1
|
Hernández-Quiles M, Martinez Campesino L, Morris I, Ilyas Z, Reynolds S, Soon Tan N, Sobrevals Alcaraz P, Stigter ECA, Varga Á, Varga J, van Es R, Vos H, Wilson HL, Kiss-Toth E, Kalkhoven E. The pseudokinase TRIB3 controls adipocyte lipid homeostasis and proliferation in vitro and in vivo. Mol Metab 2023; 78:101829. [PMID: 38445671 PMCID: PMC10663684 DOI: 10.1016/j.molmet.2023.101829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 03/07/2024] Open
Abstract
OBJECTIVE In vivo studies in humans and mice have implicated the pseudokinase Tribbles 3 (TRIB3) in various aspects of energy metabolism. Whilst cell-based studies indicate a role for TRIB3 in adipocyte differentiation and function, it is unclear if and how these cellular functions may contribute to overall metabolic health. METHODS We investigated the metabolic phenotype of whole-body Trib3 knockout (Trib3KO) mice, focusing on adipocyte and adipose tissue functions. In addition, we combined lipidomics, transcriptomics, interactomics and phosphoproteomics analyses to elucidate cell-intrinsic functions of TRIB3 in pre- and mature adipocytes. RESULTS Trib3KO mice display increased adiposity, but their insulin sensitivity remains unaltered. Trib3KO adipocytes are smaller and display higher Proliferating Cell Nuclear Antigen (PCNA) levels, indicating potential alterations in either i) proliferation-differentiation balance, ii) impaired expansion after cell division, or iii) an altered balance between lipid storage and release, or a combination thereof. Lipidome analyses suggest TRIB3 involvement in the latter two processes, as triglyceride storage is reduced and membrane composition, which can restrain cellular expansion, is altered. Integrated interactome, phosphoproteome and transcriptome analyses support a role for TRIB3 in all three cellular processes through multiple cellular pathways, including Mitogen Activated Protein Kinase- (MAPK/ERK), Protein Kinase A (PKA)-mediated signaling and Transcription Factor 7 like 2 (TCF7L2) and Beta Catenin-mediated gene expression. CONCLUSIONS Our findings support TRIB3 playing multiple distinct regulatory roles in the cytoplasm, nucleus and mitochondria, ultimately controlling adipose tissue homeostasis, rather than affecting a single cellular pathway.
Collapse
Affiliation(s)
- Miguel Hernández-Quiles
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3C584 CG Utrecht, The Netherlands
| | - Laura Martinez Campesino
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield S10 2TN, UK
| | - Imogen Morris
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3C584 CG Utrecht, The Netherlands
| | - Zabran Ilyas
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield S10 2TN, UK
| | - Steve Reynolds
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield S10 2TN, UK
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, 308232 Singapore, Singapore; School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, 637551 Singapore, Singapore
| | - Paula Sobrevals Alcaraz
- Oncode Institute and Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3C584 CG Utrecht, The Netherlands
| | - Edwin C A Stigter
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3C584 CG Utrecht, The Netherlands
| | - Ákos Varga
- Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary
| | - János Varga
- Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary
| | - Robert van Es
- Oncode Institute and Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3C584 CG Utrecht, The Netherlands
| | - Harmjan Vos
- Oncode Institute and Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3C584 CG Utrecht, The Netherlands
| | - Heather L Wilson
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield S10 2TN, UK
| | - Endre Kiss-Toth
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield S10 2TN, UK
| | - Eric Kalkhoven
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3C584 CG Utrecht, The Netherlands.
| |
Collapse
|
2
|
Gosseaume C, Fournier T, Jéru I, Vignaud ML, Missotte I, Archambeaud F, Debussche X, Droumaguet C, Fève B, Grillot S, Guerci B, Hieronimus S, Horsmans Y, Nobécourt E, Pienkowski C, Poitou C, Thissen JP, Lascols O, Degrelle S, Tsatsaris V, Vigouroux C, Vatier C. Perinatal, metabolic, and reproductive features in PPARG-related lipodystrophy. Eur J Endocrinol 2023; 188:7049146. [PMID: 36806620 DOI: 10.1093/ejendo/lvad023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/23/2023]
Abstract
OBJECTIVE The adipogenic PPARG-encoded PPARγ nuclear receptor also displays essential placental functions. We evaluated the metabolic, reproductive, and perinatal features of patients with PPARG-related lipodystrophy. METHODS Current and retrospective data were collected in patients referred to a National Rare Diseases Reference Centre. RESULTS 26 patients from 15 unrelated families were studied (18 women, median age 43 years). They carried monoallelic PPARG variants except a homozygous patient with congenital generalized lipodystrophy. Among heterozygous patients aged 16 or more (n = 24), 92% had diabetes, 96% partial lipodystrophy (median age at diagnosis 24 and 37 years), 78% hypertriglyceridaemia, 71% liver steatosis, and 58% hypertension. The mean BMI was 26 ± 5.0 kg/m2. Women (n = 16) were frequently affected by acute pancreatitis (n = 6) and/or polycystic ovary syndrome (n = 12). Eleven women obtained one or several pregnancies, all complicated by diabetes (n = 8), hypertension (n = 4), and/or hypertriglyceridaemia (n = 10). We analysed perinatal data of patients according to the presence (n = 8) or absence (n = 9) of a maternal dysmetabolic environment. The median gestational age at birth was low in both groups (37 and 36 weeks of amenorrhea, respectively). As expected, the birth weight was higher in patients exposed to a foetal dysmetabolic environment of maternal origin. In contrast, 85.7% of non-exposed patients, in whom the variant is, or is very likely to be, paternally-inherited, were small for gestational age. CONCLUSIONS Lipodystrophy-related PPARG variants induce early metabolic complications. Our results suggest that placental expression of PPARG pathogenic variants carried by affected foetuses could impair prenatal growth and parturition. This justifies careful pregnancy monitoring in affected families.
Collapse
Affiliation(s)
- Camille Gosseaume
- Sorbonne University, Inserm U938, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition, Paris 75012, France
| | - Thierry Fournier
- Université Paris Cité, Inserm, 3PHM, Pathophysiology and Pharmacotoxicology of the Human Placenta, Pre & Post Natal Microbiota, Paris, F-75006, France
| | - Isabelle Jéru
- Sorbonne University, Inserm U938, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition, Paris 75012, France
- Department of Molecular Biology and Genetics, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, Paris, France
| | - Marie-Léone Vignaud
- Université Paris Cité, Inserm, 3PHM, Pathophysiology and Pharmacotoxicology of the Human Placenta, Pre & Post Natal Microbiota, Paris, F-75006, France
| | - Isabelle Missotte
- Department of Pediatrics, Territorial Hospital Center, Nouméa, New Caledonia, France
| | | | - Xavier Debussche
- Clinical Investigation and Clinical Epidemiology Center (CIC-EC INSERM/CHU/University), Reunion Island University Hospital, Saint-Denis de la Réunion, France
| | - Céline Droumaguet
- Department of Internal Medicine, Assistance Publique-Hôpitaux de Paris, Henri-Mondor Hospital, Créteil, France
| | - Bruno Fève
- Sorbonne University, Inserm U938, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition, Paris 75012, France
- Department of Endocrinology, Diabetology and Reproductive Endocrinology, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, National Reference Center for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France
| | - Sophie Grillot
- Department of Endocrinology and Diabetology, Pays du Mont Blanc Hospital, Sallanches, France
| | - Bruno Guerci
- Department of Endocrinology, Diabetology and Nutrition, Brabois Hospital, University of Lorraine, Vandoeuvre Lès Nancy, France
| | - Sylvie Hieronimus
- Department of Diabetology and Nutrition, Nice University Hospital, Nice, France
| | - Yves Horsmans
- Department of Hepatogastroenterology, Clinical and Experimental Research Institute Louvain Catholic University, Saint-Luc University Hospital, Bruxelles, Belgium
| | - Estelle Nobécourt
- Department of Endocrinology, Metabolism and Nutrition, Saint-Pierre Hospital, Reunion Island University Hospital, Saint-Denis de la Réunion, France
| | - Catherine Pienkowski
- Reference Center for Rare Gynecologic Diseases, Endocrinology and Medical Gynecology Unit, Toulouse University Hospital, Toulouse, France
| | - Christine Poitou
- Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière University Hospital, Sorbonne University, Inserm, Reference Center for Rare Diseases PRADORT (PRADer-Willi Syndrome and other Rare Obesities with Eating Disorders), Nutrition Department, Paris, France
| | - Jean-Paul Thissen
- Department of Hepatogastroenterology, Clinical and Experimental Research Institute Louvain Catholic University, Saint-Luc University Hospital, Bruxelles, Belgium
| | - Olivier Lascols
- Sorbonne University, Inserm U938, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition, Paris 75012, France
- Department of Molecular Biology and Genetics, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, Paris, France
| | - Séverine Degrelle
- Université Paris Cité, Inserm, 3PHM, Pathophysiology and Pharmacotoxicology of the Human Placenta, Pre & Post Natal Microbiota, Paris, F-75006, France
- Inovarion, Paris, France
| | - Vassilis Tsatsaris
- Université Paris Cité, Inserm, 3PHM, Pathophysiology and Pharmacotoxicology of the Human Placenta, Pre & Post Natal Microbiota, Paris, F-75006, France
| | - Corinne Vigouroux
- Sorbonne University, Inserm U938, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition, Paris 75012, France
- Department of Molecular Biology and Genetics, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, Paris, France
- Department of Endocrinology, Diabetology and Reproductive Endocrinology, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, National Reference Center for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France
| | - Camille Vatier
- Sorbonne University, Inserm U938, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition, Paris 75012, France
- Department of Endocrinology, Diabetology and Reproductive Endocrinology, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, National Reference Center for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France
| |
Collapse
|
3
|
PPARγ lipodystrophy mutants reveal intermolecular interactions required for enhancer activation. Nat Commun 2022; 13:7090. [PMID: 36402763 PMCID: PMC9675755 DOI: 10.1038/s41467-022-34766-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 11/07/2022] [Indexed: 11/21/2022] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is the master regulator of adipocyte differentiation, and mutations that interfere with its function cause lipodystrophy. PPARγ is a highly modular protein, and structural studies indicate that PPARγ domains engage in several intra- and inter-molecular interactions. How these interactions modulate PPARγ's ability to activate target genes in a cellular context is currently poorly understood. Here we take advantage of two previously uncharacterized lipodystrophy mutations, R212Q and E379K, that are predicted to interfere with the interaction of the hinge of PPARγ with DNA and with the interaction of PPARγ ligand binding domain (LBD) with the DNA-binding domain (DBD) of the retinoid X receptor, respectively. Using biochemical and genome-wide approaches we show that these mutations impair PPARγ function on an overlapping subset of target enhancers. The hinge region-DNA interaction appears mostly important for binding and remodelling of target enhancers in inaccessible chromatin, whereas the PPARγ-LBD:RXR-DBD interface stabilizes the PPARγ:RXR:DNA ternary complex. Our data demonstrate how in-depth analyses of lipodystrophy mutants can unravel molecular mechanisms of PPARγ function.
