1
|
Moghbeli M. MicroRNAs as the critical regulators of bone metastasis during prostate tumor progression. Int J Biol Macromol 2025; 309:142912. [PMID: 40203904 DOI: 10.1016/j.ijbiomac.2025.142912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/02/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
Prostate cancer (PCa) is the most prevalent cancer among men globally. Although, there are various therapeutic methods for the localized or advanced cancers, there is still a high rate of mortality among PCa patients that is mainly associated with bone metastasis in advanced tumors. There are few options available for treating bone metastasis in PCa, which only provide symptom relief without curing the disease. Therefore, it is crucial to evaluate the molecular mechanisms associated with bone metastasis of PCa cells to suggest the novel diagnostic and therapeutic approaches that could lower the morbidity and mortality rates in PCa patients. MicroRNAs (miRNAs) are involved in regulation of various pathophysiological processes such as tumor growth and osteoblasts/osteoclasts formation. Since, miRNA deregulation has been also frequently observed in PCa patients with bone metastasis, we discussed the role of miRNAs in bone metastasis during PCa progression. It has been reported that miRNAs mainly reduced the ability of PCa tumor cells for the bone metastasis through the regulation of WNT, NF-kB, PI3K/AKT, and TGF-β signaling pathways. They also affected the EMT process, transcription factors, and structural proteins to regulate the bone metastasis during PCa progression. This review paves the way to suggest the miRNAs as the reliable markers not only for the non-invasive early diagnosis, but also for the targeted therapy of PCa tumors with bone metastasis.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Guo J, Ma RY, Qian BZ. Macrophage heterogeneity in bone metastasis. J Bone Oncol 2024; 45:100598. [PMID: 38585688 PMCID: PMC10997910 DOI: 10.1016/j.jbo.2024.100598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 04/09/2024] Open
Abstract
Previous studies illustrated that macrophage, a type of innate immune cell, plays critical roles in tumour progression and metastasis. Bone is the most frequent site of metastasis for several cancer types including breast, prostate, and lung. In bone metastasis, osteoclast, a macrophage subset specialized in bone resorption, was heavily investigated in the past. Recent studies illustrated that other macrophage subsets, e.g. monocyte-derived macrophages, and bone resident macrophages, promoted bone metastasis independent of osteoclast function. These novel mechanisms further improved our understanding of macrophage heterogeneity in the context of bone metastasis and illustrated new opportunities for future studies.
Collapse
Affiliation(s)
| | | | - Bin-Zhi Qian
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, The Human Phenome Institute, Zhangjiang-Fudan International Innovation Center, Fudan University, Shanghai 200438, China
| |
Collapse
|
3
|
Li J, Wu J, Xie Y, Yu X. Bone marrow adipocytes and lung cancer bone metastasis: unraveling the role of adipokines in the tumor microenvironment. Front Oncol 2024; 14:1360471. [PMID: 38571500 PMCID: PMC10987778 DOI: 10.3389/fonc.2024.1360471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
Bone is a common site of metastasis for lung cancer. The "seed and soil" hypothesis suggests that the bone marrow microenvironment ("soil") may provide a conducive survival environment for metastasizing tumor cells ("seeds"). The bone marrow microenvironment, comprising a complex array of cells, includes bone marrow adipocytes (BMAs), which constitute about 70% of the adult bone marrow volume and may play a significant role in tumor bone metastasis. BMAs can directly provide energy for tumor cells, promoting their proliferation and migration. Furthermore, BMAs participate in the tumor microenvironment's osteogenesis regulation, osteoclast(OC) regulation, and immune response through the secretion of adipokines, cytokines, and inflammatory factors. However, the precise mechanisms of BMAs in lung cancer bone metastasis remain largely unclear. This review primarily explores the role of BMAs and their secreted adipokines (leptin, adiponectin, Nesfatin-1, Resistin, chemerin, visfatin) in lung cancer bone metastasis, aiming to provide new insights into the mechanisms and clinical treatment of lung cancer bone metastasis.
Collapse
Affiliation(s)
- Jian Li
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Endocrinology and Metabolism, Shandong Second Provincial General Hospital, Jinan, China
| | - Jialu Wu
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yanni Xie
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Ling W, Johnson SK, Mehdi SJ, Alapat DV, Bauer M, Zangari M, Schinke C, Thanendrarajan S, van Rhee F, Yaccoby S. EDNRA-Expressing Mesenchymal Cells Are Expanded in Myeloma Interstitial Bone Marrow and Associated with Disease Progression. Cancers (Basel) 2023; 15:4519. [PMID: 37760488 PMCID: PMC10526862 DOI: 10.3390/cancers15184519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Multiple myeloma (MM) induces dysfunctional bone marrow (BM) mesenchymal cells and neoangiogenesis. Pericytes and smooth muscle cells (SMCs) could detach from vessels and become cancer-associated fibroblasts. We found that the pericyte and SMC marker endothelin receptor type A (EDNRA) is overexpressed in whole MM bone biopsies; we sought to characterize its expression. EDNRA expression gradually increased with disease progression. High-risk MM patients had higher EDNRA expression than low-risk MM patients and EDNRA expression was highest in focal lesions. High EDNRA expression was associated with high expression of pericyte markers (e.g., RGS5, POSTN, and CD146) and the angiogenic marker FLT1. A single-cell analysis of unexpanded BM mesenchymal cells detected EDNRA expression in a subset of cells that coexpressed mesenchymal cell markers and had higher expression of proliferation genes. Immunohistochemistry revealed that the number of EDNRA+ cells in the interstitial BM increased as MM progressed; EDNRA+ cells were prevalent in areas near the MM focal growth. EDNRA+ cells were detached from CD34+ angiogenic cells and coexpressed RGS5 and periostin. Therefore, they likely originated from pericytes or SMCs. These findings identify a novel microenvironmental biomarker in MM and suggest that the presence of detached EDNRA+ cells indicates disrupted vasculature and increased angiogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Shmuel Yaccoby
- Myeloma Center, Department of Internal Medicine, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock 72205, AR, USA; (W.L.); (S.K.J.); (S.J.M.); (D.V.A.); (M.B.); (M.Z.); (C.S.); (S.T.); (F.v.R.)
| |
Collapse
|
5
|
Wnt Signaling in the Development of Bone Metastasis. Cells 2022; 11:cells11233934. [PMID: 36497192 PMCID: PMC9739050 DOI: 10.3390/cells11233934] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Wnt signaling occurs through evolutionarily conserved pathways that affect cellular proliferation and fate decisions during development and tissue maintenance. Alterations in these highly regulated pathways, however, play pivotal roles in various malignancies, promoting cancer initiation, growth and metastasis and the development of drug resistance. The ability of cancer cells to metastasize is the primary cause of cancer mortality. Bone is one of the most frequent sites of metastases that generally arise from breast, prostate, lung, melanoma or kidney cancer. Upon their arrival to the bone, cancer cells can enter a long-term dormancy period, from which they can be reactivated, but can rarely be cured. The activation of Wnt signaling during the bone metastasis process was found to enhance proliferation, induce the epithelial-to-mesenchymal transition, promote the modulation of the extracellular matrix, enhance angiogenesis and immune tolerance and metastasize and thrive in the bone. Due to the complexity of Wnt pathways and of the landscape of this mineralized tissue, Wnt function during metastatic progression within bone is not yet fully understood. Therefore, we believe that a better understanding of these pathways and their roles in the development of bone metastasis could improve our understanding of the disease and may constitute fertile ground for potential therapeutics.
Collapse
|
6
|
Tong Y, Cao Y, Jin T, Huang Z, He Q, Mao M. Role of Interleukin-1 family in bone metastasis of prostate cancer. Front Oncol 2022; 12:951167. [PMID: 36237303 PMCID: PMC9552844 DOI: 10.3389/fonc.2022.951167] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/12/2022] [Indexed: 11/28/2022] Open
Abstract
Prostate cancer (PCa) is one of the most fatal diseases in male patients with high bone metastatic potential. Bone metastasis severely shortens overall survival and brings skeletal-related events (SREs) which reduces the life quality of patients, and this situation is currently regarded as irreversible and incurable. The progression and metastasis of PCa are found to be closely associated with inflammatory cytokines and chemokines. As pivotal members of inflammatory cytokines, Interleukin-1 (IL-1) family plays a crucial role in this process. Elevated expression of IL-1 family was detected in PCa patients with bone metastasis, and accumulating evidences proved that IL-1 family could exert vital effects on the progression and bone metastasis of many cancers, while some members have dual effects. In this review, we discuss the role of IL-1 family in the bone metastasis of PCa. Furthermore, we demonstrate that many members of IL-1 family could act as pivotal biomarkers to predict the clinical stage and prognosis of PCa patients. More importantly, we have elucidated the role of IL-1 family in the bone metastasis of PCa, which could provide potential targets for the treatment of PCa bone metastasis and probable directions for future research.
Collapse
Affiliation(s)
- Yuanhao Tong
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Yinghao Cao
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianzhe Jin
- Department of Gynecologic Oncology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhengwei Huang
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Qinyuan He
- Organization Department, Suzhou Traditional Chinese Medicine Hospital, Suzhou, China
| | - Min Mao
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Min Mao,
| |
Collapse
|
7
|
Antagonizing exosomal miR-18a-5p derived from prostate cancer cells ameliorates metastasis-induced osteoblastic lesions by targeting Hist1h2bc and activating Wnt/β-catenin pathway. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
8
|
Jiang H, Zhang Z, Yu Y, Chu HY, Yu S, Yao S, Zhang G, Zhang BT. Drug Discovery of DKK1 Inhibitors. Front Pharmacol 2022; 13:847387. [PMID: 35355709 PMCID: PMC8959454 DOI: 10.3389/fphar.2022.847387] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/21/2022] [Indexed: 12/24/2022] Open
Abstract
Dickkopf-1 (DKK1) is a well-characterized Wnt inhibitor and component of the Wnt/β-catenin signaling pathway, whose dysregulation is associated with multiple abnormal pathologies including osteoporosis, Alzheimer's disease, diabetes, and various cancers. The Wnt signaling pathway has fundamental roles in cell fate determination, cell proliferation, and survival; thus, its mis-regulation can lead to disease. Although DKK1 is involved in other signaling pathways, including the β-catenin-independent Wnt pathway and the DKK1/CKAP4 pathway, the inhibition of DKK1 to propagate Wnt/β-catenin signals has been validated as an effective way to treat related diseases. In fact, strategies for developing DKK1 inhibitors have produced encouraging clinical results in different pathological models, and many publications provide detailed information about these inhibitors, which include small molecules, antibodies, and nucleic acids, and may function at the protein or mRNA level. However, no systematic review has yet provided an overview of the various aspects of their development and prospects. Therefore, we review the DKK1 inhibitors currently available or under study and provide an outlook on future studies involving DKK1 and drug discovery.
