1
|
Kumar S, Singh MK, Chauhan MS. Expression of the developmental important candidate genes in oocytes, embryos, embryonic stem cells, cumulus cells, and fibroblast cells of buffalo (Bubalus bubalis). Gene Expr Patterns 2021; 41:119200. [PMID: 34329769 DOI: 10.1016/j.gep.2021.119200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
The present study was undertaken to study the expression of the developmental important gene transcripts in immature oocytes, mature oocytes, different stages of IVF produced embryos, embryonic stem (ES), cumulus (BCC), fetal fibroblast (BFF), newborn fibroblast (NBF) and adult fibroblast (BAF) cells of buffalo by semi-quantitative RT-PCR. The expression of GLUT1, HSP70.1, POL A Polymerase, GDF9, BMP15, and SURVIVIN transcripts was found in immature oocytes, mature oocytes, 2-cell, 4-cell, 8-16 cell, morula, and the blastocyst. Interestingly, the CX43 expression was found in oocytes, embryos, and other cell types, but it was not detected in the blastocyst. However, the IFNT expression was found in the blastocyst only, but not in other cells. The buffalo ES cells showed the expression of intracellular and cell surface markers (NANOG, OCT4, SOX2, FOXD3, SSEA-3, SSEA-4, TRA-1-60, and TRA-1-81) and alkaline phosphatase activity. Two ES cell lines (S-line and M-line-II) were continued to survive up to 98th passages (~630 days) and 97th passages (~624 days), respectively. It was interesting to note that GLUT1, CX43, HSP70.1, POL A Polymerase, GDF9, BMP15, and SURVIVIN transcripts (except the IFNT) were expressed in buffalo ES, BCC, BFF, NBF and BAF cells. This is the first preliminary report that the buffalo ES, BCC, BFF, NBF, and BAF cells expressed the several developmental important candidate genes. It is concluded that the expression of the major developmental important genes was not only expressed in the oocytes and embryos but also expressed in the ES, BCC, BFF, NBF, and BAF cells of buffalo.
Collapse
Affiliation(s)
- S Kumar
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India.
| | - M K Singh
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India.
| | - M S Chauhan
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India.
| |
Collapse
|
2
|
Connexins and cAMP Cross-Talk in Cancer Progression and Metastasis. Cancers (Basel) 2020; 13:cancers13010058. [PMID: 33379194 PMCID: PMC7795795 DOI: 10.3390/cancers13010058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Different connexins play diverse roles in cancers, either tumor-suppressing or tumor-promoting. In lung cancer, Cx43 serves as a tumor suppressor at the early stage, but it can also be a tumor-promotor at an advanced stage and during metastasis. Moreover, other connexins, including Cx26, Cx31.1, and Cx32, can be tumor suppressors. In contrast, Cx30.3 can be a tumor-promotor. The roles of different connexins in different cancers have also been established. Cx43 acts as a tumor suppressor in colorectal cancer, breast cancer, and glioma, whereas Cx32 can be a suppressor in liver tumors and hepatocarcinogenesis. Cx26 can be a tumor suppressor in mammary tumors; in contrast, it can be a tumor-promotor in melanoma. Existing drugs/molecules targeting the cAMP/PKA/connexin axis act to regulate channel opening/closing. Mimic peptides, such as Gap19, Gap26, and Gap 27 block hemichannels, mimetic peptides, and CT9/CT10 and promote hemichannel opening and also hemichannel closing. Abstract Connexin-containing gap junctions mediate the direct exchange of small molecules between cells, thus promoting cell–cell communication. Connexins (Cxs) have been widely studied as key tumor-suppressors. However, certain Cx subtypes, such as Cx43 and Cx26, are overexpressed in metastatic tumor lesions. Cyclic adenosine monophosphate (cAMP) signaling regulates Cx expression and function via transcriptional control and phosphorylation. cAMP also passes through gap junction channels between adjacent cells, regulating cell cycle progression, particularly in cancer cell populations. Low levels of cAMP are sufficient to activate key effectors. The present review evaluates the mechanisms underlying Cx regulation by cAMP signaling and the role of gap junctions in cancer progression and metastasis. A deeper understanding of these processes might facilitate the development of novel anticancer drugs.
