1
|
Zou H, Wang P, Zhang J. Role of microRNAs in pituitary gonadotrope cells. Gen Comp Endocrinol 2024; 355:114557. [PMID: 38797341 DOI: 10.1016/j.ygcen.2024.114557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
The gonadotrope cells within the pituitary control vital processes of reproduction by producing follicle stimulating hormone (FSH) and luteinizing hormone (LH). Both external stimuli and internal regulatory factors contribute to the regulation of gonadotrope development and function. In recent years, growing evidences indicate that microRNAs (miRNAs), which regulate gene expression post-transcriptionally, play critical roles in multiple processes of gonadotrope development and function, including the syntheses of α or β subunits of FSH and LH, the secretion of LH, the regulation of GnRH signaling, and the maintenance of gonadotrope cell kinetics. Here, we review recent advances of miRNAs' expression, functions and mechanisms approached by using miRNA knockout mouse models, in silico analysis and the in vitro cultures of primary pituitary cells and gonadotrope-derived cell lines. By summarizing and discussing different roles of miRNAs in gonadotropes, this minireview helps to gain insights into the complex molecular network in gonadotropes and reproduction.
Collapse
Affiliation(s)
- He Zou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Peimin Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China; Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Jinglin Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China; Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China.
| |
Collapse
|
2
|
Le Ciclé C, Pacini V, Rama N, Tauszig-Delamasure S, Airaud E, Petit F, de Beco S, Cohen-Tannoudji J, L'hôte D. The Neurod1/4-Ntrk3-Src pathway regulates gonadotrope cell adhesion and motility. Cell Death Discov 2023; 9:327. [PMID: 37658038 PMCID: PMC10474047 DOI: 10.1038/s41420-023-01615-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023] Open
Abstract
Pituitary gonadotrope cells are essential for the endocrine regulation of reproduction in vertebrates. These cells emerge early during embryogenesis, colonize the pituitary glands and organize in tridimensional networks, which are believed to be crucial to ensure proper regulation of fertility. However, the molecular mechanisms regulating the organization of gonadotrope cell population during embryogenesis remain poorly understood. In this work, we characterized the target genes of NEUROD1 and NEUROD4 transcription factors in the immature gonadotrope αT3-1 cell model by in silico functional genomic analyses. We demonstrated that NEUROD1/4 regulate genes belonging to the focal adhesion pathway. Using CRISPR/Cas9 knock-out approaches, we established a double NEUROD1/4 knock-out αT3-1 cell model and demonstrated that NEUROD1/4 regulate cell adhesion and cell motility. We then characterized, by immuno-fluorescence, focal adhesion number and signaling in the context of NEUROD1/4 insufficiency. We demonstrated that NEUROD1/4 knock-out leads to an increase in the number of focal adhesions associated with signaling abnormalities implicating the c-Src kinase. We further showed that the neurotrophin tyrosine kinase receptor 3 NTRK3, a target of NEUROD1/4, interacts physically with c-Src. Furthermore, using motility rescue experiments and time-lapse video microscopy, we demonstrated that NTRK3 is a major regulator of gonadotrope cell motility. Finally, using a Ntrk3 knock-out mouse model, we showed that NTRK3 regulates gonadotrope cells positioning in the developing pituitary, in vivo. Altogether our study demonstrates that the Neurod1/4-Ntrk3-cSrc pathway is a major actor of gonadotrope cell mobility, and thus provides new insights in the regulation of gonadotrope cell organization within the pituitary gland.
Collapse
Affiliation(s)
- Charles Le Ciclé
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - Vincent Pacini
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Nicolas Rama
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université Lyon1, 69008, Lyon, France
| | - Servane Tauszig-Delamasure
- Institut NeuroMyoGène - CNRS UMR 5310 - Inserm U1217 de Lyon - UCBL Lyon 1, Faculté de Médecine et de Pharmacie, Lyon, France
| | - Eloïse Airaud
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - Florence Petit
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
- Faculty of Pharmacy, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Simon de Beco
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Joëlle Cohen-Tannoudji
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - David L'hôte
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France.
| |
Collapse
|
3
|
Ralston BA, Khan L, DeVore SB, Bronnenberg TA, Flock JW, Sequoia AO, Thompson PR, Navratil AM, Cherrington BD. Peptidylarginine deiminase 2 regulates expression of DGCR8 affecting miRNA biogenesis in gonadotrope cells. Reproduction 2023; 166:125-134. [PMID: 37310889 PMCID: PMC10561559 DOI: 10.1530/rep-22-0482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/13/2023] [Indexed: 06/15/2023]
Abstract
In brief DGCR8 microprocessor complex, which is important for miRNA biogenesis, is regulated by peptidylarginine deiminase 2 and expression fluctuates in gonadotrope cells across the mouse estrous cycle. Abstract Canonical miRNA biogenesis requires DGCR8 microprocessor complex subunit, which helps cleave pri-miRNAs into pre-miRNAs. Previous studies found that inhibiting peptidylarginine deiminase (PAD) enzyme activity results in increased DGCR8 expression. PADs are expressed in mouse gonadotrope cells, which play a central role in reproduction by synthesizing and secreting the luteinizing and follicle stimulating hormones. Given this, we tested whether inhibiting PADs alters expression of DGCR8, DROSHA, and DICER in the gonadotrope-derived LβT2 cell line. To test this, LβT2 cells were treated with vehicle or 1 µM pan-PAD inhibitor for 12 h. Our results show that PAD inhibition leads to an increase in DGCR8 mRNA and protein. To corroborate our results, dispersed mouse pituitaries were also treated with 1 µM pan-PAD inhibitor for 12 h which increases DGCR8 expression in gonadotropes. Since PADs epigenetically regulate gene expression, we hypothesized that histone citrullination alters Dgcr8 expression thereby affecting miRNA biogenesis. LβT2 samples were subjected to ChIP using an antibody to citrullinated histone H3, which shows that citrullinated histones are directly associated with Dgcr8. Next, we found that when DGCR8 expression is elevated in LβT2 cells, pri-miR-132 and -212 are reduced, while mature miR-132 and -212 are increased suggesting heightened miRNA biogenesis. In mouse gonadotropes, DGCR8 expression is higher in diestrus as compared to estrus, which is the inverse of PAD2 expression. Supporting this idea, treatment of ovariectomized mice with 17β-estradiol results in an increase in PAD2 expression in gonadotropes with a corresponding decrease in DGCR8. Collectively, our work suggests that PADs regulate DGCR8 expression leading to changes in miRNA biogenesis in gonadotropes.
Collapse
Affiliation(s)
- Brett A. Ralston
- University of Wyoming, Department of Zoology and Physiology, Laramie, WY 82071, USA
| | - Lamia Khan
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Stanley B. DeVore
- University of Cincinnati College of Medicine, Department of Pediatrics, Cincinnati, OH 45267, USA
| | - Trent A. Bronnenberg
- University of Wyoming, Department of Zoology and Physiology, Laramie, WY 82071, USA
| | - Joseph W. Flock
- University of Wyoming, Department of Zoology and Physiology, Laramie, WY 82071, USA
| | - Ari O. Sequoia
- University of Wyoming, Department of Zoology and Physiology, Laramie, WY 82071, USA
| | - Paul R. Thompson
- University of Massachusetts Medical School, Program in Chemical Biology, Worcester, MA 01605, USA
| | - Amy M. Navratil
- University of Wyoming, Department of Zoology and Physiology, Laramie, WY 82071, USA
| | - Brian D. Cherrington
- University of Wyoming, Department of Zoology and Physiology, Laramie, WY 82071, USA
| |
Collapse
|
4
|
Khalid E, Chang JP. Small GTPase control of pituitary hormone secretion: Evidence from studies in the goldfish (Carassius auratus) neuroendocrine model. Gen Comp Endocrinol 2023; 339:114287. [PMID: 37060929 DOI: 10.1016/j.ygcen.2023.114287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
The secretion of vertebrate pituitary hormones is regulated by multiple hypothalamic factors, which, while generally activating unique receptor systems, ultimately propagate signals through interacting intracellular regulatory elements to modulate hormone exocytosis. One important family of intracellular regulators is the monomeric small GTPases, a subset of which (Arf1/6, Rac, RhoA, and Ras) is highly conserved across vertebrates and regulates secretory vesicle exocytosis in many cell types. In this study, we investigated the roles of these small GTPases in basal and agonist-dependent hormone release from dispersed goldfish (Carassius auratus) pituitary cells in perifusion experiments. Inhibition of these small GTPases elevated basal LH and GH secretion, except for Ras inhibition which only increased basal LH release. However, variable responses were observed with regard to LH and GH responses to the two goldfish native gonadotropin-releasing hormones (GnRH2 and GnRH3). GnRH-dependent LH release, but not GH secretion, was mediated by Arf1/6 GTPases. In contrast, inhibition of Rac and RhoA GTPases selectively enhanced GnRH3- and GnRH2-dependent GH release, respectively, while Ras inhibition only enhanced GnRH3-evoked LH secretion. Together, our results reveal novel divergent cell-type- and ligand-specific roles for small GTPases in the control of goldfish pituitary hormone exocytosis in unstimulated and GnRH-evoked release.
Collapse
Affiliation(s)
- Enezi Khalid
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2E9
| | - John P Chang
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2E9.
| |
Collapse
|
5
|
Zhao Y, Wang X, Liu Y, Wang HY, Xiang J. The effects of estrogen on targeted cancer therapy drugs. Pharmacol Res 2022; 177:106131. [DOI: 10.1016/j.phrs.2022.106131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/29/2022] [Accepted: 02/10/2022] [Indexed: 10/19/2022]
|
6
|
Advances in the Regulation of Mammalian Follicle-Stimulating Hormone Secretion. Animals (Basel) 2021; 11:ani11041134. [PMID: 33921032 PMCID: PMC8071398 DOI: 10.3390/ani11041134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The reproduction of mammals is regulated by the hypothalamic-pituitary-gonadal axis. Follicle stimulating hormone, as one of the gonadotropins secreted by the pituitary gland, plays an immeasurable role. This article mainly reviews the molecular basis and classical signaling pathways that regulate the synthesis and secretion of follicle stimulating hormone, and summarizes its internal molecular mechanism, which provides a certain theoretical basis for the research of mammalian reproduction regulation and the application of follicle stimulating hormone in production practice. Abstract Mammalian reproduction is mainly driven and regulated by the hypothalamic-pituitary-gonadal (HPG) axis. Follicle-stimulating hormone (FSH), which is synthesized and secreted by the anterior pituitary gland, is a key regulator that ultimately affects animal fertility. As a dimeric glycoprotein hormone, the biological specificity of FSH is mainly determined by the β subunit. As research techniques are being continuously innovated, studies are exploring the underlying molecular mechanism regulating the secretion of mammalian FSH. This article will review the current knowledge on the molecular mechanisms and signaling pathways systematically regulating FSH synthesis and will present the latest hypothesis about the nuclear cross-talk among the various endocrine-induced pathways for transcriptional regulation of the FSH β subunit. This article will provide novel ideas and potential targets for the improved use of FSH in livestock breeding and therapeutic development.
