1
|
Ferrer-Roda M, Paramio MT, Vila-Beltrán J, Izquierdo D. Effect of BMP15 and GDF9 in the IVM medium on subsequent oocyte competence and embryo development of prepubertal goats. Theriogenology 2025; 234:164-173. [PMID: 39709802 DOI: 10.1016/j.theriogenology.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
Oocyte-secreted factors (OSFs), such as BMP15 and GDF9, are soluble paracrine factors that drive cumulus cell differentiation and function, sustaining oocyte competence acquisition and embryo development. This study aimed to assess the effect of BMP15 and GDF9 on IVM medium of prepubertal goat oocytes. COCs were in vitro matured in absence (control group) or presence of 100 ng/mL of BMP15, GDF9, or both. To determine cumulus-oocyte communication, transzonal projections (TZP) density at 0h, 6h, 12h and 24h of IVM were evaluated. After IVM, mitochondrial activity, intracellular ROS and glutathione (GSH) levels, the epidermal growth factor receptor (EGFR) expression in oocytes and cumulus cells, and cumulus expansion were assessed. Blastocyst production and quality were evaluated after parthenogenetic activation (PA) and IVF. IVM supplementation with BMP15 increased the TZP density during the first 6 h of culture. After IVM, BMP15 increased mitochondrial activity, EGFR expression in oocytes and cumulus cells, and cumulus expansion compared to control, but ROS and GSH levels were similar to control. BMP15 improved blastocyst production following PA (15.5 % vs 6.3 %) and the number of cells in the blastocyst inner cell mass. No differences were observed on blastocyst production or quality following IVF. IVM supplementation with GDF9 did not improve results from control group in any parameters studied. Additionally, GDF9 in combination with BMP15 only improved mitochondrial activity and cumulus expansion over control. In conclusion, IVM medium supplementation with BMP15 (100 ng/ml) improves COCs quality parameters and PA-blastocyst production and quality of prepubertal goat oocytes. However, GDF9 (100 ng/mL) did not have any beneficial effect in this study and was possibly antagonistic to BMP15.
Collapse
Affiliation(s)
- Mònica Ferrer-Roda
- Department of Animal and Food Science, Veterinary Faculty, Autonomous University of Barcelona, 08193, Barcelona, Spain
| | - Maria-Teresa Paramio
- Department of Animal and Food Science, Veterinary Faculty, Autonomous University of Barcelona, 08193, Barcelona, Spain
| | - Judith Vila-Beltrán
- Department of Animal and Food Science, Veterinary Faculty, Autonomous University of Barcelona, 08193, Barcelona, Spain
| | - Dolors Izquierdo
- Department of Animal and Food Science, Veterinary Faculty, Autonomous University of Barcelona, 08193, Barcelona, Spain.
| |
Collapse
|
2
|
Knight A, Sugin S, Jurisicova A. Searching for the 'X' factor: investigating the genetics of primary ovarian insufficiency. J Ovarian Res 2024; 17:238. [PMID: 39609914 PMCID: PMC11603650 DOI: 10.1186/s13048-024-01555-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/10/2024] [Indexed: 11/30/2024] Open
Abstract
Primary ovarian insufficiency (POI) is the cessation of ovarian function before the age of 40. The causes of POI are heterogeneous, but substantial evidence exists to support a genetic basis of POI, particularly in the critical involvement of genes on the X chromosome. Recent studies have revealed novel candidate genes through the identification of copy number variations associated with POI. This review summarizes the genes located on the X chromosome with variants shown to be associated with POI in humans and/or in mice. Additionally, we present evidence to support the potential involvement of these candidate genes in the etiology of POI. We conducted a literature search in PubMed to identify case studies and screenings for the genetic causes of POI. We then performed systematic searches for the proposed candidate genes to investigate their potential reproductive roles. Of the X-linked candidate genes investigated, 10 were found to have variants associated with cases of POI in humans. An additional 10 genes were found to play a supportive role in POI. Other genes were not implicated in any cases of POI but were associated with various roles in reproduction. In the majority of cases where variants were identified through whole-exome sequencing, rather than targeted screening of candidate genes, more than one genetic variant was identified. Overall, this review supports past findings that the X chromosome plays a critical role in ovarian function, as demonstrated by a link between POI and various disruptions to genes on the X chromosome. Current genetic screening for POI, which includes only FMR1, is inadequate to capture the majority of cases with a genetic origin. An expanded genetic testing may improve health outcomes for individuals with POI as it could lead to better early interventions and education about these health risks.
Collapse
Affiliation(s)
- Anya Knight
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Sara Sugin
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 25 Orde Street, Room 6-1016-1, Toronto, ON, M5T 3H7, Canada
| | - Andrea Jurisicova
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.
- Department of Obstetrics and Gynecology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 25 Orde Street, Room 6-1016-1, Toronto, ON, M5T 3H7, Canada.
| |
Collapse
|
3
|
Donadkar M, Kumar B, Singh SK, Chandra P, Dangi P, Gawai M, Jackson A, Jasrotia N, Sharma S, Chouhan V, Patra MK, Khan MH. Morpho-molecular evaluation for developmental competence of oocytes retrieved through transvaginal ovum pick-up from FSH-stimulated Tharparkar donor cows ( Bos indicus). ZYGOTE 2024; 32:376-385. [PMID: 39470002 DOI: 10.1017/s0967199424000376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The study was conducted on indigenous Tharparkar cow (Bos indicus) to evaluate FSH stimulation on follicular attributes, oocyte recovery and morpho-molecular developmental competence parameters concerning oocyte quality. A total of 20 OPU sessions were performed, which included 10 sessions in each FSH stimulated at the dose of 130 µg divided into four sub-doses and non-stimulated. Findings on the size of follicles having ≥6 mm showed a significantly higher, however an opposite trend was observed in the case of smaller sized follicle (<6 mm) between stimulated and non-stimulated respectively. The stimulated cows had a significantly higher number as well as the percentage of oocytes of Grade A, having a diameter ≥120 µm and BCB+VE as compared to the non-stimulated cows. The relative mRNA expression profile of GDF9, BMP15, PCNA and BCL-2 genes was higher and BAX was lower in the FSH-stimulated cow. These results indicated that FSH stimulation before OPU in Bos indicus cows has a significant impact on follicle size, oocyte yield, recovery, and their quality with respect to COC's, diameter and BCB+VE oocytes. Further, a significant increase in the relative mRNA expression levels of GDF9, BMP15 and PCNA genes in the FSH-stimulated group suggests that FSH plays a key role in modulating the expression of these important candidate genes and thus influencing oocyte quality. The higher mRNA expression of BCL-2 genes and concomitantly lower expression of BAX gene in FSH Stimulated cows indicates the protective role of these genes and preventing programmed cell death and thus promoting cell survival, quality and embryo development.
Collapse
Affiliation(s)
- Manoj Donadkar
- Animal Reproduction Division, ICAR- Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar243122, India
| | - Brijesh Kumar
- Animal Reproduction Division, ICAR- Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar243122, India
| | - Sanjay Kumar Singh
- Animal Reproduction Division, ICAR- Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar243122, India
| | - Pradeep Chandra
- Animal Reproduction Division, ICAR- Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar243122, India
| | - Pradeep Dangi
- Animal Reproduction Division, ICAR- Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar243122, India
| | - Mohan Gawai
- Animal Reproduction Division, ICAR- Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar243122, India
| | - Amala Jackson
- Animal Reproduction Division, ICAR- Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar243122, India
| | - Nancy Jasrotia
- Animal Reproduction Division, ICAR- Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar243122, India
| | - Shweta Sharma
- Division of Physiology and Climatology, ICAR- IVRI, Izatnagar243122, India
| | - Vikrant Chouhan
- Division of Physiology and Climatology, ICAR- IVRI, Izatnagar243122, India
| | - M K Patra
- Animal Reproduction Division, ICAR- Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar243122, India
| | - Meraj Haider Khan
- Animal Reproduction Division, ICAR- Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar243122, India
| |
Collapse
|
4
|
Liu W, Chen C, Gao Y, Cui X, Zhang Y, Gu L, He Y, Li J, Gao S, Gao R, Jiang C. Transcriptome Dynamics and Cell Dialogs Between Oocytes and Granulosa Cells in Mouse Follicle Development. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzad001. [PMID: 38955498 PMCID: PMC11423849 DOI: 10.1093/gpbjnl/qzad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/17/2023] [Accepted: 09/20/2023] [Indexed: 07/04/2024]
Abstract
The development and maturation of follicles is a sophisticated and multistage process. The dynamic gene expression of oocytes and their surrounding somatic cells and the dialogs between these cells are critical to this process. In this study, we accurately classified the oocyte and follicle development into nine stages and profiled the gene expression of mouse oocytes and their surrounding granulosa cells and cumulus cells. The clustering of the transcriptomes showed the trajectories of two distinct development courses of oocytes and their surrounding somatic cells. Gene expression changes precipitously increased at Type 4 stage and drastically dropped afterward within both oocytes and granulosa cells. Moreover, the number of differentially expressed genes between oocytes and granulosa cells dramatically increased at Type 4 stage, most of which persistently passed on to the later stages. Strikingly, cell communications within and between oocytes and granulosa cells became active from Type 4 stage onward. Cell dialogs connected oocytes and granulosa cells in both unidirectional and bidirectional manners. TGFB2/3, TGFBR2/3, INHBA/B, and ACVR1/1B/2B of TGF-β signaling pathway functioned in the follicle development. NOTCH signaling pathway regulated the development of granulosa cells. Additionally, many maternally DNA methylation- or H3K27me3-imprinted genes remained active in granulosa cells but silent in oocytes during oogenesis. Collectively, Type 4 stage is the key turning point when significant transcription changes diverge the fate of oocytes and granulosa cells, and the cell dialogs become active to assure follicle development. These findings shed new insights on the transcriptome dynamics and cell dialogs facilitating the development and maturation of oocytes and follicles.
Collapse
Affiliation(s)
- Wenju Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Chuan Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Yawei Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Xinyu Cui
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yuhan Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Liang Gu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yuanlin He
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Jing Li
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Rui Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Cizhong Jiang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| |
Collapse
|
5
|
Jiao Y, Bei C, Wang Y, Liao A, Guo J, Li X, Jiang T, Liu X, Chen Y, Cong P, He Z. Bone morphogenetic protein 15 gene disruption affects the in vitro maturation of porcine oocytes by impairing spindle assembly and organelle function. Int J Biol Macromol 2024; 267:131417. [PMID: 38582457 DOI: 10.1016/j.ijbiomac.2024.131417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Bone morphogenetic protein 15 (BMP15) plays a crucial role in the porcine follicular development. However, its exact functions in the in vitro maturation (IVM) of porcine oocytes remain largely unknown. Here, through cytoplasmic injection of a preassembled crRNA-tracrRNA-Cas9 ribonucleoprotein complex, we achieved BMP15 disruption in approximately 54 % of the cultured porcine oocytes. Editing BMP15 impaired the IVM of porcine oocytes, as indicated by the significantly increased abnormal spindle assembly and reduced first polar body (PB1) extrusion. The editing also impaired cytoplasmic maturation of porcine oocytes, as reflected by reduced abundant of Golgi apparatus and impaired functions of mitochondria. The impaired IVM of porcine oocytes by editing BMP15 possibly was associated with the attenuated SMAD1/5 and EGFR-ERK1/2 signaling in the cumulus granulosa cells (CGCs) and the inhibited MOS/ERK1/2 signaling in oocytes. The attenuated MOS/ERK1/2 signaling may contribute to the inactivation of maturation promoting factor (MPF) and the increased abnormal spindle assembly, leading to reduced PB1 extrusion. It also may contribute to reduced Golgi apparatus formation, and impaired functions of mitochondria. These findings expand our understanding of the regulatory role of BMP15 in the IVM of porcine oocytes and provide a basis for manipulation of porcine reproductive performance.
Collapse
Affiliation(s)
- Yafei Jiao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Chang Bei
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Yixian Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Alian Liao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Jinming Guo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Xinran Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Tiantuan Jiang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Peiqing Cong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China.
| | - Zuyong He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
6
|
Edure T, Matsuno Y, Matsushita K, Maruyama N, Fujii W, Naito K, Sugiura K. Dynamics of extracellular vesicle uptake by mural granulosa cells in mice. Mol Reprod Dev 2024; 91:e23737. [PMID: 38450862 DOI: 10.1002/mrd.23737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/13/2024] [Accepted: 02/20/2024] [Indexed: 03/08/2024]
Abstract
Extracellular vesicles (EVs) play an important role in the development and function of mammalian ovarian follicles. However, the mechanisms by which they are taken up by the follicular granulosa cells remain unclear. In addition, while oocytes play a pivotal role in follicular development, the possible interactions between oocyte-derived paracrine factors (ODPFs) and EV signals are unknown. Therefore, this study aimed to elucidate the mechanism of EV uptake and the effects of ODPFs on EV uptake by follicular somatic mural granulosa cells in mice. Fluorescence-labeled transferrin (TRF) and cholera toxin B (CTB), substrates for clathrin- and caveolae-mediated endocytosis, respectively, were taken up by mural granulosa cells in vitro. Their uptake was inhibited by Pitstop 2 and genistein, inhibitors of clathrin and caveolae pathways, respectively. Mural granulosa cells took up EVs, and this uptake was suppressed by Pitstop 2 and genistein. Moreover, ODPFs promoted the uptake of EVs and CTB, but not TRF, by mural granulosa cells. These results suggest that mural granulosa cells take up EVs through both clathrin- and caveolae-mediated endocytosis and that oocytes may promote caveolae-mediated endocytosis to facilitate the uptake of EVs.