Collapse
|
3
|
Yoshida M, Takayanagi Y, Ichino-Yamashita A, Sato K, Sugimoto Y, Kimura T, Nishimori K. Functional Hierarchy of Uterotonics Required for Successful Parturition in Mice. Endocrinology 2019; 160:2800-2810. [PMID: 31517984 PMCID: PMC6887699 DOI: 10.1210/en.2019-00499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/09/2019] [Indexed: 11/23/2022]
Abstract
Parturition is an essential process in placental mammals for giving birth to offspring. However, the molecular machineries of parturition are not fully understood. We investigated whether oxytocin plays a crucial role in the progress of parturition in cooperation with the prostaglandin F2α (PGF2α) receptor. We first examined alterations in the expression of uterine contraction-associated genes in uteri of oxytocin receptor-deficient mice (Oxtr-/-) during parturition. We found that induction of cyclooxygenase (COX)-2 and connexin 43 expression was impaired in Oxtr-/-, whereas that of PGF2α receptor expression was not. We next generated mice with double knockout of genes for the oxytocin receptor/oxytocin and PGF2α receptor (Oxtr-/-;Ptgfr-/- and Oxt-/-;Ptgfr-/-) and evaluated their parturition with Oxtr-/-, Oxt-/-, Ptgfr-/-, and wild-type mice. In Oxtr-/-;Ptgfr-/- and Oxt-/-;Ptgfr-/-, pregnancy rates were similar to those of other genotypes. However, normal parturition was not observed in Oxtr-/-;Ptgfr-/- or Oxt-/-;Ptgfr-/- because of persistent progesterone from the corpus luteum, as observed in Ptgfr-/-. We administered RU486, a progesterone antagonist, to Ptgfr-/-, Oxtr-/-;Ptgfr-/-, and Oxt-/-;Ptgfr-/- on gestation day 19. These mice were able to deliver a living first pup and the parturition onset was similar to that in Ptgfr-/-. Meanwhile, unlike Ptgfr-/-, ∼75% of Oxtr-/-;Ptgfr-/- and Oxt-/-;Ptgfr-/- administered RU486 remained in labor at 24 hours after the onset of parturition. All of the pups that experienced prolonged labor died. We thus revealed that the oxytocin receptor is an upstream regulator of COX-2 and connexin 43 in the uterus during parturition and that both oxytocin/oxytocin receptor and PGF2α receptor are major components for successful parturition.
Collapse
Affiliation(s)
- Masahide Yoshida
- Laboratory of Molecular Biology, Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, Sendai-shi, Miyagi-ken, Japan
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke-shi, Tochigi-ken, Japan
| | - Yuki Takayanagi
- Laboratory of Molecular Biology, Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, Sendai-shi, Miyagi-ken, Japan
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke-shi, Tochigi-ken, Japan
| | - Azusa Ichino-Yamashita
- Laboratory of Molecular Biology, Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, Sendai-shi, Miyagi-ken, Japan
| | - Kei Sato
- Laboratory of Molecular Biology, Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, Sendai-shi, Miyagi-ken, Japan
- Division of Systems Virology, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo-to, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi-shi, Saitama-ken, Japan
| | - Yukihiko Sugimoto
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-Ku, Kumamoto-ken, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita-shi, Osaka-hu, Japan
| | - Katsuhiko Nishimori
- Laboratory of Molecular Biology, Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, Sendai-shi, Miyagi-ken, Japan
- Department of Obesity and Inflammation Research, Fukushima Medical University, Fukushima-shi, Fukushima-ken, Japan
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University, Fukushima-shi, Fukushima-ken, Japan
- Correspondence: Katsuhiko Nishimori, PhD, Department of Obesity and Inflammation Research, Fukushima Medical University, 1 Hikarigaoka, Fukushima-shi, Fukushima-ken 960-1295, Japan. E-mail:
| |
Collapse
|
4
|
Zhang Z, Zhao LD, Johnson SE, Rhoads ML, Jiang H, Rhoads RP. Oxytocin is involved in steroid hormone-stimulated bovine satellite cell proliferation and differentiation in vitro. Domest Anim Endocrinol 2019; 66:1-13. [PMID: 30195176 DOI: 10.1016/j.domaniend.2018.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 07/12/2018] [Accepted: 07/28/2018] [Indexed: 11/17/2022]
