] [Indexed: 12/17/2022]
Affiliation(s)
- Xiao-Yan Zheng
- Department of Cardiology; The Second Xiangya Hospital, Central South University; Changsha; 410011; China
| | - Shui-Ping Zhao
- Department of Cardiology; The Second Xiangya Hospital, Central South University; Changsha; 410011; China
| | - Hu Yan
- Institute of Mental Health; The Second Xiangya Hospital, Central South University; Changsha; 410011; China
| |
Collapse
|
10
|
Zhang Z, Liu J, Xi Y, Yang R, Chen H, Li Z, Liu D, Liang C. Two novel cis-elements involved in hepatocyte nuclear factor 4α regulation of acyl-coenzyme A:cholesterol acyltransferase 2 expression. Acta Biochim Biophys Sin (Shanghai) 2012; 44:162-71. [PMID: 22155889 DOI: 10.1093/abbs/gmr102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Acyl-coenzyme A:cholesterol acyltransferase 2 (ACAT2) is important for cholesterol ester synthesis and secretion. A previous study revealed that ACAT2 gene promoter activity was upregulated by hepatocyte nuclear factor 4α (HNF4α) through two sites around -247 and -311 of ACAT2 gene promoter. Here, we identified two novel cis-elements, site I (-1006 to -898) and site II (-38 to -29), which are important for HNF4α effect. In HepG2 cells, mutation of site I decreased ACAT2 gene promoter activity to one-fifth of that of the wild type, while mutation of site II reduced promoter activity to less than one-tenth of that of the wild type. In 293T cells, mutation of these two cis-elements profoundly impaired the HNF4α induction effect. When either of these two elements was inserted into pGL3-promoter, HNF4α induced promoter activity through the inserted element, while mutation of the element impaired HNF4α induction effect. In electrophoretic mobility shift assay and chromatin immunoprecipitation experiment, HNF4α bound to these two elements. Thus, the two cis-elements are important for HNF4α effect on ACAT2 gene transcription. We also showed that HNF4α positively regulates ACAT2 gene expression at mRNA level. Overexpression of HNF4α increased ACAT2 expression, whereas knockdown of HNF4α decreased ACAT2 expression. Peroxisome proliferator-activated receptor gamma coactivator 1α (PCG1α), a coactivator of HNF4α, increased ACAT2 expression, while small heterodimer partner (SHP), a corepressor of HNF4α, decreased ACAT2 expression. These results provide more insights into transcriptional regulation of ACAT2 expression.
Collapse
Affiliation(s)
- Zhuqin Zhang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Science, Chinese Academy of Medical Sciences, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Apolipoprotein A-V; a potent triglyceride reducer. Atherosclerosis 2011; 219:15-21. [DOI: 10.1016/j.atherosclerosis.2011.07.019] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 07/03/2011] [Accepted: 07/04/2011] [Indexed: 11/21/2022]
|
12
|
Blade AM, Fabritius MA, Hou L, Weinberg RB, Shelness GS. Biogenesis of apolipoprotein A-V and its impact on VLDL triglyceride secretion. J Lipid Res 2011; 52:237-44. [PMID: 21115968 PMCID: PMC3023543 DOI: 10.1194/jlr.m010793] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 11/09/2010] [Indexed: 12/12/2022] Open
Abstract
Apolipoprotein A-V (apoA-V) is a potent regulator of intravascular triglyceride (TG) metabolism, yet its plasma concentration is very low compared with that of other apolipoproteins. To examine the basis for its low plasma concentration, the secretion efficiency of apoA-V was measured in stably transfected McA-RH7777 rat hepatoma cells. Pulse-chase experiments revealed that only ∼20% of newly synthesized apoA-V is secreted into culture medium within 3 h postsynthesis and that ∼65% undergoes presecretory turnover; similar results were obtained with transfected nonhepatic Chinese hamster ovary cells. ApoA-V secreted by McA-RH7777 cells was not associated with cell surface heparin-competable binding sites. When stably transfected McA-RH7777 cells were treated with oleic acid, the resulting increase in TG synthesis caused a reduction in apoA-V secretion, a reciprocal increase in cell-associated apoA-V, and movement of apoA-V onto cytosolic lipid droplets. In a stably transfected doxycycline-inducible McA-RH7777 cell line, apoA-V expression inhibited TG secretion by ∼50%, increased cellular TG, and reduced Z-average VLDL(1) particle diameter from 81 to 67 nm; however, no impact on apoB secretion was observed. These data demonstrate that apoA-V inefficiently traffics within the secretory pathway, that its intracellular itinerary can be regulated by changes in cellular TG accumulation, and that apoA-V synthesis can modulate VLDL TG mobilization and secretion.