Collapse
Affiliation(s)
- Hewen Jiang
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Zongkang Zhang
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Yuanyuan Yu
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China.,Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Hang Yin Chu
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Sifan Yu
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China.,Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Shanshan Yao
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Ge Zhang
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China.,Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Bao-Ting Zhang
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| |
Collapse
|
9
|
Inhibiting Endothelin Receptors with Macitentan Strengthens the Bone Protective Action of RANKL Inhibition and Reduces Metastatic Dissemination in Osteosarcoma. Cancers (Basel) 2022; 14:cancers14071765. [PMID: 35406536 PMCID: PMC8997105 DOI: 10.3390/cancers14071765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary The efficacy of current osteosarcoma therapy is diminished by two adverse events, namely resistance to chemotherapy and metastatic dissemination. In recent decades, research has been devoted to reducing these adverse events. Inhibiting bone resorption has shown promising effects on metastatic dissemination and tumor growth, with, however, the formation of significant tumoral mineralized tissue. Endothelin signaling is implicated in activating the cell that forms the mineralized tissues, consequently the impact of inhibiting it alone and in combination with the inhibition of bone resorption was evaluated using osteosarcoma models. The results obtained showed that inhibiting endothelin signaling significantly reduced the formation of mineralized tumor tissue concomitantly to metastatic dissemination without affecting sensitivity to chemotherapy. This inhibition appears to be a promising new therapeutic tool in the fight against osteosarcoma. Abstract Current treatments for osteosarcoma, combining conventional polychemotherapy and surgery, make it possible to attain a five-year survival rate of 70% in affected individuals. The presence of chemoresistance and metastases significantly shorten the patient’s lifespan, making identification of new therapeutic tools essential. Inhibiting bone resorption has been shown to be an efficient adjuvant strategy impacting the metastatic dissemination of osteosarcoma, tumor growth, and associated bone destruction. Unfortunately, over-apposition of mineralized matrix by normal and tumoral osteoblasts was associated with this inhibition. Endothelin signaling is implicated in the functional differentiation of osteoblasts, raising the question of the potential value of inhibiting it alone, or in combination with bone resorption repression. Using mouse models of osteosarcoma, the impact of macitentan, an endothelin receptor inhibitor, was evaluated regarding tumor growth, metastatic dissemination, matrix over-apposition secondary to RANKL blockade, and safety when combined with chemotherapy. The results showed that macitentan has no impact on tumor growth or sensitivity to ifosfamide, but significantly reduces tumoral osteoid tissue formation and the metastatic capacity of the osteosarcoma. To conclude, macitentan appears to be a promising therapeutic adjuvant for osteosarcoma alone or associated with bone resorption inhibitors.
Collapse
|
10
|
Ban J, Fock V, Aryee DNT, Kovar H. Mechanisms, Diagnosis and Treatment of Bone Metastases. Cells 2021; 10:2944. [PMID: 34831167 PMCID: PMC8616226 DOI: 10.3390/cells10112944] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 12/24/2022] Open
Abstract
Bone and bone marrow are among the most frequent metastatic sites of cancer. The occurrence of bone metastasis is frequently associated with a dismal disease outcome. The prevention and therapy of bone metastases is a priority in the treatment of cancer patients. However, current therapeutic options for patients with bone metastatic disease are limited in efficacy and associated with increased morbidity. Therefore, most current therapies are mainly palliative in nature. A better understanding of the underlying molecular pathways of the bone metastatic process is warranted to develop novel, well-tolerated and more successful treatments for a significant improvement of patients' quality of life and disease outcome. In this review, we provide comparative mechanistic insights into the bone metastatic process of various solid tumors, including pediatric cancers. We also highlight current and innovative approaches to biologically targeted therapy and immunotherapy. In particular, we discuss the role of the bone marrow microenvironment in the attraction, homing, dormancy and outgrowth of metastatic tumor cells and the ensuing therapeutic implications. Multiple signaling pathways have been described to contribute to metastatic spread to the bone of specific cancer entities, with most knowledge derived from the study of breast and prostate cancer. However, it is likely that similar mechanisms are involved in different types of cancer, including multiple myeloma, primary bone sarcomas and neuroblastoma. The metastatic rate-limiting interaction of tumor cells with the various cellular and noncellular components of the bone-marrow niche provides attractive therapeutic targets, which are already partially exploited by novel promising immunotherapies.
Collapse
Affiliation(s)
- Jozef Ban
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (J.B.); (V.F.); (D.N.T.A.)
| | - Valerie Fock
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (J.B.); (V.F.); (D.N.T.A.)
| | - Dave N. T. Aryee
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (J.B.); (V.F.); (D.N.T.A.)
- Department of Pediatrics, Medical University Vienna, 1090 Vienna, Austria
| | - Heinrich Kovar
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (J.B.); (V.F.); (D.N.T.A.)
- Department of Pediatrics, Medical University Vienna, 1090 Vienna, Austria
| |
Collapse
|
11
|
Ching K, Houard X, Berenbaum F, Wen C. Hypertension meets osteoarthritis - revisiting the vascular aetiology hypothesis. Nat Rev Rheumatol 2021; 17:533-549. [PMID: 34316066 DOI: 10.1038/s41584-021-00650-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2021] [Indexed: 02/07/2023]
Abstract
Osteoarthritis (OA) is a whole-joint disease characterized by subchondral bone perfusion abnormalities and neovascular invasion into the synovium and articular cartilage. In addition to local vascular disturbance, mounting evidence suggests a pivotal role for systemic vascular pathology in the aetiology of OA. This Review outlines the current understanding of the close relationship between high blood pressure (hypertension) and OA at the crossroads of epidemiology and molecular biology. As one of the most common comorbidities in patients with OA, hypertension can disrupt joint homeostasis both biophysically and biochemically. High blood pressure can increase intraosseous pressure and cause hypoxia, which in turn triggers subchondral bone and osteochondral junction remodelling. Furthermore, systemic activation of the renin-angiotensin and endothelin systems can affect the Wnt-β-catenin signalling pathway locally to govern joint disease. The intimate relationship between hypertension and OA indicates that endothelium-targeted strategies, including re-purposed FDA-approved antihypertensive drugs, could be useful in the treatment of OA.
Collapse
Affiliation(s)
- Karen Ching
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Xavier Houard
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, Paris, France
| | - Francis Berenbaum
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, Paris, France
- Department of Rheumatology, Sorbonne Université, Saint-Antoine Hospital, Paris, France
| | - Chunyi Wen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| |
Collapse
|
12
|
Moon HH, Clines KL, O'Day PJ, Al-Barghouthi BM, Farber EA, Farber CR, Auchus RJ, Clines GA. Osteoblasts Generate Testosterone From DHEA and Activate Androgen Signaling in Prostate Cancer Cells. J Bone Miner Res 2021; 36:1566-1579. [PMID: 33900658 PMCID: PMC8565089 DOI: 10.1002/jbmr.4313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 01/25/2023]
Abstract
Bone metastasis is a complication of prostate cancer in up to 90% of men afflicted with advanced disease. Therapies that reduce androgen exposure remain at the forefront of treatment. However, most prostate cancers transition to a state whereby reducing testicular androgen action becomes ineffective. A common mechanism of this transition is intratumoral production of testosterone (T) using the adrenal androgen precursor dehydroepiandrosterone (DHEA) through enzymatic conversion by 3β- and 17β-hydroxysteroid dehydrogenases (3βHSD and 17βHSD). Given the ability of prostate cancer to form blastic metastases in bone, we hypothesized that osteoblasts might be a source of androgen synthesis. RNA expression analyses of murine osteoblasts and human bone confirmed that at least one 3βHSD and 17βHSD enzyme isoform was expressed, suggesting that osteoblasts are capable of generating androgens from adrenal DHEA. Murine osteoblasts were treated with 100 nM and 1 μM DHEA or vehicle control. Conditioned media from these osteoblasts were assayed for intermediate and active androgens by liquid chromatography-tandem mass spectrometry. As DHEA was consumed, the androgen intermediates androstenediol and androstenedione were generated and subsequently converted to T. Conditioned media of DHEA-treated osteoblasts increased androgen receptor (AR) signaling, prostate-specific antigen (PSA) production, and cell numbers of the androgen-sensitive prostate cancer cell lines C4-2B and LNCaP. DHEA did not induce AR signaling in osteoblasts despite AR expression in this cell type. We describe an unreported function of osteoblasts as a source of T that is especially relevant during androgen-responsive metastatic prostate cancer invasion into bone. © 2021 American Society for Bone and Mineral Research (ASBMR). This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Henry H Moon
- Department of Internal Medicine, Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Katrina L Clines
- Department of Internal Medicine, Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Patrick J O'Day
- Department of Internal Medicine, Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI, USA
| | | | - Emily A Farber
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Charles R Farber
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA.,Departments of Public Health Sciences, and Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Richard J Auchus
- Department of Internal Medicine, Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI, USA.,Endocrinology & Metabolism Section, Medicine Service, Veterans Affairs Medical Center, Ann Arbor, MI, USA
| | - Gregory A Clines
- Department of Internal Medicine, Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI, USA.,Endocrinology & Metabolism Section, Medicine Service, Veterans Affairs Medical Center, Ann Arbor, MI, USA
| |
Collapse
|
13
|
Patil KC, Soekmadji C. Extracellular Vesicle-Mediated Bone Remodeling and Bone Metastasis: Implications in Prostate Cancer. Subcell Biochem 2021; 97:297-361. [PMID: 33779922 DOI: 10.1007/978-3-030-67171-6_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bone metastasis is the tendency of certain primary tumors to spawn and dictate secondary neoplasia in the bone. The process of bone metastasis is regulated by the dynamic crosstalk between metastatic cancer cells, cellular components of the bone marrow microenvironment (osteoblasts, osteoclasts, and osteocytes), and the bone matrix. The feed-forward loop mechanisms governs the co-option of homeostatic bone remodeling by cancer cells in bone. Recent developments have highlighted the discovery of extracellular vesicles (EVs) and their diverse roles in distant outgrowths. Several studies have implicated EV-mediated interactions between cancer cells and the bone microenvironment in synergistically promoting pathological skeletal metabolism in the metastatic site. Nevertheless, the potential role that EVs serve in arbitrating intricate sequences of coordinated events within the bone microenvironment remains an emerging field. In this chapter, we review the role of cellular participants and molecular mechanisms in regulating normal bone physiology and explore the progress of current research into bone-derived EVs in directly triggering and coordinating the processes of physiological bone remodeling. In view of the emerging role of EVs in interorgan crosstalk, this review also highlights the multiple systemic pathophysiological processes orchestrated by the EVs to direct organotropism in bone in prostate cancer. Given the deleterious consequences of bone metastasis and its clinical importance, in-depth knowledge of the multifarious role of EVs in distant organ metastasis is expected to open new possibilities for prognostic evaluation and therapeutic intervention for advanced bone metastatic prostate cancer.
