1
|
Shi Y, Yao G, Zhang H, Jia H, Xiong P, He M. Proteome and Transcriptome Analysis of Gonads Reveals Intersex in Gigantidas haimaensis. BMC Genomics 2022; 23:174. [PMID: 35240981 PMCID: PMC8892766 DOI: 10.1186/s12864-022-08407-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/22/2022] [Indexed: 11/19/2022] Open
Abstract
Sex has proven to be one of the most intriguing areas of research across evolution, development, and ecology. Intersex or sex change occurs frequently in molluscs. The deep-sea mussel Gigantidas haimaensis often dominates within Haima cold seep ecosystems, but details of their reproduction remain unknown. Herein, we conducted a combined proteomic and transcriptomic analysis of G. haimaensis gonads to provide a systematic understanding of sexual development in deep-sea bivalves. A total of 2,452 out of 42,238 genes (5.81%) and 288 out of 7,089 proteins (4.06%) were significantly differentially expressed between ovaries and testes with a false discovery rate (FDR) <0.05. Candidate genes involved in sexual development were identified; among 12 differentially expressed genes between sexes, four ovary-biased genes (β-catenin, fem-1, forkhead box L2 and membrane progestin receptor α) were expressed significantly higher in males than females. Combining histological characteristics, we speculate that the males maybe intersex undergoing sex change, and implied that these genes may be involved in the process of male testis converting into female gonads in G. haimaensis. The results suggest that this adaptation may be based on local environmental factors, sedentary lifestyles, and patchy distribution, and sex change may facilitate adaptation to a changing environment and expansion of the population. The findings provide a valuable genetic resource to better understand the mechanisms of sex change and survival strategies in deep-sea bivalves.
Collapse
Affiliation(s)
- Yu Shi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China
| | - Gaoyou Yao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hua Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China
| | - Huixia Jia
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Panpan Xiong
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Maoxian He
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China. .,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China.
| |
Collapse
|
2
|
Huang Q, Zhang F, Liu S, Jiang Y, Ouyang D. Systematic investigation of the pharmacological mechanism for renal protection by the leaves of Eucommia ulmoides Oliver using UPLC-Q-TOF/MS combined with network pharmacology analysis. Biomed Pharmacother 2021; 140:111735. [PMID: 34020251 DOI: 10.1016/j.biopha.2021.111735] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 11/17/2022] Open
Abstract
Bark is the traditional medicinal component of Eucommia ulmoides Oliver (E. ulmoides). However, the demand for E. ulmoides medicinal materials seriously limits their sustainability. To alleviate resource constraints, the bioactivity of E. ulmoides leaves and its pharmacodynamic basis were investigated. In the present study, extracts of E. ulmoides leaves were found to display potential renal protective properties in rat glomerular mesangial (HBZY-1) cells treated with high levels of glucose, suggesting that they possess potential factors capable of treating diabetic nephropathy. Ultra-performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) was used to comprehensively characterize the chemical components of E. ulmoides leaves. A total of 83 possible chemical components, including 12 iridoids, 13 flavonoids, 14 lignans, 20 phenylpropanoids, 14 phenolic acids, and 10 additional components, were identified in E. ulmoides leaves. Network pharmacology was used for a preliminary exploration of the potential mechanism of action of renal protection afforded by E. ulmoides leaves towards diabetic nephropathy. The network pharmacology results were verified using a series of biological experiments. The present study provided the basis for the comprehensive development and utilization of E. ulmoides leaves and the discovery of potential drugs.
Collapse
Affiliation(s)
- Qi Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan, China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha 411000, Hunan, China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Fengyu Zhang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Shao Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yueping Jiang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| | - Dongsheng Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan, China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha 411000, Hunan, China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
3
|
Roy S, Huang B, Sinha N, Wang J, Sen A. Androgens regulate ovarian gene expression by balancing Ezh2-Jmjd3 mediated H3K27me3 dynamics. PLoS Genet 2021; 17:e1009483. [PMID: 33784295 PMCID: PMC8034747 DOI: 10.1371/journal.pgen.1009483] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/09/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
Conventionally viewed as male hormone, androgens play a critical role in female fertility. Although androgen receptors (AR) are transcription factors, to date very few direct transcriptional targets of ARs have been identified in the ovary. Using mouse models, this study provides three critical insights about androgen-induced gene regulation in the ovary and its impact on female fertility. First, RNA-sequencing reveals a number of genes and biological processes that were previously not known to be directly regulated by androgens in the ovary. Second, androgens can also influence gene expression by decreasing the tri-methyl mark on lysine 27 of histone3 (H3K27me3), a gene silencing epigenetic mark. ChIP-seq analyses highlight that androgen-induced modulation of H3K27me3 mark within gene bodies, promoters or distal enhancers have a much broader impact on ovarian function than the direct genomic effects of androgens. Third, androgen-induced decrease of H3K27me3 is mediated through (a) inhibiting the expression and activity of Enhancer of Zeste Homologue 2 (EZH2), a histone methyltransferase that promotes tri-methylation of K27 and (b) by inducing the expression of a histone demethylase called Jumonji domain containing protein-3 (JMJD3/KDM6B), responsible for removing the H3K27me3 mark. Androgens through the PI3K/Akt pathway, in a transcription-independent fashion, increase hypoxia-inducible factor 1 alpha (HIF1α) protein levels, which in turn induce JMJD3 expression. Furthermore, proof of concept studies involving in vivo knockdown of Ar in the ovary and ovarian (granulosa) cell-specific Ar knockout mouse model show that ARs regulate the expression of key ovarian genes through modulation of H3K27me3.
Collapse
Affiliation(s)
- Sambit Roy
- Reproductive and Developmental Sciences Program, Department of Animal Sciences, Michigan State University, East Lansing, MI, United States of America
| | - Binbin Huang
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, United States of America
| | - Niharika Sinha
- Reproductive and Developmental Sciences Program, Department of Animal Sciences, Michigan State University, East Lansing, MI, United States of America
| | - Jianrong Wang
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, United States of America
| | - Aritro Sen
- Reproductive and Developmental Sciences Program, Department of Animal Sciences, Michigan State University, East Lansing, MI, United States of America
- * E-mail:
| |
Collapse
|
4
|
Yang L, Xu H, Chen Y, Miao C, Zhao Y, Xing Y, Zhang Q. Melatonin: Multi-Target Mechanism Against Diminished Ovarian Reserve Based on Network Pharmacology. Front Endocrinol (Lausanne) 2021; 12:630504. [PMID: 33959095 PMCID: PMC8095380 DOI: 10.3389/fendo.2021.630504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/29/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Diminished ovarian reserve (DOR) significantly increases the risk of female infertility and contributes to reproductive technology failure. Recently, the role of melatonin in improving ovarian reserve (OR) has attracted widespread attention. However, details on the pharmacological targets and mechanisms of melatonin-improved OR remain unclear. OBJECTIVE A systems pharmacology strategy was proposed to elucidate the potential therapeutic mechanism of melatonin on DOR at the molecular, pathway, and network levels. METHODS The systems pharmacological approach consisted of target identification, data integration, network construction, bioinformatics analysis, and molecular docking. RESULTS From the molecular perspective, 26 potential therapeutic targets were identified. They participate in biological processes related to DOR development, such as reproductive structure development, epithelial cell proliferation, extrinsic apoptotic signaling pathway, PI3K signaling, among others. Eight hub targets (MAPK1, AKT1, EGFR, HRAS, SRC, ESR1, AR, and ALB) were identified. From the pathway level, 17 significant pathways, including the PI3K-Akt signaling pathway and the estrogen signaling pathway, were identified. In addition, the 17 signaling pathways interacted with the 26 potential therapeutic targets to form 4 functional modules. From the network point of view, by regulating five target subnetworks (aging, cell growth and death, development and regeneration, endocrine and immune systems), melatonin could exhibit anti-aging, anti-apoptosis, endocrine, and immune system regulation effects. The molecular docking results showed that melatonin bound well to all hub targets. CONCLUSION This study systematically and intuitively illustrated the possible pharmacological mechanisms of OR improvement by melatonin through anti-aging, anti-apoptosis, endocrine, and immune system regulation effects.