Abstract
Sex steroid hormones are used in the meat industry due to their ability to regulate muscle hypertrophy. However, the mechanisms underlying their action are not fully elucidated. Recent reports demonstrate that steroid hormones increase oxytocin (OXT) expression in skeletal muscle, indicating that OXT may play a role in satellite cell activity. This hypothesis was tested using steroid hormones (17β-estradiol [E2]; trenbolone acetate [TBA]), tamoxifen (TAM), OXT, and atosiban (A: OXT receptor inhibitor) applied to bovine satellite cells (BSCs) to investigate BSC regulation by OXT. Oxytocin alone increased fusion index (P < 0.05) but not BSC proliferation. Oxytocin reduced (P < 0.05) apoptotic nuclei and stimulated migration rate (P < 0.05). Similarly, E2 and TBA increased (P < 0.05) BSC proliferation rate, fusion index, and migration and decreased (P < 0.05) apoptotic nuclei. 17β-Estradiol or TBA supplemented with A had lower (P < 0.05) BSC proliferation rate, fusion index, and migration and more (P < 0.05) apoptotic nuclei compared with E2 or TBA alone. Furthermore, OXT expression increased (P < 0.05) in E2 or TBA-treated proliferating BSC. Oxytocin, E2, and TBA increased (P < 0.05) MyoD and MyoG expression in proliferating BSC. During BSC differentiation, OXT expression increased (P < 0.05) with E2 or TBA treatments. MyoG expression increased (P < 0.05) in OXT, E2, and TBA compared with control. However, A, OXT + A, TAM, TAM + OXT, E2 + TAM, E2 + A, and TBA + A decreased (P < 0.05) MyoG expression during BSC differentiation. These results indicate that OXT is involved in steroid hormone-stimulated BSC activity.
Collapse
Affiliation(s)
- Zhenhe Zhang
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Lidan D Zhao
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Sally E Johnson
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Michelle L Rhoads
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Honglin Jiang
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Robert P Rhoads
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
5
|
Sugimura S, Yamanouchi T, Palmerini MG, Hashiyada Y, Imai K, Gilchrist RB. Effect of pre-in vitro maturation with cAMP modulators on the acquisition of oocyte developmental competence in cattle. J Reprod Dev 2018; 64:233-241. [PMID: 29503399 PMCID: PMC6021610 DOI: 10.1262/jrd.2018-009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The administration of follicle-stimulating hormone (FSH) prior to oocyte retrieval improves oocyte developmental competence. During bovine embryo production in vitro,
however, oocytes are typically derived from FSH-unprimed animals. In the current study, we examined the effect of pre-in vitro maturation (IVM) with cAMP modulators, also
known as the second messengers of FSH, on the developmental competence of oocytes derived from small antral follicles (2–4 mm) of FSH-unprimed animals. Pre-IVM with
N6,2ʹ-O-dibutyryladenosine 3′,5′-cyclicmonophosphate (dbcAMP) and 3-isobutyl-1-methylxanthine (IBMX) for 2 h improved the blastocyst formation in oocytes stimulated by FSH or amphiregulin
(AREG). Furthermore, pre-IVM enhanced the expression of the FSH- or AREG-stimulated extracellular matrix-related genes HAS2, TNFAIP6, and
PTGS2, and epidermal growth factor (EGF)-like peptide-related genes AREG and EREG. Additionally, pre-IVM with dbcAMP and IBMX enhanced
the expression of EGFR, and also increased and prolonged cumulus cell-oocyte gap junctional communication. The improved oocyte development observed using the pre-IVM
protocol was ablated by an EGF receptor phosphorylation inhibitor. These results indicate that pre-IVM with cAMP modulators could contribute to the acquisition of developmental competence by
bovine oocytes from small antral follicles through the modulation of EGF receptor signaling and oocyte-cumulus/cumulus-cumulus gap junctional communication.