Collapse
Affiliation(s)
- Kalyani C Patil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Carolina Soekmadji
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia. .,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
14
|
YAP and endothelin-1 signaling: an emerging alliance in cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:27. [PMID: 33422090 PMCID: PMC7797087 DOI: 10.1186/s13046-021-01827-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/03/2021] [Indexed: 12/14/2022]
Abstract
The rational making the G protein-coupled receptors (GPCR) the centerpiece of targeted therapies is fueled by the awareness that GPCR-initiated signaling acts as pivotal driver of the early stages of progression in a broad landscape of human malignancies. The endothelin-1 (ET-1) receptors (ET-1R), known as ETA receptor (ETAR) and ETB receptor (ETBR) that belong to the GPCR superfamily, affect both cancer initiation and progression in a variety of cancer types. By the cross-talking with multiple signaling pathways mainly through the scaffold protein β-arrestin1 (β-arr1), ET-1R axis cooperates with an array of molecular determinants, including transcription factors and co-factors, strongly affecting tumor cell fate and behavior. In this scenario, recent findings shed light on the interplay between ET-1 and the Hippo pathway. In ETAR highly expressing tumors ET-1 axis induces the de-phosphorylation and nuclear accumulation of the Hippo pathway downstream effectors, the paralogous transcriptional cofactors Yes-associated protein (YAP) and Transcriptional coactivator with PDZ-binding motif (TAZ). Recent evidence have discovered that ET-1R/β-arr1 axis instigates a transcriptional interplay involving YAP and mutant p53 proteins, which share a common gene signature and cooperate in a oncogenic signaling network. Mechanistically, YAP and mutp53 are enrolled in nuclear complexes that turn on a highly selective YAP/mutp53-dependent transcriptional response. Notably, ET-1R blockade by the FDA approved dual ET-1 receptor antagonist macitentan interferes with ET-1R/YAP/mutp53 signaling interplay, through the simultaneous suppression of YAP and mutp53 functions, hampering metastasis and therapy resistance. Based on these evidences, we aim to review the recent findings linking the GPCR signaling, as for ET-1R, to YAP/TAZ signaling, underlining the clinical relevance of the blockade of such signaling network in the tumor and microenvironmental contexts. In particular, we debate the clinical implications regarding the use of dual ET-1R antagonists to blunt gain of function activity of mutant p53 proteins and thereby considering them as a potential therapeutic option for mutant p53 cancers. The identification of ET-1R/β-arr1-intertwined and bi-directional signaling pathways as targetable vulnerabilities, may open new therapeutic approaches able to disable the ET-1R-orchestrated YAP/mutp53 signaling network in both tumor and stromal cells and concurrently sensitizes to high-efficacy combined therapeutics.
Collapse
|
15
|
Infante A, Gener B, Vázquez M, Olivares N, Arrieta A, Grau G, Llano I, Madero L, Bueno AM, Sagastizabal B, Gerovska D, Araúzo‐Bravo MJ, Astigarraga I, Rodríguez CI. Reiterative infusions of MSCs improve pediatric osteogenesis imperfecta eliciting a pro-osteogenic paracrine response: TERCELOI clinical trial. Clin Transl Med 2021; 11:e265. [PMID: 33463067 PMCID: PMC7805402 DOI: 10.1002/ctm2.265] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Osteogenesis imperfecta (OI) is a rare genetic disease characterized by bone fragility, with a wide range in the severity of clinical manifestations. The majority of cases are due to mutations in the COL1A1 or COL1A2 genes, which encode type I collagen. Mesenchymal stem cells (MSCs), as the progenitors of the osteoblasts, the main type I collagen secreting cell type in the bone, have been proposed and tested as an innovative therapy for OI with promising but transient outcomes. METHODS To overcome the short-term effect of MSCs therapy, we performed a phase I clinical trial based on reiterative infusions of histocompatible MSCs, administered in a 2.5-year period, in two pediatric patients affected by severe and moderate OI. The aim of this study was to assess the safety and effectiveness of this cell therapy in nonimmunosuppressed OI patients. The host response to MSCs was studied by analyzing the sera from OI patients, collected before, during, and after the cell therapy. RESULTS We first demonstrated that the sequential administration of MSCs was safe and improved the bone parameters and quality of life of OI patients along the cell treatment plus 2-year follow-up period. Moreover, the study of the mechanism of action indicated that MSCs therapy elicited a pro-osteogenic paracrine response in patients, especially noticeable in the patient affected by severe OI. CONCLUSIONS Our results demonstrate the feasibility and potential of reiterative MSCs infusion for two pediatric OI and highlight the paracrine response shown by patients as a consequence of MSCs treatment.
Collapse
Affiliation(s)
- Arantza Infante
- Stem Cells and Cell Therapy LaboratoryBiocruces Bizkaia Health Research InstituteCruces University HospitalBarakaldoSpain
| | - Blanca Gener
- Stem Cells and Cell Therapy LaboratoryBiocruces Bizkaia Health Research InstituteCruces University HospitalBarakaldoSpain
- Service of GeneticsCruces University HospitalBarakaldoSpain
| | - Miguel Vázquez
- Department of PediatricsBiocruces Bizkaia Health Research InstituteCruces University HospitalBarakaldoSpain
| | - Nerea Olivares
- Department of Biochemistry, Immunology UnitCruces University HospitalBarakaldoSpain
| | - Arantza Arrieta
- Department of Biochemistry, Immunology UnitCruces University HospitalBarakaldoSpain
| | - Gema Grau
- Department of PediatricsBiocruces Bizkaia Health Research InstituteCruces University HospitalBarakaldoSpain
| | - Isabel Llano
- Service of GeneticsCruces University HospitalBarakaldoSpain
| | - Luis Madero
- Department of Pediatric Hematology, Oncology and Stem CellsNiño Jesús University Children´s HospitalMadridSpain
| | - Ana Maria Bueno
- Department of Orthopedic SurgeryGetafe University HospitalMadridSpain
| | | | - Daniela Gerovska
- Computational Biology and Systems Biomedicine Research GroupBiodonostia Health Research InstituteDonostiaSpain
| | - Marcos J Araúzo‐Bravo
- Computational Biology and Systems Biomedicine Research GroupBiodonostia Health Research InstituteDonostiaSpain
| | - Itziar Astigarraga
- Department of PediatricsBiocruces Bizkaia Health Research InstituteCruces University HospitalBarakaldoSpain
- Department of PediatricsBasque Country University UPV/EHULeioaSpain
| | - Clara I. Rodríguez
- Stem Cells and Cell Therapy LaboratoryBiocruces Bizkaia Health Research InstituteCruces University HospitalBarakaldoSpain
| |
Collapse
|
16
|
Breast Cancer and Microcalcifications: An Osteoimmunological Disorder? Int J Mol Sci 2020; 21:ijms21228613. [PMID: 33203195 PMCID: PMC7696282 DOI: 10.3390/ijms21228613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
The presence of microcalcifications in the breast microenvironment, combined with the growing evidences of the possible presence of osteoblast-like or osteoclast-like cells in the breast, suggest the existence of active processes of calcification in the breast tissue during a woman’s life. Furthermore, much evidence that osteoimmunological disorders, such as osteoarthritis, rheumatoid arthritis, or periodontitis influence the risk of developing breast cancer in women exists and vice versa. Antiresorptive drugs benefits on breast cancer incidence and progression have been reported in the past decades. More recently, biological agents targeting pro-inflammatory cytokines used against rheumatoid arthritis also demonstrated benefits against breast cancer cell lines proliferation, viability, and migratory abilities, both in vitro and in vivo in xenografted mice. Hence, it is tempting to hypothesize that breast carcinogenesis should be considered as a potential osteoimmunological disorder. In this review, we compare microenvironments and molecular characteristics in the most frequent osteoimmunological disorders with major events occurring in a woman’s breast during her lifetime. We also highlight what the use of bone anabolic drugs, antiresorptive, and biological agents targeting pro-inflammatory cytokines against breast cancer can teach us.
Collapse
|
17
|
Ibrahimi Disha S, Furlani B, Drevensek G, Plut A, Yanagisawa M, Hudoklin S, Prodan Žitnik I, Marc J, Drevensek M. The role of endothelin B receptor in bone modelling during orthodontic tooth movement: a study on ET B knockout rats. Sci Rep 2020; 10:14226. [PMID: 32848199 PMCID: PMC7450079 DOI: 10.1038/s41598-020-71159-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
The endothelin system has an important role in bone modelling during orthodontic tooth movement (OTM); however, little is known about the involvement of endothelin B receptors (ETB) in this process. The aim of this study was to evaluate the role of ETB in bone modelling during OTM using ETB knockout rats (ETB-KO). Thirty-two male rats were divided into 4 groups (n = 8 per group): the ETB-KO appliance group, ETB-KO control group, wild type (ETB-WT) appliance group, and ETB-WT control group. The appliance consisted of a super-elastic closed-coil spring placed between the first and second left maxillary molar and the incisors. Tooth movement was measured on days 0 and 35, and maxillary alveolar bone volume, osteoblast, and osteoclast volume were determined histomorphometrically on day 35 of OTM. Next, we determined the serum endothelin 1 (ET-1) level and gene expression levels of the osteoclast activity marker cathepsin K and osteoblast activity markers osteocalcin and dentin matrix acidic phosphoprotein 1 (DMP1) on day 35. The ETB-KO appliance group showed significantly lower osteoblast activity, diminished alveolar bone volume and less OTM than the ETB-WT appliance group. Our results showed that ETB is involved in bone modelling in the late stage of OTM.
Collapse
Affiliation(s)
- S Ibrahimi Disha
- Department of Orthodontics, Faculty of Medicine, University of Ljubljana, Hrvatski trg 6, 1000, Ljubljana, Slovenia
| | - B Furlani
- Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - G Drevensek
- Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - A Plut
- Department of Orthodontics, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - M Yanagisawa
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
| | - S Hudoklin
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - I Prodan Žitnik
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - J Marc
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - M Drevensek
- Department of Orthodontics, Faculty of Medicine, University of Ljubljana, Hrvatski trg 6, 1000, Ljubljana, Slovenia. .,Department of Orthodontics, University Medical Center Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
18
|
Wang M, Xia F, Wei Y, Wei X. Molecular mechanisms and clinical management of cancer bone metastasis. Bone Res 2020; 8:30. [PMID: 32793401 PMCID: PMC7391760 DOI: 10.1038/s41413-020-00105-1] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/03/2019] [Accepted: 10/23/2019] [Indexed: 02/05/2023] Open
Abstract
As one of the most common metastatic sites of malignancies, bone has a unique microenvironment that allows metastatic tumor cells to grow and flourish. The fenestrated capillaries in the bone, bone matrix, and bone cells, including osteoblasts and osteoclasts, together maintain the homeostasis of the bone microenvironment. In contrast, tumor-derived factors act on bone components, leading to subsequent bone resorption or excessive bone formation. The various pathways involved also provide multiple targets for therapeutic strategies against bone metastases. In this review, we summarize the current understanding of the mechanism of bone metastases. Based on the general process of bone metastases, we specifically highlight the complex crosstalk between tumor cells and the bone microenvironment and the current management of cancer bone metastases.