Collapse
|
7
|
Post-Transcriptional Regulation of Gnrhr: A Checkpoint for Metabolic Control of Female Reproduction. Int J Mol Sci 2021; 22:ijms22073312. [PMID: 33805020 PMCID: PMC8038027 DOI: 10.3390/ijms22073312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/09/2021] [Accepted: 03/20/2021] [Indexed: 12/15/2022] Open
Abstract
The proper expression of gonadotropin-releasing hormone receptors (GnRHRs) by pituitary gonadotropes is critical for maintaining maximum reproductive capacity. GnRH receptor expression must be tightly regulated in order to maintain the normal pattern of expression through the estrous cycle in rodents, which is believed to be important for interpreting the finely tuned pulses of GnRH from the hypothalamus. Much work has shown that Gnrhr expression is heavily regulated at the level of transcription. However, researchers have also discovered that Gnrhr is regulated post-transcriptionally. This review will discuss how RNA-binding proteins and microRNAs may play critical roles in the regulation of GnRHR expression. We will also discuss how these post-transcriptional regulators may themselves be affected by metabolic cues, specifically with regards to the adipokine leptin. All together, we present evidence that Gnrhr is regulated post-transcriptionally, and that this concept must be further explored in order to fully understand the complex nature of this receptor.
Collapse
|
8
|
Grønlien HK, Fontaine R, Hodne K, Tysseng I, Ager-Wick E, Weltzien FA, Haug TM. Long extensions with varicosity-like structures in gonadotrope Lh cells facilitate clustering in medaka pituitary culture. PLoS One 2021; 16:e0245462. [PMID: 33507913 PMCID: PMC7842944 DOI: 10.1371/journal.pone.0245462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 01/02/2021] [Indexed: 11/19/2022] Open
Abstract
Accumulating evidence indicates that some pituitary cell types are organized in complex networks in both mammals and fish. In this study, we have further investigated the previously described cellular extensions formed by the medaka (Oryzias latipes) luteinizing hormone gonadotropes (Lh cells). Extensions, several cell diameters long, with varicosity-like swellings, were common both in vitro and in vivo. Some extensions approached other Lh cells, while others were in close contact with blood vessels in vivo. Gnrh further stimulated extension development in vitro. Two types of extensions with different characteristics could be distinguished, and were classified as major or minor according to size, origin and cytoskeleton protein dependance. The varicosity-like swellings appeared on the major extensions and were dependent on both microtubules and actin filaments. Immunofluorescence revealed that Lhβ protein was mainly located in these swellings and at the extremity of the extensions. We then investigated whether these extensions contribute to network formation and clustering, by following their development in primary cultures. During the first two days in culture, the Lh cells grew long extensions that with time physically attached to other cells. Successively, tight cell clusters formed as cell somas that were connected via extensions migrated towards each other, while shortening their extensions. Laser photolysis of caged Ca2+ showed that Ca2+ signals originating in the soma propagated from the soma along the major extensions, being particularly visible in each swelling. Moreover, the Ca2+ signal could be transferred between densely clustered cells (sharing soma-soma border), but was not transferred via extensions to the connected cell. In summary, Lh gonadotropes in medaka display a complex cellular structure of hormone-containing extensions that are sensitive to Gnrh, and may be used for clustering and possibly hormone release, but do not seem to contribute to communication between cells themselves.
Collapse
Affiliation(s)
| | - Romain Fontaine
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Kjetil Hodne
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Isabelle Tysseng
- Department of Biosciences, Faculty of Natural Sciences, University of Oslo, Oslo, Norway
| | - Eirill Ager-Wick
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Finn-Arne Weltzien
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Trude Marie Haug
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
9
|
Li J, Li C, Li Q, Li G, Li W, Li H, Kang X, Tian Y. Novel Regulatory Factors in the Hypothalamic-Pituitary-Ovarian Axis of Hens at Four Developmental Stages. Front Genet 2020; 11:591672. [PMID: 33329737 PMCID: PMC7672196 DOI: 10.3389/fgene.2020.591672] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/12/2020] [Indexed: 12/26/2022] Open
Abstract
Ovarian follicular development is an extremely complex and precise process in which the hypothalamic-pituitary-ovarian (HPO) axis plays a crucial role. However, research on the regulatory factors of the HPO axis is sparse. In this study, transcriptomes of the tissues in the entire HPO axis at 15, 20, 30, and 68 w of age were analyzed. In total, 381, 622, and 1090 differentially expressed genes (DEGs) were found among the hypothalamus, pituitary, and ovary, respectively. In particular, the greatest number of DEGs (867) was identified from the comparison of ovary at 30 and 15 w, which might be related to ovarian development and function at high ovulation capacity. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that most of these DEGs in the significantly enriched biological process (BP) terms and pathways were primarily involved in tissue development and the regulation of reproductive hormone biosynthesis and secretion. The latter is highly related to the HPO axis. Therefore, a number of hub candidate genes strongly associated with the HPO axis in each tissue were filtered by analyzing the Protein-protein interaction (PPI) network and seven known reproductive hormone-associated key genes were obtained: PGR, HSD3B2, CYP17A1, CYP11A1, CYP21A2, STS, and CYP19A1, and 12 novel genes: ROCK2, TBP, GTF2H2, GTF2B, DHCR24, DHCR7, FDFT1, LSS, SQLE, MSMO1, CYP51A1, and PANK3. These will be utilized for further research into the function of the HPO axis. This study has highlighted the major role of the HPO axis in the reproduction of hens at the four developmental stages and explored the novel factors that might regulate reproduction, thus providing new insights into the function of the HPO axis on the reproductive system.
Collapse
Affiliation(s)
- Jing Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Chong Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Qi Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Guoxi Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Wenting Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Hong Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yadong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
10
|
Han DX, Sun XL, Wang CJ, Yu ZW, Zheng Y, Huang YJ, Wang WH, Jiang H, Gao Y, Yuan B, Zhang JB. Differentially expressed lncRNA-m433s1 regulates FSH secretion by functioning as a miRNA sponge in male rat anterior pituitary cells†. Biol Reprod 2020; 101:416-425. [PMID: 31201415 DOI: 10.1093/biolre/ioz100] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/11/2019] [Accepted: 06/07/2019] [Indexed: 12/14/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are important regulators that have multiple functions in a variety of biological processes. However, the contributions of lncRNAs to follicle-stimulating hormone (FSH) secretion remain largely unknown. In this study, we first identified a novel lncRNA, lncRNA-m433s1, as an intergenic lncRNA located in the cytoplasm. We next used MS2-RIP assays to demonstrate that lncRNA-m433s1 interacted with miR-433. Furthermore, we detected the levels of lncRNA-m433s1, miR-433, and Fshβ expression, FSH concentrations, and apoptosis upon overexpression and knockdown of lncRNA-m433s1, revealing that lncRNA-m433s1 upregulated Fshβ expression. Globally, lncRNA-m433s1 reduced the inhibitory effect of miR-433 on Fshβ and further regulated FSH secretion as a competing endogenous RNA (ceRNA) by sponging miR-433. This ceRNA model will provide novel insight into the regulatory mechanisms of lncRNAs associated with rat reproduction.
Collapse
Affiliation(s)
- Dong-Xu Han
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Xu-Lei Sun
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Chang-Jiang Wang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Ze-Wen Yu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Yi Zheng
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Yi-Jie Huang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Wen-Hua Wang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Hao Jiang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Yan Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Jia-Bao Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| |
Collapse
|
11
|
Ju M, Yang L, Zhu J, Chen Z, Zhang M, Yu J, Tian Z. MiR-664-2 impacts pubertal development in a precocious-puberty rat model through targeting the NMDA receptor-1†. Biol Reprod 2020; 100:1536-1548. [PMID: 30916745 DOI: 10.1093/biolre/ioz044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/07/2019] [Accepted: 03/20/2019] [Indexed: 01/01/2023] Open
Abstract
Precocious puberty (PP) commonly results from premature activation of the hypothalamic-pituitary-gonadal axis (HPGA). Gonadotropin-releasing hormone (GnRH) is the initial trigger for HPGA activation and plays an important role in puberty onset. N-methyl-D-aspartate (NMDA) can promote pulsatile GnRH secretion and accelerates puberty onset. However, the mechanism of N-methyl-D-aspartate receptors (NMDARs) in PP pathogenesis remains obscure. We found that serum GnRH, luteinizing hormone (LH), follicle-stimulating hormone (FSH), estrogen (E2) levels, hypothalamic NMDAR1, and GnRH mRNA expression peaked at the vaginal opening (VO) day. Next, the hypothalamic NMDAR1 mRNA and protein levels in rats treated with danazol, a chemical commonly effecting on the reproductive system, were significantly increased at the VO day (postnatal day 24) compared to controls, accompanied by enhanced serum GnRH, LH, FSH, and E2 levels. Further, microRNA-664-2 (miR-664-2) was selected after bioinformatics analysis and approved in primary hypothalamic neurons, which binds to the 3'-untranslated regions of NMDAR1. Consistently, the miR-664-2 expression in hypothalamus of the Danazol group was decreased compared to Vehicle. Our results suggested that attenuated miR-664-2 might participate in PP pathogenesis through enhancing the NMDAR1 signaling.
Collapse
Affiliation(s)
- Minda Ju
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Institute of Acupuncture and Moxibustion Research, Academy of Integrative Medicine, Fudan University, Shanghai, China
| | - Liu Yang
- Shanghai Dunlu Biomedical Technology Co., Ltd, Shanghai, China
| | - Jing Zhu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Institute of Acupuncture and Moxibustion Research, Academy of Integrative Medicine, Fudan University, Shanghai, China
| | - Zhejun Chen
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Institute of Acupuncture and Moxibustion Research, Academy of Integrative Medicine, Fudan University, Shanghai, China
| | - Mizhen Zhang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Institute of Acupuncture and Moxibustion Research, Academy of Integrative Medicine, Fudan University, Shanghai, China
| | - Jin Yu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Institute of Acupuncture and Moxibustion Research, Academy of Integrative Medicine, Fudan University, Shanghai, China
| | - Zhanzhuang Tian
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Institute of Acupuncture and Moxibustion Research, Academy of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Lang AS, Austin SH, Harris RM, Calisi RM, MacManes MD. Stress-mediated convergence of splicing landscapes in male and female rock doves. BMC Genomics 2020; 21:251. [PMID: 32293250 PMCID: PMC7092514 DOI: 10.1186/s12864-020-6600-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/20/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The process of alternative splicing provides a unique mechanism by which eukaryotes are able to produce numerous protein products from the same gene. Heightened variability in the proteome has been thought to potentiate increased behavioral complexity and response flexibility to environmental stimuli, thus contributing to more refined traits on which natural and sexual selection can act. While it has been long known that various forms of environmental stress can negatively affect sexual behavior and reproduction, we know little of how stress can affect the alternative splicing associated with these events, and less still about how splicing may differ between sexes. Using the model of the rock dove (Columba livia), our team previously uncovered sexual dimorphism in the basal and stress-responsive gene transcription of a biological system necessary for facilitating sexual behavior and reproduction, the hypothalamic-pituitary-gonadal (HPG) axis. In this study, we delve further into understanding the mechanistic underpinnings of how changes in the environment can affect reproduction by testing the alternative splicing response of the HPG axis to an external stressor in both sexes. RESULTS This study reveals dramatic baseline differences in HPG alternative splicing between males and females. However, after subjecting subjects to a restraint stress paradigm, we found a significant reduction in these differences between the sexes. In both stress and control treatments, we identified a higher incidence of splicing activity in the pituitary in both sexes as compared to other tissues. Of these splicing events, the core exon event is the most abundant form of splicing and more frequently occurs in the coding regions of the gene. Overall, we observed less splicing activity in the 3'UTR (untranslated region) end of transcripts than the 5'UTR or coding regions. CONCLUSIONS Our results provide vital new insight into sex-specific aspects of the stress response on the HPG axis at an unprecedented proximate level. Males and females uniquely respond to stress, yet exhibit splicing patterns suggesting a convergent, optimal splicing landscape for stress response. This information has the potential to inform evolutionary theory as well as the development of highly-specific drug targets for stress-induced reproductive dysfunction.