Collapse
Affiliation(s)
- Taichi Edure
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuta Matsuno
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kodai Matsushita
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Natsumi Maruyama
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Wataru Fujii
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kunihiko Naito
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Koji Sugiura
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Gilchrist RB, Ho TM, De Vos M, Sanchez F, Romero S, Ledger WL, Anckaert E, Vuong LN, Smitz J. A fresh start for IVM: capacitating the oocyte for development using pre-IVM. Hum Reprod Update 2024; 30:3-25. [PMID: 37639630 DOI: 10.1093/humupd/dmad023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/08/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND While oocyte IVM is practiced sporadically it has not achieved widespread clinical practice globally. However, recently there have been some seminal advances in our understanding of basic aspects of oocyte biology and ovulation from animal studies that have led to novel approaches to IVM. A significant recent advance in IVM technology is the use of biphasic IVM approaches. These involve the collection of immature oocytes from small antral follicles from minimally stimulated patients/animals (without hCG-priming) and an ∼24 h pre-culture of oocytes in an advanced culture system ('pre-IVM') prior to IVM, followed by routine IVF procedures. If safe and efficacious, this novel procedure may stand to make a significant impact on human ART practices. OBJECTIVE AND RATIONALE The objectives of this review are to examine the major scientific advances in ovarian biology with a unique focus on the development of pre-IVM methodologies, to provide an insight into biphasic IVM procedures, and to report on outcomes from animal and clinical human data, including safety data. The potential future impact of biphasic IVM on ART practice is discussed. SEARCH METHODS Peer review original and review articles were selected from PubMed and Web of Science searches for this narrative review. Searches were performed using the following keywords: oocyte IVM, pre-IVM, biphasic IVM, CAPA-IVM, hCG-triggered/primed IVM, natural cycle IVF/M, ex-vivo IVM, OTO-IVM, oocyte maturation, meiotic competence, oocyte developmental competence, oocyte capacitation, follicle size, cumulus cell (CC), granulosa cell, COC, gap-junction communication, trans-zonal process, cAMP and IVM, cGMP and IVM, CNP and IVM, EGF-like peptide and IVM, minimal stimulation ART, PCOS. OUTCOMES Minimizing gonadotrophin use means IVM oocytes will be collected from small antral (pre-dominant) follicles containing oocytes that are still developing. Standard IVM yields suboptimal clinical outcomes using such oocytes, whereas pre-IVM aims to continue the oocyte's development ex vivo, prior to IVM. Pre-IVM achieves this by eliciting profound cellular changes in the oocyte's CCs, which continue to meet the oocyte's developmental needs during the pre-IVM phase. The literature contains 25 years of animal research on various pre-IVM and biphasic IVM procedures, which serves as a large knowledge base for new approaches to human IVM. A pre-IVM procedure based on c-type natriuretic peptide (named 'capacitation-IVM' (CAPA-IVM)) has undergone pre-clinical human safety and efficacy trials and its adoption into clinical practice resulted in healthy live birth rates not different from conventional IVF. WIDER IMPLICATIONS Over many decades, improvements in clinical IVM have been gradual and incremental but there has likely been a turning of the tide in the past few years, with landmark discoveries in animal oocyte biology finally making their way into clinical practice leading to improved outcomes for patients. Demonstration of favorable clinical results with CAPA-IVM, as the first clinically tested biphasic IVM system, has led to renewed interest in IVM as an alternative, low-intervention, low-cost, safe, patient-friendly ART approach, and especially for patients with PCOS. The same new approach is being used as part of fertility preservation in patients with cancer and holds promise for social oocyte freezing.
Collapse
Affiliation(s)
- Robert B Gilchrist
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales Sydney, NSW, Australia
| | - Tuong M Ho
- IVFMD, My Duc Hospital, Ho Chi Minh City, Vietnam
| | - Michel De Vos
- Brussels IVF, UZ Brussel, Brussels, Belgium
- Follicle Biology Laboratory, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Flor Sanchez
- Centro de Estudios e Investigaciones en Biología y Medicina Reproductiva, Lima, Peru
| | - Sergio Romero
- Laboratory of Reproductive Biology and Fertility Preservation, Cayetano Heredia University (UPCH), Lima, Peru
- Centro de Fertilidad y Reproducción Asistida, Lima, Peru
| | - William L Ledger
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales Sydney, NSW, Australia
- City Fertility, Global CHA IVF Partners, Sydney, NSW, Australia
| | - Ellen Anckaert
- Follicle Biology Laboratory, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lan N Vuong
- Department of Obstetrics and Gynaecology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Johan Smitz
- Follicle Biology Laboratory, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
8
|
Zhai Y, Zhang X, Zhao C, Geng R, Wu K, Yuan M, Ai N, Ge W. Rescue of bmp15 deficiency in zebrafish by mutation of inha reveals mechanisms of BMP15 regulation of folliculogenesis. PLoS Genet 2023; 19:e1010954. [PMID: 37713421 PMCID: PMC10529593 DOI: 10.1371/journal.pgen.1010954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/27/2023] [Accepted: 09/01/2023] [Indexed: 09/17/2023] Open
Abstract
As an oocyte-specific growth factor, bone morphogenetic protein 15 (BMP15) plays a critical role in controlling folliculogenesis. However, the mechanism of BMP15 action remains elusive. Using zebrafish as the model, we created a bmp15 mutant using CRISPR/Cas9 and demonstrated that bmp15 deficiency caused a significant delay in follicle activation and puberty onset followed by a complete arrest of follicle development at previtellogenic (PV) stage without yolk accumulation. The mutant females eventually underwent female-to-male sex reversal to become functional males, which was accompanied by a series of changes in secondary sexual characteristics. Interestingly, the blockade of folliculogenesis and sex reversal in bmp15 mutant could be partially rescued by the loss of inhibin (inha-/-). The follicles of double mutant (bmp15-/-;inha-/-) could progress to mid-vitellogenic (MV) stage with yolk accumulation and the fish maintained their femaleness without sex reversal. Transcriptome analysis revealed up-regulation of pathways related to TGF-β signaling and endocytosis in the double mutant follicles. Interestingly, the expression of inhibin/activin βAa subunit (inhbaa) increased significantly in the double mutant ovary. Further knockout of inhbaa in the triple mutant (bmp15-/-;inha-/-;inhbaa-/-) resulted in the loss of yolk granules again. The serum levels of estradiol (E2) and vitellogenin (Vtg) both decreased significantly in bmp15 single mutant females (bmp15-/-), returned to normal in the double mutant (bmp15-/-;inha-/-), but reduced again significantly in the triple mutant (bmp15-/-;inha-/-;inhbaa-/-). E2 treatment could rescue the arrested follicles in bmp15-/-, and fadrozole (a nonsteroidal aromatase inhibitor) treatment blocked yolk accumulation in bmp15-/-;inha-/- fish. The loss of inhbaa also caused a reduction of Vtg receptor-like molecules (e.g., lrp1ab and lrp2a). In summary, the present study provided comprehensive genetic evidence that Bmp15 acts together with the activin-inhibin system in the follicle to control E2 production from the follicle, Vtg biosynthesis in the liver and its uptake by the developing oocytes.
Collapse
Affiliation(s)
- Yue Zhai
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Xin Zhang
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Cheng Zhao
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Ruijing Geng
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Kun Wu
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Mingzhe Yuan
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Nana Ai
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| |
Collapse
|
9
|
Buratini J, Dellaqua TT, de Lima PF, Renzini MM, Canto MD, Price CA. Oocyte secreted factors control genes regulating FSH signaling and the maturation cascade in cumulus cells: the oocyte is not in a hurry. J Assist Reprod Genet 2023; 40:1961-1971. [PMID: 37204638 PMCID: PMC10371970 DOI: 10.1007/s10815-023-02822-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/29/2023] [Indexed: 05/20/2023] Open
Abstract
PURPOSE To assess the effects of the oocyte on mRNA abundance of FSHR, AMH and major genes of the maturation cascade (AREG, EREG, ADAM17, EGFR, PTGS2, TNFAIP6, PTX3, and HAS2) in bovine cumulus cells. METHODS (1) Intact cumulus-oocyte complexes, (2) microsurgically oocytectomized cumulus-oolema complexes (OOX), and (3) OOX + denuded oocytes (OOX+DO) were subjected to in vitro maturation (IVM) stimulated with FSH for 22 h or with AREG for 4 and 22 h. After IVM, cumulus cells were separated and relative mRNA abundance was measured by RT-qPCR. RESULTS After 22 h of FSH-stimulated IVM, oocytectomy increased FSHR mRNA levels (p=0.005) while decreasing those of AMH (p=0.0004). In parallel, oocytectomy increased mRNA abundance of AREG, EREG, ADAM17, PTGS2, TNFAIP6, and PTX3, while decreasing that of HAS2 (p<0.02). All these effects were abrogated in OOX+DO. Oocytectomy also reduced EGFR mRNA levels (p=0.009), which was not reverted in OOX+DO. The stimulatory effect of oocytectomy on AREG mRNA abundance (p=0.01) and its neutralization in OOX+DO was again observed after 4 h of AREG-stimulated IVM. After 22 h of AREG-stimulated IVM, oocytectomy and addition of DOs to OOX caused the same effects on gene expression observed after 22 h of FSH-stimulated IVM, except for ADAM17 (p<0.025). CONCLUSION These findings suggest that oocyte-secreted factors inhibit FSH signaling and the expression of major genes of the maturation cascade in cumulus cells. These may be important actions of the oocyte favoring its communication with cumulus cells and preventing premature activation of the maturation cascade.
Collapse
Affiliation(s)
- Jose Buratini
- Biogenesi, Reproductive Medicine Centre, Monza, Italy
- Clinica EUGIN, Milan, Italy
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP Brazil
| | - Thaisy Tino Dellaqua
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP Brazil
| | - Paula Fernanda de Lima
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP Brazil
| | | | | | - Christopher A. Price
- Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Canada
| |
Collapse
|
10
|
Yerushalmi GM, Shuraki B, Yung Y, Maman E, Baum M, Hennebold JD, Adashi EY, Hourvitz A. ABCC4 is a PGE2 efflux transporter in the ovarian follicle: A mediator of ovulation and a potential non-hormonal contraceptive target. FASEB J 2023; 37:e22858. [PMID: 36943419 DOI: 10.1096/fj.202101931rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 01/12/2023] [Accepted: 02/22/2023] [Indexed: 03/23/2023]
Abstract
The role of prostaglandins (PGs) in the ovulatory process is known. However, the role of the ATP binding cassette subfamily C member 4 (ABCC4), transmembrane PG carrier protein, in ovulation remains unknown. We report herein that ABCC4 expression is significantly upregulated in preovulatory human granulosa cells (GCs). We found that PGE2 efflux in cultured human GCs is mediated by ABCC4 thus regulating its extracellular concentration. The ABCC4 inhibitor probenecid demonstrated effective blocking of ovulation and affects key ovulatory genes in female mice in vivo. We postulate that the reduction in PGE2 efflux caused by the inhibition of ABCC4 activity in GCs decreases the extracellular concentration of PGE2 and its ovulatory effect. Treatment of female mice with low dose of probenecid as well as with the PTGS inhibitor indomethacin or Meloxicam synergistically blocks ovulation. These results support the hypothesis that ABCC4 has an important role in ovulation and might be a potential target for non-hormonal contraception, especially in combination with PGE2 synthesis inhibitors. These findings may fill the gap in understanding the role of ABCC4 in PGE2 signaling, enhance the understanding of ovulatory disorders, and facilitate the treatment and control of fertility.
