1
|
Gonzalez-Rellan MJ, Fondevila MF, Fernandez U, Rodríguez A, Varela-Rey M, Veyrat-Durebex C, Seoane S, Bernardo G, Lopitz-Otsoa F, Fernández-Ramos D, Bilbao J, Iglesias C, Novoa E, Ameneiro C, Senra A, Beiroa D, Cuñarro J, Dp Chantada-Vazquez M, Garcia-Vence M, Bravo SB, Da Silva Lima N, Porteiro B, Carneiro C, Vidal A, Tovar S, Müller TD, Ferno J, Guallar D, Fidalgo M, Sabio G, Herzig S, Yang WH, Cho JW, Martinez-Chantar ML, Perez-Fernandez R, López M, Dieguez C, Mato JM, Millet O, Coppari R, Woodhoo A, Fruhbeck G, Nogueiras R. O-GlcNAcylated p53 in the liver modulates hepatic glucose production. Nat Commun 2021; 12:5068. [PMID: 34417460 PMCID: PMC8379189 DOI: 10.1038/s41467-021-25390-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/06/2021] [Indexed: 01/20/2023] Open
Abstract
p53 regulates several signaling pathways to maintain the metabolic homeostasis of cells and modulates the cellular response to stress. Deficiency or excess of nutrients causes cellular metabolic stress, and we hypothesized that p53 could be linked to glucose maintenance. We show here that upon starvation hepatic p53 is stabilized by O-GlcNAcylation and plays an essential role in the physiological regulation of glucose homeostasis. More specifically, p53 binds to PCK1 promoter and regulates its transcriptional activation, thereby controlling hepatic glucose production. Mice lacking p53 in the liver show a reduced gluconeogenic response during calorie restriction. Glucagon, adrenaline and glucocorticoids augment protein levels of p53, and administration of these hormones to p53 deficient human hepatocytes and to liver-specific p53 deficient mice fails to increase glucose levels. Moreover, insulin decreases p53 levels, and over-expression of p53 impairs insulin sensitivity. Finally, protein levels of p53, as well as genes responsible of O-GlcNAcylation are elevated in the liver of type 2 diabetic patients and positively correlate with glucose and HOMA-IR. Overall these results indicate that the O-GlcNAcylation of p53 plays an unsuspected key role regulating in vivo glucose homeostasis.
Collapse
Affiliation(s)
- Maria J Gonzalez-Rellan
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Marcos F Fondevila
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Uxia Fernandez
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Amaia Rodríguez
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
- Metabolic Research Laboratory, Clínica Universidad de Navarra and IdiSNA, Pamplona, Spain
| | - Marta Varela-Rey
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Christelle Veyrat-Durebex
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Samuel Seoane
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Ganeko Bernardo
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance, Derio, Spain
- ATLAS Molecular Pharma S. L., Derio, Spain
| | - Fernando Lopitz-Otsoa
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance, Derio, Spain
| | - David Fernández-Ramos
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance, Derio, Spain
| | - Jon Bilbao
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance, Derio, Spain
| | - Cristina Iglesias
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Eva Novoa
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Cristina Ameneiro
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Ana Senra
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Daniel Beiroa
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Juan Cuñarro
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Maria Dp Chantada-Vazquez
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Coruña, Spain
| | - Maria Garcia-Vence
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Coruña, Spain
| | - Susana B Bravo
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Coruña, Spain
| | - Natalia Da Silva Lima
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Begoña Porteiro
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Carmen Carneiro
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Anxo Vidal
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Sulay Tovar
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH) and German Center for Diabetes Research (DZD), Oberschleissheim, Germany
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomics, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany
| | - Johan Ferno
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | - Diana Guallar
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Miguel Fidalgo
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Stephan Herzig
- Institute for Diabetes and Cancer (IDC) and Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz Center Munich, Neuherberg, Germany
| | - Won Ho Yang
- Department of Systems Biology, Yonsei University, Seoul, Korea
| | - Jin Won Cho
- Department of Systems Biology, Yonsei University, Seoul, Korea
| | - Maria Luz Martinez-Chantar
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Roman Perez-Fernandez
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Miguel López
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Carlos Dieguez
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Jose M Mato
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
- ATLAS Molecular Pharma S. L., Derio, Spain
| | - Oscar Millet
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance, Derio, Spain
| | | | - Ashwin Woodhoo
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- CIMUS, University of Santigo de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- Nerve Disorder Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, Spain
| | - Gema Fruhbeck
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
- Metabolic Research Laboratory, Clínica Universidad de Navarra and IdiSNA, Pamplona, Spain
| | - Ruben Nogueiras
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain.
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Madrid, Spain.
- Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, Spain.
| |
Collapse
|
2
|
Sawicki K, Czajka M, Matysiak-Kucharek M, Kruszewski M, Skawiński W, Brzóska K, Kapka-Skrzypczak L. Chlorpyrifos stimulates expression of vitamin D 3 receptor in skin cells irradiated with UVB. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 154:17-22. [PMID: 30765052 DOI: 10.1016/j.pestbp.2018.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
Skin, the organ responsible for vitamin D synthesis, is fully exposed to many xenobiotics, e.g. polycyclic aromatic hydrocarbons and pesticides. A broad spectrum organophosphorus insecticides (OP's), such as chlorpyrifos (CPS), are commonly used in agriculture and to control domestic insects. Thus, the aim of this study was to investigate the effect of chlorpyrifos, on the expression of vitamin D3 receptor (VDR) in human keratinocytes cell line HaCaT and fibroblasts cell line BJ. The impact of CPS and UVB radiation on cell viability were examined by Neutral Red assay. The effect of CPS on VDR expression was evaluated by RT-qPCR and flow cytometry (FC). The presented study demonstrated that exposure to CPS and UVB significantly affects the viability of HaCaT and BJ cells lines. Results also revealed that exposure to CPS induced the expression at mRNA and protein level of VDR nuclear receptor in both cell lines exposed to UVB. In HaCaT incubated with 250 μM CPS and 15 mJ/cm2 UVB, the relative VDR expression was ∼2-fold higher; whereas in BJ incubated with 250 μM CPS and 20 mJ/cm2, UVB was∼3-fold higher. Results from FC confirmed this result, as VDR expression increased by ~250% in HaCaT incubated with 250 μM CPS and 20 mJ/cm2 UVB, and in BJ incubated with 250 μM CPS, and 20 mJ/cm2 UVB cells VDR expression increased by ~190%, compared with control. It can therefore be concluded that OPs pesticide might interfere with vitamin D3 metabolism in skin cells.
Collapse
Affiliation(s)
- Krzysztof Sawicki
- Institute of Rural Health, Department of Molecular Biology and Translational Research, Lublin, Poland.
| | - Magdalena Czajka
- Institute of Rural Health, Department of Molecular Biology and Translational Research, Lublin, Poland
| | | | - Marcin Kruszewski
- Institute of Rural Health, Department of Molecular Biology and Translational Research, Lublin, Poland; University of Information Technology and Management, Department of Medical Biology and Translational Research, Rzeszow, Poland; Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Warsaw, Poland
| | - Waldemar Skawiński
- Institute of Rural Health, Department of Molecular Biology and Translational Research, Lublin, Poland
| | - Kamil Brzóska
- Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Warsaw, Poland
| | - Lucyna Kapka-Skrzypczak
- Institute of Rural Health, Department of Molecular Biology and Translational Research, Lublin, Poland; University of Information Technology and Management, Department of Medical Biology and Translational Research, Rzeszow, Poland.
| |
Collapse
|
4
|
Vouyovitch CM, Perry JK, Liu DX, Bezin L, Vilain E, Diaz JJ, Lobie PE, Mertani HC. WNT4 mediates the autocrine effects of growth hormone in mammary carcinoma cells. Endocr Relat Cancer 2016; 23:571-85. [PMID: 27323961 DOI: 10.1530/erc-15-0528] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 06/20/2016] [Indexed: 12/27/2022]
Abstract
The expression of Wingless and Int-related protein (Wnt) ligands is aberrantly high in human breast cancer. We report here that WNT4 is significantly upregulated at the mRNA and protein level in mammary carcinoma cells expressing autocrine human growth hormone (hGH). Depletion of WNT4 using small interfering (si) RNA markedly decreased the rate of human breast cancer cell proliferation induced by autocrine hGH. Forced expression of WNT4 in the nonmalignant human mammary epithelial cell line MCF-12A stimulated cell proliferation in low and normal serum conditions, enhanced cell survival and promoted anchorage-independent growth and colony formation in soft agar. The effects of sustained production of WNT4 were concomitant with upregulation of proliferative markers (c-Myc, Cyclin D1), the survival marker BCL-XL, the putative WNT4 receptor FZD6 and activation of ERK1 and STAT3. Forced expression of WNT4 resulted in phenotypic conversion of MCF-12A cells, such that they exhibited the molecular and morphological characteristics of mesenchymal cells with increased cell motility. WNT4 production resulted in increased mesenchymal and cytoskeletal remodeling markers, promoted actin cytoskeleton reorganization and led to dissolution of cell-cell contacts. In xenograft studies, tumors with autocrine hGH expressed higher levels of WNT4 and FZD6 when compared with control tumors. In addition, Oncomine data indicated that WNT4 expression is increased in neoplastic compared with normal human breast tissue. Accordingly, immunohistochemical detection of WNT4 in human breast cancer biopsies revealed higher expression in tumor tissue vs normal breast epithelium. WNT4 is thus an autocrine hGH-regulated gene involved in the growth and development of the tumorigenic phenotype.