Collapse
Affiliation(s)
- Andrew S Lang
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, USA.
| | - Suzanne H Austin
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, USA
| | - Rayna M Harris
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, USA
| | - Rebecca M Calisi
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, USA
| | - Matthew D MacManes
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, USA
| |
Collapse
|
13
|
Fontaine R, Ciani E, Haug TM, Hodne K, Ager-Wick E, Baker DM, Weltzien FA. Gonadotrope plasticity at cellular, population and structural levels: A comparison between fishes and mammals. Gen Comp Endocrinol 2020; 287:113344. [PMID: 31794734 DOI: 10.1016/j.ygcen.2019.113344] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/27/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022]
Abstract
Often referred to as "the master gland", the pituitary is a key organ controlling growth, maturation, and homeostasis in vertebrates. The anterior pituitary, which contains several hormone-producing cell types, is highly plastic and thereby able to adjust the production of the hormones governing these key physiological processes according to the changing needs over the life of the animal. Hypothalamic neuroendocrine control and feedback from peripheral tissues modulate pituitary cell activity, adjusting levels of hormone production and release according to different functional or environmental requirements. However, in some physiological processes (e.g. growth, puberty, or metamorphosis), changes in cell activity may be not sufficient to meet the needs and a general reorganization of cell composition and pituitary structure may occur. Focusing on gonadotropes, this review examines plasticity at the cellular level, which allows precise and rapid control of hormone production and secretion, as well as plasticity at the population and structural levels, which allows more substantial changes in hormone production. Further, we compare current knowledge of the anterior pituitary plasticity in fishes and mammals in order to assess what has been conserved or not throughout evolution, and highlight important remaining questions.
Collapse
Affiliation(s)
- Romain Fontaine
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Elia Ciani
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Trude Marie Haug
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway
| | - Kjetil Hodne
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Eirill Ager-Wick
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Dianne M Baker
- Department of Biological Sciences, University of Mary Washington, VA22401 Fredericksburg, VA, USA
| | - Finn-Arne Weltzien
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway.
| |
Collapse
|
14
|
Wang HY, Gao HQ. Reduction of miR-212 contributes to pituitary adenoma cell invasion via targeting c-Met. Kaohsiung J Med Sci 2019; 36:81-88. [PMID: 31643121 DOI: 10.1002/kjm2.12137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/15/2019] [Indexed: 11/07/2022] Open
Abstract
The current study aimed to evaluate the expression and role of miR-212 in the progression of pituitary adenoma (PA), thereby providing a theoretical basis and potential therapy methods for PA patients. Our data showed that miR-212 levels were significantly reduced in PA tissues than normal pituitary tissues. However, no significant difference was identified in the serum of PA patients and healthy control. In addition, the expression of miR-212 in invasive PA was significantly lower than that in noninvasive and normal pituitary tissues. Moreover, the level of miR-212 was decreased with the increase of tumor invasion. Meanwhile, the expression of miR-212 in giant adenomas was significantly lower than that in macroadenomas and microadenomas. Furthermore, inhibition of miR-212 significantly enhanced the proliferation and invasive capacity of GH3 cells. Dual luciferase reporter assay and western blot analysis confirmed that c-Met was a target gene of miR-212. More importantly, upregulation of c-Met significantly prompted PA cell proliferation mainly as a result of the enhanced level of phosphorylation of AKT. This effect could be abolished when c-Met was silenced in GH3 cells. In summary, reduced miR-212 expression in PA contributed to abnormal cancer cell proliferation and invasion mainly by targeting c-Met.
Collapse
Affiliation(s)
- Hong-Yan Wang
- Department of Neurology, Zibo Central Hospital, Zibo, Shandong Province, China
| | - Huai-Qing Gao
- Department of Neurology, Zibo Central Hospital, Zibo, Shandong Province, China
| |
Collapse
|
15
|
Abstract
The hypothalamic decapeptide, GnRH, is the gatekeeper of mammalian reproductive development and function. Activation of specific, high-affinity cell surface receptors (GnRH receptors) on gonadotropes by GnRH triggers signal transduction cascades to stimulate the coordinated synthesis and secretion of the pituitary gonadotropins FSH and LH. These hormones direct gonadal steroidogenesis and gametogenesis, making their tightly regulated production and secretion essential for normal sexual maturation and reproductive health. FSH and LH are glycoprotein heterodimers comprised of a common α-subunit and a unique β-subunit (FSHβ and LHβ, respectively), which determines the biological specificity of the gonadotropins. The unique β-subunit is the rate-limiting step for the production of the mature gonadotropins. Therefore, FSH synthesis is regulated at the transcriptional level by Fshb gene expression. The overarching goal of this review is to expand our understanding of the mechanisms and pathways underlying the carefully orchestrated control of FSH synthesis and secretion by GnRH, focusing on the transcriptional regulation of the Fshb gene. Identification of these regulatory mechanisms is not only fundamental to our understanding of normal reproductive function but will also provide a context for the elucidation of the pathophysiology of reproductive disorders and infertility to lead to potential new therapeutic approaches.
Collapse
Affiliation(s)
- George A Stamatiades
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Yale New Haven Health, Bridgeport Hospital, Bridgeport, Connecticut
- School of Medicine, University of Crete, Heraklion, Greece
| | - Rona S Carroll
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
16
|
Gareev IF, Beylerli OA. A STUDY OF THE ROLE OF MICRORNA IN PITUITARY ADENOMA. ADVANCES IN MOLECULAR ONCOLOGY 2018. [DOI: 10.17650/2313-805x-2018-5-2-8-15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
MicroRNAs are a new class of small non-coding RNAs, a length of 18–22 nucleotides that play a decisive role as posttranscriptional regulators of gene expression. Due to the large number of genes, regulated microRNAs, microRNAs are involved in many cellular processes. The study of the impairment of the expression of the target genes of microRNA, often associated with changes in important biological characteristics, provides a significant understanding of the role of microRNAs in oncogenesis. New evidence suggests that aberrant microRNA expression or dysregulation of endogenous microRNAs affects the onset and development of tumors, including adenomas of the pituitary gland. In this review, the significance of some microRNAs in the pathology of the pituitary adenoma will be assessed, as well as data on the study of microRNAs as therapeutic targets and new biomarkers.
Collapse
|
17
|
Reproductive role of miRNA in the hypothalamic-pituitary axis. Mol Cell Neurosci 2018; 88:130-137. [DOI: 10.1016/j.mcn.2018.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/19/2017] [Accepted: 01/21/2018] [Indexed: 12/21/2022] Open
|
18
|
Melamed P, Haj M, Yosefzon Y, Rudnizky S, Wijeweera A, Pnueli L, Kaplan A. Multifaceted Targeting of the Chromatin Mediates Gonadotropin-Releasing Hormone Effects on Gene Expression in the Gonadotrope. Front Endocrinol (Lausanne) 2018; 9:58. [PMID: 29535683 PMCID: PMC5835078 DOI: 10.3389/fendo.2018.00058] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) stimulates the expression of multiple genes in the pituitary gonadotropes, most notably to induce synthesis of the gonadotropins, luteinizing hormone (LH), and follicle-stimulating hormone (FSH), but also to ensure the appropriate functioning of these cells at the center of the mammalian reproductive endocrine axis. Aside from the activation of gene-specific transcription factors, GnRH stimulates through its membrane-bound receptor, alterations in the chromatin that facilitate transcription of its target genes. These include changes in the histone and DNA modifications, nucleosome positioning, and chromatin packaging at the regulatory regions of each gene. The requirements for each of these events vary according to the DNA sequence which determines the basal chromatin packaging at the regulatory regions. Despite considerable progress in this field in recent years, we are only beginning to understand some of the complexities involved in the role and regulation of this chromatin structure, including new modifications, extensive cross talk, histone variants, and the actions of distal enhancers and non-coding RNAs. This short review aims to integrate the latest findings on GnRH-induced alterations in the chromatin of its target genes, which indicate multiple and diverse actions. Understanding these processes is illuminating not only in the context of the activation of these hormones during the reproductive life span but may also reveal how aberrant epigenetic regulation of these genes leads to sub-fertility.
Collapse
Affiliation(s)
- Philippa Melamed
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa, Israel
- *Correspondence: Philippa Melamed,
| | - Majd Haj
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa, Israel
| | - Yahav Yosefzon
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa, Israel
| | - Sergei Rudnizky
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa, Israel
| | - Andrea Wijeweera
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa, Israel
| | - Lilach Pnueli
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa, Israel
| | - Ariel Kaplan
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
19
|
Wierinckx A, Roche M, Legras-Lachuer C, Trouillas J, Raverot G, Lachuer J. MicroRNAs in pituitary tumors. Mol Cell Endocrinol 2017; 456:51-61. [PMID: 28089822 DOI: 10.1016/j.mce.2017.01.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/14/2016] [Accepted: 01/12/2017] [Indexed: 01/01/2023]
Abstract
Since the presence of microRNAs was first observed in normal pituitary, the majority of scientific publications addressing their role and the function of microRNAs in the pituitary have been based on pituitary tumor studies. In this review, we briefly describe the involvement of microRNAs in the synthesis of pituitary hormones and we present a comprehensive inventory of microRNA suppressors and inducers of pituitary tumors. Finally, we summarize the functional role of microRNAs in tumorigenesis, progression and aggressiveness of pituitary tumors, mechanisms contributing to the regulation (transcription factors, genomic modifications or epigenetic) or modulation (pharmacological treatment) of microRNAs in these tumors, and the interest of thoroughly studying the expression of miRNAs in body fluids.