Collapse
Affiliation(s)
- Gil M Yerushalmi
- Reproduction Laboratory and IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center (affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv), Tel Hashomer, Israel
- IVF Unit, Department of Obstetrics and Gynecology, The Yitzhak Shamir Medical Center (formerly Assaf Harofeh Medical Center) (affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv), Zerifin, Israel
| | - Batel Shuraki
- Reproduction Laboratory and IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center (affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv), Tel Hashomer, Israel
| | - Yuval Yung
- Reproduction Laboratory and IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center (affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv), Tel Hashomer, Israel
| | - Ettie Maman
- Reproduction Laboratory and IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center (affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv), Tel Hashomer, Israel
| | - Micha Baum
- Reproduction Laboratory and IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center (affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv), Tel Hashomer, Israel
| | - Jon D Hennebold
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Eli Y Adashi
- Department of Medical Science and Obstetrics and Gynecology, the Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Department of Obstetrics and Gynecology, the Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Ariel Hourvitz
- Reproduction Laboratory and IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center (affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv), Tel Hashomer, Israel
- IVF Unit, Department of Obstetrics and Gynecology, The Yitzhak Shamir Medical Center (formerly Assaf Harofeh Medical Center) (affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv), Zerifin, Israel
| |
Collapse
|
11
|
Wang Z, Wei H, Wu Z, Zhang X, Sun Y, Gao L, Zhang W, Su YQ, Zhang M. The oocyte cumulus complex regulates mouse sperm migration in the oviduct. Commun Biol 2022; 5:1327. [PMID: 36463362 PMCID: PMC9719508 DOI: 10.1038/s42003-022-04287-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022] Open
Abstract
As the time of ovulation draws near, mouse spermatozoa move out of the isthmic reservoir, which is a prerequisite for fertilization. However, the molecular mechanism remains unclear. The present study revealed that mouse cumulus cells of oocytes-cumulus complexes (OCCs) expressed transforming growth factor-β ligand 1 (TGFB1), whereas ampullary epithelial cells expressed the TGF-β receptors, TGFBR1 and TGFBR2, and all were upregulated by luteinizing hormone (LH)/human chorionic gonadotropin (hCG). OCCs and TGFB1 increased natriuretic peptide type C (NPPC) expression in cultured ampullae via TGF-β signaling, and NPPC treatment promoted spermatozoa moving out of the isthmic reservoir of the preovulatory oviducts. Deletion of Tgfb1 in cumulus cells and Tgfbr2 in ampullary epithelial cells blocked OCC-induced NPPC expression and spermatozoa moving out of the isthmic reservoir, resulting in compromised fertilization and fertility. Oocyte-derived paracrine factors were required for promoting cumulus cell expression of TGFB1. Therefore, oocyte-dependent and cumulus cell-derived TGFB1 promotes the expression of NPPC in oviductal ampulla, which is critical for sperm migration in the oviduct and subsequent fertilization.
Collapse
Affiliation(s)
- Zhijuan Wang
- grid.79703.3a0000 0004 1764 3838Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006 P. R. China
| | - Hongwei Wei
- grid.79703.3a0000 0004 1764 3838Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006 P. R. China
| | - Zhanying Wu
- grid.79703.3a0000 0004 1764 3838Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006 P. R. China
| | - Xiaodan Zhang
- grid.79703.3a0000 0004 1764 3838Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006 P. R. China
| | - Yanli Sun
- grid.79703.3a0000 0004 1764 3838Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006 P. R. China
| | - Longwei Gao
- grid.79703.3a0000 0004 1764 3838Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006 P. R. China
| | - Wenqing Zhang
- grid.79703.3a0000 0004 1764 3838Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006 P. R. China
| | - You-Qiang Su
- grid.27255.370000 0004 1761 1174Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237 P. R. China
| | - Meijia Zhang
- grid.79703.3a0000 0004 1764 3838Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006 P. R. China
| |
Collapse
|
12
|
Hao X, Yuan F, Cui Y, Zhang M. Oocyte-secreted factor TGFB2 enables mouse cumulus cell expansion in vitro. Mol Reprod Dev 2022; 89:554-562. [PMID: 36128893 DOI: 10.1002/mrd.23646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/04/2022] [Accepted: 09/07/2022] [Indexed: 12/25/2022]
Abstract
Cumulus expansion is necessary for the release of a fertilizable oocyte from the ovary, which is critical for the normal fertilization of mammals. Cumulus expansion requires cooperation between epidermal growth factor (EGF)-like growth factors and oocyte paracrine factors. Growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) are well-known paracrine factors secreted by oocytes. In addition, transforming growth factor-β2 (TGFB2) was primarily expressed in oocytes and its membrane receptors type 1 receptor (TGFBR1) and type 2 receptor (TGFBR2) were located in cumulus cells. In our present study, TGFB2 induced expansion of oocytectomized (OOX) complexes and increased the expression of expansion-related genes in the presence of EGF, suggesting that TGFB2 enables cumulus expansion. Inhibition of TGF-β signaling with SD208 blocked TGFB2-promoted cumulus expansion. Furthermore, in the culture of OOX complexes from mice of Tgfbr2-specific depletion in granulosa cells, TGFB2-promoted cumulus expansion and the expression of expansion-related genes were impaired. These results suggest that TGFB2 could induce cumulus expansion through TGFBR-SMAD2/3 signaling. Tgfb2-specific depletion in oocytes using Zp3-Cre mice had no effect on cumulus expansion in vivo, possibly due to the compensatory effect of other cumulus expansion-enabling factors. Taken together, TGFB2 is involved in expansion-related gene expression and consequent cumulus expansion.
Collapse
Affiliation(s)
- Xiaoqiong Hao
- Department of Physiology, Baotou Medical College, Baotou, China.,Division of Cell, Developmental, and Integrative Biology, Department of Physiology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Feifei Yuan
- Division of Cell, Developmental, and Integrative Biology, Department of Physiology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yanying Cui
- Division of Cell, Developmental, and Integrative Biology, Department of Physiology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Meijia Zhang
- Division of Cell, Developmental, and Integrative Biology, Department of Physiology, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
13
|
Kim M, Hwang SU, Yoon JD, Lee J, Kim E, Cai L, Choi H, Oh D, Lee G, Hyun SH. Physiological and Functional Roles of Neurotrophin-4 During In Vitro Maturation of Porcine Cumulus–Oocyte Complexes. Front Cell Dev Biol 2022; 10:908992. [PMID: 35898394 PMCID: PMC9310091 DOI: 10.3389/fcell.2022.908992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Neurotrophin-4 (NT-4), a granulosa cell-derived factor and a member of the neurotrophin family, is known to promote follicular development and oocyte maturation in mammals. However, the physiological and functional roles of NT-4 in porcine ovarian development are not yet known. The aim of this study was to investigate the physiological role of NT-4-related signaling in the in vitro maturation (IVM) of porcine cumulus–oocyte complexes (COCs). The NT-4 protein and its receptors were detected in matured porcine COCs via immunofluorescence analysis. NT-4 was shown to promote the maturation of COCs by upregulating NFKB1 transcription via the neurotrophin/p75NTR signaling pathway. Notably, the mRNA expression levels of the oocyte-secreted factors GDF9 and BMP15, sperm–oocyte interaction regulator CD9, and DNA methylase DNMT3A were significantly upregulated in NT-4-treated than in untreated porcine oocytes. Concurrently, there were no significant differences in the levels of total and phosphorylated epidermal growth factor receptor and p38 mitogen-activated protein kinase between NT-4-treated and untreated cumulus cells (CCs); however, the level of phosphorylated ERK1/2 was significantly higher in NT-4-treated CCs. Both total and phosphorylated ERK1/2 levels were significantly higher in NT-4-treated than in untreated oocytes. In addition, NT-4 improved subsequent embryonic development after in vitro fertilization and somatic cell nuclear transfer. Therefore, the physiological and functional roles of NT-4 in porcine ovarian development include the promotion of oocyte maturation, CC expansion, and ERK1/2 phosphorylation in porcine COCs during IVM.
Collapse
Affiliation(s)
- Mirae Kim
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, South Korea
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
| | - Seon-Ung Hwang
- Department of Biological Sciences, College of Arts and Sciences, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, United States
| | - Junchul David Yoon
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Joohyeong Lee
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, South Korea
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
| | - Eunhye Kim
- Laboratory of Molecular Diagnostics and Cell Biology, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Lian Cai
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, South Korea
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, South Korea
| | - Hyerin Choi
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, South Korea
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
| | - Dongjin Oh
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, South Korea
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
| | - Gabsang Lee
- Department of Neurology, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sang-Hwan Hyun
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, South Korea
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, South Korea
- *Correspondence: Sang-Hwan Hyun,
| |
Collapse
|
14
|
Kanke T, Fujii W, Naito K, Sugiura K. Effect of fibroblast growth factor signaling on cumulus expansion in mice in vitro. Mol Reprod Dev 2022; 89:281-289. [PMID: 35678749 DOI: 10.1002/mrd.23616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/23/2022] [Accepted: 05/25/2022] [Indexed: 11/07/2022]
Abstract
The expansion of cumulus cells associated with oocytes is an essential phenomenon in normal mammalian ovulation. Indeed, attenuated expression of cumulus expansion-related genes, including Has2, Ptgs2, Ptx3, and Tnfaip6, results in ovulation failure, leading to female subfertility or infertility. Moreover, emerging evidence suggests that proteins of the fibroblast growth factor (FGF) family, produced within ovarian follicles, regulate the development and function of cumulus cells; however, the effects of FGF signaling on cumulus expansion have not been investigated extensively. Herein, we investigate the effects of FGF signaling, particularly those of FGF8 secreted by oocytes, on epidermal growth factor-induced cumulus expansion in mice. The phosphorylation level of MAPK3/1, an intracellular mediator of FGF signaling, was significantly decreased in cumulus-oocyte complexes (COCs) following treatment with NVP-BGJ398, an FGF receptor inhibitor. Moreover, even though NVP-BGJ398 treatment did not affect cumulus cell expansion, it significantly upregulated the expression of Ptgs2 and Ptx3. In contrast, treatment with recombinant FGF8 did not affect the degree of cumulus expansion or the expression of expansion-related genes in COCs or oocytectomized cumulus cell complexes. Collectively, these results suggest that FGFs, other than FGF8, exert suppressive effects on the cumulus expansion process in mice.
Collapse
Affiliation(s)
- Takuya Kanke
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Wataru Fujii
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kunihiko Naito
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Koji Sugiura
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Su YQ, Yin Y, Guo J, Gong X, Tian Y, Shi L. MTOR-mediated interaction between the oocyte and granulosa cells regulates the development and function of both compartments in mice. Biol Reprod 2022; 107:76-84. [PMID: 35552649 DOI: 10.1093/biolre/ioac099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/13/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Coordinated development of the germline and the somatic compartments within a follicle is an essential prerequisite for creating a functionally normal oocyte. Bi-directional communication between the oocyte and the granulosa cells enables the frequent interchange of metabolites and signals that support the development and functions of both compartments. Mechanistic target of Rapamycin (MTOR), a conserved serine/threonine kinase and a widely recognized integrator of signals and pathways key for cellular metabolism, proliferation, and differentiation, is emerging as a major player that regulates many factes of oocyte and follicle development. Here, we summarized our recent observations on the role of oocyte- and granulosa cell-expressed MTOR in the control of the oocyte's and granulosa cell's own development, as well as the development of one another, and provided new data that further strengthen the role of cumulus cell-expressed MTOR in synchronizing oocyte and follicle development. Inhibition of MTOR induced oocyte meiotic resumption in cultured large antral follicles, as well as cumulus expansion and the expression of cumulus expansion-related transcripts in cumulus-oocyte complexes in vitro. In vivo, the activity of MTOR in cumulus cells was diminished remarkablely by 4 h after hCG administration. These results thus suggest that activation of MTOR in cumulus cells contributes to the maintenance of oocyte meiotic arrest before the LH surge. Based on the observations made by us here and previously, we propose that MTOR is an essential mediator of the bi-directional communication between the oocyte and granulosa cells that regulates the development and function of both compartments.
Collapse
Affiliation(s)
- You-Qiang Su
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, PR China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, PR China.,Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, PR China
| | - Yaoxue Yin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, PR China
| | - Jing Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, PR China
| | - Xuhong Gong
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, PR China
| | - Yufeng Tian
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, PR China
| | - Lanying Shi
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, PR China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, PR China
| |
Collapse
|
16
|
EMORI C, KANKE T, ITO H, AKIMOTO Y, FUJII W, NAITO K, SUGIURA K. Expression and regulation of estrogen receptor 2 and its coregulators in mouse granulosa cells. J Reprod Dev 2022; 68:137-143. [PMID: 35046244 PMCID: PMC8979806 DOI: 10.1262/jrd.2021-114] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cooperative effects of estrogen and oocyte-derived paracrine factors (ODPFs) play critical roles in the normal development of ovarian follicles; however, the mechanism underlying this
cooperation has not been well studied. The present study aimed to determine whether ODPFs affect estrogen signaling by regulating the expression of estrogen receptor (ESR) and its
coregulators in mouse granulosa cells. Some transcripts encoding ESR coregulators were differentially expressed between cumulus and mural granulosa cells (MGCs). The transcript levels of ESR
coregulators, including nuclear receptor corepressor 1 and activator 2, in cumulus cells were significantly suppressed by ODPFs; however, they increased when cumulus cell-oocyte complexes
were treated with the transforming growth factor beta receptor I inhibitor, SB431542. Moreover, MGCs exhibited significantly higher ESR2 protein and transcript levels than those in cumulus
cells. ODPFs promoted Esr2 expression in cumulus cells but had no effect on that in MGCs. Overall, regulation of the expression of ESR2 and its coregulators in cumulus cells
by oocytes seems to be one of the mechanisms underlying estrogen-oocyte cooperation in well-developed antral follicles in mice.