Collapse
|
4
|
TRIB3 Modulates PPARγ-Mediated Growth Inhibition by Interfering with the MLL Complex in Breast Cancer Cells. Int J Mol Sci 2022; 23:ijms231810535. [PMID: 36142452 PMCID: PMC9503934 DOI: 10.3390/ijms231810535] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 12/03/2022] Open
Abstract
Aberrant expression or activity of proteins are amongst the best understood mechanisms that can drive cancer initiation and progression, as well as therapy resistance. TRIB3, a member of the Tribbles family of pseudokinases, is often dysregulated in cancer and has been associated with breast cancer initiation and metastasis formation. However, the underlying mechanisms by which TRIB3 contributes to these events are unclear. In this study, we demonstrate that TRIB3 regulates the expression of PPARγ, a transcription factor that has gained attention as a potential drug target in breast cancer for its antiproliferative actions. Proteomics and phosphoproteomics analyses together with classical biochemical assays indicate that TRIB3 interferes with the MLL complex and reduces MLL-mediated H3K4 trimethylation of the PPARG locus, thereby reducing PPARγ mRNA expression. Consequently, the overexpression of TRIB3 blunts the antiproliferative effect of PPARγ ligands in breast cancer cells, while reduced TRIB3 expression gives the opposite effect. In conclusion, our data implicate TRIB3 in epigenetic gene regulation and suggest that expression levels of this pseudokinase may serve as a predictor of successful experimental treatments with PPARγ ligands in breast cancer.
Collapse
|
5
|
Role of Actionable Genes in Pursuing a True Approach of Precision Medicine in Monogenic Diabetes. Genes (Basel) 2022; 13:genes13010117. [PMID: 35052457 PMCID: PMC8774614 DOI: 10.3390/genes13010117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/16/2022] Open
Abstract
Monogenic diabetes is a genetic disorder caused by one or more variations in a single gene. It encompasses a broad spectrum of heterogeneous conditions, including neonatal diabetes, maturity onset diabetes of the young (MODY) and syndromic diabetes, affecting 1-5% of patients with diabetes. Some of these variants are harbored by genes whose altered function can be tackled by specific actions ("actionable genes"). In suspected patients, molecular diagnosis allows the implementation of effective approaches of precision medicine so as to allow individual interventions aimed to prevent, mitigate or delay clinical outcomes. This review will almost exclusively concentrate on the clinical strategy that can be specifically pursued in carriers of mutations in "actionable genes", including ABCC8, KCNJ11, GCK, HNF1A, HNF4A, HNF1B, PPARG, GATA4 and GATA6. For each of them we will provide a short background on what is known about gene function and dysfunction. Then, we will discuss how the identification of their mutations in individuals with this form of diabetes, can be used in daily clinical practice to implement specific monitoring and treatments. We hope this article will help clinical diabetologists carefully consider who of their patients deserves timely genetic testing for monogenic diabetes.
Collapse
|
6
|
Hernández-Quiles M, Baak R, Borgman A, den Haan S, Sobrevals Alcaraz P, van Es R, Kiss-Toth E, Vos H, Kalkhoven E. Comprehensive Profiling of Mammalian Tribbles Interactomes Implicates TRIB3 in Gene Repression. Cancers (Basel) 2021; 13:6318. [PMID: 34944947 PMCID: PMC8699236 DOI: 10.3390/cancers13246318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/30/2022] Open
Abstract
The three human Tribbles (TRIB) pseudokinases have been implicated in a plethora of signaling and metabolic processes linked to cancer initiation and progression and can potentially be used as biomarkers of disease and prognosis. While their modes of action reported so far center around protein-protein interactions, the comprehensive profiling of TRIB interactomes has not been reported yet. Here, we have developed a robust mass spectrometry (MS)-based proteomics approach to characterize Tribbles' interactomes and report a comprehensive assessment and comparison of the TRIB1, -2 and -3 interactomes, as well as domain-specific interactions for TRIB3. Interestingly, TRIB3, which is predominantly localized in the nucleus, interacts with multiple transcriptional regulators, including proteins involved in gene repression. Indeed, we found that TRIB3 repressed gene transcription when tethered to DNA in breast cancer cells. Taken together, our comprehensive proteomic assessment reveals previously unknown interacting partners and functions of Tribbles proteins that expand our understanding of this family of proteins. In addition, our findings show that MS-based proteomics provides a powerful tool to unravel novel pseudokinase biology.
Collapse
Affiliation(s)
- Miguel Hernández-Quiles
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (M.H.-Q.); (R.B.); (A.B.); (S.d.H.)
| | - Rosalie Baak
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (M.H.-Q.); (R.B.); (A.B.); (S.d.H.)
| | - Anouska Borgman
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (M.H.-Q.); (R.B.); (A.B.); (S.d.H.)
| | - Suzanne den Haan
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (M.H.-Q.); (R.B.); (A.B.); (S.d.H.)
| | - Paula Sobrevals Alcaraz
- Oncode Institute and Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (P.S.A.); (R.v.E.); (H.V.)
| | - Robert van Es
- Oncode Institute and Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (P.S.A.); (R.v.E.); (H.V.)
| | - Endre Kiss-Toth
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2TN, UK;
| | - Harmjan Vos
- Oncode Institute and Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (P.S.A.); (R.v.E.); (H.V.)
| | - Eric Kalkhoven
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (M.H.-Q.); (R.B.); (A.B.); (S.d.H.)
| |
Collapse
|
7
|
Hernandez-Quiles M, Broekema MF, Kalkhoven E. PPARgamma in Metabolism, Immunity, and Cancer: Unified and Diverse Mechanisms of Action. Front Endocrinol (Lausanne) 2021; 12:624112. [PMID: 33716977 PMCID: PMC7953066 DOI: 10.3389/fendo.2021.624112] [Citation(s) in RCA: 212] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/08/2021] [Indexed: 12/20/2022] Open
Abstract
The proliferator-activated receptor γ (PPARγ), a member of the nuclear receptor superfamily, is one of the most extensively studied ligand-inducible transcription factors. Since its identification in the early 1990s, PPARγ is best known for its critical role in adipocyte differentiation, maintenance, and function. Emerging evidence indicates that PPARγ is also important for the maturation and function of various immune system-related cell types, such as monocytes/macrophages, dendritic cells, and lymphocytes. Furthermore, PPARγ controls cell proliferation in various other tissues and organs, including colon, breast, prostate, and bladder, and dysregulation of PPARγ signaling is linked to tumor development in these organs. Recent studies have shed new light on PPARγ (dys)function in these three biological settings, showing unified and diverse mechanisms of action. Classical transactivation-where PPARγ activates genes upon binding to PPAR response elements as a heterodimer with RXRα-is important in all three settings, as underscored by natural loss-of-function mutations in FPLD3 and loss- and gain-of-function mutations in tumors. Transrepression-where PPARγ alters gene expression independent of DNA binding-is particularly relevant in immune cells. Interestingly, gene translocations resulting in fusion of PPARγ with other gene products, which are unique to specific carcinomas, present a third mode of action, as they potentially alter PPARγ's target gene profile. Improved understanding of the molecular mechanism underlying PPARγ activity in the complex regulatory networks in metabolism, cancer, and inflammation may help to define novel potential therapeutic strategies for prevention and treatment of obesity, diabetes, or cancer.
Collapse
Affiliation(s)
- Miguel Hernandez-Quiles
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Marjoleine F. Broekema
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Eric Kalkhoven
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- *Correspondence: Eric Kalkhoven,
| |
Collapse
|
8
|
Lim K, Haider A, Adams C, Sleigh A, Savage DB. Lipodistrophy: a paradigm for understanding the consequences of "overloading" adipose tissue. Physiol Rev 2020; 101:907-993. [PMID: 33356916 DOI: 10.1152/physrev.00032.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lipodystrophies have been recognized since at least the nineteenth century and, despite their rarity, tended to attract considerable medical attention because of the severity and somewhat paradoxical nature of the associated metabolic disease that so closely mimics that of obesity. Within the last 20 yr most of the monogenic subtypes have been characterized, facilitating family genetic screening and earlier disease detection as well as providing important insights into adipocyte biology and the systemic consequences of impaired adipocyte function. Even more recently, compelling genetic studies have suggested that subtle partial lipodystrophy is likely to be a major factor in prevalent insulin-resistant type 2 diabetes mellitus (T2DM), justifying the longstanding interest in these disorders. This progress has also underpinned novel approaches to treatment that, in at least some patients, can be of considerable therapeutic benefit.