Collapse
Affiliation(s)
- Anne Wierinckx
- Université Lyon 1, Université de Lyon, Lyon, France; Institut Universitaire de Technologie Lyon1, Université de Lyon, F-69622 Villeurbanne Cedex, France; INSERM U1052, Cancer Research Center of Lyon, F-69373 Lyon Cedex 08, France; CNRS UMR 5286, Cancer Research Center of Lyon, F-69373 Lyon Cedex 08, France; ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7, F-69373 Lyon Cedex 08, France.
| | | | - Catherine Legras-Lachuer
- Université Lyon 1, Université de Lyon, Lyon, France; ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7, F-69373 Lyon Cedex 08, France; ViroScan3D, F-01600 Trévoux, France; UMR CNRS 5557 UCBL USC INRA 1193 ENVL, Dynamique Microbienne et Transmission Virale, F-69100 Villeurbanne Cedex, France
| | - Jacqueline Trouillas
- Université Lyon 1, Université de Lyon, Lyon, France; Centre de Pathologie Est, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron F-69677, France
| | - Gérald Raverot
- Université Lyon 1, Université de Lyon, Lyon, France; INSERM U1052, Cancer Research Center of Lyon, F-69373 Lyon Cedex 08, France; CNRS UMR 5286, Cancer Research Center of Lyon, F-69373 Lyon Cedex 08, France; Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, F-69677, France Université Lyon 1, Université de Lyon, Lyon, France
| | - Joël Lachuer
- Université Lyon 1, Université de Lyon, Lyon, France; Institut Universitaire de Technologie Lyon1, Université de Lyon, F-69622 Villeurbanne Cedex, France; INSERM U1052, Cancer Research Center of Lyon, F-69373 Lyon Cedex 08, France; CNRS UMR 5286, Cancer Research Center of Lyon, F-69373 Lyon Cedex 08, France; ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7, F-69373 Lyon Cedex 08, France
| |
Collapse
|
20
|
Haviv R, Oz E, Soreq H. The Stress-Responding miR-132-3p Shows Evolutionarily Conserved Pathway Interactions. Cell Mol Neurobiol 2017; 38:141-153. [PMID: 28667373 PMCID: PMC5775983 DOI: 10.1007/s10571-017-0515-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/22/2017] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNA chains that can each interact with the 3′-untranslated region of multiple target transcripts in various organisms, humans included. MiRNAs tune entire biological pathways, spanning stress reactions, by regulating the stability and/or translation of their targets. MiRNA genes are often subject to co-evolutionary changes together with their target transcripts, which may be reflected by differences between paralog mouse and primate miRNA/mRNA pairs. However, whether such evolution occurred in stress-related miRNAs remained largely unknown. Here, we report that the stress-induced evolutionarily conserved miR-132-3p, its target transcripts and its regulated pathways provide an intriguing example to exceptionally robust conservation. Mice and human miR-132-3p share six experimentally validated targets and 18 predicted targets with a common miRNA response element. Enrichment analysis and mining in-house and web-available experimental data identified co-regulation by miR-132 in mice and humans of stress-related, inflammatory, metabolic, and neuronal growth pathways. Our findings demonstrate pan-mammalian preservation of miR-132′s neuronal roles, and call for further exploring the corresponding stress-related implications.
Collapse
Affiliation(s)
- Rotem Haviv
- Department of Biological Chemistry, The Silberman Institute of Life Sciences and the Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401, Jerusalem, Israel
| | - Eden Oz
- Department of Biological Chemistry, The Silberman Institute of Life Sciences and the Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401, Jerusalem, Israel
| | - Hermona Soreq
- Department of Biological Chemistry, The Silberman Institute of Life Sciences and the Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401, Jerusalem, Israel.
| |
Collapse
|
21
|
Lannes J, L'Hôte D, Fernandez-Vega A, Garrel G, Laverrière JN, Cohen-Tannoudji J, Quérat B. [microRNA and inactivation of the pituitary gonadotrope function]. Med Sci (Paris) 2017; 33:386-388. [PMID: 28497733 DOI: 10.1051/medsci/20173304006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jérôme Lannes
- Sorbonne Paris Cité, Université Paris-Diderot, CNRS, Inserm, Biologie fonctionnelle et adaptative UMR 8251, Physiologie de l'axe gonadotrope, U1133, 5, rue Thomas Mann, 75205 Paris Cedex, France
| | - David L'Hôte
- Sorbonne Paris Cité, Université Paris-Diderot, CNRS, Inserm, Biologie fonctionnelle et adaptative UMR 8251, Physiologie de l'axe gonadotrope, U1133, 5, rue Thomas Mann, 75205 Paris Cedex, France
| | - Ambra Fernandez-Vega
- Sorbonne Paris Cité, Université Paris-Diderot, CNRS, Inserm, Biologie fonctionnelle et adaptative UMR 8251, Physiologie de l'axe gonadotrope, U1133, 5, rue Thomas Mann, 75205 Paris Cedex, France
| | - Ghislaine Garrel
- Sorbonne Paris Cité, Université Paris-Diderot, CNRS, Inserm, Biologie fonctionnelle et adaptative UMR 8251, Physiologie de l'axe gonadotrope, U1133, 5, rue Thomas Mann, 75205 Paris Cedex, France
| | - Jean-Noël Laverrière
- Sorbonne Paris Cité, Université Paris-Diderot, CNRS, Inserm, Biologie fonctionnelle et adaptative UMR 8251, Physiologie de l'axe gonadotrope, U1133, 5, rue Thomas Mann, 75205 Paris Cedex, France
| | - Joëlle Cohen-Tannoudji
- Sorbonne Paris Cité, Université Paris-Diderot, CNRS, Inserm, Biologie fonctionnelle et adaptative UMR 8251, Physiologie de l'axe gonadotrope, U1133, 5, rue Thomas Mann, 75205 Paris Cedex, France
| | - Bruno Quérat
- Sorbonne Paris Cité, Université Paris-Diderot, CNRS, Inserm, Biologie fonctionnelle et adaptative UMR 8251, Physiologie de l'axe gonadotrope, U1133, 5, rue Thomas Mann, 75205 Paris Cedex, France
| |
Collapse
|
22
|
Pandey K, Mizukami Y, Watanabe K, Sakaguti S, Kadokawa H. Deep sequencing of the transcriptome in the anterior pituitary of heifers before and after ovulation. J Vet Med Sci 2017; 79:1003-1012. [PMID: 28442638 PMCID: PMC5487774 DOI: 10.1292/jvms.16-0531] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We aimed to determine gene expression patterns in the anterior pituitary (AP) of heifers
before and after ovulation via deep sequencing of the transcriptome (RNA-seq) to identify
new genes and clarify important pathways. Heifers were slaughtered on the estrus day
(pre-ovulation; n=5) or 3 days after ovulation (post-ovulation; n=5) for AP collection. We
randomly selected 4 pre-ovulation and 4 post-ovulation APs, and the ribosomal RNA-depleted
poly (A)+RNA were prepared to assemble next-generation sequencing libraries. The bovine
APs expressed 12,769 annotated genes at pre- or post-ovulation. The sum of the reads per
kilobase of exon model per million mapped reads (RPKM) values of all transcriptomes were
599,676 ± 38,913 and 668,209 ± 23,690, and 32.2 ± 2.6% and 44.0 ± 4.4% of these
corresponded to the AP hormones in the APs of pre- and post-ovulation heifers,
respectively. The bovine AP showed differential expression of 396 genes
(P<0.05) in the pre- and post-ovulation APs. The 396 genes included
two G-protein-coupled receptor (GPCR) genes (GPR61 and
GPR153) and those encoding 13 binding proteins. The AP also expressed
259 receptor and other 364 binding proteins. Moreover, ingenuity pathway analysis for the
396 genes revealed (P=2.4 × 10−3) a canonical pathway linking
GPCR to cytoskeleton reorganization, actin polymerization, microtubule growth, and gene
expression. Thus, the present study clarified the novel genes found to be differentially
expressed before and after ovulation and clarified an important pathway in the AP.
Collapse
Affiliation(s)
- Kiran Pandey
- Joint Faculty of Veterinary Medicine, Yamaguchi University, Yoshida 1677-1, Yamaguchi-shi, Yamaguchi 753-8515, Japan
| | - Yoichi Mizukami
- Center for Gene Research, Yamaguchi University, Minami Kogushi 1-1-1, Ube-shi, Yamaguchi 755-8505, Japan
| | - Kenji Watanabe
- Center for Gene Research, Yamaguchi University, Minami Kogushi 1-1-1, Ube-shi, Yamaguchi 755-8505, Japan
| | - Syuiti Sakaguti
- Institute of Radioisotope Research and Education, Yamaguchi University, Minami Kogushi 1-1-1, Ube-shi, Yamaguchi 755-8505, Japan
| | - Hiroya Kadokawa
- Joint Faculty of Veterinary Medicine, Yamaguchi University, Yoshida 1677-1, Yamaguchi-shi, Yamaguchi 753-8515, Japan
| |
Collapse
|
23
|
Edwards BS, Isom WJ, Navratil AM. Gonadotropin releasing hormone activation of the mTORC2/Rictor complex regulates actin remodeling and ERK activity in LβT2 cells. Mol Cell Endocrinol 2017; 439:346-353. [PMID: 27663077 PMCID: PMC5123956 DOI: 10.1016/j.mce.2016.09.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/26/2016] [Accepted: 09/19/2016] [Indexed: 12/16/2022]
Abstract
The mammalian target of rapamycin (mTOR) assembles into two different multi-protein complexes, mTORC1 and mTORC2. The mTORC2 complex is distinct due to the unique expression of the specific core regulatory protein Rictor (rapamycin-insensitive companion of mTOR). mTORC2 has been implicated in regulating actin cytoskeletal reorganization but its role in gonadotrope function is unknown. Using the gonadotrope-derived LβT2 cell line, we find that the GnRH agonist buserelin (GnRHa) phosphorylates both mTOR and Rictor. Interestingly, inhibition of mTORC2 blunts GnRHa-induced cyto-architectural rearrangements. Coincident with blunting of actin reorganization, inhibition of mTORC2 also attenuates GnRHa-mediated activation of both protein kinase C (PKC) and extracellular signal regulated kinase (ERK). Collectively, our data suggests that GnRHa-mediated mTORC2 activation is important in facilitating actin reorganization events critical for initiating PKC activity and subsequent ERK phosphorylation in the gonadotrope-derived LβT2 cell line.
Collapse
Affiliation(s)
- Brian S Edwards
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA.
| | - William J Isom
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA.
| | - Amy M Navratil
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
24
|
Edwards BS, Clay CM, Ellsworth BS, Navratil AM. Functional Role of Gonadotrope Plasticity and Network Organization. Front Endocrinol (Lausanne) 2017; 8:223. [PMID: 28936197 PMCID: PMC5595155 DOI: 10.3389/fendo.2017.00223] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/16/2017] [Indexed: 11/18/2022] Open
Abstract
Gonadotrope cells of the anterior pituitary are characterized by their ability to mount a cyclical pattern of gonadotropin secretion to regulate gonadal function and fertility. Recent in vitro and in vivo evidence suggests that gonadotropes exhibit dramatic remodeling of the actin cytoskeleton following gonadotropin-releasing hormone (GnRH) exposure. GnRH engagement of actin is critical for gonadotrope function on multiple levels. First, GnRH-induced cell movements lead to spatial repositioning of the in vivo gonadotrope network toward vascular endothelium, presumably to access the bloodstream for effective hormone release. Interestingly, these plasticity changes can be modified depending on the physiological status of the organism. Additionally, GnRH-induced actin assembly appears to be fundamental to gonadotrope signaling at the level of extracellular signal-regulated kinase (ERK) activation, which is a well-known regulator of luteinizing hormone (LH) β-subunit synthesis. Last, GnRH-induced cell membrane projections are capable of concentrating LHβ-containing vesicles and disruption of the actin cytoskeleton reduces LH secretion. Taken together, gonadotrope network positioning and LH synthesis and secretion are linked to GnRH engagement of the actin cytoskeleton. In this review, we will cover the dynamics and organization of the in vivo gonadotrope cell network and the mechanisms of GnRH-induced actin-remodeling events important in ERK activation and subsequently hormone secretion.