Collapse
Affiliation(s)
- Chihiro EMORI
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Takuya KANKE
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Haruka ITO
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Yuki AKIMOTO
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Wataru FUJII
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kunihiko NAITO
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Koji SUGIURA
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
17
|
Effect of cumulin and super-GDF9 in standard and biphasic mouse IVM. J Assist Reprod Genet 2022; 39:127-140. [PMID: 34984599 PMCID: PMC8866628 DOI: 10.1007/s10815-021-02382-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/17/2021] [Indexed: 01/03/2023] Open
Abstract
PURPOSE In vitro maturation (IVM) is a technology that generates mature oocytes following culture of immature cumulus-oocyte complexes (COC) in vitro. IVM is characterized by minimal patient stimulation, making it attractive for certain patient groups. Recently, a biphasic IVM system, capacitation (CAPA)-IVM, has shown improved clinical outcomes relative to standard IVM; however, it remains less efficient than IVF. This study assessed whether supplementation of CAPA-IVM culture media with the novel TGFβ superfamily proteins cumulin and super-GDF9 improves subsequent mouse embryo development. METHODS Immature mouse COCs were cultured by standard IVM or biphasic IVM ± cumulin or super-GDF9. RESULTS Both cumulin and super-GDF9 in standard IVM significantly improved day-6 blastocyst rate (53.9% control, 73.6% cumulin, 70.4% super-GDF9; p = 0.006; n = 382-406 oocytes). Cumulin or super-GDF9 in CAPA-IVM did not alter embryo yield or blastocyst cell allocation in an unstimulated model. Moreover, cumulin did not alter these outcomes in a mild PMSG stimulation model. Cumulin in CAPA-IVM significantly increased cumulus cell expression of cumulus expansion genes (Ptgs2, Ptx3, Adamts1, Gfat2) and decreased Lhr expression relative to control. However, cumulin-induced mRNA expression of cumulus cell (Ptgs2, Ptx3) and oocyte genes (Gdf9, Bmp15, Oct4, Stella) in CAPA-IVM remained significantly lower than that of in vivo matured cells. CONCLUSION Cumulin did not provide an additional beneficial effect in biphasic IVM in terms of blastocyst yield and cell allocation; however in standard IVM, cumulin and super-GDF9 significantly improve oocyte developmental competence.
Collapse
|
18
|
Emori C, Ito H, Fujii W, Naito K, Sugiura K. Oocytes suppress FOXL2 expression in cumulus cells in mice†. Biol Reprod 2021; 103:85-93. [PMID: 32307529 DOI: 10.1093/biolre/ioaa054] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/07/2020] [Accepted: 04/16/2020] [Indexed: 11/15/2022] Open
Abstract
Cumulus cells and mural granulosa cells (MGCs) play distinct roles during follicular development, and normal development of these cell lineages is critical for the female fertility. Transcriptomic diversification between the two cell lineages is obviously a critical mechanism for their functional diversification; however, the transcriptional regulators responsible for this event have not been fully defined. In this study, we sought to identify key transcriptional regulators responsible for the differential gene expression between the two cell lineages. In silico analysis of transcriptomic comparison between cumulus cells and MGCs identified several candidate regulators responsible for the diversification of the two cell lineages. Among them, we herein focused on forkhead box L2 (FOXL2) and showed that expressions of FOXL2 as well as its target transcripts were differentially regulated between cumulus cells and MGCs. The lower expression of FOXL2 in cumulus cells seemed to be due to the suppression by oocyte-derived paracrine signals. These results suggest that FOXL2 is one of the critical transcription factors that determine cumulus cell and MGC lineages under the control of oocytes.
Collapse
Affiliation(s)
- Chihiro Emori
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Haruka Ito
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Wataru Fujii
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kunihiko Naito
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Koji Sugiura
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
19
|
Li CJ, Lin LT, Tsai HW, Chern CU, Wen ZH, Wang PH, Tsui KH. The Molecular Regulation in the Pathophysiology in Ovarian Aging. Aging Dis 2021; 12:934-949. [PMID: 34094652 PMCID: PMC8139203 DOI: 10.14336/ad.2020.1113] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/13/2020] [Indexed: 12/23/2022] Open
Abstract
The female reproductive system is of great significance to women’s health. Aging of the female reproductive system occurs approximately 10 years prior to the natural age-associated functional decline of other organ systems. With an increase in life expectancy worldwide, reproductive aging has gradually become a key health issue among women. Therefore, an adequate understanding of the causes and molecular mechanisms of ovarian aging is essential towards the inhibition of age-related diseases and the promotion of health and longevity in women. In general, women begin to experience a decline in ovarian function around the age of 35 years, which is mainly manifested as a decrease in the number of ovarian follicles and the quality of oocytes. Studies have revealed the occurrence of mitochondrial dysfunction, reduced DNA repair, epigenetic changes, and metabolic alterations in the cells within the ovaries as age increases. In the present work, we reviewed the possible factors of aging-induced ovarian insufficiency based on its clinical diagnosis and performed an in-depth investigation of the relevant molecular mechanisms and potential targets to provide novel approaches for the effective improvement of ovarian function in older women.
Collapse
Affiliation(s)
- Chia-Jung Li
- 1Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,2Institute of BioPharmaceutical sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Li-Te Lin
- 1Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,2Institute of BioPharmaceutical sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.,3Department of Obstetrics and Gynaecology, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Hsiao-Wen Tsai
- 1Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,2Institute of BioPharmaceutical sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chyi-Uei Chern
- 1Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Zhi-Hong Wen
- 4Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Peng-Hui Wang
- 3Department of Obstetrics and Gynaecology, National Yang-Ming University School of Medicine, Taipei, Taiwan.,5Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan.,6Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,7Female Cancer Foundation, Taipei, Taiwan
| | - Kuan-Hao Tsui
- 1Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,2Institute of BioPharmaceutical sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.,3Department of Obstetrics and Gynaecology, National Yang-Ming University School of Medicine, Taipei, Taiwan.,8Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung County, Taiwan
| |
Collapse
|
20
|
Ni S, Zhang T, Zhou C, Long M, Hou X, You L, Li H, Shi L, Su YQ. Coordinated Formation of IMPDH2 Cytoophidium in Mouse Oocytes and Granulosa Cells. Front Cell Dev Biol 2021; 9:690536. [PMID: 34124077 PMCID: PMC8194064 DOI: 10.3389/fcell.2021.690536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
Inosine monophosphate dehydrogenase (IMPDH), the rate-limiting enzyme catalyzing de novo biosynthesis of guanine nucleotides, aggregates under certain circumstances into a type of non-membranous filamentous macrostructure termed “cytoophidium” or “rod and ring” in several types of cells. However, the biological significance and underlying mechanism of IMPDH assembling into cytoophidium remain elusive. In mouse ovaries, IMPDH is reported to be crucial for the maintenance of oocyte–follicle developmental synchrony by providing GTP substrate for granulosa cell natriuretic peptide C/natriuretic peptide receptor 2 (NPPC/NPR2) system to produce cGMP for sustaining oocyte meiotic arrest. Oocytes and the associated somatic cells in the ovary hence render an exciting model system for exploring the functional significance of formation of IMPDH cytoophidium within the cell. We report here that IMPDH2 cytoophidium forms in vivo in the growing oocytes naturally and in vitro in the cumulus-enclosed oocytes treated with IMPDH inhibitor mycophenolic acid (MPA). Inhibition of IMPDH activity in oocytes and preimplantation embryos compromises oocyte meiotic and developmental competences and the development of embryos beyond the 4-cell stage, respectively. IMPDH cytoopidium also forms in vivo in the granulosa cells of the preovulatory follicles after the surge of luteinizing hormone (LH), which coincides with the resumption of oocyte meiosis and the reduction of IMPDH2 protein expression. In cultured COCs, MPA-treatment causes the simultaneous formation of IMPDH cytoopidium in cumulus cells and the resumption of meiosis in oocytes, which is mediated by the MTOR pathway and is prevented by guanosine supplementation. Therefore, our results indicate that cytoophidia do form in the oocytes and granulosa cells at particular stages of development, which may contribute to the oocyte acquisition of meiotic and developmental competences and the induction of meiosis re-initiation by the LH surge, respectively.
Collapse
Affiliation(s)
- Shiwen Ni
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Teng Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Chenmin Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Min Long
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xuan Hou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Liji You
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Hui Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Lanying Shi
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - You-Qiang Su
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China.,Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Hospital, Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Billhaq DH, Lee S. The Role of the Guanosine Nucleotide-Binding Protein in the Corpus Luteum. Animals (Basel) 2021; 11:1524. [PMID: 34073800 PMCID: PMC8225084 DOI: 10.3390/ani11061524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 12/22/2022] Open
Abstract
The corpus luteum is a temporary endocrine gland in the ovary. In the ovarian cycle, repeated patterns of specific cellular proliferation, differentiation, and transformation occur that accompany the formation and regression of the corpus luteum. Molecular mechanism events in the ovarian microenvironment, such as angiogenesis and apoptosis, are complex. Recently, we focused on the role of RAS protein in the ovarian corpus luteum. RAS protein plays a vital role in the modulation of cell survival, proliferation, and differentiation by molecular pathway signaling. Additionally, reproductive hormones regulate RAS activity in the cellular physiological function of ovarian follicles during pre-ovulatory maturation and ovulation. Thus, we have reviewed the role of RAS protein related to the biological events of the corpus luteum in the ovary.
Collapse
Affiliation(s)
| | - Seunghyung Lee
- College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea;
| |
Collapse
|
22
|
Garner TB, Hester JM, Carothers A, Diaz FJ. Role of zinc in female reproduction. Biol Reprod 2021; 104:976-994. [PMID: 33598687 PMCID: PMC8599883 DOI: 10.1093/biolre/ioab023] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/09/2021] [Accepted: 02/15/2021] [Indexed: 11/14/2022] Open
Abstract
Zinc is a critical component in a number of conserved processes that regulate female germ cell growth, fertility, and pregnancy. During follicle development, a sufficient intracellular concentration of zinc in the oocyte maintains meiotic arrest at prophase I until the germ cell is ready to undergo maturation. An adequate supply of zinc is necessary for the oocyte to form a fertilization-competent egg as dietary zinc deficiency or chelation of zinc disrupts maturation and reduces the oocyte quality. Following sperm fusion to the egg to initiate the acrosomal reaction, a quick release of zinc, known as the zinc spark, induces egg activation in addition to facilitating zona pellucida hardening and reducing sperm motility to prevent polyspermy. Symmetric division, proliferation, and differentiation of the preimplantation embryo rely on zinc availability, both during the oocyte development and post-fertilization. Further, the fetal contribution to the placenta, fetal limb growth, and neural tube development are hindered in females challenged with zinc deficiency during pregnancy. In this review, we discuss the role of zinc in germ cell development, fertilization, and pregnancy with a focus on recent studies in mammalian females. We further detail the fundamental zinc-mediated reproductive processes that have only been explored in non-mammalian species and speculate on the role of zinc in similar mechanisms of female mammals. The evidence collected over the last decade highlights the necessity of zinc for normal fertility and healthy pregnancy outcomes, which suggests zinc supplementation should be considered for reproductive age women at risk of zinc deficiency.
Collapse
Affiliation(s)
- Tyler Bruce Garner
- Huck Institutes of the Life Sciences, Integrative and Biomedical Physiology Program, The Pennsylvania State University, University Park, PA, USA
| | - James Malcolm Hester
- Huck Institutes of the Life Sciences, Integrative and Biomedical Physiology Program, The Pennsylvania State University, University Park, PA, USA
| | - Allison Carothers
- Huck Institutes of the Life Sciences, Integrative and Biomedical Physiology Program, The Pennsylvania State University, University Park, PA, USA
| | - Francisco J Diaz
- Huck Institutes of the Life Sciences, Integrative and Biomedical Physiology Program, The Pennsylvania State University, University Park, PA, USA
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
23
|
Ravisankar S, Hanna CB, Brooks KE, Murphy MJ, Redmayne N, Ryu J, Kinchen JM, Chavez SL, Hennebold JD. Metabolomics analysis of follicular fluid coupled with oocyte aspiration reveals importance of glucocorticoids in primate periovulatory follicle competency. Sci Rep 2021; 11:6506. [PMID: 33753762 PMCID: PMC7985310 DOI: 10.1038/s41598-021-85704-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 03/05/2021] [Indexed: 12/21/2022] Open
Abstract
Gonadotropin administration during infertility treatment stimulates the growth and development of multiple ovarian follicles, yielding heterogeneous oocytes with variable capacity for fertilization, cleavage, and blastocyst formation. To determine how the intrafollicular environment affects oocyte competency, 74 individual rhesus macaque follicles were aspirated and the corresponding oocytes classified as failed to cleave, cleaved but arrested prior to blastulation, or those that formed blastocysts following in vitro fertilization. Metabolomics analysis of the follicular fluid (FF) identified 60 unique metabolites that were significantly different between embryo classifications, of which a notable increase in the intrafollicular ratio of cortisol to cortisone was observed in the blastocyst group. Immunolocalization of the glucocorticoid receptor (GR, NR3C1) revealed translocation from the cytoplasm to nucleus with oocyte maturation in vitro and, correlation to intrafollicular expression of the 11-hydroxy steroid dehydrogenases that interconvert these glucocorticoids was detected upon an ovulatory stimulus in vivo. While NR3C1 knockdown in oocytes had no effect on their maturation or fertilization, expansion of the associated cumulus granulosa cells was inhibited. Our findings indicate an important role for NR3C1 in the regulation of follicular processes via paracrine signaling. Further studies are required to define the means through which the FF cortisol:cortisone ratio determines oocyte competency.