Collapse
Affiliation(s)
- Koini Lim
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Afreen Haider
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Claire Adams
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Alison Sleigh
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - David B Savage
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
9
|
Guo F, Xu S, Zhu Y, Zheng X, Lu Y, Tu J, He Y, Jin L, Li Y. PPARγ Transcription Deficiency Exacerbates High-Fat Diet-Induced Adipocyte Hypertrophy and Insulin Resistance in Mice. Front Pharmacol 2020; 11:1285. [PMID: 32973516 PMCID: PMC7466717 DOI: 10.3389/fphar.2020.01285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/03/2020] [Indexed: 12/29/2022] Open
Abstract
Background The transcriptional factor peroxisome proliferator–activated receptor γ (PPARγ) is an important therapeutic target for the treatment of type 2 diabetes. However, the role of the PPARγ transcriptional activity remains ambiguous in its metabolic regulation. Methods Based on the crystal structure of PPARγ bound with the DNA target of PPARγ response element (PPRE), Arg134, Arg135, and Arg138, three crucial DNA binding sites for PPARγ, were mutated to alanine (3RA), respectively. In vitro AlphaScreen assay and cell-based reporter assay validated that PPARγ 3RA mutant cannot bind with PPRE and lost transcriptional activity, while can still bind ligand (rosiglitazone) and cofactors (SRC1, SRC2, and NCoR). By using CRISPR/Cas9, we created mice that were heterozygous for PPARγ-3RA (PPARγ3RA/+). The phenotypes of chow diet and high-fat diet fed PPARγ3RA/+ mice were investigated, and the molecular mechanism were analyzed by assessing the PPARγ transcriptional activity. Results Homozygous PPARγ-3RA mutant mice are embryonically lethal. The mRNA levels of PPARγ target genes were significantly decreased in PPARγ3RA/+ mice. PPARγ3RA/+ mice showed more severe adipocyte hypertrophy, insulin resistance, and hepatic steatosis than wild type mice when fed with high-fat diet. These phenotypes were ameliorated after the transcription activity of PPARγ was restored by rosiglitazone, a PPARγ agonist. Conclusion The current report presents a novel mouse model for investigating the role of PPARγ transcription in physiological functions. The data demonstrate that the transcriptional activity plays an indispensable role for PPARγ in metabolic regulation.
Collapse
Affiliation(s)
- Fusheng Guo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shuangshuang Xu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yanlin Zhu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xing Zheng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yi Lu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jui Tu
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Ying He
- Laboratory Animal Center, Xiamen University, Xiamen, China
| | - Lihua Jin
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China.,Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Yong Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
10
|
Broekema M, Savage D, Monajemi H, Kalkhoven E. Gene-gene and gene-environment interactions in lipodystrophy: Lessons learned from natural PPARγ mutants. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:715-732. [PMID: 30742913 DOI: 10.1016/j.bbalip.2019.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/13/2019] [Accepted: 02/02/2019] [Indexed: 12/13/2022]
|
11
|
Broekema MF, Massink MPG, Donato C, de Ligt J, Schaarschmidt J, Borgman A, Schooneman MG, Melchers D, Gerding MN, Houtman R, Bonvin AMJJ, Majithia AR, Monajemi H, van Haaften GW, Soeters MR, Kalkhoven E. Natural helix 9 mutants of PPARγ differently affect its transcriptional activity. Mol Metab 2019; 20:115-127. [PMID: 30595551 PMCID: PMC6358588 DOI: 10.1016/j.molmet.2018.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/05/2018] [Accepted: 12/11/2018] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE The nuclear receptor PPARγ is the master regulator of adipocyte differentiation, distribution, and function. In addition, PPARγ induces terminal differentiation of several epithelial cell lineages, including colon epithelia. Loss-of-function mutations in PPARG result in familial partial lipodystrophy subtype 3 (FPDL3), a rare condition characterized by aberrant adipose tissue distribution and severe metabolic complications, including diabetes. Mutations in PPARG have also been reported in sporadic colorectal cancers, but the significance of these mutations is unclear. Studying these natural PPARG mutations provides valuable insights into structure-function relationships in the PPARγ protein. We functionally characterized a novel FPLD3-associated PPARγ L451P mutation in helix 9 of the ligand binding domain (LBD). Interestingly, substitution of the adjacent amino acid K450 was previously reported in a human colon carcinoma cell line. METHODS We performed a detailed side-by-side functional comparison of these two PPARγ mutants. RESULTS PPARγ L451P shows multiple intermolecular defects, including impaired cofactor binding and reduced RXRα heterodimerisation and subsequent DNA binding, but not in DBD-LBD interdomain communication. The K450Q mutant displays none of these functional defects. Other colon cancer-associated PPARγ mutants displayed diverse phenotypes, ranging from complete loss of activity to wildtype activity. CONCLUSIONS Amino acid changes in helix 9 can differently affect LBD integrity and function. In addition, FPLD3-associated PPARγ mutations consistently cause intra- and/or intermolecular defects; colon cancer-associated PPARγ mutations on the other hand may play a role in colon cancer onset and progression, but this is not due to their effects on the most well-studied functional characteristics of PPARγ.
Collapse
Affiliation(s)
- Marjoleine F Broekema
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Maarten P G Massink
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Cinzia Donato
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Joep de Ligt
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Joerg Schaarschmidt
- Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Anouska Borgman
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Marieke G Schooneman
- Department of Internal Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Diana Melchers
- PamGene International B. V., 's-Hertogenbosch, the Netherlands
| | | | - René Houtman
- PamGene International B. V., 's-Hertogenbosch, the Netherlands
| | - Alexandre M J J Bonvin
- Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Amit R Majithia
- Division of Endocrinology, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Houshang Monajemi
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Amsterdam, the Netherlands; Rijnstate Hospital, Arnhem, the Netherlands
| | - Gijs W van Haaften
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Maarten R Soeters
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Eric Kalkhoven
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
12
|
Fulton J, Mazumder B, Whitchurch JB, Monteiro CJ, Collins HM, Chan CM, Clemente MP, Hernandez-Quiles M, Stewart EA, Amoaku WM, Moran PM, Mongan NP, Persson JL, Ali S, Heery DM. Heterodimers of photoreceptor-specific nuclear receptor (PNR/NR2E3) and peroxisome proliferator-activated receptor-γ (PPARγ) are disrupted by retinal disease-associated mutations. Cell Death Dis 2017; 8:e2677. [PMID: 28300834 PMCID: PMC5386588 DOI: 10.1038/cddis.2017.98] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 01/19/2017] [Accepted: 01/23/2017] [Indexed: 12/30/2022]
Abstract
Photoreceptor-specific nuclear receptor (PNR/NR2E3) and Tailless homolog (TLX/NR2E1) are human orthologs of the NR2E group, a subgroup of phylogenetically related members of the nuclear receptor (NR) superfamily of transcription factors. We assessed the ability of these NRs to form heterodimers with other members of the human NRs representing all major subgroups. The TLX ligand-binding domain (LBD) did not appear to form homodimers or interact directly with any other NR tested. The PNR LBD was able to form homodimers, but also exhibited robust interactions with the LBDs of peroxisome proliferator-activated receptor-γ (PPARγ)/NR1C3 and thyroid hormone receptor b (TRb) TRβ/NR1A2. The binding of PNR to PPARγ was specific for this paralog, as no interaction was observed with the LBDs of PPARα/NR1C1 or PPARδ/NR1C2. In support of these findings, PPARγ and PNR were found to be co-expressed in human retinal tissue extracts and could be co-immunoprecipitated as a native complex. Selected sequence variants in the PNR LBD associated with human retinopathies, or a mutation in the dimerization region of PPARγ LBD associated with familial partial lipodystrophy type 3, were found to disrupt PNR/PPARγ complex formation. Wild-type PNR, but not a PNR309G mutant, was able to repress PPARγ-mediated transcription in reporter assays. In summary, our results reveal novel heterodimer interactions in the NR superfamily, suggesting previously unknown functional interactions of PNR with PPARγ and TRβ that have potential importance in retinal development and disease.
Collapse
Affiliation(s)
- Joel Fulton
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Bismoy Mazumder
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | | | | | | | - Chun M Chan
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | | | | | - Elizabeth A Stewart
- Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK
| | - Winfried M Amoaku
- Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK
| | - Paula M Moran
- School of Psychology, University of Nottingham, Nottingham, UK
| | - Nigel P Mongan
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Jenny L Persson
- Division of Experimental Cancer Research, Department of Translational Medicine, Lund University, Clinical Research Centre, Malmö, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Simak Ali
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - David M Heery
- School of Pharmacy, University of Nottingham, Nottingham, UK
| |
Collapse
|
13
|
Astapova O, Leff T. PPARγ mutations, lipodystrophy and diabetes. Horm Mol Biol Clin Investig 2015; 20:63-70. [PMID: 25460295 DOI: 10.1515/hmbci-2014-0033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 10/29/2014] [Indexed: 11/15/2022]
Abstract
The focus of this review is the lipodystrophy syndrome caused by mutation in the PPARγ nuclear receptor - partial familial lipodystrophy FPLD3. To provide a broader context for how these mutations act to generate the clinical features of partial lipodystrophy we will review the basic biology of PPARγ and also survey the set PPARγ genetic variants that do not cause lipodystrophy, but are nonetheless associated with clinically related syndromes, specifically type 2 diabetes.