Collapse
Affiliation(s)
- Brian S. Edwards
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States
| | - Colin M. Clay
- Department of Biomedical Science, Colorado State University, Fort Collins, CO, United States
| | - Buffy S. Ellsworth
- Department of Physiology, Southern Illinois University Carbondale, Carbondale, IL, United States
| | - Amy M. Navratil
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States
- *Correspondence: Amy M. Navratil,
| |
Collapse
|
25
|
Rahamim-Ben Navi L, Tsukerman A, Feldman A, Melamed P, Tomić M, Stojilkovic SS, Boehm U, Seger R, Naor Z. GnRH Induces ERK-Dependent Bleb Formation in Gonadotrope Cells, Involving Recruitment of Members of a GnRH Receptor-Associated Signalosome to the Blebs. Front Endocrinol (Lausanne) 2017; 8:113. [PMID: 28626446 PMCID: PMC5454083 DOI: 10.3389/fendo.2017.00113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We have previously described a signaling complex (signalosome) associated with the GnRH receptor (GnRHR). We now report that GnRH induces bleb formation in the gonadotrope-derived LβT2 cells. The blebs appear within ~2 min at a turnover rate of ~2-3 blebs/min and last for at least 90 min. Formation of the blebs requires active ERK1/2 and RhoA-ROCK but not active c-Src. Although the following ligands stimulate ERK1/2 in LβT2 cells: EGF > GnRH > PMA > cyclic adenosine monophosphate (cAMP), they produced little or no effect on bleb formation as compared to the robust effect of GnRH (GnRH > PMA > cAMP > EGF), indicating that ERK1/2 is required but not sufficient for bleb formation possibly due to compartmentalization. Members of the above mentioned signalosome are recruited to the blebs, some during bleb formation (GnRHR, c-Src, ERK1/2, focal adhesion kinase, paxillin, and tubulin), and some during bleb retraction (vinculin), while F-actin decorates the blebs during retraction. Fluorescence intensity measurements for the above proteins across the cells showed higher intensity in the blebs vs. intracellular area. Moreover, GnRH induces blebs in primary cultures of rat pituitary cells and isolated mouse gonadotropes in an ERK1/2-dependent manner. The novel signalosome-bleb pathway suggests that as with the signalosome, the blebs are apparently involved in cell migration. Hence, we have extended the potential candidates which are involved in the blebs life cycle in general and for the GnRHR in particular.
Collapse
Affiliation(s)
- Liat Rahamim-Ben Navi
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Anna Tsukerman
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Alona Feldman
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Philippa Melamed
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Melanija Tomić
- National Institute of Child Health and Human Development, National Institute of Health, Bethesda, MD, United States
| | - Stanko S. Stojilkovic
- National Institute of Child Health and Human Development, National Institute of Health, Bethesda, MD, United States
| | - Ulrich Boehm
- Department of Pharmacology and Toxicology, University of Saarland School of Medicine, Homburg, Germany
| | - Rony Seger
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Zvi Naor
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
- *Correspondence: Zvi Naor,
| |
Collapse
|
26
|
Abstract
MicroRNAs (miRNAs) are non-coding RNAs generated from endogenous hairpin-shaped transcripts that powerfully regulate gene expression at post-transcriptional level. Each miRNA is capable to regulate the expression levels of hundreds of transcripts and each mRNA may have more than one miRNA recognition sequence. There is emerging evidence that deregulation of miRNA expression leads to the alteration of pivotal physiological functions contributing to the development of diseases and neoplasms, including pituitary adenoma. This review is aimed at providing the up-to-date knowledge concerning deregulated miRNAs of pituitary tumors and their functions. In order to take stock, pituitary tumors have been sub-divided in different classes on the basis of tumor features (histotype, dimension, aggressiveness). The overview takes full consideration of the recent advances in miRNAs role as potential therapeutics and biomarkers.
Collapse
Affiliation(s)
- Erica Gentilin
- Section of Endocrinology and Internal Medicine, Dept. of Medical Sciences, University of Ferrara, Italy
| | - Ettore Degli Uberti
- Section of Endocrinology and Internal Medicine, Dept. of Medical Sciences, University of Ferrara, Italy
| | - Maria Chiara Zatelli
- Section of Endocrinology and Internal Medicine, Dept. of Medical Sciences, University of Ferrara, Italy.
| |
Collapse
|
27
|
A regulatory loop between miR-132 and miR-125b involved in gonadotrope cells desensitization to GnRH. Sci Rep 2016; 6:31563. [PMID: 27539363 PMCID: PMC4990909 DOI: 10.1038/srep31563] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/19/2016] [Indexed: 01/26/2023] Open
Abstract
The GnRH neurohormone is the main activator of the pituitary gonadotropins, LH and FSH. Here we investigated the contribution of microRNAs in mediating GnRH activation. We first established that miR-125b targets several actors of Gαq/11 signalling pathway, without altering Gαs pathway. We then showed that a Gαs-mediated, PKA-dependent phosphorylation of NSun2 methyltransferase leads to miR-125b methylation and thereby induces its down-regulation. We demonstrated that NSun2 mRNA is a target of miR-132 and that NSun2 may be inactivated by the PP1α phosphatase. Time-course analysis of GnRH treatment revealed an initial NSun2-dependent down-regulation of miR-125b with consecutive up-regulation of LH and FSH expression. Increase of miR-132 and of the catalytic subunit of PP1α then contributed to NSun2 inactivation and to the return of miR-125b to its steady-state level. The Gαq/11-dependent pathway was thus again silenced, provoking the down-regulation of LH, FSH and miR-132. Overall, this study reveals that a regulatory loop that tends to maintain or restore high and low levels of miR-125b and miR-132, respectively, is responsible for gonadotrope cells desensitization to sustained GnRH. A dysregulation of this loop might be responsible for the inverted dynamics of these two miRNAs reported in several neuronal and non-neuronal pathologies.
Collapse
|
28
|
Wu S, Sun H, Zhang Q, Jiang Y, Fang T, Cui I, Yan G, Hu Y. MicroRNA-132 promotes estradiol synthesis in ovarian granulosa cells via translational repression of Nurr1. Reprod Biol Endocrinol 2015; 13:94. [PMID: 26282993 PMCID: PMC4539686 DOI: 10.1186/s12958-015-0095-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/13/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Estrogen synthesis is an important function of the mammalian ovary. Estrogen plays important roles in many biological processes, including follicular development, oocyte maturation and endometrial proliferation, and dysfunctions in estrogen synthesis contribute to the development of polycystic ovary syndrome and premature ovarian failure. Classical signaling cascades triggered by follicle-stimulating hormone induce estrogen synthesis via the upregulation of Cyp19a1 in granulosa cells (GCs). This study aimed to determine the effect of microRNA-132 (miR-132) on estradiol synthesis in GCs. METHODS Primary mouse GCs were collected from ovaries of 21-day-old immature ICR mice through follicle puncture. GCs were cultured and treated with the stable cyclic adenosine monophosphate analog 8-Br-cAMP or transfected with miR-132 mimics, Nurr1-specific small interfering RNA oligonucleotides and Flag-Nurr1 plasmids. Concentrations of estradiol and progesterone in culture medium were determined by an automated chemiluminescence-based assay. Quantitative real time PCR and western blot were performed to identify the effect of miR-132 on Cyp19a1, Cyp11a1 and an orphan nuclear receptor-Nurr1 expression in GCs. Direct suppression of Nurr1 via its 3'-untranslated region by miR-132 were further verified using luciferase reporter assays. RESULTS The expression level of miR-132 in cultured mouse GCs was significantly elevated during 48 h of treatment with 8-Br-cAMP. The synthesis of estradiol increased after the overexpression of miR-132 in mouse GCs. The real-time PCR results demonstrated that miR-132 induced the expression of Cyp19a1 significantly. Nurr1, an orphan nuclear receptor that suppresses Cyp19a1 expression, was found to be a direct target of miR-132. Nurr1 was suppressed by miR-132, as indicated by a luciferase assay and Western blotting. The knockdown of Nurr1 primarily elevated the synthesis of estradiol and partially attenuated the miR-132-induced estradiol elevation, and the ectopic expression of Flag-Nurr1 abrogated the stimulatory effect of miR-132 on estradiol synthesis in mouse GCs. CONCLUSIONS Our findings suggest that miR-132 is involved in the cAMP signaling pathway and promotes estradiol synthesis via the translational repression of Nurr1 in ovarian GCs.
Collapse
Affiliation(s)
- Shaogen Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China.
| | - Haixiang Sun
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China.
| | - Qun Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China.
| | - Yue Jiang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China.
| | - Ting Fang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China.
| | - Isabelle Cui
- New York-Presbyterian/Weill Cornell Medical Center, New York, NY, USA.
| | - Guijun Yan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China.
| | - Yali Hu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
29
|
Moreno JM, Núñez MJ, Quiñonero A, Martínez S, de la Orden M, Simón C, Pellicer A, Díaz-García C, Domínguez F. Follicular fluid and mural granulosa cells microRNA profiles vary in in vitro fertilization patients depending on their age and oocyte maturation stage. Fertil Steril 2015. [PMID: 26209829 DOI: 10.1016/j.fertnstert.2015.07.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To determine whether there is any difference in the follicular fluid (FF) microRNA (miRNA) profiles from in vitro fertilization (IVF) patients according to their age and oocyte maturation stage. DESIGN Observational prospective study. SETTING IVF clinic/hospital facilities. PATIENTS(S) We included 30 women with primary infertility undergoing intracytoplasmic sperm injection treatment and excluded patients with polycystic ovarian syndrome, endometriosis, severe male factor, and low ovarian reserve. INTERVENTION(S) After the collection of FF and granulosa cells from each patient, the samples were processed for total RNA extraction. RNA was pooled into different groups (three samples per pool) for microarray analysis to evaluate the expression of a total of 866 human miRNAs. Individual samples were analyzed to validate the pooled microarray results using real-time polymerase chain reaction. MAIN OUTCOME MEASURE(S) Evaluation of the expression of a total of 866 human miRNAs in FF and granulosa cells. RESULT(S) We identified only one differentially expressed miRNA, hsa-miR-424, which is present in higher proportions in FF from patients with advanced age. When we compared the FF from metaphase II (MII) versus GV (germinal vesicle) oocytes, we found 13 differentially expressed miRNAs (two up- and 11 downregulated). When we compared FF from MII versus MI, we found seven differentially expressed miRNAs in MII (three up- and four downregulated). CONCLUSION(S) We have described the FF miRNA profiles according to IVF patients' age and the maturation stage of their oocytes. This descriptive study may aid our understanding of the physiology and regulation of oocyte maturation and could identify some potential miRNA biomarkers for this process. CLINICAL TRIAL REGISTRATION NUMBER Not applicable.