Collapse
Affiliation(s)
- Sweta Ravisankar
- Department of Cell, Developmental and Cancer Biology, Graduate Program in Molecular & Cellular Biosciences, Oregon Health & Science University School of Medicine, Portland, OR, USA.,Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Carol B Hanna
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Kelsey E Brooks
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Melinda J Murphy
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Nash Redmayne
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Junghyun Ryu
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA
| | | | - Shawn L Chavez
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA.,Department of Obstetrics and Gynecology, Oregon Health & Science University School of Medicine, Portland, OR, USA.,Department of Molecular and Medical Genetics, Oregon Health & Science University School of Medicine, Portland, OR, USA
| | - Jon D Hennebold
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA. .,Department of Obstetrics and Gynecology, Oregon Health & Science University School of Medicine, Portland, OR, USA.
| |
Collapse
|
24
|
Gao G, Gao D, Zhao X, Xu S, Zhang K, Wu R, Yin C, Li J, Xie Y, Hu S, Wang Q. Genome-Wide Association Study-Based Identification of SNPs and Haplotypes Associated With Goose Reproductive Performance and Egg Quality. Front Genet 2021; 12:602583. [PMID: 33777090 PMCID: PMC7994508 DOI: 10.3389/fgene.2021.602583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/24/2021] [Indexed: 01/10/2023] Open
Abstract
Geese are one of the most economically important waterfowl. However, the low reproductive performance and egg quality of geese hinder the development of the goose industry. The identification and application of genetic markers may improve the accuracy of beneficial trait selection. To identify the genetic markers associated with goose reproductive performance and egg quality traits, we performed a genome-wide association study (GWAS) for body weight at birth (BBW), the number of eggs at 48 weeks of age (EN48), the number of eggs at 60 weeks of age (EN60) and egg yolk color (EYC). The GWAS acquired 2.896 Tb of raw sequencing data with an average depth of 12.44× and identified 9,279,339 SNPs. The results of GWAS showed that 26 SNPs were significantly associated with BBW, EN48, EN60, and EYC. Moreover, five of these SNPs significantly associated with EN48 and EN60 were in a haplotype block on chromosome 35 from 4,512,855 to 4,541,709 bp, oriented to TMEM161A and another five SNPs significantly correlated to EYC were constructed in haplotype block on chromosome 5 from 21,069,009 to 21,363,580, which annotated by TMEM161A, CALCR, TFPI2, and GLP1R. Those genes were enriched in epidermal growth factor-activated receptor activity, regulation of epidermal growth factor receptor signaling pathway. The SNPs, haplotype markers, and candidate genes identified in this study can be used to improve the accuracy of marker-assisted selection for the reproductive performance and egg quality traits of geese. In addition, the candidate genes significantly associated with these traits may provide a foundation for better understanding the mechanisms underlying reproduction and egg quality in geese.
Collapse
Affiliation(s)
- Guangliang Gao
- Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing, China
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Dengfeng Gao
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Xianzhi Zhao
- Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | | | - Keshan Zhang
- Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Rui Wu
- Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Chunhui Yin
- Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Jing Li
- Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Youhui Xie
- Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Silu Hu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qigui Wang
- Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| |
Collapse
|
25
|
Hwang SU, Yoon JD, Kim M, Cai L, Choi H, Oh D, Kim E, Hyun SH. R-Spondin 2 and WNT/CTNNB1 Signaling Pathways Are Required for Porcine Follicle Development and In Vitro Maturation. Animals (Basel) 2021; 11:ani11030709. [PMID: 33807916 PMCID: PMC7998564 DOI: 10.3390/ani11030709] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 12/26/2022] Open
Abstract
The secretion of oocyte-derived paracrine factors, such as R-spondin2, is an essential mechanism for follicle growth by promoting the proliferation and differentiation of cumulus cells around oocytes. In the present study, we aimed to identify the effect of R-spondin2 during follicular development. First, R-spondin2-related factors (R-spondin2, CTNNB1, LGR4, and LGR5) were identified through immunofluorescence in porcine ovarian tissue. CTNNB1 was expressed in ooplasm, and CTNNB1 and LGR4 were expressed in granulosa cells. In addition, R-spondin2, LGR4, and LGR5 were expressed in the theca interna. These results imply that these proteins play a major role in porcine follicular development. In addition, the effects of R-spondin2 on the in vitro maturation process of porcine cumulus oocyte complexes and subsequent embryonic development were confirmed. A treatment of 100 ng/mL R-spondin2 in the in vitro maturation (IVM) process increased nuclear maturation and increased the expression of EGFR mRNA in cumulus cells. The EGFR-ERK signal is essential for oocyte maturation, ovulation, and luteinization. R-spondin2 treatment also increased the expression of CTNNB1 and EGFR in primary cultured cumulus cells. In conclusion, RSPO2 and WNT/CTNNB1 signaling pathways are required for porcine follicle development and are predicted to be involved in the EGFR-ERK signaling pathway.
Collapse
Affiliation(s)
- Seon-Ung Hwang
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (S.-U.H.); (J.D.Y.); (M.K.); (L.C.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Junchul David Yoon
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (S.-U.H.); (J.D.Y.); (M.K.); (L.C.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Mirae Kim
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (S.-U.H.); (J.D.Y.); (M.K.); (L.C.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Lian Cai
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (S.-U.H.); (J.D.Y.); (M.K.); (L.C.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Hyerin Choi
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (S.-U.H.); (J.D.Y.); (M.K.); (L.C.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Dongjin Oh
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (S.-U.H.); (J.D.Y.); (M.K.); (L.C.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Eunhye Kim
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (S.-U.H.); (J.D.Y.); (M.K.); (L.C.); (H.C.); (D.O.)
- Correspondence: (E.K.); (S.-H.H.); Tel.: +82-43-249-1746 (E.K.); +82-43-261-3393 (S.-H.H.)
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (S.-U.H.); (J.D.Y.); (M.K.); (L.C.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
- Correspondence: (E.K.); (S.-H.H.); Tel.: +82-43-249-1746 (E.K.); +82-43-261-3393 (S.-H.H.)
| |
Collapse
|
26
|
Wu FJ, Wang YW, Luo CW. Human bone morphogenetic protein 8A promotes expansion and prevents apoptosis of cumulus cells in vitro. Mol Cell Endocrinol 2021; 522:111121. [PMID: 33338549 DOI: 10.1016/j.mce.2020.111121] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/16/2020] [Accepted: 12/07/2020] [Indexed: 11/20/2022]
Abstract
Cumulus expansion is essential for ovulation and oocyte maturation in mammals. Previous studies suggest that this process requires certain cumulus expansion enabling factors, induced by LH surge, that activate SMAD signaling locally. However, their identities remain uncertain. Using a superovulated rat model, we showed that Bmp8 transcripts were abundant in cumulus cell-oocyte complexes (COCs) and their levels can be further induced during ovulation. By analyzing human COC-related transcriptomic datasets, BMP8 transcripts in cumulus cells were also found to be significantly elevated along with the maturation status and developmental competence of enclosed oocytes. In cultured rat COCs, treatment with recombinant BMP8A protein activated both SMAD1/5/8 and SMAD2/3 pathways; the resulting SMAD2/3 signaling induced COC expansion as well as the expression of COC expansion-related genes, whereas the resulting SMAD2/3 and SMAD1/5/8 activations were both required for protecting expanded cumulus cells from apoptosis. Taken together, our data demonstrated that addition of BMP8 protein in the in vitro rat COC cultures not only promotes cumulus expansion but also sustains survival of expanded cumulus cells via different SMAD downstreams. With these capabilities, BMP8 may have clinical applications to ameliorate the fertilizability and subsequent developmental competence of the enclosed oocytes when doing in vitro COC maturation.
Collapse
Affiliation(s)
- Fang-Ju Wu
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, 112, Taiwan
| | - Ying-Wen Wang
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, 112, Taiwan
| | - Ching-Wei Luo
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, 112, Taiwan.
| |
Collapse
|
27
|
Stegemiller MR, Murdoch GK, Rowan TN, Davenport KM, Becker GM, Hall JB, Murdoch BM. Genome-Wide Association Analyses of Fertility Traits in Beef Heifers. Genes (Basel) 2021; 12:genes12020217. [PMID: 33540904 PMCID: PMC7913221 DOI: 10.3390/genes12020217] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
The ability of livestock to reproduce efficiently is critical to the sustainability of animal agriculture. Antral follicle count (AFC) and reproductive tract scores (RTS) can be used to estimate fertility in beef heifers, but the genetic mechanisms influencing variation in these measures are not well understood. Two genome-wide association studies (GWAS) were conducted to identify the significant loci associated with these traits. In total, 293 crossbred beef heifers were genotyped on the Bovine GGP 50K chip and genotypes were imputed to 836,121 markers. A GWAS was performed with the AFC phenotype for 217 heifers with a multi-locus mixed model, conducted using the year, age at time of sampling and principal component analysis groupings as the covariates. The RTS GWAS was performed with 289 heifers using an additive correlation/trend test comparing prepubertal to pubertal heifers. The loci on chromosomes 2, 3 and 23 were significant in the AFC GWAS and the loci on chromosomes 2, 8, 10 and 11 were significant in the RTS GWAS. The significant region on chromosome 2 was similar between both analyses. These regions contained genes associated with cell proliferation, transcription, apoptosis and development. This study proposes candidate genes for beef cattle fertility, although future research is needed to elucidate the precise mechanisms.
Collapse
Affiliation(s)
- Morgan R. Stegemiller
- Department of Animal, Veterinary & Food Sciences, University of Idaho, Moscow, ID 83843, USA; (M.R.S.); (G.K.M.); (K.M.D.); (G.M.B.)
| | - Gordon K. Murdoch
- Department of Animal, Veterinary & Food Sciences, University of Idaho, Moscow, ID 83843, USA; (M.R.S.); (G.K.M.); (K.M.D.); (G.M.B.)
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Troy N. Rowan
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA;
| | - Kimberly M. Davenport
- Department of Animal, Veterinary & Food Sciences, University of Idaho, Moscow, ID 83843, USA; (M.R.S.); (G.K.M.); (K.M.D.); (G.M.B.)
| | - Gabrielle M. Becker
- Department of Animal, Veterinary & Food Sciences, University of Idaho, Moscow, ID 83843, USA; (M.R.S.); (G.K.M.); (K.M.D.); (G.M.B.)
| | - John B. Hall
- Department of Animal, Veterinary & Food Sciences, University of Idaho, Moscow, ID 83843, USA; (M.R.S.); (G.K.M.); (K.M.D.); (G.M.B.)
- Nancy M. Cummings Research, Education, and Extension Center, University of Idaho, Carmen, ID 83462, USA
- Correspondence: (J.B.H.); (B.M.M.); Tel.: +1-208-756-2749 (J.B.H.); +1-208-885-2088 (B.M.M.)
| | - Brenda M. Murdoch
- Department of Animal, Veterinary & Food Sciences, University of Idaho, Moscow, ID 83843, USA; (M.R.S.); (G.K.M.); (K.M.D.); (G.M.B.)
- Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
- Correspondence: (J.B.H.); (B.M.M.); Tel.: +1-208-756-2749 (J.B.H.); +1-208-885-2088 (B.M.M.)
| |
Collapse
|
28
|
Matsuno Y, Maruyama N, Fujii W, Naito K, Sugiura K. Effects of oocyte-derived paracrine factors on release of extracellular vesicles by murine mural granulosa cells in vitro. Anim Sci J 2020; 91:e13385. [PMID: 32515535 PMCID: PMC7378952 DOI: 10.1111/asj.13385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 12/27/2022]
Abstract
Both oocytes and extracellular vesicles (EV) have emerged as critical regulators of mammalian follicular development; however, the possible interaction between the oocyte‐derived paracrine factor (ODPF) and EV signals has never been examined. Therefore, to explore the possibility of an interaction between oocyte and EV signals, the effects of ODPFs on the biogenesis of EVs as well as the expression levels of transcripts related to EV biogenesis in mural granulosa cells (MGCs) were examined using mice. The results showed that, while oocyte coculture has some effects on the expression levels of transcripts related to EV biogenesis, the number of EV particles present in the conditioned medium were not significantly different between ODPF‐treated and non‐treated MGCs. Therefore, oocytes have no effects on the EV biogenesis by MGCs, at least with respect to the numbers of EV particles.