Collapse
Affiliation(s)
- Anna M. Blade
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Melissa A. Fabritius
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Li Hou
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Richard B. Weinberg
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
- Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Gregory S. Shelness
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| |
Collapse
|
13
|
Song KH. Orphan nuclear receptor Nur77 participates in human apolipoprotein A5 gene expression. Biochem Biophys Res Commun 2010; 392:63-6. [DOI: 10.1016/j.bbrc.2009.12.168] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 12/28/2009] [Indexed: 11/25/2022]
|
14
|
Li T, Chanda D, Zhang Y, Choi HS, Chiang JYL. Glucose stimulates cholesterol 7alpha-hydroxylase gene transcription in human hepatocytes. J Lipid Res 2009; 51:832-42. [PMID: 19965590 DOI: 10.1194/jlr.m002782] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Bile acids play important roles in the regulation of lipid, glucose, and energy homeostasis. Recent studies suggest that glucose regulates gene transcription in the liver. The aim of this study was to investigate the potential role of glucose in regulation of bile acid synthesis in human hepatocytes. High glucose stimulated bile acid synthesis and induced mRNA expression of cholesterol 7alpha-hydroxylase (CYP7A1), the key regulatory gene in bile acid synthesis. Activation of an AMP-activated protein kinase (AMPK) decreased CYP7A1 mRNA, hepatocyte nuclear factor 4alpha (HNF4alpha) protein, and binding to CYP7A1 chromatin. Glucose increased ATP levels to inhibit AMPK and induce HNF4alpha to stimulate CYP7A1 gene transcription. Furthermore, glucose increased histone acetylation and decreased H3K9 di- and tri-methylation in the CYP7A1 chromatin. Knockdown of ATP-citrate lyase, which converts citrate to acetyl-CoA, decreased histone acetylation and attenuated glucose induction of CYP7A1 mRNA expression. These results suggest that glucose signaling also induces CYP7A1 gene transcription by epigenetic regulation of the histone acetylation status. This study uncovers a novel link between hepatic glucose metabolism and bile acid synthesis. Glucose induction of bile acid synthesis may have an important implication in metabolic control of glucose, lipid, and energy homeostasis under normal and diabetic conditions.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Integrative Medical Sciences, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, OH 44272, USA
| | | | | | | | | |
Collapse
|
15
|
Takano K, Hasegawa G, Jiang S, Kurosaki I, Hatakeyama K, Iwanari H, Tanaka T, Hamakubo T, Kodama T, Naito M. Immunohistochemical staining for P1 and P2 promoter-driven hepatocyte nuclear factor-4alpha may complement mucin phenotype of differentiated-type early gastric carcinoma. Pathol Int 2009; 59:462-70. [PMID: 19563409 DOI: 10.1111/j.1440-1827.2009.02394.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Hepatocyte nuclear factor 4alpha (HNF4alpha) isoforms in the human stomach have not been fully investigated. The purpose of the present study was to evaluate the expression of P1 and P2 promoter-driven HNF4alpha (P1 and P2-HNF4alpha) in differentiated-type early gastric carcinomas (DEGC). P1- and P2-HNF4alpha expression was examined immunohistochemically both in non-neoplastic mucosa and carcinoma from surgical specimens. In all samples of non-neoplastic mucosa, foveolar, cardiac, fundic and pyloric gland epithelium was negative for P1-HNF4alpha, but was positive for P2-HNF4alpha. Intestinal metaplasia was positive for P1 and P2-HNF4alpha in all cases. Gastric carcinomas were classified into four mucin phenotypes based on the pattern of mucin expression: gastric, intestinal, mixed and null type. DEGC showed striking differences in the staining pattern for P1-HNF4alpha according to the mucin phenotype. Gastric carcinomas of intestinal, mixed and null type showed high positivity for P1-HNF4alpha, but the gastric type was negative for P1-HNF4alpha in all but one tumor. In contrast, P2-HNF4alpha was expressed in all tumors regardless of the mucin phenotype. Negative expression of P1-HNF4alpha was indicated as one of the useful immunohistochemical markers in the classification of mucin phenotype of both non-neoplastic mucosa and cancers of gastric phenotype.