Collapse
Affiliation(s)
- Juan Manuel Moreno
- Fundación Instituto Valenciano de Infertilidad, Instituto Universitario IVI, Valencia, Spain
| | - María José Núñez
- Reproductive Medicine Research Group, Instituto de Investigación Sanitaria La Fe, La Fe University Hospital, Valencia, Spain
| | - Alicia Quiñonero
- Fundación Instituto Valenciano de Infertilidad, Instituto Universitario IVI, Valencia, Spain
| | - Sebastian Martínez
- Fundación Instituto Valenciano de Infertilidad, Instituto Universitario IVI, Valencia, Spain
| | - Marina de la Orden
- Reproductive Medicine Research Group, Instituto de Investigación Sanitaria La Fe, La Fe University Hospital, Valencia, Spain
| | - Carlos Simón
- Fundación Instituto Valenciano de Infertilidad, Instituto Universitario IVI, Valencia, Spain; INCLIVA Biomedical Research Institute, Valencia, Spain; Department of Obstetrics and Gynecology, Stanford University, Stanford, California
| | - Antonio Pellicer
- Fundación Instituto Valenciano de Infertilidad, Instituto Universitario IVI, Valencia, Spain; Reproductive Medicine Research Group, Instituto de Investigación Sanitaria La Fe, La Fe University Hospital, Valencia, Spain
| | - César Díaz-García
- Reproductive Medicine Research Group, Instituto de Investigación Sanitaria La Fe, La Fe University Hospital, Valencia, Spain
| | - Francisco Domínguez
- Fundación Instituto Valenciano de Infertilidad, Instituto Universitario IVI, Valencia, Spain; INCLIVA Biomedical Research Institute, Valencia, Spain.
| |
Collapse
|
30
|
Zhao JL, Zhang L, Guo X, Wang JH, Zhou W, Liu M, Li X, Tang H. miR-212/132 downregulates SMAD2 expression to suppress the G1/S phase transition of the cell cycle and the epithelial to mesenchymal transition in cervical cancer cells. IUBMB Life 2015; 67:380-94. [PMID: 25988335 DOI: 10.1002/iub.1381] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 04/08/2015] [Indexed: 01/09/2023]
Abstract
MicroRNAs (miRNAs), a class of small noncoding RNAs that regulate target gene expression, play an important role in cancer initiation, progression, and metastasis. However, the role of many miRNAs in cervical cancer is not fully understood. In this study, we found that miR-212 and miR-132 from the same gene cluster are downregulated in human cervical cancer tissues when compared with adjacent noncancerous tissues. The overexpression of miR-212/132 not only led to a delay in the G1/S phase transition and repressed cell proliferation but also resulted in an increase in E-cadherin expression and a decrease in vimentin, suppressing the epithelial to mesenchymal transition and migration and invasion in cervical cancer cells. Subsequently, SMAD2 was identified as a common target of miR-212/132 and was found to be negatively regulated by miR-212/132 at the mRNA and protein levels. Furthermore, SMAD2 silencing led to the same effect on cervical cancer cells as miR-212/132 overexpression. Importantly, SMAD2 overexpression partially reversed the cellular phenotypes induced by miR-212/132 overexpression. In conclusion, our study indicated that miR-212/132 functions as tumor suppressor by targeting SMAD2 in cervical cancer.
Collapse
Affiliation(s)
- Jian-Li Zhao
- Department of pathogenic biology, Tianjin Life Science Research Center and Basic Medical School, Tianjin Medical University, Tianjin, China
| | - Le Zhang
- Department of pathogenic biology, Tianjin Life Science Research Center and Basic Medical School, Tianjin Medical University, Tianjin, China
| | - Xu Guo
- Department of pathogenic biology, Tianjin Life Science Research Center and Basic Medical School, Tianjin Medical University, Tianjin, China
| | - Jing-Hua Wang
- Department of pathogenic biology, Tianjin Life Science Research Center and Basic Medical School, Tianjin Medical University, Tianjin, China
| | - Wen Zhou
- Department of pathogenic biology, Tianjin Life Science Research Center and Basic Medical School, Tianjin Medical University, Tianjin, China
| | - Min Liu
- Department of pathogenic biology, Tianjin Life Science Research Center and Basic Medical School, Tianjin Medical University, Tianjin, China
| | - Xin Li
- Department of pathogenic biology, Tianjin Life Science Research Center and Basic Medical School, Tianjin Medical University, Tianjin, China
| | - Hua Tang
- Department of pathogenic biology, Tianjin Life Science Research Center and Basic Medical School, Tianjin Medical University, Tianjin, China
| |
Collapse
|
31
|
Tavolaro S, Colombo T, Chiaretti S, Peragine N, Fulci V, Ricciardi MR, Messina M, Bonina S, Brugnoletti F, Marinelli M, Di Maio V, Mauro FR, Del Giudice I, Macino G, Foà R, Guarini A. Increased chronic lymphocytic leukemia proliferation upon IgM stimulation is sustained by the upregulation of miR-132 and miR-212. Genes Chromosomes Cancer 2015; 54:222-34. [PMID: 25645730 DOI: 10.1002/gcc.22236] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 12/25/2022] Open
Abstract
To assess the involvement of microRNAs (miRNAs) in B-cell receptor (BCR) stimulation, we first evaluated miRNA profiling following IgM cross-linking in chronic lymphocytic leukemia (CLL) cells and in normal B lymphocytes. Second, we combined miRNA and gene expression data to identify putative miRNA functional networks. miRNA profiling showed distinctive patterns of regulation after stimulation in leukemic versus normal B lymphocytes and identified a differential responsiveness to BCR engagement in CLL subgroups according to the immunoglobulin heavy chain variable region mutational status and clinical outcome. The most significantly modulated miRNAs in stimulated CLL are miR-132 and miR-212. Notably, these miRNAs appeared regulated in progressive but not in stable CLL. Accordingly, gene profiling showed a significant transcriptional response to stimulation exclusively in progressive CLL. Based on these findings, we combined miRNA and gene expression data to investigate miR-132 and miR-212 candidate interactions in this CLL subgroup. Correlation analysis pointed to a link between these miRNAs and RB/E2F and TP53 cascades with proproliferative effects, as corroborated by functional analyses. Finally, basal levels of miR-132 and miR-212 were measured in an independent cohort of 20 unstimulated CLL cases and both showed lower expression in progressive compared to stable patients, suggesting an association between the expression of these molecules and disease prognosis. Overall, our results support a model involving miR-132 and miR-212 upregulation in sustaining disease progression in CLL. These miRNAs may therefore provide new valuable strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Simona Tavolaro
- Hematology, Department of Cellular Biotechnologies and Hematology, "Sapienza" University, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lannes J, L'Hôte D, Garrel G, Laverrière JN, Cohen-Tannoudji J, Quérat B. Rapid communication: A microRNA-132/212 pathway mediates GnRH activation of FSH expression. Mol Endocrinol 2015; 29:364-72. [PMID: 25635942 DOI: 10.1210/me.2014-1390] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
GnRH plays a key role in the vertebrate reproductive system by stimulating biosynthesis and secretion of pituitary gonadotropins. However, the potential involvement of microRNAs (miRNAs) on this activation has still to be explored. In this study, we investigated the role of miRNA-132 and miRNA-212, two tandemly expressed miRNAs that target the same transcripts, on GnRH-induced FSH expression. We first showed that the GnRH stimulation of FSH secretion was reduced and Fshb mRNA abolished by blocking miR-132/212 action in rat pituitary cells. In mouse LβT2 gonadotrope cells, the GnRH stimulation of Fshb mRNA was also demonstrated to be dependent on miR-132/212 and reproduced by overexpressing one or both miRNAs. We then showed that the miR-132/212-mediated action of GnRH involved a posttranscriptional decrease of sirtuin 1 (SIRT1) deacetylase. The lower level of SIRT1 deacetylase correlated with an increase in the acetylated form of Forkhead Box O1 (FOXO1), a transcriptional repressor of Fshb. Interestingly, we show that the acetylated mimicking mutant of FOXO1 was localized outside the nucleus, thus alleviating its repressive effect on Fshb transcription. Overall, we demonstrate that the GnRH stimulation of Fshb expression is dependent on miR-132/212 and involves a SIRT1-FOXO1 pathway. This is the first demonstration of an obligatory microRNA pathway in the GnRH-regulated expression of a gonadotropin gene.
Collapse
Affiliation(s)
- Jérôme Lannes
- Department of Biologie Fonctionnelle et Adaptative, Université Paris-Diderot, Sorbonne Paris Cité, F-75013 Paris, France; Centre National pour la Recherche Scientifique Unité Mixte de Recherche 8251, F-75013 Paris, France; and Institut National de la Santé et de la Recherche Médicale Unité 1133, Physiologie de l'axe Gonadotrope, F-75013 Paris, France
| | | | | | | | | | | |
Collapse
|
33
|
Wang H, Graham I, Hastings R, Gunewardena S, Brinkmeier ML, Conn PM, Camper SA, Kumar TR. Gonadotrope-specific deletion of Dicer results in severely suppressed gonadotropins and fertility defects. J Biol Chem 2014; 290:2699-714. [PMID: 25525274 DOI: 10.1074/jbc.m114.621565] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Pituitary gonadotropins follicle-stimulating hormone and luteinizing hormone are heterodimeric glycoproteins expressed in gonadotropes. They act on gonads and promote their development and functions including steroidogenesis and gametogenesis. Although transcriptional regulation of gonadotropin subunits has been well studied, the post-transcriptional regulation of gonadotropin subunits is not well understood. To test if microRNAs regulate the hormone-specific gonadotropin β subunits in vivo, we deleted Dicer in gonadotropes by a Cre-lox genetic approach. We found that many of the DICER-dependent microRNAs, predicted in silico to bind gonadotropin β subunit mRNAs, were suppressed in purified gonadotropes of mutant mice. Loss of DICER-dependent microRNAs in gonadotropes resulted in profound suppression of gonadotropin-β subunit proteins and, consequently, the heterodimeric hormone secretion. In addition to suppression of basal levels, interestingly, the post-gonadectomy-induced rise in pituitary gonadotropin synthesis and secretion were both abolished in mutants, indicating a defective gonadal negative feedback control. Furthermore, mutants lacking Dicer in gonadotropes displayed severely reduced fertility and were rescued with exogenous hormones confirming that the fertility defects were secondary to suppressed gonadotropins. Our studies reveal that DICER-dependent microRNAs are essential for gonadotropin homeostasis and fertility in mice. Our studies also implicate microRNAs in gonadal feedback control of gonadotropin synthesis and secretion. Thus, DICER-dependent microRNAs confer a new layer of transcriptional and post-transcriptional regulation in gonadotropes to orchestrate the hypothalamus-pituitary-gonadal axis physiology.