Collapse
|
14
|
Piñero J, Queralt-Rosinach N, Bravo À, Deu-Pons J, Bauer-Mehren A, Baron M, Sanz F, Furlong LI. DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2015; 2015:bav028. [PMID: 25877637 PMCID: PMC4397996 DOI: 10.1093/database/bav028] [Citation(s) in RCA: 649] [Impact Index Per Article: 64.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 03/09/2015] [Indexed: 11/25/2022]
Abstract
DisGeNET is a comprehensive discovery platform designed to address a variety of questions concerning the genetic underpinning of human diseases. DisGeNET contains over 380 000 associations between >16 000 genes and 13 000 diseases, which makes it one of the largest repositories currently available of its kind. DisGeNET integrates expert-curated databases with text-mined data, covers information on Mendelian and complex diseases, and includes data from animal disease models. It features a score based on the supporting evidence to prioritize gene-disease associations. It is an open access resource available through a web interface, a Cytoscape plugin and as a Semantic Web resource. The web interface supports user-friendly data exploration and navigation. DisGeNET data can also be analysed via the DisGeNET Cytoscape plugin, and enriched with the annotations of other plugins of this popular network analysis software suite. Finally, the information contained in DisGeNET can be expanded and complemented using Semantic Web technologies and linked to a variety of resources already present in the Linked Data cloud. Hence, DisGeNET offers one of the most comprehensive collections of human gene-disease associations and a valuable set of tools for investigating the molecular mechanisms underlying diseases of genetic origin, designed to fulfill the needs of different user profiles, including bioinformaticians, biologists and health-care practitioners. Database URL: http://www.disgenet.org/
Collapse
Affiliation(s)
- Janet Piñero
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, C/Dr Aiguader 88, E-08003 Barcelona, Spain, Roche Pharma Research and Early Development, pRED Informatics, Roche Innovation Center Penzberg, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany and Scientific & Business Information Services, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Núria Queralt-Rosinach
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, C/Dr Aiguader 88, E-08003 Barcelona, Spain, Roche Pharma Research and Early Development, pRED Informatics, Roche Innovation Center Penzberg, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany and Scientific & Business Information Services, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Àlex Bravo
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, C/Dr Aiguader 88, E-08003 Barcelona, Spain, Roche Pharma Research and Early Development, pRED Informatics, Roche Innovation Center Penzberg, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany and Scientific & Business Information Services, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Jordi Deu-Pons
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, C/Dr Aiguader 88, E-08003 Barcelona, Spain, Roche Pharma Research and Early Development, pRED Informatics, Roche Innovation Center Penzberg, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany and Scientific & Business Information Services, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Anna Bauer-Mehren
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, C/Dr Aiguader 88, E-08003 Barcelona, Spain, Roche Pharma Research and Early Development, pRED Informatics, Roche Innovation Center Penzberg, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany and Scientific & Business Information Services, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Martin Baron
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, C/Dr Aiguader 88, E-08003 Barcelona, Spain, Roche Pharma Research and Early Development, pRED Informatics, Roche Innovation Center Penzberg, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany and Scientific & Business Information Services, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Ferran Sanz
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, C/Dr Aiguader 88, E-08003 Barcelona, Spain, Roche Pharma Research and Early Development, pRED Informatics, Roche Innovation Center Penzberg, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany and Scientific & Business Information Services, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Laura I Furlong
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, C/Dr Aiguader 88, E-08003 Barcelona, Spain, Roche Pharma Research and Early Development, pRED Informatics, Roche Innovation Center Penzberg, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany and Scientific & Business Information Services, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| |
Collapse
|
15
|
Structural and physico-chemical effects of disease and non-disease nsSNPs on proteins. Curr Opin Struct Biol 2015; 32:18-24. [PMID: 25658850 DOI: 10.1016/j.sbi.2015.01.003] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/20/2014] [Accepted: 01/09/2015] [Indexed: 11/23/2022]
Abstract
This review emphasizes the effects of naturally occurring mutations on structural features and physico-chemical properties of proteins. The basic protein characteristics considered are stability, dynamics, and the binding of proteins and methods for assessing effects of mutations on these macromolecular characteristics are briefly outlined. It is emphasized that the above entities mostly reflect global characteristics of considered macromolecules, while given mutations may alter the local structural features such as salt bridges and hydrogen bonds without affecting the global ones. Furthermore, it is pointed out that disease-causing mutations frequently involve a drastic change of amino acid physico-chemical properties such as charge, hydrophobicity, and geometry, and are less surface exposed than polymorphic mutations.
Collapse
|
16
|
Parekh VI, Modali SD, Desai SS, Agarwal SK. Consequence of Menin Deficiency in Mouse Adipocytes Derived by In Vitro Differentiation. Int J Endocrinol 2015; 2015:149826. [PMID: 26229531 PMCID: PMC4503551 DOI: 10.1155/2015/149826] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 12/20/2022] Open
Abstract
Lipoma in patients with the multiple endocrine neoplasia type 1 (MEN1) syndrome is a type of benign fat-cell tumor that has biallelic inactivation of MEN1 that encodes menin and could serve as a model to investigate normal and pathologic fat-cell (adipocyte) proliferation and function. The role of menin and its target genes in adipocytes is not known. We used in vitro differentiation to derive matched normal and menin-deficient adipocytes from wild type (WT) and menin-null (Men1-KO) mouse embryonic stem cells (mESCs), respectively, or 3T3-L1 cells without or with menin knockdown to investigate cell size, lipid content, and gene expression changes. Adipocytes derived from Men1-KO mESCs or after menin knockdown in 3T3-L1 cells showed a 1.5-1.7-fold increase in fat-cell size. Global gene expression analysis of mESC-derived adipocytes showed that lack of menin downregulated the expression of many differentially methylated genes including the tumor suppressor long noncoding RNA Meg3 but upregulated gene expression from the prolactin gene family locus. Our results show that menin deficiency leads to fat-cell hypertrophy and provide model systems that could be used to study the regulation of fat-cell size.
Collapse
Affiliation(s)
- Vaishali I. Parekh
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sita D. Modali
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shruti S. Desai
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sunita K. Agarwal
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- *Sunita K. Agarwal:
| |
Collapse
|
17
|
Kranendonk MEG, Visseren FLJ, van Herwaarden JA, Nolte-'t Hoen ENM, de Jager W, Wauben MHM, Kalkhoven E. Effect of extracellular vesicles of human adipose tissue on insulin signaling in liver and muscle cells. Obesity (Silver Spring) 2014; 22:2216-23. [PMID: 25045057 DOI: 10.1002/oby.20847] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 07/07/2014] [Accepted: 07/07/2014] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Insulin resistance (IR) is a key mechanism in obesity-induced cardiovascular disease. To unravel mechanisms whereby human adipose tissue (AT) contributes to systemic IR, the effect of human AT-extracellular vesicles (EVs) on insulin signaling in liver and muscle cells was determined. METHODS EVs released from human subcutaneous (SAT) and omental AT (OAT)-explants ex vivo were used for stimulation of hepatocytes and myotubes in vitro. Subsequently, insulin-induced Akt phosphorylation and expression of gluconeogenic genes (G6P, PEPCK) was determined. AT-EV adipokine levels were measured by multiplex immunoassay, and AT-EVs were quantified by high-resolution flow cytometry. RESULTS In hepatocytes, AT-EVs from the majority of patients inhibited insulin-induced Akt phosphorylation, while EVs from some patients stimulated insulin-induced Akt phosphorylation. In myotubes AT-EVs exerted an ambiguous effect on insulin signaling. Hepatic Akt phosphorylation related negatively to G6P-expression by both SAT-EVs (r = -0.60, P = 0.01) and OAT-EVs (r = -0.74, P = 0.001). MCP-1, IL-6, and MIF concentrations were higher in OAT-EVs compared to SAT-EVs and differently related to lower Akt phosphorylation in hepatocytes. Finally, the number of OAT-EVs correlated positively with liver enzymes indicative for liver dysfunction. CONCLUSIONS Human AT-EVs can stimulate or inhibit insulin signaling in hepatocytes- possibly depending on their adipokine content- and may thereby contribute to systemic IR.
Collapse
Affiliation(s)
- Mariëtte E G Kranendonk
- Department of Vascular Medicine, University Medical Center Utrecht (UMC Utrecht), Utrecht, The Netherlands; Molecular Cancer Research, Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
18
|
Gao Y, Hamers N, Rakhshandehroo M, Berger R, Lough J, Kalkhoven E. Allele compensation in tip60+/- mice rescues white adipose tissue function in vivo. PLoS One 2014; 9:e98343. [PMID: 24870614 PMCID: PMC4037199 DOI: 10.1371/journal.pone.0098343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 05/01/2014] [Indexed: 01/14/2023] Open
Abstract
Adipose tissue is a key regulator of energy homestasis. The amount of adipose tissue is largely determined by adipocyte differentiation (adipogenesis), a process that is regulated by the concerted actions of multiple transcription factors and cofactors. Based on in vitro studies in murine 3T3-L1 preadipocytes and human primary preadipocytes, the transcriptional cofactor and acetyltransferase Tip60 was recently identified as an essential adipogenic factor. We therefore investigated the role of Tip60 on adipocyte differentiation and function, and possible consequences on energy homeostasis, in vivo. Because homozygous inactivation results in early embryonic lethality, Tip60+/− mice were used. Heterozygous inactivation of Tip60 had no effect on body weight, despite slightly higher food intake by Tip60+/− mice. No major effects of heterozygous inactivation of Tip60 were observed on adipose tissue and liver, and Tip60+/− displayed normal glucose tolerance, both on a low fat and a high fat diet. While Tip60 mRNA was reduced to 50% in adipose tissue, the protein levels were unaltered, suggesting compensation by the intact allele. These findings indicate that the in vivo role of Tip60 in adipocyte differentiation and function cannot be properly addressed in Tip60+/− mice, but requires the generation of adipose tissue-specific knock out animals or specific knock-in mice.