Collapse
Affiliation(s)
- Liuqing Yang
- Department of Traditional Chinese Medical Gynecology, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongbin Xu
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yun Chen
- Department of Traditional Chinese Medical Gynecology, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenyun Miao
- Department of Traditional Chinese Medical Gynecology, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying Zhao
- Department of Traditional Chinese Medical Gynecology, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu Xing
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qin Zhang
- Department of Traditional Chinese Medical Gynecology, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Qin Zhang,
| |
Collapse
|
5
|
Owens EP, Vesey DA, Kassianos AJ, Healy H, Hoy WE, Gobe GC. Biomarkers and the role of mast cells as facilitators of inflammation and fibrosis in chronic kidney disease. Transl Androl Urol 2019; 8:S175-S183. [PMID: 31236335 DOI: 10.21037/tau.2018.11.03] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chronic kidney disease (CKD) is a clinical syndrome with many adverse sequelae and is currently a major global health and economic burden. Regardless of aetiology, inflammation and fibrosis are common manifestations of CKD. Unfortunately, the underlying pathophysiological mechanisms are poorly understood, and robust prognostic and early diagnostic biomarkers of CKD are lacking. One immune cell population that has received little attention in the context of CKD is mast cells (MCs). This mini review will examine the role of MCs as facilitators of kidney inflammation and fibrosis, propose a mechanistic structure for MCs in CKD, and give consideration to biomarkers specific for MC activation that can be deployed clinically. MCs are derived from haematopoietic stem cells. They are characterised by electron-dense granules in the cytoplasm, filled with preformed mediators. MCs can synthesise a range of bio-active compounds. Activation of MCs modulates an innate immune and adaptive effector response. Increased MC counts have been observed in animal models of kidney disease and a range of kidney diseases in humans where MC presence has been linked to biomarkers of kidney function and tissue damage. To further implicate MCs in CKD, several chemokines, cytokines and proteases released by MCs have been observed in their own right in various kidney diseases and linked to progressive CKD. One compound released by MCs that is of particular interest is the MC-specific protease tryptase. This protease is capable of activating the G-protein coupled receptor (GPCR) protease activated receptor-2 (PAR-2). PAR-2 is widely expressed throughout the kidney and highly expressed in the tubular epithelial cells where its activation induces robust inflammatory and fibrotic responses. Novel prognostic and diagnostic biomarkers of CKD are needed. MC-specific proteases [tryptase, chymase and carboxypeptidase A3 (CPA3)] are easily detectable in the blood but questionably in the urine. This review aims to promote these as prognostic and diagnostic biomarkers in the context of CKD.
Collapse
Affiliation(s)
- Evan P Owens
- NHMRC Chronic Kidney Disease Centre of Research Excellence, University of Queensland, Brisbane, Australia.,Kidney Disease Research Collaborative, University of Queensland and Princess Alexandra Hospital, Translational Research Institute, Brisbane, Australia
| | - David A Vesey
- Kidney Disease Research Collaborative, University of Queensland and Princess Alexandra Hospital, Translational Research Institute, Brisbane, Australia
| | - Andrew J Kassianos
- Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Queensland, Australia.,Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Helen Healy
- NHMRC Chronic Kidney Disease Centre of Research Excellence, University of Queensland, Brisbane, Australia.,Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Queensland, Australia.,Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Wendy E Hoy
- NHMRC Chronic Kidney Disease Centre of Research Excellence, University of Queensland, Brisbane, Australia.,Centre for Chronic Disease, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Glenda C Gobe
- NHMRC Chronic Kidney Disease Centre of Research Excellence, University of Queensland, Brisbane, Australia.,Kidney Disease Research Collaborative, University of Queensland and Princess Alexandra Hospital, Translational Research Institute, Brisbane, Australia.,Centre for Chronic Disease, Faculty of Medicine, University of Queensland, Brisbane, Australia.,School of Biomedical Science, University of Queensland, Brisbane, Australia
| |
Collapse
|
6
|
Ogola B, Zhang Y, Iyer L, Thekkumkara T. 2-Methoxyestradiol causes matrix metalloproteinase 9-mediated transactivation of epidermal growth factor receptor and angiotensin type 1 receptor downregulation in rat aortic smooth muscle cells. Am J Physiol Cell Physiol 2018; 314:C554-C568. [DOI: 10.1152/ajpcell.00152.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Studies have demonstrated the therapeutic potential of estrogen metabolite 2-methoxyestradiol (2ME2) in several cardiovascular disorders, including hypertension. However, the exact mechanism(s) remains unknown. In this study, primary rat aortic smooth muscle cells (RASMCs) were exposed to 2ME2, and angiotensin type 1 receptor (AT1R) expression, function, and associated signaling pathways were evaluated. In RASMCs, 2ME2 downregulated AT1R expression in a concentration- and time-dependent manner, which was correlated with reduced mRNA expression. The 2ME2 effect was through G protein-coupled receptor 30 (GPR30) that inhibits second messenger cAMP. Moreover, 2ME2 exposure phosphorylated ERK1/2 that was sensitive to MEK inhibitor PD98059. Selective epidermal growth factor receptor (EGFR) inhibitor AG1478 blocked 2ME2-induced EGFR transactivation and attenuated subsequent phosphorylation of ERK1/2 preventing AT1R downregulation. The transactivation was dependent on 2ME2-induced release of matrix metalloproteinase 9 (MMP9) and epidermal growth factor demonstrated by ELISA. Furthermore, transfection with small interfering (si) RNA targeting MMP9 impeded ERK1/2 activation and AT1R downregulation in response to 2ME2 and G1 stimulation. Interestingly, under similar conditions, stimulation of GPR30 with the selective agonist G1 elicited similar signaling pathways and downregulated the AT1R expression that was reversed by GPR30 antagonist G15. Furthermore, 2ME2 and G1 inhibited angiotensin II (ANG II) induced Ca2+ release, a response consistent with AT1R downregulation. Collectively, our study demonstrates for the first time that 2ME2 binding to GPR30 induces MMP9 specific transactivation of EGFR that mediates ERK1/2-dependent downregulation of AT1R in RASMCs. The study provides critical insights into the newly discovered role and signaling pathways of 2ME2 in the regulation of AT1R in vascular cells and its potential to be developed as a therapeutic agent that ameliorates hypertension.