Collapse
Affiliation(s)
- Manni Wang
- Laboratory of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan P.R. China
| | - Fan Xia
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan P.R. China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan P.R. China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan P.R. China
| |
Collapse
|
19
|
Bone, a Secondary Growth Site of Breast and Prostate Carcinomas: Role of Osteocytes. Cancers (Basel) 2020; 12:cancers12071812. [PMID: 32640686 PMCID: PMC7408809 DOI: 10.3390/cancers12071812] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023] Open
Abstract
Bone is the primarily preferred site for breast and prostate cancer to metastasize. Bone metastases are responsible for most deaths related to breast and prostate cancer. The bone's particular microenvironment makes it conducive for the growth of cancer cells. Studies on bone metastasis have focused on the interaction between cancer cells and the bone microenvironment. Osteocytes, the most common cell type of bone tissue, have received little attention in bone metastasis, although they are master signal sensors, integrators, and skeleton transducers. They play an important role in regulating bone mass by acting on both osteoblasts and osteoclasts, through the release of proteins such as sclerostin, Dickkopf-1 (DKK-1), and fibroblast growth factor 23 (FGF23). Osteocytes have been extensively re-evaluated, in light of their multiple functions: with different experimental approaches, it has been shown that, indeed, osteocytes are actively involved in the colonization of bone tissue by cancer cells. The present review focuses on recent research on the role that osteocytes play in bone metastasis of breast and prostate cancers. Moreover, the studies here summarized open up perspectives for new therapeutic approaches focused on modulating the activity of osteocytes to improve the condition of the bone metastatic patients. A better understanding of the complex interactions between cancer cells and bone-resident cells is indispensable for identifying potential therapeutic targets to stop tumor progression and prevent bone metastases.
Collapse
|
20
|
Ponzetti M, Rucci N. Switching Homes: How Cancer Moves to Bone. Int J Mol Sci 2020; 21:E4124. [PMID: 32527062 PMCID: PMC7313057 DOI: 10.3390/ijms21114124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
Bone metastases (BM) are a very common complication of the most prevalent human cancers. BM are extremely painful and may be life-threatening when associated with hypercalcaemia. BM can lead to kidney failure and cardiac arrhythmias and arrest, but why and how do cancer cells decide to "switch homes" and move to bone? In this review, we will present what answers science has provided so far, with focus on the molecular mechanisms and cellular aspects of well-established findings, such as the concept of "vicious cycle" and "osteolytic" vs. "osteosclerotic" bone metastases; as well as on novel concepts, such as cellular dormancy and extracellular vesicles. At the molecular level, we will focus on hypoxia-associated factors and angiogenesis, the Wnt pathway, parathyroid hormone-related peptide (PTHrP) and chemokines. At the supramolecular/cellular level, we will discuss tumour dormancy, id est the mechanisms through which a small contingent of tumour cells coming from the primary site may be kept dormant in the endosteal niche for many years. Finally, we will present a potential role for the multimolecular mediators known as extracellular vesicles in determining bone-tropism and establishing a premetastatic niche by influencing the bone microenvironment.
Collapse
Affiliation(s)
| | - Nadia Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| |
Collapse
|
21
|
Kar S, Jasuja H, Katti DR, Katti KS. Wnt/β-Catenin Signaling Pathway Regulates Osteogenesis for Breast Cancer Bone Metastasis: Experiments in an In Vitro Nanoclay Scaffold Cancer Testbed. ACS Biomater Sci Eng 2019; 6:2600-2611. [PMID: 33463270 DOI: 10.1021/acsbiomaterials.9b00923] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Breast cancer shows a high affinity toward bone, causing bone-related complications, leading to a poor clinical prognosis. The Wnt/β-catenin signaling pathway has been well-documented for the bone regenerative process; however, the regulation of the Wnt/β-catenin pathway in breast cancer bone metastasis is poorly explored. Here, we report that the Wnt/β-catenin signaling pathway has a significant effect on osteogenesis during breast cancer bone metastasis. In this study, we have created a 3D in vitro breast cancer bone metastatic microenvironment using nanoclay-based scaffolds along with osteogenically differentiated human mesenchymal stem cells (MSCs) and human breast cancer cells (MCF-7 and MDA-MB-231). The results showed upregulation in expressions of Wnt-related factors (Wnt-5a, β-catenin, AXIN2, and LRP5) in sequential cultures of MSCs with MCF-7 as compared to sequential cultures of MSCs with MDA-MB-231. Sequential cultures of MSCs with MCF-7 also showed higher β-catenin expression on the protein levels than sequential cultures of MSCs with MDA-MB-231. Stimulation of Wnt/β-catenin signaling in sequential cultures of MSCs with MCF-7 by ET-1 resulted in increased bone formation, whereas inactivation of Wnt/β-catenin signaling by DKK-1 displayed a significant decrease in bone formation, mimicking bone lesions in breast cancer patients. These data collectively demonstrate that Wnt/β-catenin signaling governs osteogenesis within the tumor-harboring bone microenvironment, leading to bone metastasis. The nanoclay scaffold provides a unique testbed approach for analysis of the pathways of cancer metastasis.
Collapse
Affiliation(s)
- Sumanta Kar
- Center for Engineered Cancer Test Beds, Materials and Nanotechnology Program, and Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Haneesh Jasuja
- Center for Engineered Cancer Test Beds, Materials and Nanotechnology Program, and Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Dinesh R Katti
- Center for Engineered Cancer Test Beds, Materials and Nanotechnology Program, and Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Kalpana S Katti
- Center for Engineered Cancer Test Beds, Materials and Nanotechnology Program, and Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
22
|
Moon HH, Clines KL, Cooks MA, Cialek CA, Esvelt MA, Clines GA. Castration Determines the Efficacy of ETAR Blockade in a Mouse Model of Prostate Cancer Bone Metastasis. Endocrinology 2019; 160:1786-1796. [PMID: 31173072 PMCID: PMC6610212 DOI: 10.1210/en.2019-00261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/24/2019] [Indexed: 02/08/2023]
Abstract
Bone metastasis is a painful complication of advanced prostate cancer. Endothelin-1 is a tumor-secreted factor that plays a central role in osteoblast activation and the osteosclerotic response of prostate cancer metastatic to bone. Antagonists that block the activation of the endothelin A receptor (ETAR), located on osteoblasts, reduce osteoblastic bone lesions in animal models of bone metastasis. However, ETAR antagonists demonstrated limited efficacy in clinical trials of men with advanced prostate cancer who also received standard androgen deprivation therapy (ADT). Previous data from our group suggested that, in a mouse model, ETAR antagonists might only be efficacious when androgen signaling in the osteoblast is lowered beyond the ability of standard ADT. This notion was tested in a mouse model of prostate cancer bone metastasis. Castrated and sham-operated male athymic nude mice underwent intracardiac inoculation of the ARCaPM castration-resistant prostate cancer cell line. The mice were then treated with either the ETAR antagonist zibotentan or a vehicle control to generate four experimental groups: vehicle+sham (Veh+Sham), vehicle+castrate (Veh+Castr), zibotentan+sham (Zibo+Sham), and zibotentan+castrate (Zibo+Castr). The mice were monitored radiographically for the development of skeletal lesions. The Zibo+Castr group had significantly longer survival and a single incidental lesion. Mice in the Zibo+Sham group had the shortest survival and the largest number of skeletal lesions. Survival and skeletal lesions of the Veh+Sham and Veh+Castr groups were intermediate compared with the zibotentan-treated groups. We report a complex interaction between ETAR and androgen signaling, whereby ETAR blockade was most efficacious when combined with complete androgen deprivation.
Collapse
Affiliation(s)
- Henry H Moon
- Department of Internal Medicine, Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, Michigan
| | - Katrina L Clines
- Department of Internal Medicine, Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, Michigan
| | - Mark A Cooks
- Department of Internal Medicine, Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, Michigan
| | - Charlotte A Cialek
- Department of Internal Medicine, Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, Michigan
| | - Marian A Esvelt
- Unit for Laboratory Medicine, University of Michigan, Ann Arbor, Michigan
| | - Gregory A Clines
- Department of Internal Medicine, Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, Michigan
- Veterans Affairs Medical Center, Ann Arbor, Michigan
- Correspondence: Gregory A. Clines, MD, PhD, Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan, Endocrinology Section, Ann Arbor VA Medical Center, 2215 Fuller Road, Research 151, Ann Arbor, Michigan 48105. E-mail:
| |
Collapse
|
23
|
Zarnecki KG, Kristianto J, Charlson J, Wilson B, Blank RD, Shaker JL. Diffuse osteosclerosis as a presentation of recurrent breast cancer: role of endothelin 1. Osteoporos Int 2019; 30:1699-1703. [PMID: 31079185 DOI: 10.1007/s00198-019-04998-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/21/2019] [Indexed: 10/26/2022]
Abstract
UNLABELLED We report a 46-yr-old woman with a history of breast cancer who presented with diffuse myalgias, bone pain, and osteosclerosis. She was found to have recurrent breast cancer producing endothelin-1. INTRODUCTION Acquired osteosclerosis can be caused by various disorders. Endothelin -1 is believed to contribute to osteosclerosis caused by breast cancer. METHODS Although the bone marrow biopsy did not reveal breast cancer, she developed skin lesions consistent with metastatic breast cancer. She ultimately died from progressive disease. At autopsy immunohistochemistry for endothelin-1 was performed on a section from the L5 vertebral body. RESULTS The section from the L5 vertebral body showed small foci of cells consistent with metastatic carcinoma and a prominent sclerotic response. Immunohistochemistry for endothelin-1 was strongly positive. CONCLUSIONS Recurrent breast cancer may present with diffuse osteosclerosis. Endothelin-1 may be a paracrine factor responsible for increased bone formation and osteosclerosis.
Collapse
Affiliation(s)
- K G Zarnecki
- Department of Medicine (Endocrinology), Medical College of Wisconsin, Milwaukee, WI, USA
| | - J Kristianto
- Department of Medicine (Endocrinology), Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Medicine (Endocrinology), University of Wisconsin School of Medicine, Madison, WI, USA
- GRECC Service and William S. Middleton Veterans Hospital, Madison, WI, USA
- Endocrine and Reproductive Physiology Program, University of Wisconsin, Madison, WI, USA
- Unity Biotechnology, Brisbane, CA, USA
| | - J Charlson
- Department of Medicine (Hematology and Oncology), Medical College of Wisconsin, Milwaukee, WI, USA
| | - B Wilson
- Department of Dermatology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - R D Blank
- Department of Medicine (Endocrinology), Medical College of Wisconsin, Milwaukee, WI, USA
- GRECC Service and William S. Middleton Veterans Hospital, Madison, WI, USA
- Medical Service, Clement J. Zablocki VAMC, Milwaukee, WI, USA
| | - J L Shaker
- Department of Medicine (Endocrinology), Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
24
|
Abstract
Bone is the most common site of metastasis for breast cancer. Bone metastasis significantly affects both quality of life and survival of the breast cancer patient. Clinically, complications secondary to bone metastasis include pain, pathologic fractures, spinal cord compression, and hypercalcemia of malignancy. Because bone metastasis is extremely common in patients with metastatic breast cancer, clinical management of bone metastases is an important and challenging aspect of treatment in the metastatic setting.The skeleton is a metabolically active organ system that undergoes continuous remodeling throughout life. A delicate balance of the bone-forming osteoblasts and bone-resorbing osteoclasts in the dynamic microenvironment of the skeleton maintains normal bone remodeling and integrity. The presence of metastatic lesions in bone disrupts the normal bone microenvironment and upsets the fine balance between the key components. The changes in the bone microenvironment then create a vicious cycle that further promotes bone destruction and tumor progression.Various therapeutic options are available for bone metastases of breast cancer. Treatment can be tailored for each patient and, often requires multiple therapeutic interventions. Commonly used modalities include local therapies such as surgery, radiation therapy and radiofrequency ablation (RFA) together with systemic therapies such as endocrine therapy, chemotherapy, monoclonal antibody-based therapy, bone-enhancing therapy and radioisotope therapy. Despite the use of various therapeutic modalities, bone metastases eventually become resistant to therapy, and disease progresses.In this chapter, we describe the clinical picture and biological mechanism of bone metastases in breast cancer. We also discuss known risk factors as well as detection and assessment of bone metastases. We present therapeutic options for bone metastasis using a multidisciplinary approach. Further, we describe future directions for bone metastasis management, focusing on novel bone-specific targeted therapies.