Collapse
Affiliation(s)
- Yuan Gao
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands
- Netherlands Metabolomics Center, Leiden, The Netherlands
| | - Nicole Hamers
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands
- Netherlands Metabolomics Center, Leiden, The Netherlands
| | - Maryam Rakhshandehroo
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Ruud Berger
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands
- Netherlands Metabolomics Center, Leiden, The Netherlands
| | - John Lough
- Department of Cell Biology, Neurobiology and Anatomy and the Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Eric Kalkhoven
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands
- Netherlands Metabolomics Center, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
19
|
Early adipogenesis is regulated through USP7-mediated deubiquitination of the histone acetyltransferase TIP60. Nat Commun 2014; 4:2656. [PMID: 24141283 DOI: 10.1038/ncomms3656] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 09/23/2013] [Indexed: 01/27/2023] Open
Abstract
Transcriptional coregulators, including the acetyltransferase Tip60, have a key role in complex cellular processes such as differentiation. Whereas post-translational modifications have emerged as an important mechanism to regulate transcriptional coregulator activity, the identification of the corresponding demodifying enzymes has remained elusive. Here we show that the expression of the Tip60 protein, which is essential for adipocyte differentiation, is regulated through polyubiquitination on multiple residues. USP7, a dominant deubiquitinating enzyme in 3T3-L1 adipocytes and mouse adipose tissue, deubiquitinates Tip60 both in intact cells and in vitro and increases Tip60 protein levels. Furthermore, inhibition of USP7 expression and activity decreases adipogenesis. Transcriptome analysis reveals several cell cycle genes to be co-regulated by both Tip60 and USP7. Knockdown of either factor results in impaired mitotic clonal expansion, an early step in adipogenesis. These results reveal deubiquitination of a transcriptional coregulator to be a key mechanism in the regulation of early adipogenesis.
Collapse
|
20
|
Kranendonk MEG, Visseren FLJ, van Balkom BWM, Nolte-'t Hoen ENM, van Herwaarden JA, de Jager W, Schipper HS, Brenkman AB, Verhaar MC, Wauben MHM, Kalkhoven E. Human adipocyte extracellular vesicles in reciprocal signaling between adipocytes and macrophages. Obesity (Silver Spring) 2014; 22:1296-308. [PMID: 24339422 DOI: 10.1002/oby.20679] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 12/03/2013] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Extracellular vesicles (EVs) released by human adipocytes or adipose tissue (AT)-explants play a role in the paracrine interaction between adipocytes and macrophages, a key mechanism in AT inflammation, leading to metabolic complications like insulin resistance (IR) were determined. METHODS EVs released from in vitro differentiated adipocytes and AT-explants ex vivo were characterized by electron microscopy, Western blot, multiplex adipokine-profiling, and quantified by flow cytometry. Primary monocytes were stimulated with EVs from adipocytes, subcutaneous (SCAT) or omental-derived AT (OAT), and phenotyped. Macrophage supernatant was subsequently used to assess the effect on insulin signaling in adipocytes. RESULTS Adipocyte and AT-derived EVs differentiated monocytes into macrophages characteristic of human adipose tissue macrophages (ATM), defined by release of both pro- and anti-inflammatory cytokines. The adiponectin-positive subset of AT-derived EVs, presumably representing adipocyte-derived EVs, induced a more pronounced ATM-phenotype than the adiponectin-negative AT-EVs. This effect was more evident for OAT-EVs versus SCAT-EVs. Furthermore, supernatant of macrophages pre-stimulated with AT-EVs interfered with insulin signaling in human adipocytes. Finally, the number of OAT-derived EVs correlated positively with patients HOMA-IR. CONCLUSIONS A possible role for human AT-EVs in a reciprocal pro-inflammatory loop between adipocytes and macrophages, with the potential to aggravate local and systemic IR was demonstrated.
Collapse
Affiliation(s)
- Mariëtte E G Kranendonk
- Department of Vascular Medicine, University Medical Center Utrecht (UMC Utrecht), Utrecht, The Netherlands; Section Metabolic Diseases, Molecular Cancer Research, UMC Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Tasdelen I, Berger R, Kalkhoven E. PPARγ regulates expression of carbohydrate sulfotransferase 11 (CHST11/C4ST1), a regulator of LPL cell surface binding. PLoS One 2013; 8:e64284. [PMID: 23696875 PMCID: PMC3655946 DOI: 10.1371/journal.pone.0064284] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 04/12/2013] [Indexed: 01/09/2023] Open
Abstract
The transcription factor PPARγ is the key regulator of adipocyte differentiation, function and maintenance, and the cellular target of the insulin-sensitizing thiazolidinediones. Identification and functional characterization of genes regulated by PPARγ will therefore lead to a better understanding of adipocyte biology and may also contribute to the development of new anti-diabetic drugs. Here, we report carbohydrate sulfotransferase 11 (Chst11/C4st1) as a novel PPARγ target gene. Chst11 can sulphate chondroitin, a major glycosaminoglycan involved in development and disease. The Chst11 gene contains two functional intronic PPARγ binding sites, and is up-regulated at the mRNA and protein level during 3T3-L1 adipogenesis. Chst11 knockdown reduced intracellular lipid accumulation in mature adipocytes, which is due to a lowered activity of lipoprotein lipase, which may associate with the adipocyte cell surface through Chst11-mediated sulfation of chondroitin, rather than impaired adipogenesis. Besides directly inducing Lpl expression, PPARγ may therefore control lipid accumulation by elevating the levels of Chst11-mediated proteoglycan sulfation and thereby increasing the binding capacity for Lpl on the adipocyte cell surface.
Collapse
Affiliation(s)
- Ismayil Tasdelen
- Department of Metabolic Diseases and The Netherlands Metabolomics Center, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Ruud Berger
- Department of Metabolic Diseases and The Netherlands Metabolomics Center, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Eric Kalkhoven
- Department of Metabolic Diseases and The Netherlands Metabolomics Center, University Medical Centre Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
22
|
The serine/threonine phosphatase PPM1B (PP2Cβ) selectively modulates PPARγ activity. Biochem J 2013; 451:45-53. [PMID: 23320500 DOI: 10.1042/bj20121113] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Reversible phosphorylation is a widespread molecular mechanism to regulate the function of cellular proteins, including transcription factors. Phosphorylation of the nuclear receptor PPARγ (peroxisome-proliferator-activated receptor γ) at two conserved serine residue (Ser(112) and Ser(273)) results in an altered transcriptional activity of this transcription factor. So far, only a very limited number of cellular enzymatic activities has been described which can dephosphorylate nuclear receptors. In the present study we used immunoprecipitation assays coupled to tandem MS analysis to identify novel PPARγ-regulating proteins. We identified the serine/threonine phosphatase PPM1B [PP (protein phosphatase), Mg(2+)/Mn(2+) dependent, 1B; also known as PP2Cβ] as a novel PPARγ-interacting protein. Endogenous PPM1B protein is localized in the nucleus of mature 3T3-L1 adipocytes where it can bind to PPARγ. Furthermore we show that PPM1B can directly dephosphorylate PPARγ, both in intact cells and in vitro. In addition PPM1B increases PPARγ-mediated transcription via dephosphorylation of Ser(112). Finally, we show that knockdown of PPM1B in 3T3-L1 adipocytes blunts the expression of some PPARγ target genes while leaving others unaltered. These findings qualify the phosphatase PPM1B as a novel selective modulator of PPARγ activity.
Collapse
|
23
|
Mul JD, O’Duibhir E, Shrestha YB, Koppen A, Vargoviç P, Toonen PW, Zarebidaki E, Kvetnansky R, Kalkhoven E, Cuppen E, Bartness TJ. Pmch-deficiency in rats is associated with normal adipocyte differentiation and lower sympathetic adipose drive. PLoS One 2013; 8:e60214. [PMID: 23555928 PMCID: PMC3608591 DOI: 10.1371/journal.pone.0060214] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 02/22/2013] [Indexed: 02/01/2023] Open
Abstract
The orexigenic neuropeptide melanin-concentrating hormone (MCH), a product of Pmch, is an important mediator of energy homeostasis. Pmch-deficient rodents are lean and smaller, characterized by lower food intake, body-, and fat mass. Pmch is expressed in hypothalamic neurons that ultimately are components in the sympathetic nervous system (SNS) drive to white and interscapular brown adipose tissue (WAT, iBAT, respectively). MCH binds to MCH receptor 1 (MCH1R), which is present on adipocytes. Currently it is unknown if Pmch-ablation changes adipocyte differentiation or sympathetic adipose drive. Using Pmch-deficient and wild-type rats on a standard low-fat diet, we analyzed dorsal subcutaneous and perirenal WAT mass and adipocyte morphology (size and number) throughout development, and indices of sympathetic activation in WAT and iBAT during adulthood. Moreover, using an in vitro approach we investigated the ability of MCH to modulate 3T3-L1 adipocyte differentiation. Pmch-deficiency decreased dorsal subcutaneous and perirenal WAT mass by reducing adipocyte size, but not number. In line with this, in vitro 3T3-L1 adipocyte differentiation was unaffected by MCH. Finally, adult Pmch-deficient rats had lower norepinephrine turnover (an index of sympathetic adipose drive) in WAT and iBAT than wild-type rats. Collectively, our data indicate that MCH/MCH1R-pathway does not modify adipocyte differentiation, whereas Pmch-deficiency in laboratory rats lowers adiposity throughout development and sympathetic adipose drive during adulthood.