Collapse
Affiliation(s)
- Benard Ogola
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Yong Zhang
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Laxmi Iyer
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Thomas Thekkumkara
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas
| |
Collapse
|
7
|
Vigone G, Shuhaibar LC, Egbert JR, Uliasz TF, Movsesian MA, Jaffe LA. Multiple cAMP Phosphodiesterases Act Together to Prevent Premature Oocyte Meiosis and Ovulation. Endocrinology 2018; 159:2142-2152. [PMID: 29608743 PMCID: PMC5913618 DOI: 10.1210/en.2018-00017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/22/2018] [Indexed: 12/27/2022]
Abstract
Luteinizing hormone (LH) acts on the granulosa cells that surround the oocyte in mammalian preovulatory follicles to cause meiotic resumption and ovulation. Both of these responses are mediated primarily by an increase in cyclic adenosine monophosphate (cAMP) in the granulosa cells, and the activity of cAMP phosphodiesterases (PDEs), including PDE4, contributes to preventing premature responses. However, two other cAMP-specific PDEs, PDE7 and PDE8, are also expressed at high levels in the granulosa cells, raising the question of whether these PDEs also contribute to preventing uncontrolled activation of meiotic resumption and ovulation. With the use of selective inhibitors, we show that inhibition of PDE7 or PDE8 alone has no effect on the cAMP content of follicles, and inhibition of PDE4 alone has only a small and variable effect. In contrast, a mixture of the three inhibitors elevates cAMP to a level comparable with that seen with LH. Correspondingly, inhibition of PDE7 or PDE8 alone has no effect on meiotic resumption or ovulation, and inhibition of PDE4 alone has only a partial and slow effect. However, the fraction of oocytes resuming meiosis and undergoing ovulation is increased when PDE4, PDE7, and PDE8 are simultaneously inhibited. PDE4, PDE7, and PDE8 also function together to suppress the premature synthesis of progesterone and progesterone receptors, which are required for ovulation. Our results indicate that three cAMP PDEs act in concert to suppress premature responses in preovulatory follicles.
Collapse
Affiliation(s)
- Giulia Vigone
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
- Correspondence: Giulia Vigone, PhD, or Laurinda A. Jaffe, PhD, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 06030. E-mail: or
| | - Leia C Shuhaibar
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Jeremy R Egbert
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Tracy F Uliasz
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Matthew A Movsesian
- Cardiology Section, VA Salt Lake City Health Care System, and Division of Cardiovascular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Laurinda A Jaffe
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
- Correspondence: Giulia Vigone, PhD, or Laurinda A. Jaffe, PhD, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 06030. E-mail: or
| |
Collapse
|
8
|
Abstract
G protein-coupled receptors (GPCRs) comprise the largest family of receptors in humans. Traditional activation of GPCRs involves binding of a ligand to the receptor, activation of heterotrimeric G proteins and induction of subsequent signaling molecules. It is now known that GPCR signaling occurs through G protein-independent pathways including signaling through β-arrestin and transactivation of other receptor types. Generally, transactivation occurs when activation of one receptor leads to the activation of another receptor(s). GPCR-mediated transactivation is an essential component of GPCR signaling, as activation of other receptor types, such as receptor tyrosine kinases, allows GPCRs to expand their signal transduction and affect various cellular responses. Several mechanisms have been identified for receptor transactivation downstream of GPCRs, one of which involves activation of extracellular proteases, such as a disintegrin and metalloprotease, and matrix metalloproteases . These proteases cleave and release ligands that are then able to activate their respective receptors. A disintegrin and metalloprotease, and matrix metalloproteases can be activated via various mechanisms downstream of GPCR activation, including activation via second messenger, direct phosphorylation, or direct G protein interaction. Additional understanding of the mechanisms involved in GPCR-mediated protease activation and subsequent receptor transactivation could lead to identification of new therapeutic targets.
Collapse
|
9
|
Wang W, Qiao Y, Li Z. New Insights into Modes of GPCR Activation. Trends Pharmacol Sci 2018; 39:367-386. [DOI: 10.1016/j.tips.2018.01.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/03/2018] [Accepted: 01/08/2018] [Indexed: 12/22/2022]
|
10
|
Insights into cellular signalling by G protein coupled receptor transactivation of cell surface protein kinase receptors. J Cell Commun Signal 2017; 11:117-125. [PMID: 28168348 DOI: 10.1007/s12079-017-0375-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/10/2017] [Indexed: 01/22/2023] Open
Abstract
G protein coupled receptor (GPCR) signalling is mediated by transactivation independent and transactivation dependent pathways. GPCRs transactivate protein tyrosine kinase receptors (PTKRs) and protein serine/threonine kinase receptors (PS/TKR). Since the initial observations of transactivation dependent signalling, there has been an effort to understand the mechanisms behind this phenomena. GPCR signalling has evolved to include biased signalling. Biased signalling, whereby selected ligands can activate the same GPCR that can generate multiple signals, but drive only a unique response. To date, there has been no focus on the ability of biased agonists to activate the PTKR and PS/TKR transactivation pathways differentially. As such, this represents a novel direction for future research. This review will discuss the main mechanisms of GPCR mediated receptor transactivation and the pathways involved in intracellular responses.
Collapse
|
11
|
Mukherjee D, Majumder S, Roy Moulik S, Pal P, Gupta S, Guha P, Kumar D. Membrane receptor cross talk in gonadotropin-, IGF-I-, and insulin-mediated steroidogenesis in fish ovary: An overview. Gen Comp Endocrinol 2017; 240:10-18. [PMID: 27616426 DOI: 10.1016/j.ygcen.2016.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/02/2016] [Accepted: 09/01/2016] [Indexed: 10/21/2022]
Abstract
Gonadal steroidogenesis is critical for survival and reproduction of all animals. The pathways that regulate gonadal steroidogenesis are therefore conserved among animals from the steroidogenic enzymes to the intracellular signaling molecules and G protein-coupled receptors (GPCRs) that mediate the activity of these enzymes. Regulation of fish ovarian steroidogenesis in vitro by gonadotropin (GtH) and GPCRs revealed interaction between adenylate cyclase and calcium/calmodulin-dependent protein kinases (CaMKs) and also MAP kinase pathway. Recent studies revealed another important pathway in GtH-induced fish ovarian steroidogenesis: cross talk between GPCRs and membrane receptor tyrosine kinases. Gonadotropin binding to Gαs-coupled membrane receptor in fish ovary leads to production of cAMP which in turn trans-activate the membrane-bound epidermal growth factor receptor (EGFR). This is followed by activation of ERK1/2 signaling that promotes steroid production. Interestingly, GtH-induced trans-activation of EGFR in the fish ovary uniquely requires matrix-metalloproteinase-mediated release of EGF. Inhibition of these proteases blocks GtH-induced steroidogenesis. Increased cAMP production in fish ovarian follicle upregulate follicular cyp19a1a mRNA expression and aromatase activity leading to increased biosynthesis of 17β-estradiol (E2). Evidence for involvement of SF-1 protein in inducing cyp19a1a mRNA and aromatase activity has also been demonstrated. In addition to GtH, insulin-like growth factor (IGF-I) and bovine insulin can alone induced steroidogenesis in fish ovary. In intact follicles and isolated theca cells, IGF-I and insulin had no effect on GtH-induced testosterone and 17a,hydroxysprogeaterone production. GtH-stimulated E2 and 17,20bdihydroxy-4-pregnane 3-one production in granulosa cells however, was significantly increased by IGF-I and insulin. Both IGF-I and insulin mediates their signaling via receptor tyrosine kinases leading to activation of PI3 kinase/Akt and MAP kinase. These kinase signals then activates steroidogenic enzymes which promotes steroid production. PI3 kinase, therefore considered to be an initial component of the signal transduction pathways which precedes MAP kinase in IGF-1 and insulininduced steroidogenesis in fish ovary. Thus, investigation on the mechanism of signal transduction regulating fish ovarian steroidogenesis have shown that multiple, apparently independent signal transduction pathways are needed to convey the message of single hormone or growth factor.