Collapse
Affiliation(s)
- Kabuto Takano
- Division of Cellular and Molecular Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Prieur X, Lesnik P, Moreau M, Rodríguez JC, Doucet C, Chapman MJ, Huby T. Differential regulation of the human versus the mouse apolipoprotein AV gene by PPARalpha. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:764-71. [DOI: 10.1016/j.bbalip.2009.03.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 03/11/2009] [Accepted: 03/30/2009] [Indexed: 12/01/2022]
|
17
|
Mishiro T, Ishihara K, Hino S, Tsutsumi S, Aburatani H, Shirahige K, Kinoshita Y, Nakao M. Architectural roles of multiple chromatin insulators at the human apolipoprotein gene cluster. EMBO J 2009; 28:1234-45. [PMID: 19322193 PMCID: PMC2683055 DOI: 10.1038/emboj.2009.81] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 03/04/2009] [Indexed: 12/31/2022] Open
Abstract
Long-range regulatory elements and higher-order chromatin structure coordinate the expression of multiple genes in cluster, and CTCF/cohesin-mediated chromatin insulator may be a key in this regulation. The human apolipoprotein (APO) A1/C3/A4/A5 gene region, whose alterations increase the risk of dyslipidemia and atherosclerosis, is partitioned at least by three CTCF-enriched sites and three cohesin protein RAD21-enriched sites (two overlap with the CTCF sites), resulting in the formation of two transcribed chromatin loops by interactions between insulators. The C3 enhancer and APOC3/A4/A5 promoters reside in the same loop, where the APOC3/A4 promoters are pointed towards the C3 enhancer, whereas the APOA1 promoter is present in the different loop. The depletion of either CTCF or RAD21 disrupts the chromatin loop structure, together with significant changes in the APO expression and the localization of transcription factor hepatocyte nuclear factor (HNF)-4alpha and transcriptionally active form of RNA polymerase II at the APO promoters. Thus, CTCF/cohesin-mediated insulators maintain the chromatin loop formation and the localization of transcriptional apparatus at the promoters, suggesting an essential role of chromatin insulation in controlling the expression of clustered genes.
Collapse
Affiliation(s)
- Tsuyoshi Mishiro
- Department of Regeneration Medicine, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- Department of Gastroenterology and Hepatology, Shimane University School of Medicine, Izumo, Japan
| | - Ko Ishihara
- Department of Regeneration Medicine, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Shinjiro Hino
- Department of Regeneration Medicine, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Shuichi Tsutsumi
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
| | - Katsuhiko Shirahige
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama City, Kanagawa, Japan
| | - Yoshikazu Kinoshita
- Department of Gastroenterology and Hepatology, Shimane University School of Medicine, Izumo, Japan
| | - Mitsuyoshi Nakao
- Department of Regeneration Medicine, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
18
|
Vaessen SFC, Sierts JA, Kuivenhoven JA, Schaap FG. Efficient lowering of triglyceride levels in mice by human apoAV protein variants associated with hypertriglyceridemia. Biochem Biophys Res Commun 2008; 379:542-6. [PMID: 19121291 DOI: 10.1016/j.bbrc.2008.12.115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Accepted: 12/16/2008] [Indexed: 11/19/2022]
Abstract
Variation in the apolipoprotein A5 (APOA5) gene has consistently been associated with increased plasma triglyceride (TG) levels in epidemiological studies. In vivo functionality of these variations, however, has thus far not been tested. Using adenoviral over-expression, we evaluated plasma expression levels and TG-lowering efficacies of wild-type human apoAV, two human apoAV variants associated with increased TG (S19W, G185C) and one variant (Q341H) that is predicted to have altered protein function. Injection of mice with adenovirus encoding wild-type or mutant apoAV resulted in an identical dose-dependent elevation of human apoAV levels in plasma. The increase in apoAV levels resulted in pronounced lowering of plasma TG levels at two viral dosages. Unexpectedly, the TG-lowering efficacy of all three apoAV variants was similar to wild-type apoAV. In addition, no effect on TG-hydrolysis-related plasma parameters (free fatty acids, glycerol and post-heparin lipoprotein lipase activity) was apparent upon expression of all apoAV variants. In conclusion, our data indicate that despite their association with hypertriglyceridemia and/or predicted protein dysfunction, the 19W, 185C and 341H apoAV variants are equally effective in reducing plasma TG levels in mice.