Collapse
Affiliation(s)
- Yuta Matsuno
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Natsumi Maruyama
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Wataru Fujii
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kunihiko Naito
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Koji Sugiura
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
29
|
Stocker WA, Walton KL, Richani D, Chan KL, Beilby KH, Finger BJ, Green MP, Gilchrist RB, Harrison CA. A variant of human growth differentiation factor-9 that improves oocyte developmental competence. J Biol Chem 2020; 295:7981-7991. [PMID: 32350111 DOI: 10.1074/jbc.ra120.013050] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/26/2020] [Indexed: 11/06/2022] Open
Abstract
Growth differentiation factor-9 (GDF9) and bone morphogenetic protein-15 (BMP15) are co-expressed exclusively in oocytes throughout most of folliculogenesis and play central roles in controlling ovarian physiology. Although both growth factors exist as homodimers, recent evidence indicates that GDF9 and BMP15 can also heterodimerize to form the potent growth factor cumulin. Within the cumulin complex, BMP15 "activates" latent GDF9, enabling potent signaling in granulosa cells via type I receptors (i.e. activin receptor-like kinase-4/5 (ALK4/5)) and SMAD2/3 transcription factors. In the cumulin heterodimer, two distinct type I receptor interfaces are formed compared with homodimeric GDF9 and BMP15. Previous studies have highlighted the potential of cumulin to improve treatment of female infertility, but, as a noncovalent heterodimer, cumulin is difficult to produce and purify without contaminating GDF9 and BMP15 homodimers. In this study we addressed this challenge by focusing on the cumulin interface formed by the helix of the GDF9 chain and the fingers of the BMP15 chain. We demonstrate that unique BMP15 finger residues at this site (Arg301, Gly304, His307, and Met369) enable potent activation of the SMAD2/3 pathway. Incorporating these BMP15 residues into latent GDF9 generated a highly potent growth factor, called hereafter Super-GDF9. Super-GDF9 was >1000-fold more potent than WT human GDF9 and 4-fold more potent than cumulin in SMAD2/3-responsive transcriptional assays in granulosa cells. Our demonstration that Super-GDF9 can effectively promote mouse cumulus cell expansion and improve oocyte quality in vitro represents a potential solution to the current challenges of producing and purifying intact cumulin.
Collapse
Affiliation(s)
- William A Stocker
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Department of Physiology, Monash University, Clayton, Victoria, Australia.,Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Kelly L Walton
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Dulama Richani
- School of Women's and Children's Health, Discipline of Obstetrics and Gynaecology, University of New South Wales Sydney, NSW, Australia
| | - Karen L Chan
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Kiri H Beilby
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Bethany J Finger
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Mark P Green
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Robert B Gilchrist
- School of Women's and Children's Health, Discipline of Obstetrics and Gynaecology, University of New South Wales Sydney, NSW, Australia
| | - Craig A Harrison
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia .,Department of Physiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
30
|
A Comparative Analysis of Oocyte Development in Mammals. Cells 2020; 9:cells9041002. [PMID: 32316494 PMCID: PMC7226043 DOI: 10.3390/cells9041002] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Sexual reproduction requires the fertilization of a female gamete after it has undergone optimal development. Various aspects of oocyte development and many molecular actors in this process are shared among mammals, but phylogeny and experimental data reveal species specificities. In this chapter, we will present these common and distinctive features with a focus on three points: the shaping of the oocyte transcriptome from evolutionarily conserved and rapidly evolving genes, the control of folliculogenesis and ovulation rate by oocyte-secreted Growth and Differentiation Factor 9 and Bone Morphogenetic Protein 15, and the importance of lipid metabolism.
Collapse
|
31
|
Luteinizing Hormone Action in Human Oocyte Maturation and Quality: Signaling Pathways, Regulation, and Clinical Impact. Reprod Sci 2020; 27:1223-1252. [PMID: 32046451 PMCID: PMC7190682 DOI: 10.1007/s43032-019-00137-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/14/2019] [Indexed: 12/18/2022]
Abstract
The ovarian follicle luteinizing hormone (LH) signaling molecules that regulate oocyte meiotic maturation have recently been identified. The LH signal reduces preovulatory follicle cyclic nucleotide levels which releases oocytes from the first meiotic arrest. In the ovarian follicle, the LH signal reduces cyclic nucleotide levels via the CNP/NPR2 system, the EGF/EGF receptor network, and follicle/oocyte gap junctions. In the oocyte, reduced cyclic nucleotide levels activate the maturation promoting factor (MPF). The activated MPF induces chromosome segregation and completion of the first and second meiotic divisions. The purpose of this paper is to present an overview of the current understanding of human LH signaling regulation of oocyte meiotic maturation by identifying and integrating the human studies on this topic. We found 89 human studies in the literature that identified 24 LH follicle/oocyte signaling proteins. These studies show that human oocyte meiotic maturation is regulated by the same proteins that regulate animal oocyte meiotic maturation. We also found that these LH signaling pathway molecules regulate human oocyte quality and subsequent embryo quality. Remarkably, in vitro maturation (IVM) prematuration culture (PMC) protocols that manipulate the LH signaling pathway improve human oocyte quality of cultured human oocytes. This knowledge has improved clinical human IVM efficiency which may become a routine alternative ART for some infertile patients.
Collapse
|
32
|
Kim JW, Park HJ, Yang SG, Kim MJ, Kim IS, Jegal HG, Wee G, Yang HY, Park JJ, Choo YK, Koo DB. Exogenous Ganglioside GT1b Enhances Porcine Oocyte Maturation, Including the Cumulus Cell Expansion and Activation of EGFR and ERK1/2 Signaling. Reprod Sci 2020; 27:278-289. [PMID: 32046393 DOI: 10.1007/s43032-019-00004-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/29/2019] [Indexed: 11/26/2022]
Abstract
Ganglioside GT1b is well-known for its role in cytokine production and in activating epidermal growth factor receptor (EGFR)-mediated signaling pathways in cancer cells. However, there are no reports that clearly elucidate the role of GT1b in EGFR-mediated signaling pathways in porcine oocytes during the process of in vitro maturation (IVM). In this study, we investigated the role of GT1b in EGFR-mediated activation of the ERK1/2 pathway in porcine cumulus-oocyte complexes (COCs) at 44 h of IVM. Our data show that expression of the ST3GAL2 protein significantly increased in porcine COCs at 44 h irrespective of treatment with EGF. Meiotic maturation and mRNA levels of factors (HAS2, TNFAIP6, and PTX3) related to cumulus cell expansion significantly increased in COCs treated with 2 μM GT1b during IVM in the absence of EGF. They also increased in COCs treated with EGF/GT1b as compared to that in the other groups. Interestingly, protein levels of EGFR, phospho-EGFR, ERK1/2, and phospho-ERK1/2 dramatically increased in COCs treated with EGF/GT1b. Moreover, the rate of fertilization and the developmental competence of blastocyst were significantly higher in EGF/GT1b-treated COCs. Taken together, these results suggest that exogenous GT1b improves meiotic maturation and cumulus cell expansion in porcine COCs via activation of EGFR-mediated ERK1/2 signaling.
Collapse
Affiliation(s)
- Jin-Woo Kim
- Department of Biotechnology, College of Engineering, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
| | - Hyo-Jin Park
- Department of Biotechnology, College of Engineering, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
| | - Seul-Gi Yang
- Department of Biotechnology, College of Engineering, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
| | - Min-Ji Kim
- Department of Biotechnology, College of Engineering, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
| | - In-Su Kim
- Department of Biotechnology, College of Engineering, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
| | - Ho-Geun Jegal
- Department of Biotechnology, College of Engineering, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
| | - Gabbine Wee
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Cheombok-ro, Dong-gu, Daegu, 41061, Republic of Korea
| | - Hee-Young Yang
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Cheombok-ro, Dong-gu, Daegu, 41061, Republic of Korea
| | - Joung Jun Park
- Animal Reproduction & Biotechnology Center, Myung-Poom Hanwoo Consulting, Hoengseong, 25232, Republic of Korea
| | - Young-Kug Choo
- Department of Biological Science, College of Natural Sciences, Wonkwang University, 460, Iksandae-ro, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Deog-Bon Koo
- Department of Biotechnology, College of Engineering, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk, 38453, Republic of Korea.
| |
Collapse
|
33
|
Qin Y, Tang T, Li W, Liu Z, Yang X, Shi X, Sun G, Liu X, Wang M, Liang X, Cong P, Mo D, Liu X, Chen Y, He Z. Bone Morphogenetic Protein 15 Knockdown Inhibits Porcine Ovarian Follicular Development and Ovulation. Front Cell Dev Biol 2019; 7:286. [PMID: 31803742 PMCID: PMC6877722 DOI: 10.3389/fcell.2019.00286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/04/2019] [Indexed: 12/21/2022] Open
Abstract
Bone morphogenetic protein 15 (BMP15) is strongly associated with animal reproduction and woman reproductive disease. As a multifunctional oocyte-specific secret factor, BMP15 controls female fertility and follicular development in both species-specific and dosage-sensitive manners. Previous studies found that BMP15 played a critical role in follicular development and ovulation rate in mono-ovulatory mammalian species, especially in sheep and human, but study on knockout mouse model implied that BMP15 possibly has minimal impact on female fertility of poly-ovulatory species. However, this needs to be validated in other poly-ovulatory species. To investigate the regulatory role of BMP15 on porcine female fertility, we generated a BMP15-knockdown pig model through somatic nuclear transfer technology. The BMP15-knockdown gilts showed markedly reduced fertility accompanied by phenotype of dysplastic ovaries containing significantly declined number of follicles, increased number of abnormal follicles, and abnormally enlarged antral follicles resulting in disordered ovulation, which is remarkably different from the unchanged fertility observed in BMP15 knockout mice. Molecular and transcriptome analysis revealed that the knockdown of BMP15 significantly affected both granulosa cells (GCs) and oocytes development, including suppression of cell proliferation, differentiation, and follicle stimulating hormone receptor (Fshr) expression, leading to premature luteinization and reduced estradiol (E2) production in GCs, and simultaneously decreased quality and meiotic maturation of oocyte. Our results provide in vivo evidence of the essential role of BMP15 in porcine ovarian and follicular development, and new insight into the complicated regulatory function of BMP15 in female fertility of poly-ovulatory species.
Collapse
Affiliation(s)
- Yufeng Qin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tao Tang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wei Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhiguo Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaoliang Yang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xuan Shi
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Guanjie Sun
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaofeng Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Min Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xinyu Liang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peiqing Cong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zuyong He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
34
|
Paulino LRFM, Barroso PAA, Silva AWB, Souza ALP, Bezerra FTG, Silva BR, Donato MMA, Peixoto CA, Silva JRV. Effects of epidermal growth factor and progesterone on development, ultrastructure and gene expression of bovine secondary follicles cultured in vitro. Theriogenology 2019; 142:284-290. [PMID: 31711701 DOI: 10.1016/j.theriogenology.2019.10.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/02/2019] [Accepted: 10/28/2019] [Indexed: 02/06/2023]
Abstract
The aims of this study were to investigate the effects of epidermal growth factor (EGF) and progesterone on the development, viability and the gene expression of bovine secondary follicle culture in vitro for 18 days. Secondary follicles (∼0.2 mm) were isolated from ovarian cortex and individually cultured at 38.5 °C, with 5% CO2 in air, for 18 days, in TCM-199+ (n = 63) alone (control medium) or supplemented with 10 ng/mL progesterone (n = 64), 10 ng/mL EGF (n = 61) or both EGF and progesterone (n = 66). The effects of these treatments on growth, antrum formation, viability, ultrastructure and mRNA levels for GDF-9, c-MOS, H1foo and cyclin B1 were evaluated, significantly different (p < 0.05). The results showed that there was a progressive increase in follicular diameter in all treatments, but only follicles cultured in medium supplemented with EGF had increased significantly in diameter when compared to follicles cultured in the control medium at the end of the culture period, significantly different (p < 0.05). A positive interaction between EGF and progesterone was not observed. In addition, the presence of EGF, progesterone or both in culture medium did not influence the rate of follicle survival and antrum formation. However, the presence of only progesterone in cultured medium increased the expression of mRNAs for GDF9 and cyclin B1 in oocytes. EGF also significantly increased the levels of mRNAs for cMOS and GDF9 when compared to follicles cultured in control medium. Ultrastructural analyzes showed that cultured follicles in all treatments maintained the integrity of granulosa cells. In conclusion, the EGF promotes the development of secondary follicles cultured in vitro for 18 days and increases the expression of cMOS and GDF9, while progesterone alone or in association with EGF have not a positive effect on follicular growth. However, progesterone increases the expression of GDF9 and cyclin B1 in oocytes.