Collapse
|
25
|
Maurizi A, Rucci N. The Osteoclast in Bone Metastasis: Player and Target. Cancers (Basel) 2018; 10:E218. [PMID: 29954079 PMCID: PMC6071064 DOI: 10.3390/cancers10070218] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/21/2018] [Accepted: 06/21/2018] [Indexed: 12/20/2022] Open
Abstract
Bone metastases are frequently the final fate of breast and prostate cancer patients. According to the definition of metastasis as an incurable disease, to date there are no effective treatments for tumor-associated bone metastases and this represents a real challenge for the researchers in the field. The bone is a heterogeneous environment that represents a fertile soil for tumor cells, supporting their growth. Among the different cell types present in the bone, in this review we will focus our attention on the osteoclasts, which are crucial players in the so called “vicious cycle”, a phenomenon triggered by tumor cells eventually leading to both tumor proliferation as well as bone deregulation, thus fueling the development of bone metastasis. The complex network, linking tumor cells to the bone by activating osteoclasts, represents a fruitful target for the treatment of bone metastases. In this review we will describe how tumor cells perturb the bone microenvironment by actively influencing osteoclast formation and activity. Moreover, we will describe the current antiresorptive drugs employed in the treatment of bone metastases as well as new, targeted therapies able to affect both cancer cells and osteoclasts.
Collapse
Affiliation(s)
- Antonio Maurizi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Nadia Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| |
Collapse
|
26
|
Shupp AB, Kolb AD, Mukhopadhyay D, Bussard KM. Cancer Metastases to Bone: Concepts, Mechanisms, and Interactions with Bone Osteoblasts. Cancers (Basel) 2018; 10:E182. [PMID: 29867053 PMCID: PMC6025347 DOI: 10.3390/cancers10060182] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 12/31/2022] Open
Abstract
The skeleton is a unique structure capable of providing support for the body. Bone resorption and deposition are controlled in a tightly regulated balance between osteoblasts and osteoclasts with no net bone gain or loss. However, under conditions of disease, the balance between bone resorption and deposition is upset. Osteoblasts play an important role in bone homeostasis by depositing new bone osteoid into resorption pits. It is becoming increasingly evident that osteoblasts additionally play key roles in cancer cell dissemination to bone and subsequent metastasis. Our laboratory has evidence that when osteoblasts come into contact with disseminated breast cancer cells, the osteoblasts produce factors that initially reduce breast cancer cell proliferation, yet promote cancer cell survival in bone. Other laboratories have demonstrated that osteoblasts both directly and indirectly contribute to dormant cancer cell reactivation in bone. Moreover, we have demonstrated that osteoblasts undergo an inflammatory stress response in late stages of breast cancer, and produce inflammatory cytokines that are maintenance and survival factors for breast cancer cells and osteoclasts. Advances in understanding interactions between osteoblasts, osteoclasts, and bone metastatic cancer cells will aid in controlling and ultimately preventing cancer cell metastasis to bone.
Collapse
Affiliation(s)
- Alison B Shupp
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Alexus D Kolb
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Dimpi Mukhopadhyay
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Karen M Bussard
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
27
|
Clines KL, Clines GA. DKK1 and Kremen Expression Predicts the Osteoblastic Response to Bone Metastasis. Transl Oncol 2018; 11:873-882. [PMID: 29772510 PMCID: PMC6051964 DOI: 10.1016/j.tranon.2018.04.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 04/19/2018] [Accepted: 04/24/2018] [Indexed: 12/17/2022] Open
Abstract
Bone metastasis is a complication of advanced breast and prostate cancer. Tumor-secreted Dickkopf homolog 1 (DKK1), an inhibitor of canonical Wnt signaling and osteoblast differentiation, was proposed to regulate the osteoblastic response to metastatic cancer in bone. The objectives of this study were to compare DKK1 expression with the in vivo osteoblastic response in a panel of breast and prostate cancer cell lines, and to discover mechanisms that regulate cancer DKK1 expression. DKK1 expression was highest in MDA-MB-231 and PC3 cells that produce osteolytic lesions, and hence a suppressed osteoblastic response, in animal models of bone metastasis. LnCaP, C4-2B, LuCaP23.1, T47D, ZR-75-1, MCF-7, ARCaP and ARCaPM cancer cells that generate osteoblastic, mixed or no bone lesions had the lowest DKK1 expression. The cell lines with negligible expression, LnCaP, C4-2B and T47D, exhibited methylation of the DKK1 promoter. Canonical Wnt signaling activity was then determined and found in all cell lines tested, even in the MDA-MB-231 and PC3 cell lines despite sizeable amounts of DKK1 protein expression expected to block canonical Wnt signaling. A mechanism of DKK1 resistance in the osteolytic cell lines was investigated and determined to be at least partially due to down-regulation of the DKK1 receptors Kremen1 and Kremen2 in the MDA-MB-231 and PC3 cell lines. Combined DKK1 and Kremen expression in cancer cells may serve as predictive markers of the osteoblastic response of breast and prostate cancer bone metastasis.
Collapse
Affiliation(s)
- Katrina L Clines
- Department of Internal Medicine, Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI
| | - Gregory A Clines
- Department of Internal Medicine, Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI; Veterans Affairs Medical Center, Ann Arbor, MI.
| |
Collapse
|
28
|
Adipose-Derived Stromal Vascular Fraction/Xenohybrid Bone Scaffold: An Alternative Source for Bone Regeneration. Stem Cells Int 2018; 2018:4126379. [PMID: 29853912 PMCID: PMC5949175 DOI: 10.1155/2018/4126379] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 02/25/2018] [Indexed: 01/21/2023] Open
Abstract
Adipose tissue-derived stem cells (ASCs) are a promising tool for the treatment of bone diseases or skeletal lesions, thanks to their ability to potentially repair damaged tissue. One of the major limitations of ASCs is represented by the necessity to be isolated and expanded through in vitro culture; thus, a strong interest was generated by the adipose stromal vascular fraction (SVF), the noncultured fraction of ASCs. SVF is a heterogeneous cell population, directly obtained after collagenase treatment of adipose tissue. In order to investigate and compare the bone-regenerative potential of SVF and ASCs, they were plated on SmartBone®, a xenohybrid bone scaffold, already used in clinical practice with successful results. We showed that SVF plated on SmartBone, in the presence of osteogenic factors, had better osteoinductive capabilities than ASCs, in terms of differentiation into bone cells, mineralization, and secretion of soluble factors stimulating osteoblasts. Indeed, we observed an increasing area of new tissue over time, with and without OM. These data strongly support an innovative idea for the use of adipose SVF and bone scaffolds to promote tissue regeneration and repair, also thanks to an easier cell management preparation that allows a potentially larger use in clinical applications.
Collapse
|
29
|
Brook N, Brook E, Dharmarajan A, Dass CR, Chan A. Breast cancer bone metastases: pathogenesis and therapeutic targets. Int J Biochem Cell Biol 2018; 96:63-78. [DOI: 10.1016/j.biocel.2018.01.003] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/31/2017] [Accepted: 01/04/2018] [Indexed: 01/03/2023]
|
30
|
Wu J, Shen Q, Cui W, Zhao Y, Huai Y, Zhang YC, Bao BH, Liu CX, Jiang Q, Li JX. Dual roles of QOA-8a in antiosteoporosis: a combination of bone anabolic and anti-resorptive effects. Acta Pharmacol Sin 2018; 39:230-242. [PMID: 28816232 PMCID: PMC5800470 DOI: 10.1038/aps.2017.63] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/13/2017] [Indexed: 12/11/2022]
Abstract
Osteoporotic treatments have largely depended on antiresorptive or anabolic drugs; but the former also suppresses new bone formation, and the latter only includes human parathyroid hormone. There is no drug that has a dual effect to inhibit bone resorption and to stimulate bone formation simultaneously. Here, we report a small molecule, a quinoxaline derivative of oleanolic acid (QOA-8a) that plays such dual roles in osteoblasts and osteoclasts in the treatment of osteoporosis. Osteoclast differentiation was induced by incubation of primary mouse bone marrow-derived macrophages in the presence of RANKL and M-CSF, treatment with QOA-8a dose-dependently inhibited the osteoclast formation with an IC50 value of 0.098 μmol/L. QOA-8a also directly acted on osteoblasts, and stimulated new bone formation in murine calvarial bones in vitro and in vivo. In an OVX rat model, administration of QOA-8a (1, 5 mg·kg-1·d-1, po) for 16 weeks effectively prevented OVX-induced bone loss, accompanied by decreased serum levels of the bone resorption marker CTX-1 and increased serum levels of osteoblast marker N-MID-OT. Meaningfully, our preliminary study revealed that QOA-8a down-regulated the ERK1/2 signal in osteoclasts and up-regulated the signal in osteoblasts. QOA-8a showed dual functions in both animal and human osteoclastogenesis and osteoblastogenesis. Our results demonstrate that QOA-8a might serve as a lead compound with a dual function of bone anabolic and anti-resorptive effects in the development of anti-osteoporosis agents.