Collapse
Affiliation(s)
- Joram D. Mul
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Eoghan O’Duibhir
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Yogendra B. Shrestha
- Department of Biology, Neurobiology and Behavior Program, and Exploring and Testing Strategies for Obesity Reversal Center, Georgia State University, Atlanta, Georgia, United States of America
| | - Arjen Koppen
- Department of Metabolic and Endocrine Diseases, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter Vargoviç
- Laboratory for Stress Research, Institute of Experimental Endocrinology, Bratislava, Slovakia
| | - Pim W. Toonen
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Eleen Zarebidaki
- Department of Biology, Neurobiology and Behavior Program, and Exploring and Testing Strategies for Obesity Reversal Center, Georgia State University, Atlanta, Georgia, United States of America
| | - Richard Kvetnansky
- Laboratory for Stress Research, Institute of Experimental Endocrinology, Bratislava, Slovakia
| | - Eric Kalkhoven
- Department of Metabolic and Endocrine Diseases, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Edwin Cuppen
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Timothy J. Bartness
- Department of Biology, Neurobiology and Behavior Program, and Exploring and Testing Strategies for Obesity Reversal Center, Georgia State University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
24
|
van Beekum O, Gao Y, Berger R, Koppen A, Kalkhoven E. A novel RNAi lethality rescue screen to identify regulators of adipogenesis. PLoS One 2012; 7:e37680. [PMID: 22679485 PMCID: PMC3367974 DOI: 10.1371/journal.pone.0037680] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 04/25/2012] [Indexed: 01/14/2023] Open
Abstract
Adipogenesis, the differentiation of fibroblast-like mesenchymal stem cells into mature adipocytes, is tightly regulated by a complex cascade of transcription factors, including the nuclear receptor Peroxisome proliferator activator receptor γ (PPARγ). RNAi-mediated knock down libraries may present an atractive method for the identification of additional adipogenic factors. However, using in vitro adipogenesis model systems for high-throughput screening with siRNA libraries is limited since (i) differentiation is not homogeneous, but results in mixed cell populations, and (ii) the expression levels (and activity) of adipogenic regulators is highly dynamic during differentiation, indicating that the timing of RNAi-mediated knock down during differentiation may be extremely critical. Here we report a proof-of-principle for a novel RNAi screening method to identify regulators of adipogenesis that is based on lethality rescue rather than differentiation, using microRNA expression driven by a PPARγ responsive RNA polymerase II promoter. We validated this novel method through screening of a dedicated deubiquitinase knock down library, resulting in the identification of UCHL3 as an essential deubiquitinase in adipogenesis. This system therefore enables the identification of novel genes regulating PPARγ-mediated adipogenesis in a high-throughput setting.
Collapse
Affiliation(s)
- Olivier van Beekum
- Department of Metabolic Diseases, Netherlands Metabolomics Centre, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Yuan Gao
- Department of Metabolic Diseases, Netherlands Metabolomics Centre, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Ruud Berger
- Department of Metabolic Diseases, Netherlands Metabolomics Centre, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Arjen Koppen
- Department of Metabolic Diseases, Netherlands Metabolomics Centre, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Eric Kalkhoven
- Department of Metabolic Diseases, Netherlands Metabolomics Centre, University Medical Centre Utrecht, Utrecht, The Netherlands
- Centre for Molecular and Cellular Intervention, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
25
|
Abstract
Rare adipose disorders (RADs) including multiple symmetric lipomatosis (MSL), lipedema and Dercum's disease (DD) may be misdiagnosed as obesity. Lifestyle changes, such as reduced caloric intake and increased physical activity are standard care for obesity. Although lifestyle changes and bariatric surgery work effectively for the obesity component of RADs, these treatments do not routinely reduce the abnormal subcutaneous adipose tissue (SAT) of RADs. RAD SAT likely results from the growth of a brown stem cell population with secondary lymphatic dysfunction in MSL, or by primary vascular and lymphatic dysfunction in lipedema and DD. People with RADs do not lose SAT from caloric limitation and increased energy expenditure alone. In order to improve recognition of RADs apart from obesity, the diagnostic criteria, histology and pathophysiology of RADs are presented and contrasted to familial partial lipodystrophies, acquired partial lipodystrophies and obesity with which they may be confused. Treatment recommendations focus on evidence-based data and include lymphatic decongestive therapy, medications and supplements that support loss of RAD SAT. Associated RAD conditions including depression, anxiety and pain will improve as healthcare providers learn to identify and adopt alternative treatment regimens for the abnormal SAT component of RADs. Effective dietary and exercise regimens are needed in RAD populations to improve quality of life and construct advanced treatment regimens for future generations.
Collapse
|
26
|
Pawlak M, Lefebvre P, Staels B. General molecular biology and architecture of nuclear receptors. Curr Top Med Chem 2012; 12:486-504. [PMID: 22242852 PMCID: PMC3637177 DOI: 10.2174/156802612799436641] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 11/22/2011] [Indexed: 12/12/2022]
Abstract
Nuclear receptors (NRs) regulate and coordinate multiple processes by integrating internal and external signals, thereby maintaining homeostasis in front of nutritional, behavioral and environmental challenges. NRs exhibit strong similarities in their structure and mode of action: by selective transcriptional activation or repression of cognate target genes, which can either be controlled through a direct, DNA binding-dependent mechanism or through crosstalk with other transcriptional regulators, NRs modulate the expression of gene clusters thus achieving coordinated tissue responses. Additionally, non genomic effects of NR ligands appear mediated by ill-defined mechanisms at the plasma membrane. These effects mediate potential therapeutic effects as small lipophilic molecule targets, and many efforts have been put in elucidating their precise mechanism of action and pathophysiological roles. Currently, numerous nuclear receptor ligand analogs are used in therapy or are tested in clinical trials against various diseases such as hypertriglyceridemia, atherosclerosis, diabetes, allergies and cancer and others.
Collapse
Affiliation(s)
- Michal Pawlak
- Récepteurs nucléaires, maladies cardiovasculaires et diabète
INSERM : U1011Institut Pasteur de LilleUniversité Lille II - Droit et santé1 rue du Prof Calmette 59019 Lille Cedex,FR
| | - Philippe Lefebvre
- Récepteurs nucléaires, maladies cardiovasculaires et diabète
INSERM : U1011Institut Pasteur de LilleUniversité Lille II - Droit et santé1 rue du Prof Calmette 59019 Lille Cedex,FR
| | - Bart Staels
- Récepteurs nucléaires, maladies cardiovasculaires et diabète
INSERM : U1011Institut Pasteur de LilleUniversité Lille II - Droit et santé1 rue du Prof Calmette 59019 Lille Cedex,FR
| |
Collapse
|
27
|
Stable reporter cell lines for peroxisome proliferator-activated receptor γ (PPARγ)-mediated modulation of gene expression. Anal Biochem 2011; 414:77-83. [PMID: 21354099 DOI: 10.1016/j.ab.2011.02.032] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 02/18/2011] [Indexed: 12/12/2022]
Abstract
Activation of peroxisome proliferator-activated receptor γ (PPARγ) by ligands is associated with beneficial health effects, including anti-inflammatory and insulin-sensitizing effects. The aim of the current study was to develop luciferase reporter gene assays to enable fast and low-cost measurement of PPARγ agonist and antagonist activity. Two reporter gene assays, PPARγ1 CALUX and PPARγ2 CALUX, were developed by stable transfection of U2OS cells with an expression vector for PPARγ1 or PPARγ2 and a pGL3-3xPPRE-tata-luc or pGL4-3xPPRE-tata-luc reporter construct, respectively. PPARγ1 CALUX and PPARγ2 CALUX cells showed similar concentration-dependent luciferase induction upon exposure to the PPARγ agonists rosiglitazone, troglitazone, pioglitazone, ciglitazone, netoglitazone, and 15-deoxy-Δ(12,14)-prostaglandin J(2). The potency to induce luciferase decreased in the following order: rosiglitazone>troglitazone=pioglitazone>netoglitazone>ciglitazone. A concentration-dependent decrease in the response to 50nM rosiglitazone was observed on the addition of PPARγ antagonist GW9662 or T0070907 in both PPARγ1 CALUX and PPARγ2 CALUX cells. The PPARα agonists WY14643 and fenofibrate failed to induce luciferase activity, confirming the specificity of these cell lines for PPARγ agonists. In conclusion, PPARγ1 CALUX and PPARγ2 CALUX cells provide a reliable and useful tool to screen (bio)chemicals for PPARγ agonist or antagonist activity.
Collapse
|
28
|
Schipper HS, de Jager W, van Dijk MEA, Meerding J, Zelissen PMJ, Adan RA, Prakken BJ, Kalkhoven E. A Multiplex Immunoassay for Human Adipokine Profiling. Clin Chem 2010; 56:1320-8. [DOI: 10.1373/clinchem.2010.146118] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUNDAdipose tissue secretory proteins, called adipokines, play pivotal roles in the pathophysiology of obesity and its associated disorders such as metabolic syndrome, type 2 diabetes, and cardiovascular disease. Because methods for comprehensive adipokine profiling in patient plasma and other biological samples are currently limited, we developed a multiplex immunoassay for rapid and high-throughput measurement of 25 adipokines in only 50 μL of sample.METHODS(Pre)adipocyte and ex vivo cultured adipose tissue supernatants were generated and together with plasma from 5 morbidly obese patients and 5 healthy and normal weight controls used to develop the adipokine multiplex immunoassay and test its usefulness in biological samples. We assessed adipokine dynamic ranges, lower limits of detection and quantification, cross-reactivity, intra- and interassay variation, and correlation with adipokine ELISAs.RESULTSThe limits of quantification and broad dynamic ranges enabled measurement of all 25 adipokines in supernatants and patient plasmas, with the exception of TNF-α in plasma samples. Intraassay variation was <10% for all adipokines; interassay variation was <15%. The multiplex immunoassay results correlated significantly with ELISA measurements. Plasma adipokine profiling showed significantly higher concentrations of the novel adipokines cathepsin S (5.1 × 104 vs 4.3 × 104 ng/L, P = 0.003) and chemerin (4.1 × 105 vs 2.7 × 105 ng/L, P = 0.0008) in morbidly obese patients than normal weight controls, besides the established differences in adiponectin and leptin concentrations.CONCLUSIONSOur findings underscore the relevance of the novel adipokines cathepsin S and chemerin, but foremost the potential of this novel method for both comprehensive adipokine profiling in large patient cohorts and for biological discovery.