Collapse
Affiliation(s)
- Dilip Mukherjee
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, West Bengal, India.
| | - Suravi Majumder
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Sujata Roy Moulik
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, West Bengal, India; Department of Zoology, Chandernagore College, Chandannagar, Hooghly, West Bengal 712136, India
| | - Puja Pal
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, West Bengal, India; Department of Zoology, Taki Government College, Taki, Hasnabad, West Bengal 743429, India
| | - Shreyasi Gupta
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Payel Guha
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Dhynendra Kumar
- Department of Zoology, Veer Kunwar Singh University, Ara 802301, Bihar, India
| |
Collapse
|
12
|
Goodwin MR, Rispoli LA, Payton RR, Saxton AM, Edwards JL. Developmental consequences of supplementing with matrix metallopeptidase-9 during in vitro maturation of heat-stressed bovine oocytes. J Reprod Dev 2016; 62:553-560. [PMID: 27440552 PMCID: PMC5177972 DOI: 10.1262/jrd.2015-177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 07/07/2016] [Indexed: 11/25/2022] Open
Abstract
Because latent form of matrix metallopeptidase-9 (proMMP9) levels are positively related to blastocyst development, it was hypothesized that addition during maturation may improve development of heat-stressed oocytes. To test hypothesis, 0, 30 or 300 ng/ml human proMMP9 (hMMP9) was added at 18 h of in vitro maturation (hIVM) to cumulus-oocyte complexes matured at 38.5 or 41.0ºC (first 12 h only). Heat stress decreased 24 hIVM proMMP9 levels only in 0 and 30 ng/ml groups and increased progesterone in 0 and 300 ng/ml hMMP9 groups. Heat stress decreased cleavage and blastocyst development. Independent of maturation temperature, hMMP9 at 18 hIVM decreased blastocyst development. In a second study, cumulus-oocyte complexes were matured for 24 h at 38.5 or 41.0ºC (HS first 12 h only) with 0 or 300 ng/ml hMMP9 added at 12 hIVM. Without hMMP9, heat stress decreased 24 hIVM proMMP9 levels and increased progesterone production. Addition of 300 ng/ml of hMMP9 produced equivalent levels of proMMP9 at 24 hIVM (271 vs. 279 ± 77 for 38.5ºC and 41.0ºC treated oocytes, respectively). Heat stress did not affect ability of oocytes to cleave but reduced blastocyst development. Independent of temperature, hMMP9 decreased cleavage and blastocyst development. In summary, hMMP9 supplementation during IVM did not improve development of heat-stressed oocytes even when it was added for the entire maturation period. At doses tested, hMMP9 appeared detrimental to development when supplemented during the last 12 or 6 h of oocyte maturation.
Collapse
Affiliation(s)
- Megan R Goodwin
- University of Tennessee, Institute of Agriculture, UT AgResearch, Department of Animal Science, Knoxville, TN 37996-4574, USA
| | | | | | | | | |
Collapse
|
13
|
Pogrmic-Majkic K, Fa S, Samardzija D, Hrubik J, Kaisarevic S, Andric N. Atrazine activates multiple signaling pathways enhancing the rapid hCG-induced androgenesis in rat Leydig cells. Toxicology 2016; 368-369:37-45. [DOI: 10.1016/j.tox.2016.08.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/17/2016] [Accepted: 08/19/2016] [Indexed: 01/07/2023]
|
14
|
Shefer G, Marcus Y, Knoll E, Dolkart O, Foichtwanger S, Nevo N, Limor R, Stern N. Angiotensin 1-7 Is a Negative Modulator of Aldosterone Secretion In Vitro and In Vivo. Hypertension 2016; 68:378-84. [PMID: 27245181 DOI: 10.1161/hypertensionaha.116.07088] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/03/2016] [Indexed: 11/16/2022]
Abstract
Angiotensin (1-7) [Ang 1-7] is a 7 amino acid peptide generated predominantly from Ang II by the action of Ang-converting enzyme 2. We previously showed that Ang 1-7 reduced plasma aldosterone and plasma renin activity in high fructose-fed rats, and that the reduction in circulating aldosterone seemed to accord a parallel reduction in plasma renin activity. Here, we tested the possibility that Ang 1-7 affects aldosterone secretion acting directly in glomerulosa cells. First, as detected by immunofluorescence, the receptor for Ang 1-7, Mas1 is localized predominantly at the rat adrenal subcapsular region. Second, in isolated rat glomerulosa cells incubates, Ang 1-7 attenuated the aldosterone response to Ang II, with the strongest effect seen on Ang II (10(-9) M) (control 22±2.5 pg/10(5) cells; Ang II [10(-9) M] 189±11 pg/10(5) cells; Ang II [10(-9) M]+Ang 1-7 [10(-6) M] 33±3.6 pg/10(5) cells; P<0.001) and the largest effect on adrenocorticotropic hormone (10(-8) M) (control 30±3.4 pg/10(5) cells; ACTH [10(-8) M] 409±32.5 pg/10(5) cells; ACTH [10(-8) M]+Ang 1-7 [10(-6) M] 280±12.5 pg/10(5) cells; P<0.001). In contrast, Ang 1-7 did not affect the aldosterone response to potassium (K(+)). In rats subjected to a low-salt diet for 7 days, continuous infusion of Ang 1-7 (576 μg/kg per day) resulted in a lesser rise in aldosterone (salt deplete+Ang 1-7, 16.4±4.8 ng/dL) compared with rats receiving vehicle (salt deplete+vehicle, 27.6±5.3 ng/dL; P<0.01) but did not modify plasma renin activity. Taken together, these results indicate that Ang 1-7 can act as a negative modulator of aldosterone secretion in vitro and in vivo.
Collapse
Affiliation(s)
- Gabi Shefer
- From the Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center Medical Center and Sackler Faculty of Medicine, Tel Aviv, Israel (G.S., Y.M., E.K., S.F., R.L., N.S.); Division of Orthopedic Surgery, Shoulder Unit, Tel Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel (O.D.); and Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel (N.N.)
| | - Yonit Marcus
- From the Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center Medical Center and Sackler Faculty of Medicine, Tel Aviv, Israel (G.S., Y.M., E.K., S.F., R.L., N.S.); Division of Orthopedic Surgery, Shoulder Unit, Tel Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel (O.D.); and Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel (N.N.)
| | - Esther Knoll
- From the Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center Medical Center and Sackler Faculty of Medicine, Tel Aviv, Israel (G.S., Y.M., E.K., S.F., R.L., N.S.); Division of Orthopedic Surgery, Shoulder Unit, Tel Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel (O.D.); and Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel (N.N.)
| | - Oleg Dolkart
- From the Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center Medical Center and Sackler Faculty of Medicine, Tel Aviv, Israel (G.S., Y.M., E.K., S.F., R.L., N.S.); Division of Orthopedic Surgery, Shoulder Unit, Tel Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel (O.D.); and Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel (N.N.)
| | - Shulamit Foichtwanger
- From the Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center Medical Center and Sackler Faculty of Medicine, Tel Aviv, Israel (G.S., Y.M., E.K., S.F., R.L., N.S.); Division of Orthopedic Surgery, Shoulder Unit, Tel Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel (O.D.); and Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel (N.N.)
| | - Nava Nevo
- From the Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center Medical Center and Sackler Faculty of Medicine, Tel Aviv, Israel (G.S., Y.M., E.K., S.F., R.L., N.S.); Division of Orthopedic Surgery, Shoulder Unit, Tel Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel (O.D.); and Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel (N.N.)
| | - Rona Limor
- From the Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center Medical Center and Sackler Faculty of Medicine, Tel Aviv, Israel (G.S., Y.M., E.K., S.F., R.L., N.S.); Division of Orthopedic Surgery, Shoulder Unit, Tel Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel (O.D.); and Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel (N.N.)