Collapse
Affiliation(s)
- Jing Wu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Medical School of Nanjing University, Nanjing 210093, China
| | - Qi Shen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei Cui
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yu Zhao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yue Huai
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yu-chao Zhang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Bei-hua Bao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chen-xi Liu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qing Jiang
- Medical School of Nanjing University, Nanjing 210093, China
| | - Jian-xin Li
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
31
|
Kenswil KJG, Jaramillo AC, Ping Z, Chen S, Hoogenboezem RM, Mylona MA, Adisty MN, Bindels EMJ, Bos PK, Stoop H, Lam KH, van Eerden B, Cupedo T, Raaijmakers MHGP. Characterization of Endothelial Cells Associated with Hematopoietic Niche Formation in Humans Identifies IL-33 As an Anabolic Factor. Cell Rep 2018; 22:666-678. [DOI: 10.1016/j.celrep.2017.12.070] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 11/06/2017] [Accepted: 12/20/2017] [Indexed: 12/13/2022] Open
|
32
|
Johnson MG, Konicke K, Kristianto J, Gustavson A, Garbo R, Wang X, Yuan B, Blank RD. Endothelin signaling regulates mineralization and posttranscriptionally regulates SOST in TMOb cells via miR 126-3p. Physiol Rep 2017; 5:5/4/e13088. [PMID: 28235973 PMCID: PMC5328763 DOI: 10.14814/phy2.13088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 11/24/2022] Open
Abstract
Previously, our laboratory identified ECE‐1, encoding endothelin‐converting enzyme‐1 (ECE‐1), as a positional candidate for a pleiotropic quantitative trait locus affecting femoral size, shape, and biomechanical performance. We hypothesized that endothelin‐1 (ET‐1) signaling promotes osteogenesis. Exposure of immortalized mouse osteoblast (TMOb) cells to big ET‐1 increased mineralization. Following big ET‐1 treatment, we measured the secretion of insulin‐like‐growth factor‐1 (IGF1), dickkopf‐homolog‐1 protein 1 (DKK1), and sclerostin (SOST). In each case, big ET‐1 signaling changed secretion in a manner that favored increased osteogenic activity. Treatment with ECE‐1, endothelin receptor A (EDNRA), or WNT receptor antagonists inhibited the big ET‐1‐mediated increase in mineralization. In the presence of big ET‐1, message levels of Runx2, Igf1, Dkk1, and Sost are uncoupled from protein production, suggesting posttranscriptional regulation. To evaluate the role of big ET‐1 in normal bone physiology, we inhibited EDNRA signaling during mineralization in the absence of exogenous ET‐1. EDNRA blockade reduced mineralization, decreased IGF1, and increased DKK1 and SOST secretion, responses opposite to those induced by exogenous big ET‐1. Pharmacological and siRNA knockdown to inhibit ECE‐1 reduced mineralization and IGF1 secretion with decreasing DKK1 and decreasing or stable SOST secretion, suggesting a further, unknown role of ECE‐1 in osteoblast maturation. Previously we identified miR 126‐3p as a potential ET‐1‐responsive regulator of SOST in murine cells. Overexpression of miR126‐3p increased mineralization in TMOb cells and decreased SOST secretion. Osteoblasts express the ET‐1 signaling pathway and ET‐1 signaling is necessary for normal osteoblast differentiation and mineralization, acting through regulation of miRs that target osteogenic molecules.
Collapse
Affiliation(s)
- Michael G Johnson
- Geriatrics Research, Education and Clinical Center, William S. Middleton Veterans Affairs Hospital, Madison, Wisconsin .,Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Kathryn Konicke
- Medical Service, Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin.,Division of Endocrinology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jasmin Kristianto
- Geriatrics Research, Education and Clinical Center, William S. Middleton Veterans Affairs Hospital, Madison, Wisconsin.,Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Anne Gustavson
- Geriatrics Research, Education and Clinical Center, William S. Middleton Veterans Affairs Hospital, Madison, Wisconsin.,Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Rachel Garbo
- Geriatrics Research, Education and Clinical Center, William S. Middleton Veterans Affairs Hospital, Madison, Wisconsin.,Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Xiaohu Wang
- Medical Service, Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin.,Division of Endocrinology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Baozhi Yuan
- Geriatrics Research, Education and Clinical Center, William S. Middleton Veterans Affairs Hospital, Madison, Wisconsin.,Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Robert D Blank
- Geriatrics Research, Education and Clinical Center, William S. Middleton Veterans Affairs Hospital, Madison, Wisconsin.,Medical Service, Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin.,Division of Endocrinology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
33
|
Hu LW, Wang X, Jiang XQ, Xu LQ, Pan HY. In vivo and in vitro study of osteogenic potency of endothelin-1 on bone marrow-derived mesenchymal stem cells. Exp Cell Res 2017; 357:25-32. [PMID: 28432001 DOI: 10.1016/j.yexcr.2017.04.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/12/2017] [Accepted: 04/18/2017] [Indexed: 12/12/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) are a major source of osteoblasts and are crucial for bone remolding and repair and thus they are widely used for tissue engineering applications. Tissue engineering in combination with gene therapy is considered as a promising approach in new bone regeneration. Endothelin-1(EDN-1)is produced by vascular endothelial cells which plays an important role during bone development. However, its role in BMSCs remains largely unknown. We established EDN-1 overexpressed BMSCs, proliferation ability and osteogenesis differentiation were detected respectively. Transduced BMSCs were then combined with CPC-scaffold to repair calvarial defects in rats to evaluate the in-vivo osteogenic potential of EDN-1. EDN-1 overexpressed BMSCs showed increased proliferation and significantly increased osteogenesis potential ability than vector transfected control. The in-vivo data also revealed more new bone formation with higher bone mineral density and number of trabeculae in EDN-1 overexpressed BMSCs. These findings have demonstrated the influence of EDN-1 on differentiation potential of BMSCs, which suggest that EDN-1 may be a new promising agent for bone tissue engineering.
Collapse
Affiliation(s)
- Long-Wei Hu
- Department of Oromaxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, PR China; Oral Bioengineering Laboratory/Regenerative Medicine Laboratory, Shanghai Research Institute of Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Xiao Wang
- Oral Bioengineering Laboratory/Regenerative Medicine Laboratory, Shanghai Research Institute of Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Xin-Qun Jiang
- Oral Bioengineering Laboratory/Regenerative Medicine Laboratory, Shanghai Research Institute of Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Li-Qun Xu
- Department of Oromaxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, PR China.
| | - Hong-Ya Pan
- Oral Bioengineering Laboratory/Regenerative Medicine Laboratory, Shanghai Research Institute of Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China.
| |
Collapse
|
34
|
Alteration of osteoblast arrangement via direct attack by cancer cells: New insights into bone metastasis. Sci Rep 2017; 7:44824. [PMID: 28303941 PMCID: PMC5356003 DOI: 10.1038/srep44824] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/15/2017] [Indexed: 11/09/2022] Open
Abstract
Intact bone tissue exhibits a characteristic anisotropic microstructure derived from collagen fiber alignment and the related c-axis orientation of apatite crystals, which govern the mechanical properties of bone tissue. In contrast, tumor-invaded bone exhibits a disorganized, less-aligned microstructure that results in severely disrupted mechanical function. Despite its importance both in basic principle and in therapeutic applications, the classical understanding of bone metastasis is limited to alterations in bone mass regulated by metastatic cancer cells. In this study, we demonstrate a novel mechanism underlying the disruption of bone tissue anisotropy in metastasized bone. We observed that direct attack by cancer cells on osteoblasts induces the less-organized osteoblast arrangement. Importantly, the crystallographic anisotropy of bone tissue is quantitatively determined by the level of osteoblast arrangement. Osteoblast arrangement was significantly disrupted by physical contact with cancer cells such as osteolytic melanoma B16F10, breast cancer MDA-MB-231, and osteoblastic prostate cancer MDA-PCa-2b cells. The present findings demonstrate that the abnormal arrangement of osteoblasts induced by physical contact with cancer cells facilitates the disorganized microstructure of metastasized bone.
Collapse
|
35
|
Wang Z, Liu P, Zhou X, Wang T, Feng X, Sun YP, Xiong Y, Yuan HX, Guan KL. Endothelin Promotes Colorectal Tumorigenesis by Activating YAP/TAZ. Cancer Res 2017; 77:2413-2423. [PMID: 28249901 DOI: 10.1158/0008-5472.can-16-3229] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 12/28/2016] [Accepted: 02/27/2017] [Indexed: 12/21/2022]
Abstract
Endothelin receptor A (ETAR) promotes tumorigenesis by stimulating cell proliferation, migration, and survival. However, the mechanism of ETAR in promoting tumor growth is largely unknown. In this study, we demonstrate that ETAR stimulates colon cell proliferation, migration, and tumorigenesis through the activation of YAP/TAZ, two transcription coactivators of the Hippo tumor suppressor pathway. Endothelin-1 treatment induced YAP/TAZ dephosphorylation, nuclear accumulation, and transcriptional activation in multiple colon cancer cells. ETAR stimulation acted via downstream G-protein Gαq/11 and Rho GTPase to suppress the Hippo pathway, thus leading to YAP/TAZ activation, which was required for ETAR-induced tumorigenesis. Overall, these results indicate a critical role of the YAP/TAZ axis in ETAR signaling. Cancer Res; 77(9); 2413-23. ©2017 AACR.
Collapse
Affiliation(s)
- Zhen Wang
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Peng Liu
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Xin Zhou
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Tianxiang Wang
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xu Feng
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Yi-Ping Sun
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yue Xiong
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Hai-Xin Yuan
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Kun-Liang Guan
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, California
| |
Collapse
|
36
|
Abstract
The endothelin (ET) system includes 3 small peptide hormones and a pair of G-protein-coupled receptors. This review first outlines the ET signaling pathway and ET metabolism. Next, it summarizes the role of ET1 signaling in craniofacial development. Then, it discusses observations relating ET signaling to osteoblastic and other osteosclerotic processes in cancer. Finally, it describes recent work in our laboratory that points to endothelin signaling as an upstream mediator of WNT signaling, promoting bone matrix synthesis and mineralization. It concludes with a statement of some remaining gaps in knowledge and proposals for future research.
Collapse
Affiliation(s)
- Jasmin Kristianto
- Divisions of Endocrinology, Metabolism, and Clinical Nutrition, Department of Medicine, Medical College of Wisconsin, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, USA
| | - Michael G Johnson
- Department of Medicine, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792, USA
| | - Rafia Afzal
- Department of Anesthesiology, Aga Khan University Hospital, Stadium Road, Karachi 74800, Pakistan
| | - Robert D Blank
- Divisions of Endocrinology, Metabolism, and Clinical Nutrition, Department of Medicine, Medical College of Wisconsin, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, USA; Medical Service, Clement J. Zablocki VAMC, 5000 West National Avenue, Milwaukee, WI 53295, USA.
| |
Collapse
|
37
|
Endothelin type A receptor blockade reduces vascular calcification and inflammation in rats with chronic kidney disease. J Hypertens 2017; 35:376-384. [DOI: 10.1097/hjh.0000000000001161] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Liu H, Peng F, Liu Z, Jiang F, Li L, Gao S, Wang G, Song J, Ruan E, Shao Z, Fu R. CYR61/CCN1 stimulates proliferation and differentiation of osteoblasts in vitro and contributes to bone remodeling in vivo in myeloma bone disease. Int J Oncol 2016; 50:631-639. [PMID: 28035364 DOI: 10.3892/ijo.2016.3815] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/28/2016] [Indexed: 11/05/2022] Open
Abstract
Cysteine-rich 61 (CYR61/CCN1), a secreted protein in bone marrow (BM) microenvironment, has diverse effects on many cellular activities such as growth and differentiation. However, the effect of CCN1 on osteoblasts (OBs) in myeloma bone disease remains unclear. In our study, the level of CCN1 in multiple myeloma (MM) patients was detected by ELISA and RT-PCR. The proliferation and differentiation of OBs from MM patients were observed after stimulated by CCN1 in vitro. The myeloma cells transduced with CYR61 gene (RPMI‑8226/CYR61) were injected in a mouse model to evaluate the efficacy of CCN1 in vivo and compare with zoledronic acid. The results showed that CYR61/CCN1 levels in BM supernatant and OBs both elevated significantly in all newly diagnosed MM patients, especially in patients without bone disease (P=0.001 and P<0.001). After 30 ng/l CCN1 stimulation for 24 h, the quantity and mineralization of OBs increased significantly in vitro (P=0.046 and 0.048). The transcription factors of Wnt pathway, runt-related transcription factor 2 (Runx2) and β-catenin were upregulated in OBs after CCN1 stimulation (P=0.012 and 0.011). After injection of RPMI‑8226 cells, bone lesions were observed obviously by microCT and histochemistry at 7 weeks. Radiographic analysis of the bones showed decreased resorption in CCN1 overexpression group and zoledronic acid group, while severe resorption in negative control. Furthermore, trabecular bone volume in CCN1 overexpression group (1.7539±0.16949) was significantly higher than zoledronic acid group (1.2839±0.077) (P=0.012). In conclusion, CCN1 can stimulate the proliferation and differentiation of OBs in vitro and contribute to bone remodeling in vivo in MBD.