Collapse
Affiliation(s)
- Satoshi Sugimura
- Department of Biological Production, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | | | - Maria Grazia Palmerini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy
| | | | - Kei Imai
- Department of Sustainable Agriculture, Rakuno Gakuen University, Hokkaido 069-8501, Japan
| | - Robert B Gilchrist
- Discipline of Obstetrics & Gynaecology, School of Women's & Children's Health, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
6
|
Transcriptomic signature of the follicular somatic compartment surrounding an oocyte with high developmental competence. Sci Rep 2017; 7:6815. [PMID: 28755009 PMCID: PMC5533789 DOI: 10.1038/s41598-017-07039-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/22/2017] [Indexed: 12/11/2022] Open
Abstract
During antral folliculogenesis, developmental competence of prospective oocytes is regulated in large part by the follicular somatic component to prepare the oocyte for the final stage of maturation and subsequent embryo development. The underlying molecular mechanisms are poorly understood. Oocytes reaching the advanced stage of follicular growth by administration of exogenous follicle-stimulating hormone (FSH) possess higher developmental competence than oocytes in FSH-untreated smaller follicles. In this study, the transcriptomic profile of the cumulus cells from cows receiving FSH administration (FSH-priming) was compared, as a model of high oocyte competence, with that from untreated donor cows (control). Ingenuity Pathway Analysis showed that cumulus cells receiving FSH-priming were rich in down-regulated transcripts associated with cell movement and migration, including the extracellular matrix-related transcripts, probably preventing the disruption of cell-to-cell contacts. Interestingly, the transcriptomic profile of up-regulated genes in the control group was similar to that of granulosa cells from atretic follicles. Interferon regulatory factor 7 was activated as the key upstream regulator of FSH-priming. Thus, acquisition of developmental competence by oocytes can be ensured by the integrity of cumulus cells involved in cell-to-cell communication and cell survival, which may help achieve enhanced oocyte-somatic cell coupling.
Collapse
|
7
|
Yu HF, Yue ZP, Wang K, Yang ZQ, Zhang HL, Geng S, Guo B. Gja1 acts downstream of Acvr1 to regulate uterine decidualization via Hand2 in mice. J Endocrinol 2017; 233:145-157. [PMID: 28219934 DOI: 10.1530/joe-16-0583] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 02/20/2017] [Indexed: 11/08/2022]
Abstract
Although Gja1 has been proved to play an important role in uterine decidualization, its regulatory mechanism remains largely unknown. Here, we showed that Gja1 was highly expressed in the decidual cells and promoted the proliferation of uterine stromal cells and expression of Prl8a2 and Prl3c1, which were two well-known differentiation markers for decidualization. Further analysis revealed that Gja1 might act downstream of Acvr1 and cAMP to regulate the differentiation of uterine stromal cells. Administration of cAMP analog 8-Br-cAMP to Acvr1 siRNA-transfected stromal cells resulted in an obvious increase of Gja1 expression, whereas PKA inhibitor H89 impeded the induction of Gja1 elicited by Acvr1 overexpression, indicating that cAMP-PKA signal mediates the regulation of Acvr1 on Gja1 expression. In uterine stromal cells, knockdown of Gja1 blocked the cAMP induction of Hand2 Moreover, siRNA-mediated downregulation of Hand2 impaired the stimulatory effects of Gja1 overexpression on the expression of Prl8a2 and Prl3c1, whereas constitutive expression of Hand2 reversed the inhibitory effects of Gja1 siRNA on stromal differentiation. Meanwhile, Gja1 might play a vital role in the crosstalk between Acvr1 and Hand2 Collectively, Gja1 may act downstream of cAMP-PKA signal to mediate the effects of Acvr1 on the differentiation of uterine stromal cells through targeting Hand2.