Collapse
Affiliation(s)
- Stefan F C Vaessen
- Department of Vascular Medicine, Academic Medical Center, Meibergdreef 69-71, 1105 BK Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
19
|
Hahne P, Krempler F, Schaap FG, Soyal SM, Höffinger H, Miller K, Oberkofler H, Strobl W, Patsch W. Determinants of plasma apolipoprotein A-V and APOA5 gene transcripts in humans. J Intern Med 2008; 264:452-62. [PMID: 18537870 PMCID: PMC3533125 DOI: 10.1111/j.1365-2796.2008.01987.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Apolipoprotein A-V (apoAV) contributes to the regulation of triglyceride metabolism, which plays a role in the pathogenesis of atherosclerotic diseases. We therefore ascertained determinants of hepatic APOA5 transcript and apoAV plasma levels in humans. DESIGN We determined influences of anthropometric variables, biochemical factors related to lipid and glucose metabolism, hepatic mRNA levels transcribed from the APOA1/C3/A4/A5 cluster and transcription factor genes implicated in the regulation of APOA5 as well as common single nucleotide polymorphisms (SNPs) at the APOA5 locus on APOA5 expression in 89 obese patients and 22 non-obese controls. RESULTS Mean, age and sex adjusted, hepatic APOA5 mRNA or apoAV plasma levels did not differ by obesity status, homoeostasis model assessment insulin resistance or inflammatory markers. In multivariate regression models, the c56C > G SNP, plasma apoCIII, plasma nonesterified fatty acids, hepatic APOA5 transcripts, sex and a weak association with obesity status explained 61% of the variance in apoAV plasma levels. Hepatic transcript levels of carnitine palmitoyltransferase 1 (CPT1A1) and peroxisome proliferator-activated receptor alpha (PPARA), plasma nonesterified fatty acids and the c56C > G SNP explained 48% of the variance in hepatic APOA5 transcript levels. CONCLUSION Apolipoprotein A-V plasma levels are independently associated with plasma free fatty acid and hepatic APOA5 mRNA levels. Associations of APOA5 transcripts with PPARA and CPT1A1 transcripts suggest that APOA5 expression is intimately linked to hepatic lipid metabolism.
Collapse
Affiliation(s)
- P Hahne
- Department of Laboratory Medicine, Paracelsus Medical University, Salzburg, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Li YJ, Wei YS, Fu XH, Hao DL, Xue Z, Gong H, Zhang ZQ, Liu DP, Liang CC. The apolipoprotein CIII enhancer regulates both extensive histone modification and intergenic transcription of human apolipoprotein AI/CIII/AIV genes but not apolipoprotein AV. J Biol Chem 2008; 283:28436-44. [PMID: 18678879 DOI: 10.1074/jbc.m710289200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The apolipoprotein (apo) AI/CIII/AIV/AV cluster genes are expressed at different levels in the liver and intestine. The apoCIII enhancer, a common regulatory element, regulates the tissue-specific expression of apoAI, apoCIII, and apoAIV but not apoAV. To study this regulation at the chromatin level, the histone modifications and intergenic transcription in the human apoAI/CIII/AIV/AV cluster were investigated in HepG2 and Caco-2 cells and in the livers of transgenic mice carrying the human gene cluster constructs with or without the apoCIII enhancer. We found that both the promoters and the intergenic regions of the apoAI/CIII/AIV genes were hyperacetylated and formed an open subdomain that did not include the apoAV gene. Hepatic and intestinal intergenic transcripts were identified to transcribe bidirectionally with strand preferences along the cluster. The deletion of the apoCIII enhancer influenced both histone modification and intergenic transcription in the apoAI/CIII/AIV gene region. These results demonstrate that the apoCIII enhancer contributes to the maintenance of an active chromatin subdomain of the apoAI/CIII/AIV genes, but not apoAV.