Collapse
Affiliation(s)
- Hui Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Fengping Peng
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Fengjuan Jiang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Lijuan Li
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Shan Gao
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Guojin Wang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jia Song
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Erbao Ruan
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Zonghong Shao
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
39
|
Kristianto J, Johnson MG, Afzal R, Blank RD. WITHDRAWN: Endothelin signaling in bone. Transl Res 2016:S1931-5244(16)30366-8. [PMID: 27893988 DOI: 10.1016/j.trsl.2016.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/27/2016] [Accepted: 11/03/2016] [Indexed: 11/17/2022]
Affiliation(s)
- Jasmin Kristianto
- Endocrine and Reproductive Physiology Program, University of Wisconsin, Madison, Wis; Geriatrics Research, Education, and Clinical Center, William S. Middleton Veterans Hospital, Madison, Wis; Department of Medicine, University of Wisconsin, Madison, Wis; Division of Endocrinology, Metabolism, and Clinical Nutrition, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wis
| | - Michael G Johnson
- Endocrine and Reproductive Physiology Program, University of Wisconsin, Madison, Wis; Geriatrics Research, Education, and Clinical Center, William S. Middleton Veterans Hospital, Madison, Wis; Department of Medicine, University of Wisconsin, Madison, Wis
| | - Rafia Afzal
- Department of Anesthesiology, Aga Khan University Hospital, Karachi, Pakistan
| | - Robert D Blank
- Endocrine and Reproductive Physiology Program, University of Wisconsin, Madison, Wis; Geriatrics Research, Education, and Clinical Center, William S. Middleton Veterans Hospital, Madison, Wis; Division of Endocrinology, Metabolism, and Clinical Nutrition, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wis; Medical Service, Clement J. Zablocki VAMC, Milwaukee, Wis
| |
Collapse
|
40
|
Viable Ednra Y129F mice feature human mandibulofacial dysostosis with alopecia (MFDA) syndrome due to the homologue mutation. Mamm Genome 2016; 27:587-598. [PMID: 27671791 PMCID: PMC5110705 DOI: 10.1007/s00335-016-9664-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/21/2016] [Indexed: 12/24/2022]
Abstract
Animal models resembling human mutations are valuable tools to research the features of complex human craniofacial syndromes. This is the first report on a viable dominant mouse model carrying a non-synonymous sequence variation within the endothelin receptor type A gene (Ednra c.386A>T, p.Tyr129Phe) derived by an ENU mutagenesis program. The identical amino acid substitution was reported recently as disease causing in three individuals with the mandibulofacial dysostosis with alopecia (MFDA, OMIM 616367) syndrome. We performed standardized phenotyping of wild-type, heterozygous, and homozygous EdnraY129F mice within the German Mouse Clinic. Mutant mice mimic the craniofacial phenotypes of jaw dysplasia, micrognathia, dysplastic temporomandibular joints, auricular dysmorphism, and missing of the squamosal zygomatic process as described for MFDA-affected individuals. As observed in MFDA-affected individuals, mutant EdnraY129F mice exhibit hearing impairment in line with strong abnormalities of the ossicles and further, reduction of some lung volumetric parameters. In general, heterozygous and homozygous mice demonstrated inter-individual diversity of expression of the craniofacial phenotypes as observed in MFDA patients but without showing any cleft palates, eyelid defects, or alopecia. Mutant EdnraY129F mice represent a valuable viable model for complex human syndromes of the first and second pharyngeal arches and for further studies and analysis of impaired endothelin 1 (EDN1)–endothelin receptor type A (EDNRA) signaling. Above all, EdnraY129F mice model the recently published human MFDA syndrome and may be helpful for further disease understanding and development of therapeutic interventions.
Collapse
|
41
|
Ottewell PD. The role of osteoblasts in bone metastasis. J Bone Oncol 2016; 5:124-127. [PMID: 27761372 PMCID: PMC5063217 DOI: 10.1016/j.jbo.2016.03.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 02/05/2023] Open
Abstract
The primary role of osteoblasts is to lay down new bone during skeletal development and remodelling. Throughout this process osteoblasts directly interact with other cell types within bone, including osteocytes and haematopoietic stem cells. Osteoblastic cells also signal indirectly to bone-resorbing osteoclasts via the secretion of RANKL. Through these mechanisms, cells of the osteoblast lineage help retain the homeostatic balance between bone formation and bone resorption. When tumour cells disseminate in the bone microenvironment, they hijack these mechanisms, homing to osteoblasts and disrupting bone homeostasis. This review describes the role of osteoblasts in normal bone physiology, as well as interactions between tumour cells and osteoblasts during the processes of tumour cell homing to bone, colonisation of this metastatic site and development of overt bone metastases.
Collapse
|
42
|
Amso Z, Cornish J, Brimble MA. Short Anabolic Peptides for Bone Growth. Med Res Rev 2016; 36:579-640. [DOI: 10.1002/med.21388] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/24/2016] [Accepted: 02/15/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Zaid Amso
- School of Chemical Sciences; The University of Auckland, 23 Symonds St; Auckland 1142 New Zealand
| | - Jillian Cornish
- Department of Medicine; The University of Auckland; Auckland 1010 New Zealand
| | - Margaret A. Brimble
- School of Chemical Sciences; The University of Auckland, 23 Symonds St; Auckland 1142 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences; The University of Auckland; Auckland 1142 New Zealand
| |
Collapse
|
43
|
Lu J, Liu F, Liu D, Du H, Hao J, Yang X, Cui W. Amlodipine and atorvastatin improved hypertensive cardiac hypertrophy through regulation of receptor activator of nuclear factor kappa B ligand/receptor activator of nuclear factor kappa B/osteoprotegerin system in spontaneous hypertension rats. Exp Biol Med (Maywood) 2016; 241:1237-49. [PMID: 26908571 DOI: 10.1177/1535370216630180] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 12/23/2015] [Indexed: 11/16/2022] Open
Abstract
The present study aims to study the role of receptor activator of nuclear factor kappa B ligand/receptor activator of nuclear factor kappa B/osteoprotegerin (RANKL/RANK/OPG) system in cardiac hypertrophy in a spontaneous hypertension rat (SHR) model and the effects of amlodipine and atorvastatin intervention. Thirty-six-week-old male SHRs were randomly divided into four groups: 1) SHR control group; 2) amlodipine alone (10 mg/kg/d) group, 3) atorvastatin alone (10 mg/kg/d) group, 4) combination of amlodinpine and atorvastatin (10 mg/kg/d for each) group. Same gender, weight, and age of Wistar-Kyoto (WKY) rats with normal blood pressure were used as normal control. Drugs were administered by oral gavage over 12 weeks. The thicknesses of left ventricle walls, left ventricle weight, and cardiac function were measured by transthoracic echocardiography. Left ventricular pressure and function were assessed by hemodynamic examination. Cardiomyocyte hypertrophy and collagen accumulation in cardiac tissue were measured by hematoxylin and eosin (HE) and Masson staining, respectively. The hydroxyproline content of cardiac tissue was examined by biochemistry technique. RANKL, RANK and OPG mRNA, protein expression and tissue localization were studied by RT-PCR, Immunohistochemistry and Western blot. Treatment with amlodipine or atorvastatin alone significantly decreased left ventricular mass index, cardiomyocyte cross-sectional area and interstitial fibrosis in SHR (each P < 0.05). Moreover, combined amlodipine and atorvastatin treatment induced significant reversal of left ventricular hypertrophy and decreased cardiomyocyte cross-sectional area and interstitial fibrosis in SHR to a greater extent than each agent alone (P < 0.05). Compared with WKY rats, the myocardial expression of RANKL, RANK, and OPG was increased. Both amlodipine and atorvastatin reduced RANKL, RANK, and OPG expression, with the best effects seen with the combination. Based on our results, activation of the RANKL/RANK/OPG system may be an important factor leading to ventricular remodeling in SHR rats. Amlodipine and atorvastatin could improve ventricular remodeling in SHR rats through intervention with the RANKL/RANK/OPG system.
Collapse
Affiliation(s)
- Jingchao Lu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Hebei 050000, China
| | - Fan Liu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Hebei 050000, China
| | - Demin Liu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Hebei 050000, China
| | - Hong Du
- Department of Cardiology, The Second Hospital of Hebei Medical University, Hebei 050000, China
| | - Jie Hao
- Department of Cardiology, The Second Hospital of Hebei Medical University, Hebei 050000, China
| | - Xiuchun Yang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Hebei 050000, China
| | - Wei Cui
- Department of Cardiology, The Second Hospital of Hebei Medical University, Hebei 050000, China
| |
Collapse
|
44
|
Hensel J, Thalmann GN. Biology of Bone Metastases in Prostate Cancer. Urology 2016; 92:6-13. [PMID: 26768714 DOI: 10.1016/j.urology.2015.12.039] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 12/09/2015] [Accepted: 12/22/2015] [Indexed: 12/22/2022]
Abstract
Advanced-stage prostate cancer (PCa) patients are often diagnosed with bone metastases. Bone metastases remain incurable and therapies are palliative. PCa cells prevalently cause osteoblastic lesions, characterized by an excess of bone formation. The prevailing concept indicates that PCa cancer cell secrete an excess of paracrine factors stimulating osteoblasts directly or indirectly, thereby leading to an excess of bone formation. The exact mechanisms by which bone formation stimulates PCa cell growth are mostly elusive. In this review, the mechanisms of PCa cancer cell osteotropism, the cancer cell-induced response within the bone marrow/bone stroma, and therapeutic stromal targets will be summarized.