Collapse
Affiliation(s)
- Cécile M Vouyovitch
- Centre de Recherche en Cancérologie de LyonUMR INSERM 1052-CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon I, Université de Lyon, Lyon, France
| | - Jo K Perry
- Liggins InstituteUniversity of Auckland, Auckland, New Zealand
| | - Dong Xu Liu
- Liggins InstituteUniversity of Auckland, Auckland, New Zealand
| | - Laurent Bezin
- Centre de Recherche en Neurosciences de LyonUMR INSERM U1028-CNRS5292, Université de Lyon, Lyon, France
| | - Eric Vilain
- Department of Human GeneticsUniversity of California, Los Angeles, California, USA
| | - Jean-Jacques Diaz
- Centre de Recherche en Cancérologie de LyonUMR INSERM 1052-CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon I, Université de Lyon, Lyon, France
| | - Peter E Lobie
- Cancer Science Institute of Singapore and Department of PharmacologyNational University of Singapore, Singapore, Republic of Singapore
| | - Hichem C Mertani
- Centre de Recherche en Cancérologie de LyonUMR INSERM 1052-CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon I, Université de Lyon, Lyon, France
| |
Collapse
|
8
|
Ben-Batalla I, Seoane S, Macia M, Garcia-Caballero T, Gonzalez LO, Vizoso F, Perez-Fernandez R. The Pit-1/Pou1f1 transcription factor regulates and correlates with prolactin expression in human breast cell lines and tumors. Endocr Relat Cancer 2010; 17:73-85. [PMID: 19808898 PMCID: PMC2828808 DOI: 10.1677/erc-09-0100] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The transcription factor Pit-1/Pou1f1 regulates GH and prolactin (PRL) secretion in the pituitary gland. Pit-1 expression and GH regulation by Pit-1 have also been demonstrated in mammary gland. However, no data are available on the role of Pit-1 on breast PRL. To evaluate this role, several human breast cancer cell lines were transfected with either the Pit-1 expression vector or a Pit-1 small interference RNA construct, followed by PRL mRNA and protein evaluation. In addition, transient transfection of MCF-7 cells by a reporter construct containing the proximal PRL promoter, and ChIP assays were performed. Our data indicate that Pit-1 regulates mammary PRL at transcriptional level by binding to the proximal PRL promoter. We also found that Pit-1 raises cyclin D1 expression before increasing PRL levels, suggesting a PRL-independent effect of Pit-1 on cell proliferation. By using immunohistochemistry, we found a significant correlation between Pit-1 and PRL expression in 94 human breast invasive ductal carcinomas. Considering the possible role of PRL in breast cancer disorders, the function of Pit-1 in breast should be the focus of further research.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/pathology
- Cell Division
- Cell Line, Tumor/drug effects
- Cyclin D1/biosynthesis
- Female
- Gene Expression Regulation, Neoplastic
- Genes, bcl-1
- Humans
- Mice
- Mutagenesis, Site-Directed
- NIH 3T3 Cells/drug effects
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Prolactin/biosynthesis
- Prolactin/genetics
- Promoter Regions, Genetic
- RNA Interference
- RNA, Small Interfering/pharmacology
- Transcription Factor Pit-1/antagonists & inhibitors
- Transcription Factor Pit-1/genetics
- Transcription Factor Pit-1/physiology
- Transcription, Genetic
Collapse
Affiliation(s)
- I Ben-Batalla
- Department of Physiology, School of Medicine, University Clinical HospitalUniversity of Santiago de Compostela15782, Santiago de CompostelaSpain
| | - S Seoane
- Department of Physiology, School of Medicine, University Clinical HospitalUniversity of Santiago de Compostela15782, Santiago de CompostelaSpain
| | - M Macia
- Department of Obstetrics and Gynecology, School of Medicine, University Clinical HospitalUniversity of Santiago de Compostela15782, Santiago de CompostelaSpain
| | - T Garcia-Caballero
- Department of Morphological Sciences, School of Medicine, University Clinical HospitalUniversity of Santiago de Compostela15782, Santiago de CompostelaSpain
| | - L O Gonzalez
- Unidad de Investigación del Hospital de Jove33920, GijónSpain
| | - F Vizoso
- Unidad de Investigación del Hospital de Jove33920, GijónSpain
| | - R Perez-Fernandez
- Department of Physiology, School of Medicine, University Clinical HospitalUniversity of Santiago de Compostela15782, Santiago de CompostelaSpain
- (Correspondence should be addressed to R Perez-Fernandez, Departamento de Fisiología, Facultad de Medicina, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; )
| |
Collapse
|