Collapse
Affiliation(s)
- Ya-Jun Li
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, 100005 China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Prieur X, Huby T, Rodríguez JC, Couvert P, Chapman MJ. Apolipoprotein AV: gene expression, physiological role in lipid metabolism and clinical relevance. ACTA ACUST UNITED AC 2008. [DOI: 10.2217/17460875.3.4.371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Gao Z, Leng S, Lu F, Xie M, Xu L, Wang K. Effect of berberine on expression of hepatocyte nuclear factor-4alpha in rats with fructose-induced insulin resistance. ACTA ACUST UNITED AC 2008; 28:261-5. [PMID: 18563319 DOI: 10.1007/s11596-008-0307-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Indexed: 12/22/2022]
Abstract
The effects of berberine on the expression of hepatocyte nuclear factor-4alpha (HNF-4alpha) in liver of rats with fructose-induced insulin resistance and the molecular mechanism of berberine preventing insulin resistance were investigated. The experimental animals were divided into two groups of 16 animals each. The control group received a control routine diet containing 60% carbohydrate, and the study group a high-fructose diet containing 60% fructose as the sole source of carbohydrate. At the end of 6 weeks these were each subdivided into two groups. One was administered with berberine [187.5 mg/(kg x d) in 5 g/L carboxymethyl cellulose] by intragastric intubation and the other group was treated with a vehicle (5 g/L carboxymethyl cellulose). The rats were fed on the same dietary regimen for the next 4 weeks. After the experimental period of 10 weeks, plasma glucose, insulin and triglyceride levels were measured. HOMA insulin resistance index (HOMA-IR) was assayed. Immunohistochemistry, semiquantitative RT-PCR and western blot were used to detect the expression of HNF-4alpha in liver. Compared with control diet, fructose feeding induced hyperinsulinemia, HOMA-IR and increased triglyceride (all P<0.01). Berberine prevented the rise in plasma insulin (P<0.01), HOMA-IR (P<0.01) and triglyceride (P<0.05) in the fructose-fed rats. No change in plasma glucose was seen among these groups. The mRNA and protein expression of HNF-4alpha was decreased in the fructose-fed rats, but berberine could promote its expression. It was concluded that berberine could prevent fructose-induced insulin resistance in rats possibly by promoting the expression HNF-4alpha in liver.
Collapse
Affiliation(s)
- Zhiqiang Gao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | | | | | | | | | | |
Collapse
|
23
|
Palmen J, Smith AJP, Dorfmeister B, Putt W, Humphries SE, Talmud PJ. The functional interaction on in vitro gene expression of APOA5 SNPs, defining haplotype APOA52, and their paradoxical association with plasma triglyceride but not plasma apoAV levels. Biochim Biophys Acta Mol Basis Dis 2008; 1782:447-52. [PMID: 18395529 DOI: 10.1016/j.bbadis.2008.03.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 02/27/2008] [Accepted: 03/12/2008] [Indexed: 12/22/2022]
Abstract
Plasma triglyceride (TG) and apoAV levels are reported to be positively correlated, yet SNPs defining haplotype APOA52 have consistently shown association with elevated plasma triglyceride (TG) but not plasma apoAV levels. We previously reported that individually -1131T>C, -3A>G and +1891T>C did not influence luciferase activity or in vitro translation efficiency. To investigate the combined effect of these SNPs additional constructs were examined. Compared to the wildtype -1131T/-3A/+1891T (TAT), the triple rare allele construct -1131C/-3G/+1891C (CGC) conferred 46% lower luciferase activity (p<0.0001), showing these SNPs are acting co-operatively. Although only these two combinations occur in vivo, we experimentally altered the TAT construct one site at a time; -3G (TGT) had the largest effect (94% lower luciferase), with lesser effects from CAT (-77%) and TAC (-70.3%) (all p<0.0001). Deletion constructs excluding one site at a time showed that -3G/1891C ( -GC) in combination, compared to -AT, was having the largest effect on luciferase activity (-59%, p=0.055). Using sequence homology and EMSA analysis no transcription factor binding at -1131 or +1891 was identified, though +1891 lies within a putative mRNA stability motif. Taken together, these data identify -3A>G in the Kozak sequence as functional, affecting translation initiation and driving the haplotype effects, while showing interaction with +1891T>C and to a lesser extent -1131T>C. A paradox arises since these results predict that APOA52 will lead to reduced apoAV with concomitant reduced LPL activation or lipoprotein-receptor interaction, resulting in higher plasma TG levels. We conclude that APOA5 expression, and not circulating plasma apoAV levels, is causatively associated with plasma TG levels.