| | - Naftali Stern
- From the Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center Medical Center and Sackler Faculty of Medicine, Tel Aviv, Israel (G.S., Y.M., E.K., S.F., R.L., N.S.); Division of Orthopedic Surgery, Shoulder Unit, Tel Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel (O.D.); and Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel (N.N.).
| |
Collapse
|
15
|
Cho-Clark M, Larco DO, Zahn BR, Mani SK, Wu TJ. GnRH-(1-5) activates matrix metallopeptidase-9 to release epidermal growth factor and promote cellular invasion. Mol Cell Endocrinol 2015; 415:114-25. [PMID: 26277400 DOI: 10.1016/j.mce.2015.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/29/2015] [Accepted: 08/08/2015] [Indexed: 10/23/2022]
Abstract
In the extracellular space, the gonadotropin-releasing hormone (GnRH) is metabolized by the zinc metalloendopeptidase EC3.4.24.15 (EP24.15) to form the pentapeptide, GnRH-(1-5). GnRH-(1-5) diverges in function and mechanism of action from GnRH in the brain and periphery. GnRH-(1-5) acts on the orphan G protein-coupled receptor 101 (GPR101) to sequentially stimulate epidermal growth factor (EGF) release, phosphorylate the EGF receptor (EGFR), and facilitate cellular migration. These GnRH-(1-5) actions are dependent on matrix metallopeptidase (MMP) activity. Here, we demonstrated that these GnRH-(1-5) effects are dependent on increased MMP-9 enzymatic activity in the Ishikawa and ECC-1 cell lines. Furthermore, the effects of GnRH-(1-5) mediated by GPR101 and the subsequent increase in MMP-9 enzymatic activity lead to an increase in cellular invasion. These results suggest that GnRH-(1-5) and GPR101 regulation of MMP-9 may have physiological relevance in the metastatic potential of endometrial cancer cells.
Collapse
Affiliation(s)
- Madelaine Cho-Clark
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Darwin O Larco
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Brian R Zahn
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Shaila K Mani
- Departments of Molecular & Cellular Biology and Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - T John Wu
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| |
Collapse
|
16
|
Yang WJ, Liu FC, Hsieh JS, Chen CH, Hsiao SY, Lin CS. Matrix metalloproteinase 2 level in human follicular fluid is a reliable marker of human oocyte maturation in in vitro fertilization and intracytoplasmic sperm injection cycles. Reprod Biol Endocrinol 2015; 13:102. [PMID: 26337061 PMCID: PMC4559921 DOI: 10.1186/s12958-015-0099-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 08/23/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND To determine whether matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMP-1 and TIMP-2) in human follicular fluid, have any relationships with oocyte maturation in vivo and subsequent fertilization during in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI) cycles. METHODS The follicular fluids were obtained from 150 female patients undergoing IVF/ICSI cycles and a total of 1504 oocytes were retrieved for analysis. MMP-2 and MMP-9 activities were measured using zymography assay. TIMP-1 and TIMP-2 concentrations were quantitatively assessed using enzyme-linked immunosorbent assay (ELISA). RESULTS Human follicular fluid MMP-2 level was significantly associated with the rate of maturity of oocytes (P < 0.001). Furthermore, the MMP-2 was significantly associated with the higher fertilization rate (P < 0.01). There was no significant correlation between follicular MMP-9 and the maturation rate of oocytes. The TIMP-1 and TIMP-2 also showed no correlation with the oocyte maturation rate. CONCLUSIONS The level of gelatinase MMP-2 in human follicular fluid might be a reliable marker of mature oocytes during IVF/ICSI cycles. Furthermore, the MMP-2 expression has a strong association with higher fertilization rate. Further studies are needed to support this theory.
Collapse
Affiliation(s)
- Wen-Jui Yang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu City, Taiwan.
- Department of Fertility and Reproductive Medicine, Ton-Yen General Hospital, Hsinchu County, Taiwan.
- Division of Infertility and Reproductive Medicine, Taiwan IVF Group Center, Hsinchu City, Taiwan.
| | - Fon-Chang Liu
- Department of Pharmacy, Wei Gong Memorial Hospital, Miaoli County, Taiwan.
| | - Jih-Sheng Hsieh
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu City, Taiwan.
| | - Ching-Hung Chen
- Department of Fertility and Reproductive Medicine, Ton-Yen General Hospital, Hsinchu County, Taiwan.
| | - Shun-Yu Hsiao
- Department of Surgery, Mackay Memorial Hospital, Hsin-Chu Branch, No.690, Sec. 2, Guangfu Road, Hsinchu City, 30071, Taiwan.
| | - Chih-Sheng Lin
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu City, Taiwan.
| |
Collapse
|
17
|
Light A, Hammes SR. LH-Induced Steroidogenesis in the Mouse Ovary, but Not Testis, Requires Matrix Metalloproteinase 2- and 9-Mediated Cleavage of Upregulated EGF Receptor Ligands. Biol Reprod 2015. [PMID: 26203177 DOI: 10.1095/biolreprod.115.130971] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Oocyte maturation and cumulus cell expansion depend on luteinizing hormone (LH)-mediated upregulation of membrane-bound epidermal growth factor (EGF)-like ligands, including amphiregulin, epiregulin, and betacellulin. These ligands then transactivate the EGF receptor (EGFR) after release by matrix metalloproteinases (MMPs). However, direct measurement of released EGF-like ligands or MMPs from granulosa cells has not been formally evaluated, nor has direct identification of responsible MMPs. Here we address these issues by analyzing LH-induced steroidogenesis, which is also MMP and EGFR dependent, in freshly isolated mouse primary granulosa cells. We demonstrate a correlation between amphiregulin and epiregulin mRNA induction and steroid production in LH-treated granulosa cells as well as in ovaries of human chorionic gonadotropin-treated mice. In contrast, LH does not alter Mmp1, Mmp2, Mmp3, Mmp8, Mmp9, or Adam17 mRNA expression. We demonstrate that, in primary mouse granulosa cells, LH triggers release of soluble amphiregulin that correlates with steroid production, both of which are blocked by MMP2/9 inhibition, confirming that MMP2/9 likely regulates LH-induced amphiregulin release and downstream processes. Notably, LH does not alter secretion of MMP2/9 from primary granulosa cells, nor does it modulate MMP activity. These findings indicate that, in the ovary, LH dictates EGFR-mediated processes not by regulating MMPs, but instead by increasing EGF-like ligand availability. In contrast, LH stimulation of primary mouse Leydig cells does not induce EGF-like ligand expression or require MMP2/9 for steroidogenesis, confirming marked differences in LH receptor-induced processes in the testes. Our results suggest that MMP inhibition may be a means of attenuating excess ovarian steroid production in diseases like polycystic ovary syndrome.