Collapse
Affiliation(s)
- Henk S Schipper
- Department of Metabolic and Endocrine Diseases
- Department of Pediatric Immunology
- Netherlands Metabolomics Center, the Netherlands
| | | | | | | | | | - Roger A Adan
- Rudolph Magnus Institute of Neurosciences, Department of Neuroscience and Pharmacology, UMC Utrecht, the Netherlands
| | | | - Eric Kalkhoven
- Department of Metabolic and Endocrine Diseases
- Department of Pediatric Immunology
- Netherlands Metabolomics Center, the Netherlands
| |
Collapse
|
29
|
Therapeutic Implications of PPARgamma in Human Osteosarcoma. PPAR Res 2010; 2010:956427. [PMID: 20182546 PMCID: PMC2825651 DOI: 10.1155/2010/956427] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 11/21/2009] [Accepted: 11/24/2009] [Indexed: 12/21/2022] Open
Abstract
Osteosarcoma (OS) is the most common nonhematologic malignancy of bone in children and adults. Although dysregulation of tumor suppressor genes and oncogenes, such as Rb, p53, and the genes critical to cell cycle control, genetic stability, and apoptosis have been identified in OS, consensus genetic changes that lead to OS development are poorly understood. Disruption of the osteogenic differentiation pathway may be at least in part responsible for OS tumorigenesis. Current OS management involves chemotherapy and surgery. Peroxisome proliferator-activated receptor (PPAR) agonists and/or retinoids can inhibit OS proliferation and induce apoptosis and may inhibit OS growth by promoting osteoblastic terminal differentiation. Thus, safe and effective PPAR agonists and/or retinoid derivatives can be then used as adjuvant therapeutic drugs for OS therapy. Furthermore, these agents have the potential to be used as chemopreventive agents for the OS patients who undergo the resection of the primary bone tumors in order to prevent local recurrence and/or distal pulmonary metastasis.
Collapse
|
30
|
Jeninga EH, Gurnell M, Kalkhoven E. Functional implications of genetic variation in human PPARgamma. Trends Endocrinol Metab 2009; 20:380-7. [PMID: 19748282 DOI: 10.1016/j.tem.2009.04.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 04/15/2009] [Accepted: 04/15/2009] [Indexed: 12/25/2022]
Abstract
The peroxisome proliferator-activated receptor gamma (PPARgamma) plays a key role in the regulation of lipid and glucose metabolism. Human genetic evidence supporting this view comes from the study of both common (e.g. the Pro12Ala polymorphism) and rare (loss-of-function mutations) variants in the gene encoding PPARgamma. Indeed, patients harbouring mutant PPARgamma exhibit familial partial lipodystrophy type 3 and an extreme monogenic form of the metabolic syndrome. The recent elucidation of the crystal structure of the full-length PPARgamma-RXRalpha heterodimer bound to DNA has shed new light on the functional consequences of these genetic PPARgamma alterations and provides novel insights as to why different perturbations of receptor function unite in a common pathway of metabolic dysfunction.
Collapse
Affiliation(s)
- Ellen H Jeninga
- Department of Metabolic and Endocrine Diseases, UMC Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| | | | | |
Collapse
|
31
|
Tsai YS, Tsai PJ, Jiang MJ, Chou TY, Pendse A, Kim HS, Maeda N. Decreased PPAR gamma expression compromises perigonadal-specific fat deposition and insulin sensitivity. Mol Endocrinol 2009; 23:1787-98. [PMID: 19749155 DOI: 10.1210/me.2009-0073] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mutations and polymorphisms in PPARG have been linked to adiposity and partial lipodystrophy in humans. However, how disturbances in PPARG lead to depot-specific effects on adipose tissue, as shown by the characteristic aberrant fat distribution in patients, remains unclear. By manipulating the 3'-untranslated region of the Pparg gene, we have generated mice with peroxisome proliferator-activated receptor gamma (PPAR gamma) gene expression ranging from 25% to 100% normal. Basal levels of PPAR gamma transcripts between 50% and approximately 100% had no significant effect on body weight, fat mass, and insulin sensitivity. In contrast, mice with 25% normal PPAR gamma expression exhibited reduced body weight and total fat mass, insulin resistance, and dyslipidemia. Interestingly, fat mass was selectively reduced in perigonadal depot without significant changes in inguinal and other depots. Expression of adipogenic factor CCAAT enhancer binding protein-alpha and some other metabolic genes containing peroxisome proliferator response element were reduced in a perigonadal depot-specific fashion. This was further associated with depot-specific reduction in the expression of adipokines, increased expression of TNFalpha, and increased ectopic lipid deposition in muscles. Together, these results underscore the differential sensitivity of the individual fat depots on PPAR gamma availability as an underlying mechanism of partial lipodystrophy.
Collapse
Affiliation(s)
- Yau-Sheng Tsai
- Institute of Clinical Medicine, National Cheng Kung University, Tainan 701, Taiwan, Republic of China.
| | | | | | | | | | | | | |
Collapse
|
32
|
Jeninga EH, Bugge A, Nielsen R, Kersten S, Hamers N, Dani C, Wabitsch M, Berger R, Stunnenberg HG, Mandrup S, Kalkhoven E. Peroxisome proliferator-activated receptor gamma regulates expression of the anti-lipolytic G-protein-coupled receptor 81 (GPR81/Gpr81). J Biol Chem 2009; 284:26385-93. [PMID: 19633298 DOI: 10.1074/jbc.m109.040741] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The ligand-inducible nuclear receptor peroxisome proliferator-activated receptor gamma (PPARgamma) plays a key role in the differentiation, maintenance, and function of adipocytes and is the molecular target for the insulin-sensitizing thiazoledinediones (TZDs). Although a number of PPARgamma target genes that may contribute to the reduction of circulating free fatty acids after TZD treatment have been identified, the relevant PPARgamma target genes that may exert the anti-lipolytic effect of TZDs are unknown. Here we identified the anti-lipolytic human G-protein-coupled receptor 81 (GPR81), GPR109A, and the (human-specific) GPR109B genes as well as the mouse Gpr81 and Gpr109A genes as novel TZD-induced genes in mature adipocytes. GPR81/Gpr81 is a direct PPARgamma target gene, because mRNA expression of GPR81/Gpr81 (and GPR109A/Gpr109A) increased in mature human and murine adipocytes as well as in vivo in epididymal fat pads of mice upon rosiglitazone stimulation, whereas small interfering RNA-mediated knockdown of PPARgamma in differentiated 3T3-L1 adipocytes showed a significant decrease in Gpr81 protein expression. In addition, chromatin immunoprecipitation sequencing analysis in differentiated 3T3-L1 cells revealed a conserved PPAR:retinoid X receptor-binding site in the proximal promoter of the Gpr81 gene, which was proven to be functional by electromobility shift assay and reporter assays. Importantly, small interfering RNA-mediated knockdown of Gpr81 partly reversed the inhibitory effect of TZDs on lipolysis in 3T3-L1 adipocytes. The coordinated PPARgamma-mediated regulation of the GPR81/Gpr81 and GPR109A/Gpr109A genes (and GPR109B in humans) presents a novel mechanism by which TZDs may reduce circulating free fatty acid levels and perhaps ameliorate insulin resistance in obese patients.
Collapse
Affiliation(s)
- Ellen H Jeninga
- Department of Metabolic and Endocrine Diseases, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
The multiple endocrine neoplasia type 1 (MEN1) tumor suppressor regulates peroxisome proliferator-activated receptor gamma-dependent adipocyte differentiation. Mol Cell Biol 2009; 29:5060-9. [PMID: 19596783 DOI: 10.1128/mcb.01001-08] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Menin, the product of the MEN1 (multiple endocrine neoplasia type 1) tumor suppressor gene, is involved in activation of gene transcription as part of an MLL1 (mixed-lineage leukemia 1)/MLL2 (KMT2A/B)-containing protein complex which harbors methyltransferase activity for lysine 4 of histone H3 (H3K4). As MEN1 patients frequently develop lipomas and peroxisome proliferator-activated receptor gamma (PPARgamma) is expressed in several MEN1-related tumor types, we investigated regulation of PPARgamma activity by menin. We found that menin is required for adipocyte differentiation of murine 3T3-L1 cells and PPARgamma-expressing mouse embryonic fibroblasts. Menin augments PPARgamma target gene expression through recruitment of H3K4 methyltransferase activity. Menin interacts directly with the activation function 2 transcription activation domain of PPARgamma in a ligand-independent fashion. Ligand-dependent coactivation, however, is dependent on the LXXLL motif of menin and the intact helix 12 of PPARgamma. We propose that menin is an important factor in PPARgamma-mediated adipogenesis and that loss of PPARgamma function may contribute to lipoma development in MEN1 patients.
Collapse
|
34
|
Koppen A, Houtman R, Pijnenburg D, Jeninga EH, Ruijtenbeek R, Kalkhoven E. Nuclear receptor-coregulator interaction profiling identifies TRIP3 as a novel peroxisome proliferator-activated receptor gamma cofactor. Mol Cell Proteomics 2009; 8:2212-26. [PMID: 19596656 DOI: 10.1074/mcp.m900209-mcp200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Nuclear receptors (NRs) are major targets for drug discovery and have key roles in development and homeostasis as well as in many diseases such as obesity, diabetes, and cancer. NRs are ligand-dependent transcription factors that need to work in concert with so-called transcriptional coregulators, including corepressors and coactivators, to regulate transcription. Upon ligand binding, NRs undergo a conformational change, which alters their binding preference for coregulators. Short alpha-helical sequences in the coregulator proteins, LXXLL (in coactivators) or LXXXIXXXL (in corepressors), are essential for the NR-coregulator interactions. However, little is known on how specificity is dictated. To obtain a comprehensive overview of NR-coregulator interactions, we used a microarray approach based on interactions between NRs and peptides derived from known coregulators. Using the peroxisome proliferator-activated receptor gamma (PPARgamma) as a model NR, we were able to generate ligand-specific interaction profiles (agonist rosiglitazone versus antagonist GW9662 versus selective PPARgamma modulator telmisartan) and characterize NR mutants and isotypes (PPARalpha, -beta/delta, and -gamma). Importantly, based on the NR-coregulator interaction profile, we were able to identify TRIP3 as a novel regulator of PPARgamma-mediated adipocyte differentiation. These findings indicate that NR-coregulator interaction profiling may be a useful tool for drug development and biological discovery.