Collapse
Affiliation(s)
- Jutta Palmen
- Division of Cardiovascular Genetics, Department of Medicine, University College London, 5 University Street, London WC1E 6JF, UK
| | | | | | | | | | | |
Collapse
|
24
|
Upregulating APOAV expression by statins via PPAR-α activated pathway possibly contributes to their triglyceride-lowering effect. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.bihy.2008.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Saji T, Kikuchi R, Kusuhara H, Kim I, Gonzalez FJ, Sugiyama Y. Transcriptional regulation of human and mouse organic anion transporter 1 by hepatocyte nuclear factor 1 alpha/beta. J Pharmacol Exp Ther 2007; 324:784-90. [PMID: 18029548 DOI: 10.1124/jpet.107.128249] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Organic anion transporter 1 (OAT1/SLC22A6) is predominantly expressed in the proximal tubules of the kidney. Cumulative studies have shown its critical role in the tubular secretion of a variety of organic anions, including several clinically important drugs. In addition, OAT1 is also involved in the pharmacological effect of diuretics and the nephrotoxicity of antiviral drugs. In contrast to these functional characterizations, the regulatory mechanism of OAT1 expression is poorly understood. It was recently demonstrated that the expression of Oat1 was markedly reduced in the kidneys of hepatocyte nuclear factor 1alpha (Hnf1alpha)-null mice. However, in vitro evidence for the involvement of HNF1alpha and further analyses are required to illustrate the transcriptional regulation of OAT1 genes in more detail. Computational analysis of the potential transcription factor binding sites revealed that the HNF1-motif was conserved in the proximal-promoter region of human and mouse OAT1 genes. The mRNA expression of mouse organic anion transporter 1 was drastically reduced in Hnf1alpha-null mice compared with that in wild-type mice, which was consistent with a previous report (Maher et al., 2006). Forced expression of HNF1alpha alone or both HNF1alpha and HNF1beta enhanced the activity of human and mouse OAT1 promoters in the transactivation assays, whereas HNF1beta alone was not active. Mutations in the HNF1-motif significantly reduced this transactivation. Direct binding of HNF1alpha/HNF1alpha homodimer and HNF1alpha/HNF1beta heterodimer to the HNF1-motif found in the human OAT1 promoter was demonstrated by electrophoretic mobility shift assays. These results provide convincing evidence for the involvement of HNF1alpha/beta in the constitutive expression of human and mouse OAT1 in the kidney.
Collapse
Affiliation(s)
- Takami Saji
- Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, USA
| | | | | | | | | | | |
Collapse
|
26
|
Ogasawara K, Terada T, Asaka JI, Katsura T, Inui KI. Hepatocyte nuclear factor-4{alpha} regulates the human organic anion transporter 1 gene in the kidney. Am J Physiol Renal Physiol 2007; 292:F1819-26. [PMID: 17344191 DOI: 10.1152/ajprenal.00017.2007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human organic anion transporter 1 (OAT1, SLC22A6), which is localized to the basolateral membranes of renal tubular epithelial cells, plays a critical role in the excretion of anionic compounds. OAT1 is regulated by various pathophysiological conditions, but little is known about the molecular mechanisms regulating the expression of OAT1. In the present study, we investigated the transcriptional regulation of OAT1 and found that hepatocyte nuclear factor (HNF)-4alpha markedly transactivated the OAT1 promoter. A deletion analysis of the OAT1 promoter suggested that the regions spanning -1191 to -700 base pairs (bp) and -140 to -79 bp were essential for the transactivation by HNF-4alpha. These regions contained a direct repeat separated by two nucleotides (DR-2), which is one of the consensus sequences binding to HNF-4alpha, and an inverted repeat separated by eight nucleotides (IR-8), which was recently identified as a novel element for HNF-4alpha, respectively. An electrophoretic mobility shift assay showed that HNF-4alpha bound to DR-2 and IR-8 under the conditions of HNF-4alpha overexpression. Furthermore, under normal conditions, HNF-4alpha bound to IR-8, and a mutation in IR-8 markedly reduced the OAT1 promoter activity, indicating that HNF-4alpha regulates the basal transcription of OAT1 via IR-8. This paper reports the first characterization of the human OAT1 promoter and the first gene in the kidney whose promoter activity is regulated by HNF-4alpha.
Collapse
Affiliation(s)
- Ken Ogasawara
- Department of Pharmacy, Kyoto University Hospital, Faculty of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | |
Collapse
|
27
|
|
28
|
Martínez-Jiménez CP, Gómez-Lechón MJ, Castell JV, Jover R. Underexpressed Coactivators PGC1α AND SRC1 Impair Hepatocyte Nuclear Factor 4α Function and Promote Dedifferentiation in Human Hepatoma Cells. J Biol Chem 2006; 281:29840-9. [PMID: 16891307 DOI: 10.1074/jbc.m604046200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hepatocyte nuclear factor 4alpha (HNF4alpha) plays critical roles during liver development and in the transcriptional regulation of many hepatic genes in adult liver. Here we have demonstrated that in human hepatoma HepG2 cells, HNF4alpha is expressed at levels as high as in human liver but its activity on target genes is very low or absent. We have discovered that the low expression of key coactivators (PGC1alpha, SRC1, SRC2, and PCAF) might account for the lack of function of HNF4alpha in HepG2 cells. Among them, PGC1alpha and SRC1 are the two most important HNF4alpha coactivators as revealed by reporter assays with an Apo-CIII promoter construct. Moreover, the expression of these two coactivators was found to be down-regulated in all human hepatomas investigated. Overexpression of SRC1 and PGC1alpha by recombinant adenoviruses led to a significant up-regulation of well characterized HNF4alpha-dependent genes (ApoCIII, ApoAV, PEPCK, AldoB, OTC, and CYP7A1) and forced HepG2 cells toward a more differentiated phenotype as demonstrated by increased ureogenic rate. The positive effect of PGC1alpha was seen to be dependent on HNF4alpha. Finally, insulin treatment of human hepatocytes and HepG2 cells caused repression of PGC1alpha and a concomitant down-regulation of ApoCIII, PEPCK, AldoB, and OTC. Altogether, our results suggest that SRC1, and notably PGC1alpha, are key coactivators for the proper function of HNF4alpha in human liver and for an integrative control of multiple hepatic genes involved in metabolism and homeostasis. The down-regulation of key HNF4alpha coactivators could be a determinant factor for the dedifferentiation of human hepatomas.