Collapse
Affiliation(s)
- Hai-Fan Yu
- College of Veterinary MedicineJilin University, Changchun, People's Republic of China
| | - Zhan-Peng Yue
- College of Veterinary MedicineJilin University, Changchun, People's Republic of China
| | - Kai Wang
- College of Veterinary MedicineJilin University, Changchun, People's Republic of China
| | - Zhan-Qing Yang
- College of Veterinary MedicineJilin University, Changchun, People's Republic of China
| | - Hong-Liang Zhang
- College of Veterinary MedicineJilin University, Changchun, People's Republic of China
| | - Shuang Geng
- College of Veterinary MedicineJilin University, Changchun, People's Republic of China
| | - Bin Guo
- College of Veterinary MedicineJilin University, Changchun, People's Republic of China
| |
Collapse
|
8
|
Liu Q, Ji X, Ge Z, Diao H, Chang X, Wang L, Wu Q. Role of connexin 43 in cadmium-induced proliferation of human prostate epithelial cells. J Appl Toxicol 2017; 37:933-942. [PMID: 28176351 DOI: 10.1002/jat.3441] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 12/21/2022]
Abstract
Connexins (Cxs), the subunits of gap junction channels, are involved in many physiological processes. Aberrant control of Cxs and gap junction intercellular communication may contribute to many diseases, including the promotion of cancer. Cd exposure is associated with increased risk of human prostate cancer and benign prostatic hyperplasia. The roles of Cxs in the effects of Cd on the prostate have, however, not been reported previously. In this study, the human prostate epithelial cell line RWPE-1 was exposed to Cd. A low dose of Cd stimulated cell proliferation along with a lower degree of gap junction intercellular communication and an elevated level of the protein Cx43. Cd exposure increased the levels of intracellular Ca2+ and phosphorylated Cx43 at the Ser368 site. Knockdown of Cx43 using siRNA blocked Cd-induced proliferation and interfered with the Cd-induced changes in the protein levels of cyclin D1, cyclin B1, p27Kip1 (p27) and p21Waf1/Cip1 (p21). The increase in Cx43 expression induced by Cd was presumably mediated by the androgen receptor, because it was abolished upon treatment with the androgen receptor antagonist, flutamide. Thus, a low dose of Cd promotes cell proliferation in RWPE-1, possibly mediated by Cx43 expression through an effect on cell cycle-associated proteins. Cx43 might be a target for prostatic diseases associated with Cd exposure. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Qingping Liu
- School of Public Health, Fudan University, DongAn Road, Shanghai, 200032, China.,Key Laboratory of Public Health Safety, Ministry of Education, DongAn Road, Shanghai, 200032, China
| | - Xiaoli Ji
- School of Public Health, Fudan University, DongAn Road, Shanghai, 200032, China.,Key Laboratory of Public Health Safety, Ministry of Education, DongAn Road, Shanghai, 200032, China
| | - Zehe Ge
- School of Public Health, Fudan University, DongAn Road, Shanghai, 200032, China.,Key Laboratory of Public Health Safety, Ministry of Education, DongAn Road, Shanghai, 200032, China
| | - Haipeng Diao
- School of Public Health, Fudan University, DongAn Road, Shanghai, 200032, China.,Key Laboratory of Public Health Safety, Ministry of Education, DongAn Road, Shanghai, 200032, China
| | - Xiuli Chang
- School of Public Health, Fudan University, DongAn Road, Shanghai, 200032, China.,Key Laboratory of Public Health Safety, Ministry of Education, DongAn Road, Shanghai, 200032, China
| | - Lihua Wang
- Shanghai Jinshan District Center for Disease Control & Prevention, Weisheng Road, Jinshan District, Shanghai, 201599, China
| | - Qing Wu
- School of Public Health, Fudan University, DongAn Road, Shanghai, 200032, China.,Key Laboratory of Public Health Safety, Ministry of Education, DongAn Road, Shanghai, 200032, China
| |
Collapse
|
9
|
Gilchrist RB, Luciano AM, Richani D, Zeng HT, Wang X, Vos MD, Sugimura S, Smitz J, Richard FJ, Thompson JG. Oocyte maturation and quality: role of cyclic nucleotides. Reproduction 2016; 152:R143-57. [PMID: 27422885 DOI: 10.1530/rep-15-0606] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 07/15/2016] [Indexed: 12/12/2022]
Abstract