Collapse
Affiliation(s)
- Allison Light
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Stephen R Hammes
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| |
Collapse
|
18
|
Shahed A, Simmons JJ, Featherstone SL, Young KA. Matrix metalloproteinase inhibition influences aspects of photoperiod stimulated ovarian recrudescence in Siberian hamsters. Gen Comp Endocrinol 2015; 216:46-53. [PMID: 25910436 PMCID: PMC4457603 DOI: 10.1016/j.ygcen.2015.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 03/04/2015] [Accepted: 04/12/2015] [Indexed: 11/25/2022]
Abstract
Blocking matrix metalloproteinase (MMP) activity in vivo with inhibitor GM6001 impedes photostimulated ovarian recrudescence in photoregressed Siberian hamsters. Since direct and indirect effects of MMPs influence a myriad of ovarian functions, we investigated the effect of in vivo MMP inhibition during recrudescence on ovarian mRNA expression of steroidogenic acute regulatory protein (StAR), 3β-hydroxysteroid dehydrogenase (3β-HSD), Cyp19a1 aromatase, epidermal growth factor receptor (EGFR), amphiregulin (Areg), estrogen receptors (Esr1 and Esr2), tissue inhibitors of MMPs (TIMP-1,-2,-3), proliferating cell nuclear antigen (PCNA), vascular endothelial growth factor A (VEGFA), its receptor VEGFR-2, and angiopoietin-2 (Ang-2). Female Siberian hamsters were randomly assigned to one of four photoperiod groups: stimulatory long (LD) or inhibitory short (SD) photoperiods, or transferred from SD to LD for 2 weeks (post-transfer, PT). Half of the PT hamsters were injected (ip) daily with GM6001 (PTG). SD exposure reduced ovarian StAR, 3β-HSD, Cyp19a1, Esr1, Esr2, TIMPs 2-3, PCNA, VEGFR-2 and Ang-2 mRNA expression (p<0.05), and 2 weeks of photostimulation restored mRNA expression of 3β-HSD and PCNA and increased Areg and VEGFA mRNA expression in the PT group. GM6001 treatment during photostimulation (PTG) increased TIMP-1, -2 and -3 and PCNA mRNA, but inhibited Areg mRNA expression compared to PT. Neither photoperiod nor GM6001 altered EGFR expression. Results of this study suggest that in vivo inhibition of MMP activity by GM6001 may impede ovarian recrudescence, particularly follicular growth, in two ways: (1) directly by partially inhibiting the release of EGFR ligands like Areg, thereby potentially affecting EGFR activation and its downstream pathway, and (2) indirectly by its effect on TIMPs which themselves can affect proliferation, angiogenesis and follicular growth.
Collapse
Affiliation(s)
- Asha Shahed
- Reproductive Biology Group, Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, United States
| | - Jamie J Simmons
- Reproductive Biology Group, Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, United States
| | - Sydney L Featherstone
- Reproductive Biology Group, Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, United States
| | - Kelly A Young
- Reproductive Biology Group, Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, United States.
| |
Collapse
|
19
|
β2-AR signaling controls trastuzumab resistance-dependent pathway. Oncogene 2015; 35:47-58. [PMID: 25798840 DOI: 10.1038/onc.2015.58] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 01/14/2015] [Accepted: 01/20/2015] [Indexed: 12/31/2022]
Abstract
Currently, trastuzumab resistance is a major clinical problem in the treatment of Her2-overexpressing breast cancer. The underlying molecular mechanisms are not fully understood. Our previous study demonstrates that β2-adrenergic receptor (β2-AR) and Her2 comprise a positive feedback loop in human breast cancer cells and that crosstalk between Her2 and β2-AR affects the bio-behaviors of breast cancer cells, suggesting that the β2-AR activation may be involved in trastuzumab resistance. In this study, we show that the expression of β2-AR, which mediates most catecholamine-induced effects, negatively correlates with trastuzumab response in the patients with Her2-overexpressing breast cancer. Catecholamines potently antagonize the anti-proliferative effects of trastuzumab both in vitro and in vivo. Catecholamine stimulation upregulates the expression of miR-21 and MUC-1 by activating Her2 and STAT3, leading to deficiency of phosphatase and tensin homolog and activation of phosphatidylinositol-3-kinase (PI3K) and Akt. Through inhibition of miR-199a/b-3p, catecholamines induce the mammalian target of rapamycin (mTOR) activation. Thus, trastuzumab resistance-dependent PI3K/Akt/mTOR pathway is controlled by catecholamine-induced β2-AR activation. The data indicate that β2-AR is a reliable molecular marker for prediction of response probability to trastuzumab-based therapy in breast cancer. We also demonstrate that β-blocker propranolol not only enhances the antitumor activities of trastuzumab but also re-sensitizes the resistant cells to trastuzumab. Our retrospective study shows that concurrent treatment of β-blocker and trastuzumab significantly improved progression-free survival and overall survival in the patients with Her2-overexpressing metastatic breast cancer, implicating the possibility for combination therapy with trastuzumab plus β-blocker in Her2-overexpressing breast cancer.
Collapse
|
20
|
Cattaneo F, Guerra G, Parisi M, De Marinis M, Tafuri D, Cinelli M, Ammendola R. Cell-surface receptors transactivation mediated by g protein-coupled receptors. Int J Mol Sci 2014; 15:19700-28. [PMID: 25356505 PMCID: PMC4264134 DOI: 10.3390/ijms151119700] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/30/2014] [Accepted: 10/13/2014] [Indexed: 12/17/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are seven transmembrane-spanning proteins belonging to a large family of cell-surface receptors involved in many intracellular signaling cascades. Despite GPCRs lack intrinsic tyrosine kinase activity, tyrosine phosphorylation of a tyrosine kinase receptor (RTK) occurs in response to binding of specific agonists of several such receptors, triggering intracellular mitogenic cascades. This suggests that the notion that GPCRs are associated with the regulation of post-mitotic cell functions is no longer believable. Crosstalk between GPCR and RTK may occur by different molecular mechanism such as the activation of metalloproteases, which can induce the metalloprotease-dependent release of RTK ligands, or in a ligand-independent manner involving membrane associated non-receptor tyrosine kinases, such as c-Src. Reactive oxygen species (ROS) are also implicated as signaling intermediates in RTKs transactivation. Intracellular concentration of ROS increases transiently in cells stimulated with GPCR agonists and their deliberated and regulated generation is mainly catalyzed by enzymes that belong to nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family. Oxidation and/or reduction of cysteine sulfhydryl groups of phosphatases tightly controls the activity of RTKs and ROS-mediated inhibition of cellular phosphatases results in an equilibrium shift from the non-phosphorylated to the phosphorylated state of RTKs. Many GPCR agonists activate phospholipase C, which catalyze the hydrolysis of phosphatidylinositol 4,5-bis-phosphate to produce inositol 1,4,5-triphosphate and diacylglicerol. The consequent mobilization of Ca2+ from endoplasmic reticulum leads to the activation of protein kinase C (PKC) isoforms. PKCα mediates feedback inhibition of RTK transactivation during GPCR stimulation. Recent data have expanded the coverage of transactivation to include Serine/Threonine kinase receptors and Toll-like receptors. Herein, we discuss the main mechanisms of GPCR-mediated cell-surface receptors transactivation and the pathways involved in intracellular responses induced by GPCR agonists. These studies may suggest the design of novel strategies for therapeutic interventions.
Collapse
Affiliation(s)
- Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Naples 80131, Italy.
| | - Germano Guerra
- Department of Medicine and Health Sciences, University of Molise, Campobasso 86100, Italy.
| | - Melania Parisi
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Naples 80131, Italy.
| | - Marta De Marinis
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Naples 80131, Italy.
| | - Domenico Tafuri
- Department of Sport Science and Wellness, University of Naples Parthenope, Naples 80133, Italy.
| | - Mariapia Cinelli
- Department of Public Health, School of Medicine, University of Naples Federico II, Naples 80131, Italy.
| | - Rosario Ammendola
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Naples 80131, Italy.