Collapse
Affiliation(s)
- Huizhen Wang
- From the Departments of Molecular and Integrative Physiology
| | - Ian Graham
- From the Departments of Molecular and Integrative Physiology
| | - Richard Hastings
- Flow Cytometry Core Laboratory, University of Kansas Medical Center, Kansas City, Kansas 66160
| | | | - Michelle L Brinkmeier
- Department of Molecular and Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, and
| | - P Michael Conn
- Departments of Internal Medicine, Cell Biology, and Biochemistry, Texas Tech University, Lubbock, Texas 79430
| | - Sally A Camper
- Department of Molecular and Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, and
| | - T Rajendra Kumar
- From the Departments of Molecular and Integrative Physiology, Center for Reproductive Sciences, Institute for Reproductive Health and Regenerative Medicine, and
| |
Collapse
|
34
|
Renjie W, Haiqian L. MiR-132, miR-15a and miR-16 synergistically inhibit pituitary tumor cell proliferation, invasion and migration by targeting Sox5. Cancer Lett 2014; 356:568-78. [PMID: 25305447 DOI: 10.1016/j.canlet.2014.10.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/01/2014] [Accepted: 10/03/2014] [Indexed: 12/13/2022]
Abstract
MiR-132, miR-15a and miR-16 have been implicated in the pathogenesis of many types of cancer, including pituitary tumors. However, the molecular mechanism of these miRNAs in pituitary tumor growth and metastasis is still unclear. Here, we showed that miR-132 and miR-15a/16 were less expressed in pituitary tumor cell lines, as well as in invasive pituitary tumor tissues, compared to non-invasive tumor tissues. We described that overexpression of miR-132 and miR-15a/16 resulted in the suppression of pituitary tumor cell proliferation, migration and invasion, respectively, and also inhibits the expression of proteins involved in Epithelial to Mesenchymal Transition (EMT). Then, we show that these miRNAs synergistically target Sox5 in pituitary tumor. Moreover, we found that Sox5 overexpression partially rescued miR-132, miR-15a and miR-16-mediated inhibition of cell migration, invasion and cell growth. Finally, we confirmed that Sox5 was upregulated in invasive pituitary tumor tissues, compared to non-invasion tissues. In conclusion, our data indicate that miR-132 and miR-15a/16 act as tumor suppressor genes in pituitary tumor by directly targetting Sox5, and imply that these miRNAs have potential as therapeutic targets for invasive pituitary tumor.
Collapse
Affiliation(s)
- Wang Renjie
- Department of Clinical Laboratory, Pingjing Hosipital, Logistics College of Armed Police Forces, Tianjin, China
| | - Liang Haiqian
- Department of Neurosurgery, Pingjing Hosipital, Logistics College of Armed Police Forces, No220, Chenglin Road, Tianjin 300162, China.
| |
Collapse
|
35
|
Li MM, Li XM, Zheng XP, Yu JT, Tan L. MicroRNAs dysregulation in epilepsy. Brain Res 2014; 1584:94-104. [DOI: 10.1016/j.brainres.2013.09.049] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 09/26/2013] [Accepted: 09/28/2013] [Indexed: 10/26/2022]
|
36
|
Abstract
MicroRNAs (miRNAs) are transcriptional and posttranscriptional regulators involved in nearly all known biological processes in distant eukaryotic clades. Their discovery and functional characterization have broadened our understanding of biological regulatory mechanisms in animals and plants. They show both evolutionary conserved and unique features across Metazoa. Here, we present the current status of the knowledge about the role of miRNA in development, growth, and physiology of teleost fishes, in comparison to other vertebrates. Infraclass Teleostei is the most abundant group among vertebrate lineage. Fish are an important component of aquatic ecosystems and human life, being the prolific source of animal proteins worldwide and a vertebrate model for biomedical research. We review miRNA biogenesis, regulation, modifications, and mechanisms of action. Specific sections are devoted to the role of miRNA in teleost development, organogenesis, tissue differentiation, growth, regeneration, reproduction, endocrine system, and responses to environmental stimuli. Each section discusses gaps in the current knowledge and pinpoints the future directions of research on miRNA in teleosts.
Collapse
Affiliation(s)
| | - Igor Babiak
- Faculty of Aquaculture and Biosciences, University of Nordland, Bodø, Norway
| |
Collapse
|
37
|
Traver S, Assou S, Scalici E, Haouzi D, Al-Edani T, Belloc S, Hamamah S. Cell-free nucleic acids as non-invasive biomarkers of gynecological cancers, ovarian, endometrial and obstetric disorders and fetal aneuploidy. Hum Reprod Update 2014; 20:905-23. [PMID: 24973359 DOI: 10.1093/humupd/dmu031] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Proper folliculogenesis is fundamental to obtain a competent oocyte that, once fertilized, can support the acquisition of embryo developmental competence and pregnancy. MicroRNAs (miRNAs) are crucial regulators of folliculogenesis, which are expressed in the cumulus-oocyte complex and in granulosa cells and some can also be found in the bloodstream. These circulating miRNAs are intensively studied and used as diagnostic/prognostic markers of many diseases, including gynecological and pregnancy disorders. In addition, serum contains small amounts of cell-free DNA (cfDNA), presumably resulting from the release of genetic material from apoptotic/necrotic cells. The quantification of nucleic acids in serum samples could be used as a diagnostic tool for female infertility. METHODS An overview of the published literature on miRNAs, and particularly on the use of circulating miRNAs and cfDNA as non-invasive biomarkers of gynecological diseases, was performed (up to January 2014). RESULTS In the past decade, cell-free nucleic acids have been studied for potential use as biomarkers in many diseases, particularly in gynecological cancers, ovarian and endometrial disorders, as well as in pregnancy-related pathologies and fetal aneuploidy. The data strongly suggest that the concentration of cell-free nucleic acids in serum from IVF patients or in embryo culture medium could be related to the ovarian hormone status and embryo quality, respectively, and be used as a non-invasive biomarker of IVF outcome. CONCLUSIONS The profiling of circulating nucleic acids, such as miRNAs and cfDNA, opens new perspectives for the diagnosis/prognosis of ovarian disorders and for the prediction of IVF outcomes, namely (embryo quality and pregnancy).
Collapse
Affiliation(s)
- S Traver
- CHU Montpellier, Institute for Research in Biotherapy, Hôpital Saint-Eloi, INSERM U1040, Montpellier, France
| | - S Assou
- CHU Montpellier, Institute for Research in Biotherapy, Hôpital Saint-Eloi, INSERM U1040, Montpellier, France Université Montpellier 1, UFR de Médecine, Montpellier, France
| | - E Scalici
- CHU Montpellier, Institute for Research in Biotherapy, Hôpital Saint-Eloi, INSERM U1040, Montpellier, France Université Montpellier 1, UFR de Médecine, Montpellier, France
| | - D Haouzi
- CHU Montpellier, Institute for Research in Biotherapy, Hôpital Saint-Eloi, INSERM U1040, Montpellier, France
| | - T Al-Edani
- CHU Montpellier, Institute for Research in Biotherapy, Hôpital Saint-Eloi, INSERM U1040, Montpellier, France Université Montpellier 1, UFR de Médecine, Montpellier, France
| | - S Belloc
- Eylau-Unilabs Laboratory, Paris, France
| | - S Hamamah
- CHU Montpellier, Institute for Research in Biotherapy, Hôpital Saint-Eloi, INSERM U1040, Montpellier, France Université Montpellier 1, UFR de Médecine, Montpellier, France ART-PGD Department, Hôpital Arnaud de Villeneuve, CHU Montpellier, Montpellier, France
| |
Collapse
|
38
|
Adlakha YK, Saini N. Brain microRNAs and insights into biological functions and therapeutic potential of brain enriched miRNA-128. Mol Cancer 2014; 13:33. [PMID: 24555688 PMCID: PMC3936914 DOI: 10.1186/1476-4598-13-33] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 02/12/2014] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs, the non-coding single-stranded RNA of 19–25 nucleotides are emerging as robust players of gene regulation. Plethora of evidences support that the ability of microRNAs to regulate several genes of a pathway or even multiple cross talking pathways have significant impact on a complex regulatory network and ultimately the physiological processes and diseases. Brain being a complex organ with several cell types, expresses more distinct miRNAs than any other tissues. This review aims to discuss about the microRNAs in brain development, function and their dysfunction in brain tumors. We also provide a comprehensive summary of targets of brain specific and brain enriched miRNAs that contribute to the diversity and plasticity of the brain. In particular, we uncover recent findings on miRNA-128, a brain-enriched microRNA that is induced during neuronal differentiation and whose aberrant expression has been reported in several cancers. This review describes the wide spectrum of targets of miRNA-128 that have been identified till date with potential roles in apoptosis, angiogenesis, proliferation, cholesterol metabolism, self renewal, invasion and cancer progression and how this knowledge might be exploited for the development of future miRNA-128 based therapies for the treatment of cancer as well as metabolic diseases.
Collapse
Affiliation(s)
| | - Neeru Saini
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Delhi, India.
| |
Collapse
|
39
|
Li XH, Wang EL, Zhou HM, Yoshimoto K, Qian ZR. MicroRNAs in Human Pituitary Adenomas. Int J Endocrinol 2014; 2014:435171. [PMID: 25548562 PMCID: PMC4274667 DOI: 10.1155/2014/435171] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 11/17/2014] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of recently identified noncoding RNAs that regulate gene expression at posttranscriptional level. Due to the large number of genes regulated by miRNAs, miRNAs play important roles in many cellular processes. Emerging evidence indicates that miRNAs are dysregulated in pituitary adenomas, a class of intracranial neoplasms which account for 10-15% of diagnosed brain tumors. Deregulated miRNAs and their targets contribute to pituitary adenomas progression and are associated with cell cycle control, apoptosis, invasion, and pharmacological treatment of pituitary adenomas. To provide an overview of miRNAs dysregulation and functions of these miRNAs in pituitary adenoma progression, we summarize the deregulated miRNAs and their targets to shed more light on their potential as therapeutic targets and novel biomarkers.
Collapse
Affiliation(s)
- Xu-Hui Li
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang 314006, China
- *Xu-Hui Li: and
| | - Elaine Lu Wang
- Department of Legal Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan
- Department of Pathology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503, Japan
| | - Hai-Meng Zhou
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang 314006, China
| | - Katsuhiko Yoshimoto
- Department of Medical Pharmacology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8504, Japan
| | - Zhi Rong Qian
- Department of Pathology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503, Japan
- Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Room M420, Boston, MA 02215, USA
- *Zhi Rong Qian:
| |
Collapse
|
40
|
Correlation of MicroRNA 132 Up-regulation with an Unfavorable Clinical Outcome in Patients with Primary Glioblastoma Multiforme Treated with Radiotherapy Plus Concomitant and Adjuvant Temozolomide Chemotherapy. Transl Oncol 2013; 6:742-8. [PMID: 24466377 DOI: 10.1593/tlo.13553] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/14/2013] [Accepted: 11/05/2013] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND MicroRNA 132 (miR-132) is dysregulated in a range of human malignancies; however, its role in glioma has not been reported. The aim of this study was to profile miR-132 expression in a cohort of patients with primary glioblastoma multiforme (GBM) treated with the Stupp regimen and to correlate microRNA levels with patient outcome. METHODS miR-132 levels relative to RNU44 were assessed by quantitative reverse transcription-polymerase chain reaction in 43 GBMs and normal brain tissue. The cohort comprised patients less than 72 years of age with Eastern Cooperative Oncology Group (ECOG) scores between 0 and 2 who had undergone 6-week concomitant radiation and temozolomide followed by adjuvant temozolomide. Survival data were available for all cases. Tumors were characterized for O6-methylguanine-DNA methyltransferase (MGMT) methylation and isocitrate dehydrogenase (IDH) 1/2 mutation status. Associations between miR-132 expression and clinical indicators were analyzed. RESULTS Tumor miR-132 levels ranged from 0.07- to 40.4-fold increase (mean = 5.5-fold increase) relative to normal brain. High-level miR-132 (above the mean) independently predicted for a significantly shorter overall survival (P = .008). miR-132 was a stronger prognostic indicator than ECOG score (P = .012) and age at diagnosis (P = .026) but did not correlate with MGMT methylation status or extent of tumor resection. Cox regression analysis confirmed high miR-132 as the strongest predictor of outcome (P = .010) with a hazard ratio of 2.8. CONCLUSIONS This study identified high miR-132 expression as a biomarker of poor prognosis in patients with primary GBM treated with the Stupp regimen.