Collapse
Affiliation(s)
- Celia P Martínez-Jiménez
- Unidad de Hepatología Experimental, Centro de Investigación, Hospital Universitario La Fe, 46009 Valencia, Spain
| | | | | | | |
Collapse
|
29
|
Schaap FG, Nierman MC, Berbée JFP, Hattori H, Talmud PJ, Vaessen SFC, Rensen PCN, Chamuleau RAFM, Kuivenhoven JA, Groen AK. Evidence for a complex relationship between apoA-V and apoC-III in patients with severe hypertriglyceridemia. J Lipid Res 2006; 47:2333-9. [PMID: 16861622 DOI: 10.1194/jlr.m500533-jlr200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The relevance of apolipoprotein A-V (apoA-V) for human lipid homeostasis is underscored by genetic association studies and the identification of truncation-causing mutations in the APOA5 gene as a cause of type V hyperlipidemia, compatible with an LPL-activating role of apoA-V. An inverse correlation between plasma apoA-V and triglyceride (TG) levels has been surmised from animal data. Recent studies in human subjects using (semi)quantitative immunoassays, however, do not provide unambiguous support for such a relationship. Here, we used a novel, validated ELISA to measure plasma apoA-V levels in patients (n = 28) with hypertriglyceridemia (HTG; 1.8-78.7 mmol TG/l) and normolipidemic controls (n = 42). Unexpectedly, plasma apoA-V levels were markedly increased in the HTG subjects compared with controls (1,987 vs. 258 ng/ml; P < 0.001). In the HTG group, apoA-V and TG were positively correlated (r = +0.44, P = 0.02). In addition, we noted an increased level of the LPL-inhibitory protein apoC-III in the HTG group (45.8 vs. 10.6 mg/dl in controls; P < 0.001). The correlation between apoA-V and TG levels in the HTG group disappeared (partial r = +0.09, P = 0.65) when controlling for apoC-III levels. In contrast, apoC-III and TG remained positively correlated in this group when controlling for apoA-V (partial r = +0.43, P = 0.025). Our findings suggest that in HTG patients, increased TG levels are accompanied by high plasma levels of apoA-V and apoC-III, apolipoproteins with opposite modes of action. This study provides evidence for a complex interaction between apoA-V and apoC-III in patients with severe HTG.
Collapse
Affiliation(s)
- Frank G Schaap
- Academic Medical Center Liver Center, 1105 BK Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Vaessen SFC, Schaap FG, Kuivenhoven JA, Groen AK, Hutten BA, Boekholdt SM, Hattori H, Sandhu MS, Bingham SA, Luben R, Palmen JA, Wareham NJ, Humphries SE, Kastelein JJP, Talmud PJ, Khaw KT. Apolipoprotein A-V, triglycerides and risk of coronary artery disease: the prospective Epic-Norfolk Population Study. J Lipid Res 2006; 47:2064-70. [PMID: 16769999 DOI: 10.1194/jlr.m600233-jlr200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In mouse models, apolipoprotein A-V (apoA-V) exhibits triglyceride (TG)-lowering effects. We investigated the apoA-V/TG relationship and the association of apoA-V with coronary artery disease (CAD) risk by determining serum apoA-V levels and genotypes in a nested case-control (n = 1,034/2,031) study. Both univariate and multivariate apoA-V levels showed no association with future CAD (P = 0.4 and 0.5, respectively). Unexpectedly, there was a significant positive correlation between serum apoA-V and TG in men and women (r = 0.36 and 0.28, respectively, P < 0.001 each) but a negative correlation between apoA-V and LPL mass (r = -0.14 and -0.12 for men and women respectively, P < 0.001 each). The frequency of the c.56C>G polymorphism did not differ between cases and controls despite significant positive association of c.56G with both apoA-V and TG levels. For -1131T>C, the minor allele was significantly associated with lower apoA-V yet higher TG levels and was overrepresented in cases (P = 0.047). The association of -1131T>C with CAD risk, however, was independent of apoA-V levels and likely acts through linkage disequilibrium with APOC3 variants. The positive correlation of apoA-V levels with TG levels, negative correlation with LPL levels, and lack of association with CAD risk highlight the need for further human studies to clarify the role of apoA-V.