Collapse
Affiliation(s)
- Janine Hensel
- Urology Research Laboratory, Department of Urology, University of Bern, Bern, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland
| | - George N Thalmann
- Urology Research Laboratory, Department of Urology, University of Bern, Bern, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
45
|
|
46
|
Yachoui R, Kristianto J, Sitwala K, Blank RD. Role of Endothelin-1 in a Syndrome of Myelofibrosis and Osteosclerosis. J Clin Endocrinol Metab 2015; 100:3971-4. [PMID: 26358171 PMCID: PMC5399504 DOI: 10.1210/jc.2015-2729] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Primary myelofibrosis is one of the chronic myeloproliferative disorders characterized by bone marrow fibrosis associated with extramedullary hematopoiesis and osteosclerosis. Endothelin-1 (ET1) is a potent vasoconstrictor that is also a key mediator of osteoblastic bone metastases by stimulating osteoblast proliferation and new bone formation. CASE DESCRIPTION We report laboratory, radiographic, bone densitometry, and bone histology data of a patient presenting with newly diagnosed, biopsy-proven myelofibrosis and osteosclerosis. We were able to demonstrate abundant ET1 signaling in the bones of our patient. CONCLUSIONS We believe that ET1 is responsible for the osteosclerosis that develops with advanced myelofibrosis and suggest that ET1 signaling may play a role in other osteosclerotic settings as well.
Collapse
Affiliation(s)
- Ralph Yachoui
- Division of Rheumatology, Department of Medicine (R.Y.), Department of Pathology (K.S.), Marshfield Clinic, Marshfield, Wisconsin 54449; Endocrine and Reproductive Physiology Program (J.K., R.D.B.), University of Wisconsin, Madison, Wisconsin 53706; Division of Endocrinology, Metabolism, and Clinical Nutrition, Department of Medicine (R.D.B.), Medical College of Wisconsin, Milwaukee, Wisconsin 53226; and Division of Endocrinology, Medical Service (R.D.B.), Clement J. Zablocki Veterans Administration Medical Center, Milwaukee, Wisconsin 53295
| | - Jasmin Kristianto
- Division of Rheumatology, Department of Medicine (R.Y.), Department of Pathology (K.S.), Marshfield Clinic, Marshfield, Wisconsin 54449; Endocrine and Reproductive Physiology Program (J.K., R.D.B.), University of Wisconsin, Madison, Wisconsin 53706; Division of Endocrinology, Metabolism, and Clinical Nutrition, Department of Medicine (R.D.B.), Medical College of Wisconsin, Milwaukee, Wisconsin 53226; and Division of Endocrinology, Medical Service (R.D.B.), Clement J. Zablocki Veterans Administration Medical Center, Milwaukee, Wisconsin 53295
| | - Kajal Sitwala
- Division of Rheumatology, Department of Medicine (R.Y.), Department of Pathology (K.S.), Marshfield Clinic, Marshfield, Wisconsin 54449; Endocrine and Reproductive Physiology Program (J.K., R.D.B.), University of Wisconsin, Madison, Wisconsin 53706; Division of Endocrinology, Metabolism, and Clinical Nutrition, Department of Medicine (R.D.B.), Medical College of Wisconsin, Milwaukee, Wisconsin 53226; and Division of Endocrinology, Medical Service (R.D.B.), Clement J. Zablocki Veterans Administration Medical Center, Milwaukee, Wisconsin 53295
| | - Robert D Blank
- Division of Rheumatology, Department of Medicine (R.Y.), Department of Pathology (K.S.), Marshfield Clinic, Marshfield, Wisconsin 54449; Endocrine and Reproductive Physiology Program (J.K., R.D.B.), University of Wisconsin, Madison, Wisconsin 53706; Division of Endocrinology, Metabolism, and Clinical Nutrition, Department of Medicine (R.D.B.), Medical College of Wisconsin, Milwaukee, Wisconsin 53226; and Division of Endocrinology, Medical Service (R.D.B.), Clement J. Zablocki Veterans Administration Medical Center, Milwaukee, Wisconsin 53295
| |
Collapse
|
47
|
David Roodman G, Silbermann R. Mechanisms of osteolytic and osteoblastic skeletal lesions. BONEKEY REPORTS 2015; 4:753. [PMID: 26539296 DOI: 10.1038/bonekey.2015.122] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/16/2015] [Indexed: 12/30/2022]
Abstract
The bone is a frequent site for tumor metastasis, and cancer in the bone results in marked disturbances of bone remodeling that can be lytic, blastic or a combination of the two. Patients with advanced malignancies that have metastasized to the bone frequently suffer from debilitating skeletal-related events, including pathologic fractures, spinal cord compression syndromes, disorders of calcium and phosphate homeostasis and severe cancer-related pain. This review will discuss recent studies on the mechanisms responsible for osteolytic and osteoblastic metastasis and how their identification has resulted in the development of new agents for patients with metastatic bone disease.
Collapse
Affiliation(s)
- G David Roodman
- Department of Medicine, Hematology, Oncology, Indiana University , Indianapolis, IN, USA ; Richard L Roudebush VA Medical Center , Indianapolis, IN, USA
| | - Rebecca Silbermann
- Department of Medicine, Hematology, Oncology, Indiana University , Indianapolis, IN, USA
| |
Collapse
|
48
|
Ahmadzadeh A, Norozi F, Shahrabi S, Shahjahani M, Saki N. Wnt/β-catenin signaling in bone marrow niche. Cell Tissue Res 2015; 363:321-35. [PMID: 26475718 DOI: 10.1007/s00441-015-2300-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/20/2015] [Indexed: 12/14/2022]
Abstract
The bone marrow (BM) niche is a specific physiological environment for hematopoietic and non-hematopoietic stem cells (HSCs). Several signaling pathways (including Wnt/β-catenin) regulate various aspects of stem cell growth, function and death in the BM niche. In addition, the canonical Wnt pathway is crucial for directing self-renewal and differentiation as important mechanisms in many types of stem cells. We review the role of the Wnt/β-catenin pathway in the BM niche and its importance in stem cells. Relevant literature was identified by a PubMed search (1997-2014) of English-language literature by using the following keywords: BM niche, Wnt/β-catenin signaling, osteoblast, osteoclast and bone disease. The Wnt/β-catenin pathway regulates the stability of the β-catenin proto-oncogene. The stabilized β-catenin then translocates to the nucleus, forming a β-catenin-TCF/LEF complex regulating the transcription of specific target genes. Stem cells require β-catenin to mediate their response to Wnt signaling for maintenance and transition from the pluripotent state during embryogenesis. In adult stem cells, Wnt signaling functions at various hierarchical levels to contribute to the specification of the diverse tissues. Aberrant Wnt/β-catenin signaling and its downstream transcriptional regulators are observed in several malignant stem cells and human cancers. Because Wnt signaling can maintain stem cells and cancer cells, the ability to modulate the Wnt pathway either positively or negatively may be of therapeutic relevance. The controlled activation of Wnt signaling might allow us to enhance stem and progenitor cell activity when regeneration is needed.
Collapse
Affiliation(s)
- Ahmad Ahmadzadeh
- Health Research Institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Norozi
- Health Research Institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeid Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohammad Shahjahani
- Health Research Institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Health Research Institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
49
|
Rachner TD, Jakob F, Hofbauer LC. Cancer-targeted therapies and radiopharmaceuticals. BONEKEY REPORTS 2015; 4:707. [PMID: 26131359 DOI: 10.1038/bonekey.2015.76] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 04/16/2015] [Indexed: 12/26/2022]
Abstract
The treatment of bone metastases remains a clinical challenge. Although a number of well-established agents, namely bisphosphonates and denosumab, are available to reduce the occurrence of skeletal-related events, additional cancer-targeted therapies are required to improve patients' prognosis and quality of life. This review focuses on novel targets and agents that are under clinical evaluation for the treatment of malignant bone diseases such as activin A, src and endothelin-1 inhibition or agents that are clinically approved and may positively influence bone, such as the mTOR inhibitor everolimus. In addition, the potential of alpharadin, a novel radiopharmaceutical approved for the treatment of prostatic bone disease, is discussed.
Collapse
Affiliation(s)
- Tilman D Rachner
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine III, Dresden University Medical Center , Dresden, Germany
| | - Franz Jakob
- Orthopedic Center for Musculoskeletal Research, University Hospital Wuerzburg , Wuerzburg, Germany
| | - Lorenz C Hofbauer
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine III, Dresden University Medical Center , Dresden, Germany ; Center for Regenerative Therapies, Dresden Technical University , Dresden, Germany
| |
Collapse
|
50
|
Fournier PGJ, Juárez P, Jiang G, Clines GA, Niewolna M, Kim HS, Walton HW, Peng XH, Liu Y, Mohammad KS, Wells CD, Chirgwin JM, Guise TA. The TGF-β Signaling Regulator PMEPA1 Suppresses Prostate Cancer Metastases to Bone. Cancer Cell 2015; 27:809-21. [PMID: 25982816 PMCID: PMC4464909 DOI: 10.1016/j.ccell.2015.04.009] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 11/11/2014] [Accepted: 04/14/2015] [Indexed: 12/21/2022]
Abstract
Transforming growth factor-β (TGF-β) regulates the expression of genes supporting breast cancer cells in bone, but little is known about prostate cancer bone metastases and TGF-β. Our study reveals that the TGFBR1 inhibitor SD208 effectively reduces prostate cancer bone metastases. TGF-β upregulates in prostate cancer cells a set of genes associated with cancer aggressiveness and bone metastases, and the most upregulated gene was PMEPA1. In patients, PMEPA1 expression decreased in metastatic prostate cancer and low Pmepa1 correlated with decreased metastasis-free survival. Only membrane-anchored isoforms of PMEPA1 interacted with R-SMADs and ubiquitin ligases, blocking TGF-β signaling independently of the proteasome. Interrupting this negative feedback loop by PMEPA1 knockdown increased prometastatic gene expression and bone metastases in a mouse prostate cancer model.
Collapse
Affiliation(s)
- Pierrick G J Fournier
- Division of Endocrinology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Division of Endocrinology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Patricia Juárez
- Division of Endocrinology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Division of Endocrinology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Guanglong Jiang
- Center for Computational Biology and Bioinformatics, Indiana University, Indianapolis, IN 46202, USA
| | - Gregory A Clines
- Division of Endocrinology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA; Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48105, USA
| | - Maria Niewolna
- Division of Endocrinology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Division of Endocrinology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Hun Soo Kim
- Division of Endocrinology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Holly W Walton
- Division of Endocrinology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Xiang Hong Peng
- Division of Endocrinology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Division of Endocrinology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Yunlong Liu
- Center for Computational Biology and Bioinformatics, Indiana University, Indianapolis, IN 46202, USA
| | - Khalid S Mohammad
- Division of Endocrinology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Division of Endocrinology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Clark D Wells
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - John M Chirgwin
- Division of Endocrinology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Division of Endocrinology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA; Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Theresa A Guise
- Division of Endocrinology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Division of Endocrinology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA.
| |
Collapse
|