Collapse
|
41
|
Strandabø RAU, Hodne K, Ager-Wick E, Sand O, Weltzien FA, Haug TM. Signal transduction involved in GnRH2-stimulation of identified LH-producing gonadotropes from lhb-GFP transgenic medaka (Oryzias latipes). Mol Cell Endocrinol 2013; 372:128-39. [PMID: 23562421 DOI: 10.1016/j.mce.2013.03.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 02/21/2013] [Accepted: 03/26/2013] [Indexed: 12/28/2022]
Abstract
We have characterized the response to gonadotropin-releasing hormone 2 (GnRH2) in luteinizing hormone producing cells from gfp-transgenic medaka. Teleosts have separate cells producing the two types of gonadotropins, enabling us for the first time to study the intracellular signaling that controls secretion of each gonadotropin separately. Pituitary cell cultures were prepared, and lhb-producing cells were selected by their GFP expression. Cytosolic Ca(2+) imaging revealed three response patterns to GnRH2, one monophasic and two types of biphasic patterns. The Ca(2+) sources were examined by depleting intracellular Ca(2+) stores and preventing influx of extracellular Ca(2+). Both treatments reduced response amplitude, and affected latency and time to peak. Blocking L-type Ca(2+) channels reduced amplitude and time to peak, but did not remove extracellular Ca(2+) contribution. Patch-clamp recordings showed spontaneous action potentials in several cells, and GnRH2 increased the firing frequency. Presence of Ca(2+)-activated K(+) channels was revealed, BK channels being the most prominent.
Collapse
|
42
|
Abstract
Drug addiction is considered a disorder of neuroplasticity in brain reward and cognition systems resulting from aberrant activation of gene expression programs in response to prolonged drug consumption. Non-coding RNAs (ncRNAs) are key regulators of almost all aspects of cellular physiology. MicroRNAs (miRNAs) are small (∼21–23 nucleotides) ncRNAs transcripts that regulate gene expression at the post-transcriptional level. Recently, miRNAs were shown to play key roles in the drug-induced remodeling of brain reward systems that likely drives the emergence of addiction. Here, we review evidence suggesting that one particular miRNA, miR-212, plays a particularly prominent role in vulnerability to cocaine addiction. We review evidence showing that miR-212 expression is increased in the dorsal striatum of rats that show compulsive-like cocaine-taking behaviors. Increases in miR-212 expression appear to protect against cocaine addiction, as virus-mediated striatal miR-212 overexpression decreases cocaine consumption in rats. Conversely, disruption of striatal miR-212 signaling using an antisense oligonucleotide increases cocaine intake. We also review data that identify two mechanisms by which miR-212 may regulate cocaine intake. First, miR-212 has been shown to amplify striatal cAMP response element binding protein (CREB) signaling through a mechanism involving activation of Raf1 kinase. Second, miR-212 was also shown to regulate cocaine intake by repressing striatal expression of methyl CpG binding protein 2 (MeCP2), consequently decreasing protein levels of brain-derived neurotrophic factor (BDNF). The concerted actions of miR-212 on striatal CREB and MeCP2/BDNF activity greatly attenuate the motivational effects of cocaine. These findings highlight the unique role for miRNAs in simultaneously controlling multiple signaling cascades implicated in addiction.
Collapse
Affiliation(s)
- Purva Bali
- Laboratory of Behavioral and Molecular Neuroscience, Department of Molecular Therapeutics, The Scripps Research Institute - Florida Jupiter, FL, USA ; Laboratory of Behavioral and Molecular Neuroscience, Department of Neuroscience, The Scripps Research Institute - Florida Jupiter, FL, USA
| | | |
Collapse
|
43
|
Abstract
G protein-coupled receptors (GPCRs) are the largest class of integral membrane protein receptors in the human genome. We examined here the reports whether the GnRH receptor (GnRHR) interacts with a single or multiple types of G proteins. It seems that the GnRHR, as other GPCRs, alternates between various conformations and is stabilized by its ligands, other modulators and intracellular partners in selective conformations culminating in coupling with a single type or multiple G proteins in a cell- and context-specific manner.
Collapse
Affiliation(s)
- Zvi Naor
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | | |
Collapse
|
44
|
Cho-Clark M, Larco DO, Semsarzadeh NN, Vasta F, Mani SK, Wu TJ. GnRH-(1-5) transactivates EGFR in Ishikawa human endometrial cells via an orphan G protein-coupled receptor. Mol Endocrinol 2013; 28:80-98. [PMID: 24264576 DOI: 10.1210/me.2013-1203] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The decapeptide GnRH is known for its central role in the regulation of the hypothalamo-pituitary-gonadal axis. In addition, it is also known to have local effects within peripheral tissues. The zinc metalloendopeptidase, EC 3.4.24.15 (EP24.15), can cleave GnRH at the Tyr(5)-Gly(6) bond to form the pentapeptide, GnRH-(1-5). The central and peripheral effect of GnRH-(1-5) is different from its parent peptide, GnRH. In the current study, we examined the effect of GnRH-(1-5) on epidermal growth factor receptor (EGFR) phosphorylation and cellular migration. Using the Ishikawa cell line as a model of endometrial cancer, we demonstrate that GnRH-(1-5) stimulates epidermal growth factor release, increases the phosphorylation of EGFR (P < .05) at three tyrosine sites (992, 1045, 1068), and promotes cellular migration. In addition, we also demonstrate that these actions of GnRH-(1-5) are mediated by the orphan G protein-coupled receptor 101 (GPR101). Down-regulation of GPR101 expression blocked the GnRH-(1-5)-mediated release of epidermal growth factor and the subsequent phosphorylation of EGFR and cellular migration. These results suggest that GPR101 is a critical requirement for GnRH-(1-5) transactivation of EGFR in Ishikawa cells.
Collapse
Affiliation(s)
- Madelaine Cho-Clark
- Department of Obstetrics and Gynecology (T.J.W., M.C., F.V.) and the Program in Molecular and Cellular Biology (D.O.L., T.J.W.), Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, Maryland 20814; and Departments of Molecular and Cellular Biology and Neuroscience (S.K.M.), Baylor College of Medicine, Houston, Texas 77030
| | | | | | | | | | | |
Collapse
|
45
|
Melamed P, Savulescu D, Lim S, Wijeweera A, Luo Z, Luo M, Pnueli L. Gonadotrophin-releasing hormone signalling downstream of calmodulin. J Neuroendocrinol 2012; 24:1463-75. [PMID: 22775470 DOI: 10.1111/j.1365-2826.2012.02359.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/24/2012] [Accepted: 07/03/2012] [Indexed: 01/26/2023]
Abstract
Gonadotrophin-releasing hormone (GnRH) regulates reproduction via binding a G-protein coupled receptor on the surface of the gonadotroph, through which it transmits signals, mostly via the mitogen-activated protein (MAPK) cascade, to increase synthesis of the gonadotrophin hormones: luteinising hormone (LH) and follicle-stimulating hormone (FSH). Activation of the MAPK cascade requires an elevation in cytosolic Ca(2+) levels, which is a result of both calcium influx and mobilisation from intracellular stores. However, Ca(2+) also transmits signals via an MAPK-independent pathway, through binding calmodulin (CaM), which is then able to bind a number of proteins to impart diverse downstream effects. Although the ability of GnRH to activate CaM was recognised over 20 years ago, only recently have some of the downstream effects been elucidated. GnRH was shown to activate the CaM-dependent phosphatase, calcineurin, which targets gonadotrophin gene expression both directly and indirectly via transcription factors such as nuclear factor of activated T-cells and Nur77, the Transducer of Regulated CREB (TORC) co-activators and also the prolyl isomerase, Pin1. Gonadotrophin gene expression is also regulated by GnRH-induced CaM-dependent kinases (CaMKs); CaMKI is able to derepress the histone deacetylase-inhibition of β-subunit gene expression, whereas CaMKII appears to be essential for the GnRH-activation of all three subunit genes. Asides from activating gonadotrophin gene expression, GnRH also exerts additional effects on gonadotroph function, some of which clearly occur via CaM, including the proliferation of immature gonadotrophs, which is dependent on calcineurin. In this review, we summarise these pathways, and discuss the additional functions that have been proposed for CaM with respect to modifying GnRH-induced signalling pathways via the regulation of the small GTP-binding protein, Gem, and/or the regulator of G-protein signalling protein 2.
Collapse
Affiliation(s)
- P Melamed
- Technion-Israel Institute of Technology, Haifa, Israel.
| | | | | | | | | | | | | |
Collapse
|
46
|
Wanet A, Tacheny A, Arnould T, Renard P. miR-212/132 expression and functions: within and beyond the neuronal compartment. Nucleic Acids Res 2012; 40:4742-53. [PMID: 22362752 PMCID: PMC3367188 DOI: 10.1093/nar/gks151] [Citation(s) in RCA: 258] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
During the last two decades, microRNAs (miRNAs) emerged as critical regulators of gene expression. By modulating the expression of numerous target mRNAs mainly at the post-transcriptional level, these small non-coding RNAs have been involved in most, if not all, biological processes as well as in the pathogenesis of a number of diseases. miR-132 and miR-212 are tandem miRNAs whose expression is necessary for the proper development, maturation and function of neurons and whose deregulation is associated with several neurological disorders, such as Alzheimer's disease and tauopathies (neurodegenerative diseases resulting from the pathological aggregation of tau protein in the human brain). Although their involvement in neuronal functions is the most described, evidences point towards a role of these miRNAs in many other biological processes, including inflammation and immune functions. Incidentally, miR-132 was recently classified as a ‘neurimmiR’, a class of miRNAs operating within and between the neural and immune compartments. In this review, we propose an outline of the current knowledge about miR-132 and miR-212 functions in neurons and immune cells, by describing the signalling pathways and transcription factors regulating their expression as well as their putative or demonstrated roles and validated mRNA targets.
Collapse
Affiliation(s)
- Anaïs Wanet
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (FUNDP), 61 rue de Bruxelles, 5000 Namur, Belgium
| | | | | | | |
Collapse
|