Collapse
Affiliation(s)
- Arjen Koppen
- Department of Metabolic and Endocrine Diseases, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
35
|
Guettier JM, Park JY, Cochran EK, Poitou C, Basdevant A, Meier M, Clément K, Magré J, Gorden P. Leptin therapy for partial lipodystrophy linked to a PPAR-gamma mutation. Clin Endocrinol (Oxf) 2008; 68:547-554. [PMID: 18076675 PMCID: PMC2578870 DOI: 10.1111/j.1365-2265.2007.03095.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIMS/HYPOTHESIS Partial lipodystrophy (PL) is most commonly characterized by loss of subcutaneous fat in the extremities with preservation of truncal fat and is associated with insulin resistance, diabetes and hyperlipidaemia. Recombinant human leptin (r-metHuLeptin) therapy has been shown to be effective in treating metabolic abnormalities associated with congenital or acquired generalized lipodystrophy and PL associated with lamin A/C (LMNA) gene mutations or highly active antiretroviral therapy (HAART). Our aim was to assess the effectiveness of leptin therapy in treating metabolic complications of PL associated with heterozygous peroxisome proliferator activated receptor gamma (PPARG) mutations. This is the first report to detail the clinical response of a patient with PL due to a PPARG mutation treated with r-metHuLeptin. METHODS A 36-year-old female with PL associated with a heterozygous PPARG mutation complicated by poorly controlled diabetes and severe, refractory hypertriglyceridaemia was enrolled in a National Institutes of Health (NIH) protocol to evaluate the role of r-metHuLeptin in lipodystrophy. The patient received escalating doses of r-metHuLeptin until a dose 0.12 mg/kg/day was reached. Metabolic parameters, including serum chemistries, fasting blood glucose, glycated haemoglobin (HbA1c), lipid profile, an oral glucose tolerance test (OGTT), an insulin tolerance test (ITT), liver volume, percentage body fat and energy expenditure were followed at regular time intervals over 18 months of therapy. RESULTS Eighteen months of r-MetHuLeptin therapy was associated with a marked improvement in glucose homeostasis as evidenced by normalization of the fasting blood glucose (baseline = 8.3 mmol/l; 18 months = 4.9 mmol/l), lowering of HbA1c (baseline = 9.9%; 18 months = 7.2%) and improved tolerance to an oral glucose load. In addition, a striking amelioration in the patient's refractory, severe hypertriglyceridaemia was observed (baseline = 21.15 mmol/l; 18 months = 5.96 mmol/l). CONCLUSION r-MetHuLeptin is effective in treating metabolic complications associated with PL due to PPARG mutations. In the context of previously published work, our findings suggest that the response to r-MetHuLeptin is independent of the aetiology in lipodystrophy.
Collapse
Affiliation(s)
- Jean-Marc Guettier
- Clinical Endocrinology Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jean Y. Park
- Clinical Endocrinology Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Elaine K. Cochran
- Clinical Endocrinology Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christine Poitou
- INSERM, U872 Equipe 7 Paris; Université Pierre et Marie Curie-Paris6, Centre de Recherche des Cordeliers, UMRS872, Paris
| | - Arnaud Basdevant
- INSERM, U872 Equipe 7 Paris; Université Pierre et Marie Curie-Paris6, Centre de Recherche des Cordeliers, UMRS872, Paris
- AP/HP, Department d'Endocrinologie, hôpital Pitié Salpétrière, Paris
| | - Muriel Meier
- INSERM, U680, Paris
- Université Pierre et Marie Curie-Paris6, Faculté de Médecine, UMRS680, Paris, France
| | - Karine Clément
- INSERM, U872 Equipe 7 Paris; Université Pierre et Marie Curie-Paris6, Centre de Recherche des Cordeliers, UMRS872, Paris
- AP/HP, Department d'Endocrinologie, hôpital Pitié Salpétrière, Paris
| | - Jocelyne Magré
- INSERM, U680, Paris
- Université Pierre et Marie Curie-Paris6, Faculté de Médecine, UMRS680, Paris, France
| | - Phillip Gorden
- Clinical Endocrinology Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
36
|
van Beekum O, Brenkman AB, Grøntved L, Hamers N, van den Broek NJF, Berger R, Mandrup S, Kalkhoven E. The adipogenic acetyltransferase Tip60 targets activation function 1 of peroxisome proliferator-activated receptor gamma. Endocrinology 2008; 149:1840-9. [PMID: 18096664 DOI: 10.1210/en.2007-0977] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The transcription factor peroxisome proliferator-activated receptor gamma (PPARgamma) plays a key role in the regulation of lipid and glucose metabolism in adipocytes, by regulating their differentiation, maintenance, and function. The transcriptional activity of PPARgamma is dictated by the set of proteins with which this nuclear receptor interacts under specific conditions. Here we identify the HIV-1 Tat-interacting protein 60 (Tip60) as a novel positive regulator of PPARgamma transcriptional activity. Using tandem mass spectrometry, we found that PPARgamma and the acetyltransferase Tip60 interact in cells, and through use of chimeric proteins, we established that coactivation by Tip60 critically depends on the N-terminal activation function 1 of PPARgamma, a domain involved in isotype-specific gene expression and adipogenesis. Chromatin immunoprecipitation experiments showed that the endogenous Tip60 protein is recruited to PPARgamma target genes in mature 3T3-L1 adipocytes but not in preadipocytes, indicating that Tip60 requires PPARgamma for its recruitment to PPARgamma target genes. Importantly, we show that in common with disruption of PPARgamma function, small interfering RNA-mediated reduction of Tip60 protein impairs differentiation of 3T3-L1 preadipocytes. Taken together, these findings qualify the acetyltransferase Tip60 as a novel adipogenic factor.
Collapse
Affiliation(s)
- Olivier van Beekum
- Department of Metabolic and Endocrine Diseases, University Medical Center Utrecht, Lundlaan 6, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Yong EL, Li J, Liu MH. Single gene contributions: genetic variants of peroxisome proliferator-activated receptor (isoforms alpha, beta/delta and gamma) and mechanisms of dyslipidemias. Curr Opin Lipidol 2008; 19:106-12. [PMID: 18388689 DOI: 10.1097/mol.0b013e3282f64542] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW Polymorphisms in peroxisome proliferator-activated receptor isoforms may be among the most important single-gene contributors to dyslipidemias, insulin resistance, and maturity-onset diabetes. RECENT FINDINGS Familial partial lipodystrophy is a rare but characteristic phenotype associated with carriers of peroxisome proliferator-activated receptor-gamma missense mutations. Mutant receptors are transcriptionally defective, exhibit aberrant affinity for co-regulator molecules, and can exert dominant-negative or haplo-insufficiency effects on normal peroxisome proliferator-activated receptor-gamma function. The P12A variant of isoform gamma is estimated to reduce diabetes risk by 19% in many populations, and has a large attributable risk because of high prevalence of the normal allele. Variants L162V and V227A of isoform alpha (common in white and Oriental populations, respectively) are associated with sexually dimorphic perturbations of lipid metabolism and cardiovascular risk. Polymorphisms in isoforms alpha and beta/delta are reported to influence lipid and glucose utilization. Apart from lipodystrophic syndromes, metabolic and cardiovascular risk in peroxisome proliferator-activated receptor variants is apparently modulated by dietary and exercise interventions, and interactions with polymorphisms in other genetic loci. SUMMARY Polymorphisms in peroxisome proliferator-activated receptors are critical susceptibility risk factors for dyslipidemias and diabetes. They provide attractive targets for gene-environment interventions to reduce the burden of metabolic disease.
Collapse
Affiliation(s)
- Eu Leong Yong
- Department of Obstetrics & Gynecology, National University Hospital, Yong Loo Lin School of Medicine, National University of Singapore.
| | | | | |
Collapse
|
38
|
Monajemi H, Zhang L, Li G, Jeninga EH, Cao H, Maas M, Brouwer CB, Kalkhoven E, Stroes E, Hegele RA, Leff T. Familial partial lipodystrophy phenotype resulting from a single-base mutation in deoxyribonucleic acid-binding domain of peroxisome proliferator-activated receptor-gamma. J Clin Endocrinol Metab 2007; 92:1606-12. [PMID: 17299075 DOI: 10.1210/jc.2006-1807] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Familial partial lipodystrophy (FPLD) results from coding sequence mutations either in LMNA, encoding nuclear lamin A/C, or in PPARG, encoding peroxisome proliferator-activated receptor-gamma (PPARgamma). The LMNA form is called FPLD2 (MIM 151660) and the PPARG form is called FPLD3 (MIM 604367). OBJECTIVE Our objective was to investigate whether the clinical phenotype of this proband is due to mutation(s) in PPARgamma. DESIGN This is a case report. Patient and Setting: A 31-yr-old female with the clinical phenotype of FPLD3, i.e. lipodystrophy and early childhood diabetes with extreme insulin resistance and hypertriglyceridemia leading to recurrent pancreatitis, was assessed at an academic medical center. RESULTS The proband was heterozygous for a novel C-->T mutation in the PPARG gene that led to the substitution of arginine 194 in PPARgamma2 isoform, a conserved residue located in the zinc finger structure involved in DNA binding, by tryptophan (R194W). The mutation was absent from the genomes of 100 healthy Caucasians. In vitro analysis of the mutated protein showed that R194W (and R166W in PPARgamma1 isoform) could not bind to DNA and had no transcriptional activity. Furthermore, R194W had no dominant-negative activity. CONCLUSIONS The R194W mutation in PPARG disrupts its DNA binding activity and through haploinsufficiency leads to clinical manifestation of FPLD3 and the associated metabolic disturbances.
Collapse
Affiliation(s)
- Houshang Monajemi
- Academic Medical Center, Department of Vascular Medicine, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|