Collapse
Affiliation(s)
- L R F M Paulino
- Laboratory of Biotechnology and Physiology of Reproductive, LABREP, Nucleus of Biotechnology of Sobral, NUBIS, Federal University of Ceara, Sobral, CE, Brazil
| | - P A A Barroso
- Laboratory of Biotechnology and Physiology of Reproductive, LABREP, Nucleus of Biotechnology of Sobral, NUBIS, Federal University of Ceara, Sobral, CE, Brazil
| | - A W B Silva
- Laboratory of Biotechnology and Physiology of Reproductive, LABREP, Nucleus of Biotechnology of Sobral, NUBIS, Federal University of Ceara, Sobral, CE, Brazil
| | - A L P Souza
- Laboratory of Biotechnology and Physiology of Reproductive, LABREP, Nucleus of Biotechnology of Sobral, NUBIS, Federal University of Ceara, Sobral, CE, Brazil
| | - F T G Bezerra
- Laboratory of Biotechnology and Physiology of Reproductive, LABREP, Nucleus of Biotechnology of Sobral, NUBIS, Federal University of Ceara, Sobral, CE, Brazil
| | - B R Silva
- Laboratory of Biotechnology and Physiology of Reproductive, LABREP, Nucleus of Biotechnology of Sobral, NUBIS, Federal University of Ceara, Sobral, CE, Brazil
| | - M M A Donato
- Laboratory of Biotechnology and Physiology of Reproductive, LABREP, Nucleus of Biotechnology of Sobral, NUBIS, Federal University of Ceara, Sobral, CE, Brazil
| | - C A Peixoto
- Laboratory of Biotechnology and Physiology of Reproductive, LABREP, Nucleus of Biotechnology of Sobral, NUBIS, Federal University of Ceara, Sobral, CE, Brazil
| | - J R V Silva
- Laboratory of Biotechnology and Physiology of Reproductive, LABREP, Nucleus of Biotechnology of Sobral, NUBIS, Federal University of Ceara, Sobral, CE, Brazil.
| |
Collapse
|
35
|
Zhang Y, Yang J, Yang J, Li J, Zhang M. CREB activity is required for epidermal growth factor‐induced mouse cumulus expansion. Mol Reprod Dev 2019; 86:1887-1900. [DOI: 10.1002/mrd.23285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/28/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Yu Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological SciencesChina Agricultural University Beijing China
| | - Jian Yang
- State Key Laboratory for Agrobiotechnology, College of Biological SciencesChina Agricultural University Beijing China
| | - Jing Yang
- State Key Laboratory for Agrobiotechnology, College of Biological SciencesChina Agricultural University Beijing China
| | - Jia Li
- State Key Laboratory for Agrobiotechnology, College of Biological SciencesChina Agricultural University Beijing China
| | - Meijia Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological SciencesChina Agricultural University Beijing China
| |
Collapse
|
36
|
Oocyte stage-specific effects of MTOR determine granulosa cell fate and oocyte quality in mice. Proc Natl Acad Sci U S A 2018; 115:E5326-E5333. [PMID: 29784807 PMCID: PMC6003357 DOI: 10.1073/pnas.1800352115] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
MTOR (mechanistic target of rapamycin), an integrator of pathways important for cellular metabolism, proliferation, and differentiation, is expressed at all stages of oocyte development. Primordial oocytes constitute a nonproliferating, nongrowing reserve of potential eggs maintained for the entire reproductive lifespan of mammalian females. Using conditional knockouts, we determined the role of MTOR in both primordial and growing oocytes. MTOR-dependent pathways in primordial oocytes are not needed to sustain the viability of the primordial oocyte pool or their recruitment into the cohort of growing oocytes but are essential later for maintenance of oocyte genomic integrity, sustaining ovarian follicular development, and fertility. In growing oocytes, MTOR-dependent pathways are required for processes that promote completion of meiosis and enable embryonic development. MTOR (mechanistic target of rapamycin) is a widely recognized integrator of signals and pathways key for cellular metabolism, proliferation, and differentiation. Here we show that conditional knockout (cKO) of Mtor in either primordial or growing oocytes caused infertility but differentially affected oocyte quality, granulosa cell fate, and follicular development. cKO of Mtor in nongrowing primordial oocytes caused defective follicular development leading to progressive degeneration of oocytes and loss of granulosa cell identity coincident with the acquisition of immature Sertoli cell-like characteristics. Although Mtor was deleted at the primordial oocyte stage, DNA damage accumulated in oocytes during their later growth, and there was a marked alteration of the transcriptome in the few oocytes that achieved the fully grown stage. Although oocyte quality and fertility were also compromised when Mtor was deleted after oocytes had begun to grow, these occurred without overtly affecting folliculogenesis or the oocyte transcriptome. Nevertheless, there was a significant change in a cohort of proteins in mature oocytes. In particular, down-regulation of PRC1 (protein regulator of cytokinesis 1) impaired completion of the first meiotic division. Therefore, MTOR-dependent pathways in primordial or growing oocytes differentially affected downstream processes including follicular development, sex-specific identity of early granulosa cells, maintenance of oocyte genome integrity, oocyte gene expression, meiosis, and preimplantation developmental competence.
Collapse
|
37
|
Richani D, Gilchrist RB. The epidermal growth factor network: role in oocyte growth, maturation and developmental competence. Hum Reprod Update 2018; 24:1-14. [PMID: 29029246 DOI: 10.1093/humupd/dmx029] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/30/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The LH surge induces great physiological changes within the preovulatory follicle, which culminate in the ovulation of a mature oocyte that is capable of supporting embryo and foetal development. However, unlike mural granulosa cells, the oocyte and its surrounding cumulus cells are not directly responsive to LH, indicating that the LH signal is mediated by secondary factors produced by the granulosa cells. The mechanisms by which the oocyte senses the ovulatory LH signal and hence prepares for ovulation has been a subject of considerable controversy for the past four decades. Within the last 15 years several significant insights have been made into the molecular mechanisms orchestrating oocyte development, maturation and ovulation. These findings centre on the epidermal growth factor (EGF) pathway and the role it plays in the complex signalling network that finely regulates oocyte maturation and ovulation. OBJECTIVE AND RATIONALE This review outlines the role of the EGF network during oocyte development and regulation of the ovulatory cascade, and in particular focuses on the effect of the EGF network on oocyte developmental competence. Application of this new knowledge to advances in ART is examined. SEARCH METHODS The PubMed database was used to search for peer-reviewed original and review articles concerning the EGF network. Publications offering a comprehensive description of the role of the EGF network in follicle and oocyte development were used. OUTCOMES It is now clear that acute upregulation of the EGF network is an essential component of the ovulatory cascade as it transmits the LH signal from the periphery of the follicle to the cumulus-oocyte complex (COC). More recent findings have elucidated new roles for the EGF network in the regulation of oocyte development. EGF signalling downregulates the somatic signal 3'5'-cyclic guanine monophosphate that suppresses oocyte meiotic maturation and simultaneously provides meiotic inducing signals. The EGF network also controls translation of maternal transcripts in the quiescent oocyte, a process that is integral to oocyte competence. As a means of restricting the ovulatory signal to the Graffian follicle, most COCs in the ovary are unresponsive to EGF-ligands. Recent studies have revealed that development of a functional EGF signalling network in cumulus cells requires dual endocrine (FSH) and oocyte paracrine cues (growth differentiation factor 9 and bone morphogenetic protein 15), and this occurs progressively in COCs during the last stages of folliculogenesis. Hence, a new concept to emerge is that cumulus cell acquisition of EGF receptor responsiveness represents a developmental hallmark in folliculogenesis, analogous to FSH-induction of LH receptor signalling in mural granulosa cells. Likewise, this event represents a major milestone in the oocyte's developmental progression and acquisition of developmental competence. It is now clear that EGF signalling is perturbed in COCs matured in vitro. This has inspired novel concepts in IVM systems to ameliorate this perturbation, resulting in improved oocyte developmental competence. WIDER IMPLICATIONS An oocyte of high quality is imperative for fertility. Elucidating the fundamental molecular and cellular mechanims by which the EGF network regulates oocyte maturation and ovulation can be expected to open new opportunities in ART. This knowledge has already led to advances in oocyte IVM in animal models. Translation of such advances into a clinical setting should increase the efficacy of IVM, making it a viable treatment option for a wide range of patients, thereby simplifying fertility treatment and bringing substantial cost and health benefits.
Collapse
Affiliation(s)
- Dulama Richani
- School of Women's and Children's Health, Discipline of Obstetrics and Gynaecology, University of New South Wales Sydney, NSW 2052, Australia
| | - Robert B Gilchrist
- School of Women's and Children's Health, Discipline of Obstetrics and Gynaecology, University of New South Wales Sydney, NSW 2052, Australia
| |
Collapse
|
38
|
Molecular Mechanisms of Prophase I Meiotic Arrest Maintenance and Meiotic Resumption in Mammalian Oocytes. Reprod Sci 2018; 26:1519-1537. [DOI: 10.1177/1933719118765974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mechanisms of meiotic prophase I arrest maintenance (germinal vesicle [GV] stage) and meiotic resumption (germinal vesicle breakdown [GVBD] stage) in mammalian oocytes seem to be very complicated. These processes are regulated via multiple molecular cascades at transcriptional, translational, and posttranslational levels, and many of them are interrelated. There are many molecular cascades of meiosis maintaining and meiotic resumption in oocyte which are orchestrated by multiple molecules produced by pituitary gland and follicular cells. Furthermore, many of these molecular cascades are duplicated, thus ensuring the stability of the entire system. Understanding mechanisms of oocyte maturation is essential to assess the oocyte status, develop effective protocols of oocyte in vitro maturation, and design novel contraceptive drugs. Mechanisms of meiotic arrest maintenance at prophase I and meiotic resumption in mammalian oocytes are covered in the present article.
Collapse
|
39
|
Zhang RN, Pang B, Xu SR, Wan PC, Guo SC, Ji HZ, Jia GX, Hu LY, Zhao XQ, Yang QE. The CXCL12-CXCR4 signaling promotes oocyte maturation by regulating cumulus expansion in sheep. Theriogenology 2018; 107:85-94. [DOI: 10.1016/j.theriogenology.2017.10.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/27/2017] [Accepted: 10/29/2017] [Indexed: 12/19/2022]
|
40
|
Belli M, Shimasaki S. Molecular Aspects and Clinical Relevance of GDF9 and BMP15 in Ovarian Function. VITAMINS AND HORMONES 2018; 107:317-348. [PMID: 29544636 DOI: 10.1016/bs.vh.2017.12.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Growth and differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) are oocyte-secreted factors with a leading role in the control of ovarian function in female reproduction, modulating both the cell fate of the somatic granulosa cells and the quality and developmental competence of the egg. This short review aims to consolidate the molecular aspects of GDF9 and BMP15 and their integral actions in female fertility to understand particularly their effects on oocyte quality and fetal growth. The significant consequences of mutations in the GDF9 and BMP15 genes in women with dizygotic twins as well as the clinical relevance of these oocyte factors in the pathogenesis of primary ovarian insufficiency and polycystic ovary syndrome are also addressed.
Collapse
Affiliation(s)
- Martina Belli
- University of California San Diego, School of Medicine, La Jolla, CA, United States
| | - Shunichi Shimasaki
- University of California San Diego, School of Medicine, La Jolla, CA, United States.
| |
Collapse
|
41
|
Prochazka R, Blaha M, Němcová L. Significance of epidermal growth factor receptor signaling for acquisition of meiotic and developmental competence in mammalian oocytes†. Biol Reprod 2017; 97:537-549. [DOI: 10.1093/biolre/iox112] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/30/2017] [Indexed: 12/28/2022] Open
|
42
|
Bidirectional communication between cumulus cells and the oocyte: Old hands and new players? Theriogenology 2016; 86:62-8. [DOI: 10.1016/j.theriogenology.2016.04.019] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/29/2016] [Accepted: 03/14/2016] [Indexed: 12/11/2022]
|
43
|
Guo J, Shi L, Gong X, Jiang M, Yin Y, Zhang X, Yin H, Li H, Emori C, Sugiura K, Eppig JJ, Su YQ. Oocyte-dependent activation of MTOR in cumulus cells controls the development and survival of cumulus-oocyte complexes. J Cell Sci 2016; 129:3091-103. [PMID: 27358481 DOI: 10.1242/jcs.182642] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 06/28/2016] [Indexed: 01/12/2023] Open
Abstract
Communication between oocytes and their companion somatic cells promotes the healthy development of ovarian follicles, which is crucial for producing oocytes that can be fertilized and are competent to support embryogenesis. However, how oocyte-derived signaling regulates these essential processes remains largely undefined. Here, we demonstrate that oocyte-derived paracrine factors, particularly GDF9 and GDF9-BMP15 heterodimer, promote the development and survival of cumulus-cell-oocyte complexes (COCs), partly by suppressing the expression of Ddit4l, a negative regulator of MTOR, and enabling the activation of MTOR signaling in cumulus cells. Cumulus cells expressed less Ddit4l mRNA and protein than mural granulosa cells, which is in striking contrast to the expression of phosphorylated RPS6 (a major downstream effector of MTOR). Knockdown of Ddit4l activated MTOR signaling in cumulus cells, whereas inhibition of MTOR in COCs compromised oocyte developmental competence and cumulus cell survival, with the latter likely to be attributable to specific changes in a subset of transcripts in the transcriptome of COCs. Therefore, oocyte suppression of Ddit4l expression allows for MTOR activation in cumulus cells, and this oocyte-dependent activation of MTOR signaling in cumulus cells controls the development and survival of COCs.