Collapse
Affiliation(s)
- Stefan F C Vaessen
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Rufibach LE, Duncan SA, Battle M, Deeb SS. Transcriptional regulation of the human hepatic lipase (LIPC) gene promoter. J Lipid Res 2006; 47:1463-77. [PMID: 16603721 DOI: 10.1194/jlr.m600082-jlr200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hepatic lipase (HL) plays a key role in the metabolism of plasma lipoproteins, and its level of activity requires tight regulation, given the association of both low and high levels with atherosclerosis and coronary artery disease. However, little is known about the factors responsible for HL expression. Here, we report that the human hepatic lipase gene (LIPC) promoter is regulated by hepatocyte nuclear factor 4alpha (HNF4alpha), peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha), apolipoprotein A-I regulatory protein-1 (ARP-1), and hepatocyte nuclear factor 1alpha (HNF1alpha). Reporter analysis showed that HNF4alpha directly regulates the LIPC promoter via two newly identified direct repeat elements, DR1 and DR4. PGC-1alpha is capable of stimulating the HNF4alpha-dependent transactivation of the LIPC promoter. ARP-1 displaces HNF4alpha from the DR1 site and blocks its ability to activate the LIPC promoter. Induction by HNF1alpha requires the HNF1 binding site and upon cotransfection with HNF4alpha leads to an additive effect. In addition, the in vivo relevance of HNF4alpha in LIPC expression is shown by the ability of the HNF4alpha antagonist Medica 16 to repress endogenous LIPC mRNA expression. Furthermore, disruption of Hnf4alpha in mice prevents the expression of HL mRNA in liver. The overall effect these transcription factors have on HL expression will ultimately depend on the interplay between these various factors and their relative intracellular concentrations.
Collapse
Affiliation(s)
- Laura E Rufibach
- Department of Medical Genetics, University of Washington, Seattle, USA.
| | | | | | | |
Collapse
|
32
|
Becker S, Schomburg L, Renko K, Tölle M, van der Giet M, Tietge UJF. Altered apolipoprotein A-V expression during the acute phase response is independent of plasma triglyceride levels in mice and humans. Biochem Biophys Res Commun 2005; 339:833-9. [PMID: 16325772 DOI: 10.1016/j.bbrc.2005.11.105] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Accepted: 11/10/2005] [Indexed: 12/12/2022]
Abstract
Plasma triglyceride (TG) levels are altered during the acute phase response (APR). Plasma levels of the recently discovered apolipoprotein A-V (apoA-V) are inversely associated with plasma TG. The aim of this study was to investigate the change of apoA-V plasma levels and hepatic apoA-V expression during the APR in relation to plasma TG. During human APR plasma apoA-V was decreased as were plasma TG (each P<0.01). Also early in the course of the murine APR plasma apoA-V levels and hepatic apoA-V expression were decreased and changed in the same direction as plasma TG. Treatment of HepG2 cells with TNF-alpha and IL-1beta decreased apoA-V mRNA levels early by 42% and 55%, respectively (each P<0.001). However, in promoter/reporter assays the human apoA-V promoter was unresponsive to proinflammatory cytokines. Instead, we demonstrate that a significant decrease in apoA-V mRNA stability in response to treatment with TNF-alpha and IL-1beta is the underlying basis of decreased apoA-V expression during the APR (P<0.05). These data demonstrate that (i) apoA-V expression decreases early during the APR due to changes in mRNA stability, and (ii) during the APR apoA-V is not inversely related to plasma TG levels in mice and humans, thereby identifying a relevant pathophysiological setting, in which the previously reported close inverse association between these parameters does not hold true.
Collapse
Affiliation(s)
- Steffi Becker
- Department of Medicine, Charité Campus Mitte, Berlin, Germany
| | | | | | | | | | | |
Collapse
|