| |
Collapse
|
21
|
Pan H, Cui H, Liu S, Qian Y, Wu H, Li L, Guan Y, Guan X, Zhang L, Fan HY, Ma Y, Li R, Liu M, Li D. Lgr4 gene regulates corpus luteum maturation through modulation of the WNT-mediated EGFR-ERK signaling pathway. Endocrinology 2014; 155:3624-37. [PMID: 24877628 DOI: 10.1210/en.2013-2183] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Luteal-phase insufficiency is one of the major causes of female infertility, but the molecular mechanisms are still largely unknown. Here we found that disruption of Lgr4/Gpr48, the newly identified receptor for R-spondins, greatly reduced female fertility in mice. The expression of Lgr4 was induced specifically in granulosa-lutein cells during luteinization. In Lgr4-deficient female mice, the estrous cycle was prolonged and serum progesterone levels were dramatically downregulated. In Lgr4(-/-) corpora lutea, the expression of key enzymes for steroidogenesis as well as common luteal marker genes was significantly decreased. Additionally, the activity of epidermal growth factor receptor (EGFR)-ERK signaling was attenuated in Lgr4(-/-) granulosa-lutein cells. We found that the maturation of Lgr4(-/-) cells was impaired in cultured primary granulosa cells, but the defect was partially rescued by reactivation of EGFR signaling by heparin-binding EGF-like growth factor treatment. We found that the expression of wingless-type MMTV integration site family (WNT)/catenin (cadherin associated protein), beta 1 (CTNNB1) downstream targets, including matrix metalloproteinase 9, which is a critical matrix metalloproteinase for activation of EGF-like factors, was significantly downregulated in Lgr4(-/-) ovaries. Matrix metalloproteinase 9 inhibitor treatment attenuated human chorionic gonadotropin- but not heparin-binding EGF-like growth factor-induced ERK activation and luteinization in primary granulosa cells. Together, we report that Lgr4 modulates WNT-mediated EGFR-ERK signaling to facilitate corpus luteum maturation and ovarian steroidogenesis to maintain female reproduction.
Collapse
Affiliation(s)
- Hongjie Pan
- Shanghai Key Laboratory of Regulatory Biology (H.P., H.C., S.L., Y.Q., H.W., L.L., Y.G., X.G., L.Z., M.L., D.L.), Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Contraceptive Drugs and Devices of National Population and Family Planning Commission (H.P., R.L.), Shanghai Institute of Planned Parenthood Research, Shanghai 200032, China; Life Science Institute (H.-Y.F.), Zhejiang University, Hangzhou 310058, China; Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research (Y.M.), Hainan Reproductive Medical Center, the Affiliated Hospital of Hainan Medical University, Haikou 570102, China; and The Institute of Biosciences and Technology (M.L.), Texas A&M University Health Science Center, Houston, Texas 77030
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
For many decades, elevated androgens in women have been associated with poor reproductive health. However, recent studies have shown that androgens play a crucial role in women's fertility. The following review provides an overall perspective about how androgens and androgen receptor-mediated actions regulate normal follicular development, as well as discuss emerging concepts, latest perceptions, and controversies regarding androgen actions and signaling in the ovary.
Collapse
Affiliation(s)
- Hen Prizant
- Division of Endocrinology and MetabolismDepartment of Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, PO Box 693, Rochester, New York 14642, USACenter for Human ReproductionNew York, New York 10021, USA
| | - Norbert Gleicher
- Division of Endocrinology and MetabolismDepartment of Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, PO Box 693, Rochester, New York 14642, USACenter for Human ReproductionNew York, New York 10021, USA
| | - Aritro Sen
- Division of Endocrinology and MetabolismDepartment of Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, PO Box 693, Rochester, New York 14642, USACenter for Human ReproductionNew York, New York 10021, USADivision of Endocrinology and MetabolismDepartment of Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, PO Box 693, Rochester, New York 14642, USACenter for Human ReproductionNew York, New York 10021, USA
| |
Collapse
|
23
|
Barroso-Sousa R, Lerario AM, Evangelista J, Papadia C, Lourenço DM, Lin CS, Kulcsar MA, Fragoso MC, Hoff AO. Complete resolution of hypercortisolism with sorafenib in a patient with advanced medullary thyroid carcinoma and ectopic ACTH (adrenocorticotropic hormone) syndrome. Thyroid 2014; 24:1062-6. [PMID: 24499195 DOI: 10.1089/thy.2013.0571] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND The treatment of advanced medullary thyroid carcinoma (MTC) has evolved significantly over the past decade. The discovery of genetic abnormalities in MTC has led to the development of targeted therapies such as vandetanib and cabozantinib. Other kinase inhibitors (KI), such as sorafenib, have been investigated in this setting and are an alternative therapeutic option. The lack of specificity of these KIs to a single target may result in additional, unexpected effects. In this report, we describe a patient with metastatic MTC and Ectopic ACTH (adrenocorticotropic hormone) Syndrome in whom treatment with sorafenib resulted in complete resolution of hypercortisolism. SUMMARY A 45-year-old male with progressive metastatic MTC presented with clinical manifestations suspicious for Cushing's syndrome. Investigation revealed ACTH-dependent hypercortisolism suggestive of Ectopic ACTH Syndrome. Treatment with sorafenib 400 mg twice a day was initiated resulting in a rapid and significant reduction of cortisol and ACTH levels associated with dramatic clinical improvement. The rapid and effective control of hypercortisolism in the absence of a significant tumor reduction raises the question of whether sorafenib may have a direct effect on ACTH or cortisol hypersecretion. CONCLUSIONS This report suggests a previously unknown potential effect of sorafenib on the pituitary-adrenal axis. Further studies will be necessary to investigate the role of sorafenib in other cases of ACTH excess and to understand the mechanisms by which it alters steroid synthesis, action, or secretion.
Collapse
Affiliation(s)
- Romualdo Barroso-Sousa
- 1 Department of Medical Oncology, Instituto do Câncer do Estado de São Paulo (ICESP) , São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Light A, Hammes SR. Membrane receptor cross talk in steroidogenesis: recent insights and clinical implications. Steroids 2013; 78:633-8. [PMID: 23380369 DOI: 10.1016/j.steroids.2012.12.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/17/2012] [Accepted: 12/31/2012] [Indexed: 11/19/2022]
Abstract
Steroid production by all three major steroidogenic tissues, the adrenals, testes, and ovaries, is critical for survival and reproduction of all animals. As such, the pathways that regulate steroidogenesis are conserved between these tissues, from the steroidogenic enzymes and cofactors that synthesize steroids, to the intracellular signaling molecules and Gαs-coupled receptors that mediate the activity of these enzymes. Recent work has revealed another important conserved pathway in steroidogenesis: crosstalk between membrane G protein-coupled receptors and membrane receptor tyrosine kinases. Luteinizing hormone (LH) or adrencorticotropic hormone (ACTH) binding to their cognate Gαs-coupled membrane receptors in the gonads and adrenals, respectively, leads to cAMP-induced trans-activation of the epidermal growth factor (EGF) receptor, followed by activation of Akt and Erk signaling. These kinase signals then activate Steroidogenic Acute Regulatory (StAR) protein, which promotes steroid production. Inhibition of this pathway abrogates both LH- and ACTH-induced steroidogenesis. Interestingly, LH-induced transactivation of the EGF receptor in the ovary uniquely requires matrix metalloproteinase-mediated release of EGF receptor ligands, and inhibition of these proteases blocks LH-induced steroidogenesis. Given this unique need for matrix metalloproteinases in ovarian steroidogenesis, MMP inhibition may prove to be useful when treating diseases of excess ovarian steroid production, such as polycystic ovary syndrome.