Collapse
Affiliation(s)
- Jing Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, People's Republic of China
| | - Lanying Shi
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, People's Republic of China
| | - Xuhong Gong
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, People's Republic of China
| | - Mengjie Jiang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, People's Republic of China
| | - Yaoxue Yin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, People's Republic of China
| | - Xiaoyun Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, People's Republic of China
| | - Hong Yin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, People's Republic of China
| | - Hui Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, People's Republic of China
| | - Chihiro Emori
- Department of Animal Resource Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Koji Sugiura
- Department of Animal Resource Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - John J Eppig
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - You-Qiang Su
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, People's Republic of China Key Laboratory of Model Animal Research, Nanjing Medical University, Nanjing, Jiangsu 211166, People's Republic of China
| |
Collapse
|
44
|
Yerushalmi GM, Markman S, Yung Y, Maman E, Aviel-Ronen S, Orvieto R, Adashi EY, Hourvitz A. The prostaglandin transporter (PGT) as a potential mediator of ovulation. Sci Transl Med 2016; 8:338ra68. [DOI: 10.1126/scitranslmed.aad2709] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 04/12/2016] [Indexed: 12/15/2022]
|
45
|
Cook-Andersen H, Curnow KJ, Su HI, Chang RJ, Shimasaki S. Growth and differentiation factor 9 promotes oocyte growth at the primary but not the early secondary stage in three-dimensional follicle culture. J Assist Reprod Genet 2016; 33:1067-77. [PMID: 27155601 DOI: 10.1007/s10815-016-0719-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 04/25/2016] [Indexed: 10/21/2022] Open
Abstract
PURPOSE Factors that differentially regulate oocyte and granulosa cell growth within the early preantral follicle and how these factors differ at each stage of follicle growth remain poorly understood. The aim of this study was to isolate and evaluate the effect of recombinant growth and differentiation factor 9 (GDF9) on oocyte and granulosa cell growth at the primary and early secondary stages of preantral follicle growth during in vitro culture. METHODS Primary stage follicles (diameters of 50-89 μm) and early secondary stage follicles (diameters of 90-120 μm) were isolated from immature mice, and individual, intact follicles were cultured in vitro in the presence and absence of recombinant GDF9. The effects of GDF9 on follicle growth were determined by the assessment of changes in the follicle volume during culture. The growth of the granulosa cell and oocyte compartments of the follicles was evaluated separately at each stage. RESULTS GDF9 significantly increased the growth of isolated follicles at both the primary and early secondary follicle stages. Independent evaluation of the granulosa cell and oocyte compartments revealed that, while GDF9 promoted granulosa cell growth at both stages of folliculogenesis, oocyte growth was stage specific. GDF9 promoted growth of the oocyte at the primary, but not the early secondary, follicle stage. CONCLUSIONS These findings demonstrate a stage-specific role for GDF9 in the regulation of oocyte and granulosa cell growth at the primary and early secondary stages of preantral follicle development.
Collapse
Affiliation(s)
- Heidi Cook-Andersen
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92093-0633, USA.
| | - Kirsten J Curnow
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92093-0633, USA
| | - H Irene Su
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92093-0633, USA
| | - R Jeffrey Chang
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92093-0633, USA
| | - Shunichi Shimasaki
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92093-0633, USA.
| |
Collapse
|
46
|
Monniaux D. Driving folliculogenesis by the oocyte-somatic cell dialog: Lessons from genetic models. Theriogenology 2016; 86:41-53. [PMID: 27155734 DOI: 10.1016/j.theriogenology.2016.04.017] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/09/2015] [Accepted: 03/14/2016] [Indexed: 12/12/2022]
Abstract
This review focuses on the role of the dialog between the oocyte and its companion somatic cells in driving folliculogenesis from the primordial to the preovulatory follicle stage. Mouse and sheep genetic models have brought complementary evidence of these cell interactions and their consequences for ovarian function. In mouse, the deletion of genes encoding connexins has shown that functional gap junction channels between oocytes and granulosa cells and between granulosa cells themselves maintain the follicle in a functionally integrated state. Targeted deletions in oocytes or granulosa cells have revealed the cell- and stage-specific role of ubiquist factors belonging to the phosphatidylinositol 3 kinase signaling pathway in primordial follicle activation, oocyte growth and follicle survival. Various models of transgenic mice and sheep carrying natural loss-of-function mutations associated with sterility have established that the oocyte-derived factors, bone morphogenetic protein (BMP) 15 and growth differentiation factor 9 orchestrate follicle development, support cumulus metabolism and maturation and participate in oocyte meiosis arrest. Unexpectedly in sheep, mutations resulting in the attenuation of BMP signaling lead to enhanced ovulation rate, likely resulting from a lowered follicular atresia rate and the enhancement of FSH-regulated follicular maturation. Both the activation level of BMP signaling and an adequate equilibrium between BMP15 and growth differentiation factor 9 determine follicle survival, maturation, and development toward ovulation. The physiological approaches which were implemented on genetic animal models during the last 20 years have opened up new perspectives for female fertility by identifying the main signaling pathways of the oocyte-somatic cell dialog.
Collapse
Affiliation(s)
- Danielle Monniaux
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS, UMR7247, Nouzilly, France; Université François Rabelais de Tours, Tours, France; IFCE, Nouzilly, France.
| |
Collapse
|
47
|
Xie L, Tang Q, Yang L, Chen L. Insulin-like growth factor I promotes oocyte maturation through increasing the expression and phosphorylation of epidermal growth factor receptor in the zebrafish ovary. Mol Cell Endocrinol 2016; 419:198-207. [PMID: 26599586 DOI: 10.1016/j.mce.2015.10.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/03/2015] [Accepted: 10/21/2015] [Indexed: 11/15/2022]
Abstract
The resumption of oocyte meiosis is a critical step for the progression of oocyte development, which requires an intimate collaboration of a variety of hormones and growth factors. Insulin-like growth factor I (IGF-I) and epidermal growth factor (EGF) family are well recognized to promote oocyte maturation. However, the mechanism by which they coordinate this process remains unknown. The present study demonstrated that IGF-I can increase egfr mRNA and protein levels in follicle cell culture or intact follicles. This stimulation can be significantly inhibited by IGF-IR specific inhibitor, NVP-ADW742. The inhibitors against phosphatidylinositol-3-kinase (PI3K), phosphoinositide-dependent protein kinase 1 (PDK1) and Akt also dramatically abolished IGF-I-induced egfr expression, suggesting that the classical PI3K/Akt pathway mediated the action of IGF-I in this regulation. We further found that not only was the protein level of Egfr increased, but also the phosphorylation level was enhanced by IGF-I. Unlike egfr, IGF-I failed to stimulate the expression of Egf-like ligands whereas decreased the level of protein-tyrosine phosphatase, receptor type, kappa (ptprk), a protein tyrosine phosphatase. The oocyte maturation assay further confirmed that IGF-I initiates this regulation through its cognate receptor in the follicle cells. Taken together, IGF-I promoted oocyte maturation, in part at least, through Egf-like ligands/Egfr pathway. This study sheds light on the cross-talk between two important growth factors in the zebrafish ovary and the mechanism underlying the IGF-I induction on oocyte maturation.
Collapse
Affiliation(s)
- Lin Xie
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Health, and Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan 430030, China.
| | | | - Ling Yang
- The Department of Infectious Diseases, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Lianyi Chen
- Hubei Medical Association, Wuhan 430071, China
| |
Collapse
|
48
|
El-Hayek S, Clarke HJ. Control of Oocyte Growth and Development by Intercellular Communication Within the Follicular Niche. Results Probl Cell Differ 2016; 58:191-224. [PMID: 27300180 DOI: 10.1007/978-3-319-31973-5_8] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the mammalian ovary, each oocyte grows and develops within its own structural and developmental niche-the follicle. Together with the female germ cell in the follicle are somatic granulosa cells, specialized companion cells that surround the oocyte and provide support to it, and an outer layer of thecal cells that serve crucial roles including steroid synthesis. These follicular compartments function as a single physiological unit whose purpose is to produce a healthy egg, which upon ovulation can be fertilized and give rise to a healthy embryo, thus enabling the female germ cell to fulfill its reproductive potential. Beginning from the initial stage of follicle formation and until terminal differentiation at ovulation, oocyte and follicle growth depend absolutely on cooperation between the different cellular compartments. This cooperation synchronizes the initiation of oocyte growth with follicle activation. During growth, it enables metabolic support for the follicle-enclosed oocyte and allows the follicle to fulfill its steroidogenic potential. Near the end of the growth period, intra-follicular interactions prevent the precocious meiotic resumption of the oocyte and ensure its nuclear differentiation. Finally, cooperation enables the events of ovulation, including meiotic maturation of the oocyte and expansion of the cumulus granulosa cells. In this chapter, we discuss the cellular interactions that enable the growing follicle to produce a healthy oocyte, focusing on the communication between the germ cell and the surrounding granulosa cells.
Collapse
Affiliation(s)
- Stephany El-Hayek
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada
- Department of Biology, McGill University, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Block E-M0.2218, Montreal, QC, Canada, H4A 3J1
| | - Hugh J Clarke
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada.
- Department of Biology, McGill University, Montreal, QC, Canada.
- Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Block E-M0.2218, Montreal, QC, Canada, H4A 3J1.
- Department of Experimental Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
49
|
Yang L, Wei Q, Ge J, Zhao X, Ma B. MAPK3/1 is conducive to luteinizing hormone-mediated C-type natriuretic peptide decrease in bovine granulosa cells. J Reprod Dev 2015; 62:137-42. [PMID: 26655567 PMCID: PMC4848570 DOI: 10.1262/jrd.2015-135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
C-type natriuretic peptide (CNP) plays a role as an oocyte maturation inhibitor (OMI) in many species,
including the bovine. However, the effects of luteinizing hormone (LH) on CNP expression and its potential
mechanisms have not reported in the bovine. In the present study, we aimed to study the effects of LH on CNP
expression and to illuminate the potential molecular mechanism in this process. Our results showed that LH
induced epidermal growth factor receptor (EGFR) phosphorylation, mitogen-activated protein kinase3/1 (MAPK3/1)
activation and CNP mRNA decrease in cultured bovine granulosa cells. Further study revealed that LH suppressed
CNP expression via the MAPK3/1 signaling pathway, which was activated by the EGFR pathway. In conclusion, our
research suggested that MAPK3/1 is involved in LH-mediated decrease of CNP and that this process is related to
the EGFR and MAPK3/1 signal pathways.
Collapse
Affiliation(s)
- Lei Yang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Shaanxi 712100, China
| | | | | | | | | |
Collapse
|
50
|
Hung WT, Hong X, Christenson LK, McGinnis LK. Extracellular Vesicles from Bovine Follicular Fluid Support Cumulus Expansion. Biol Reprod 2015; 93:117. [PMID: 26423123 DOI: 10.1095/biolreprod.115.132977] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/21/2015] [Indexed: 01/04/2023] Open
Abstract
Expansion of the cumulus complex surrounding the oocyte is critical for ovulation of a fertilizable egg. The ovulation-inducing surge of luteinizing hormone leads to an increased expression of genes such as prostaglandin-endoperoxide synthase 2 (Ptgs2), pentraxin-related protein 3 (Ptx3), and tumor necrosis factor alpha-induced protein 6 (Tnfaip6) that support cumulus expansion. Factors released by mural granulosa and cumulus granulosa cells into the follicular fluid induce paracrine signaling within the follicular compartment. The follicular fluid that separates these distinct granulosa cell types is an enriched fluid containing numerous proteins, nucleic acids, and other macromolecules. Extracellular vesicles (EVs) are also present; however, no physiologically relevant functions of follicular EVs have yet been demonstrated. In our study, the effect of follicular EVs on cumulus-oocyte complex (COC) expansion and relevant gene expression was assayed. Follicular EVs were isolated using ultracentrifugation from follicular fluid of small (3-5 mm) and large (>9 mm) antral bovine follicles, then characterized by nanoparticle tracking analysis, electron microscopy, and Western blot analysis. To test for bioactivity, mouse and bovine COCs were cultured with follicular EVs. Cumulus expansion and Ptgs2, Ptx3, and Tnfaip6 gene expression were measured following COC maturation culture. The results demonstrated that follicular EVs can support both measurable cumulus expansion and increased gene expression.
Collapse
Affiliation(s)
- Wei-Ting Hung
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Xioman Hong
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Lane K Christenson
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Lynda K McGinnis
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas Department of Obstetrics & Gynecology, Division of Reproductive Endocrinology and Infertility, University of Southern California, Los Angeles, California
| |
Collapse
|