Collapse
Affiliation(s)
- Allison Light
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester School of Medicine, 601 Elmwood Ave., Rochester, NY 14642, USA
| | | |
Collapse
|
25
|
Salhab M, Dhorne-Pollet S, Auclair S, Guyader-Joly C, Brisard D, Dalbies-Tran R, Dupont J, Ponsart C, Mermillod P, Uzbekova S. In vitro maturation of oocytes alters gene expression and signaling pathways in bovine cumulus cells. Mol Reprod Dev 2013; 80:166-82. [PMID: 23280668 DOI: 10.1002/mrd.22148] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/17/2012] [Indexed: 12/24/2022]
Abstract
In vitro maturation (IVM) of immature oocytes is widely used in assisted reproduction technologies in cattle, and is increasingly used to treat human infertility. The development competence of IVM oocytes, however, is lower than preovulatory, in vivo-matured oocytes. During maturation, cumulus cells (CC) are metabolically coupled with an oocyte and support the acquisition of its developmental potential. Our objective was to identify genes and pathways that were affected by IVM in bovine CC. Microarray transcriptomic analysis of CC enclosing in vitro- or in vivo-mature oocytes revealed 472 differentially expressed genes, including 28% related to apoptosis, correlating with twofold higher cell death after IVM than in vivo, as detected by TUNEL. Genes overexpressed after IVM were significantly enriched in functions involved in cell movement, focal adhesion, extracellular matrix function, and TGF-beta signaling, whereas under-expressed genes were enriched in regulating gene expression, energy metabolism, stress response, and MAP kinases pathway functions. Differential expression of 15 genes, including PAG11 (increased) and TXNIP (decreased), which were never detected in CC before, was validated by real-time RT-PCR. Moreover, protein quantification confirmed the lower abundance of glutathione S-transferase A1 and prostaglandin G/H synthase 2, and the higher abundance of hyaluronan synthase 2 and SMAD4, a member of TGF-beta pathway, in CC after IVM. Phosphorylation levels of SMAD2, MAPK3/1, and MAPK14, but not MAPK8, were higher after IVM that in vivo. In conclusion, IVM provokes the hyper-activation of TGF-beta and MAPK signaling components, modifies gene expression, leads to increased apoptosis in CC, and thus affects oocyte quality.
Collapse
Affiliation(s)
- Mohamad Salhab
- INRA, UR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Allergic manifestations and cutaneous histamine responses in patients with McCune Albright syndrome. World Allergy Organ J 2013; 6:9. [PMID: 23663565 PMCID: PMC3817837 DOI: 10.1186/1939-4551-6-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 04/16/2013] [Indexed: 11/28/2022] Open
Abstract
Background McCune Albright syndrome (MAS) is a rare disorder characterized by precocious puberty, café-au-lait spots, and fibrous dysplasia. Its cause is an activating mutation in the GNAS gene, encoding a subunit of the stimulatory G protein, Gsalpha (Gsα). The action of any mediator that signals via Gsα and cyclic AMP can be up regulated in MAS. We had observed gastritis, gastroesophageal reflux, and anaphylaxis in McCune Albright patients. Objective As histamine is known to signal via histamine 1 (H1) and histamine 2 (H2) receptors, which couple with stimulatory G proteins, we attempted to mechanistically link histamine responsiveness to the activating GNAS mutation. We hypothesized that responsiveness to histamine skin testing would differ between MAS patients and healthy controls. Patients and methods After obtaining informed consent, we performed a systematic review of histamine responsiveness and allergic manifestations in 11 MAS patients and 11 sex-matched, Tanner-stage matched controls. We performed skin prick testing, quantifying the orthogonal diameters of wheals and erythema. We also quantitated G protein mRNA expression. Results The peak wheal and flare responses to histamine were significantly higher in MAS patients compared to controls. Conclusions This study suggests that MAS patients may be at risk for exaggerated histamine responsiveness compared to unaffected controls.
Collapse
|
27
|
Cho-Clark M, Larco DO, Semsarzadeh NN, Vasta F, Mani SK, Wu TJ. GnRH-(1-5) transactivates EGFR in Ishikawa human endometrial cells via an orphan G protein-coupled receptor. Mol Endocrinol 2013; 28:80-98. [PMID: 24264576 DOI: 10.1210/me.2013-1203] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The decapeptide GnRH is known for its central role in the regulation of the hypothalamo-pituitary-gonadal axis. In addition, it is also known to have local effects within peripheral tissues. The zinc metalloendopeptidase, EC 3.4.24.15 (EP24.15), can cleave GnRH at the Tyr(5)-Gly(6) bond to form the pentapeptide, GnRH-(1-5). The central and peripheral effect of GnRH-(1-5) is different from its parent peptide, GnRH. In the current study, we examined the effect of GnRH-(1-5) on epidermal growth factor receptor (EGFR) phosphorylation and cellular migration. Using the Ishikawa cell line as a model of endometrial cancer, we demonstrate that GnRH-(1-5) stimulates epidermal growth factor release, increases the phosphorylation of EGFR (P < .05) at three tyrosine sites (992, 1045, 1068), and promotes cellular migration. In addition, we also demonstrate that these actions of GnRH-(1-5) are mediated by the orphan G protein-coupled receptor 101 (GPR101). Down-regulation of GPR101 expression blocked the GnRH-(1-5)-mediated release of epidermal growth factor and the subsequent phosphorylation of EGFR and cellular migration. These results suggest that GPR101 is a critical requirement for GnRH-(1-5) transactivation of EGFR in Ishikawa cells.
Collapse
Affiliation(s)
- Madelaine Cho-Clark
- Department of Obstetrics and Gynecology (T.J.W., M.C., F.V.) and the Program in Molecular and Cellular Biology (D.O.L., T.J.W.), Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, Maryland 20814; and Departments of Molecular and Cellular Biology and Neuroscience (S.K.M.), Baylor College of Medicine, Houston, Texas 77030
| | | | | | | | | | | |
Collapse
|
28
|
Fukuoka H, Cooper O, Ben-Shlomo A, Mamelak A, Ren SG, Bruyette D, Melmed S. EGFR as a therapeutic target for human, canine, and mouse ACTH-secreting pituitary adenomas. J Clin Invest 2011; 121:4712-21. [PMID: 22105169 DOI: 10.1172/jci60417] [Citation(s) in RCA: 188] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 10/18/2011] [Indexed: 11/17/2022] Open
Abstract
Cushing disease is a condition in which the pituitary gland releases excessive adrenocorticotropic hormone (ACTH) as a result of an adenoma arising from the ACTH-secreting cells in the anterior pituitary. ACTH-secreting pituitary adenomas lead to hypercortisolemia and cause significant morbidity and mortality. Pituitary-directed medications are mostly ineffective, and new treatment options are needed. As these tumors express EGFR, we tested whether EGFR might provide a therapeutic target for Cushing disease. Here, we show that in surgically resected human and canine corticotroph cultured tumors, blocking EGFR suppressed expression of proopiomelanocortin (POMC), the ACTH precursor. In mouse corticotroph EGFR transfectants, ACTH secretion was enhanced, and EGF increased Pomc promoter activity, an effect that was dependent on MAPK. Blocking EGFR activity with gefitinib, an EGFR tyrosine kinase inhibitor, attenuated Pomc expression, inhibited corticotroph tumor cell proliferation, and induced apoptosis. As predominantly nuclear EGFR expression was observed in canine and human corticotroph tumors, we preferentially targeted EGFR to mouse corticotroph cell nuclei, which resulted in higher Pomc expression and ACTH secretion, both of which were inhibited by gefitinib. In athymic nude mice, EGFR overexpression enhanced the growth of explanted ACTH-secreting tumors and further elevated serum corticosterone levels. Gefitinib treatment decreased both tumor size and corticosterone levels; it also reversed signs of hypercortisolemia, including elevated glucose levels and excess omental fat. These results indicate that inhibiting EGFR signaling may be a novel strategy for treating Cushing disease.
Collapse
Affiliation(s)
- Hidenori Fukuoka
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
| | | | | | | | | | | | | |
Collapse
|