The cyclic nucleotides, cAMP and cGMP, are the key molecules controlling mammalian oocyte meiosis. Their roles in oocyte biology have been at the forefront of oocyte research for decades, and many of the long-standing controversies in relation to the regulation of oocyte meiotic maturation are now resolved. It is now clear that the follicle prevents meiotic resumption through the actions of natriuretic peptides and cGMP - inhibiting the hydrolysis of intra-oocyte cAMP - and that the pre-ovulatory gonadotrophin surge reverses these processes. The gonadotrophin surge also leads to a transient spike in cAMP in the somatic compartment of the follicle. Research over the past two decades has conclusively demonstrated that this surge in cAMP is important for the subsequent developmental capacity of the oocyte. This is important, as oocyte in vitro maturation (IVM) systems practised clinically do not recapitulate this cAMP surge in vitro, possibly accounting for the lower efficiency of IVM compared with clinical IVF. This review particularly focuses on this latter aspect - the role of cAMP/cGMP in the regulation of oocyte quality. We conclude that clinical practice of IVM should reflect this new understanding of the role of cyclic nucleotides, thereby creating a new generation of ART and fertility treatment options.
Collapse
Affiliation(s)
- R B Gilchrist
- Discipline of Obstetrics and GynaecologySchool of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia
| | - A M Luciano
- Reproductive and Developmental Biology LaboratoryDepartment of Health, Animal Science and Food Safety, University of Milan, Milano, Italy
| | - D Richani
- Discipline of Obstetrics and GynaecologySchool of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia
| | - H T Zeng
- Center for Reproductive MedicineSixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - X Wang
- Discipline of Obstetrics and GynaecologySchool of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia Department of Obstetrics and GynaecologySt George Public Hospital, Sydney, Australia
| | - M De Vos
- Follicle Biology LaboratoryUniversity Hospital UZBrussel, Medical School, Vrije Universiteit Brussel, Brussels, Belgium
| | - S Sugimura
- Institute of AgricultureDepartment of Biological Production, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - J Smitz
- Follicle Biology LaboratoryUniversity Hospital UZBrussel, Medical School, Vrije Universiteit Brussel, Brussels, Belgium
| | - F J Richard
- Centre de Recherche en Biologie de la ReproductionDépartement des Sciences Animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, Canada
| | - J G Thompson
- School of MedicineRobinson Research Institute and ARC Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
10
|
El-Hayek S, Clarke HJ. Follicle-Stimulating Hormone Increases Gap Junctional Communication Between Somatic and Germ-Line Follicular Compartments During Murine Oogenesis. Biol Reprod 2015; 93:47. [PMID: 26063870 DOI: 10.1095/biolreprod.115.129569] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/01/2015] [Indexed: 01/30/2023] Open
Abstract
Germ cells develop in intimate contact and communication with somatic cells of the gonad. In female mammals, oocyte development depends crucially on gap junctions that couple it to the surrounding somatic granulosa cells of the follicle, yet the mechanisms that regulate this essential intercellular communication remain incompletely understood. Follicle-stimulating hormone (FSH) drives the terminal stage of follicular development. We found that FSH increases the steady-state levels of mRNAs encoding the principal connexins that constitute gap junctions and cadherins that mediate cell attachment. This increase occurs both in granulosa cells, which express the FSH-receptor, and in oocytes, which do not. FSH also increased the number of transzonal projections that provide the sites of granulosa cell-oocyte contact. Consistent with increased connexin expression, FSH increased gap junctional communication between granulosa cells and between the oocyte and granulosa cells, and it accelerated oocyte development. These results demonstrate that FSH regulates communication between the female germ cell and its somatic microenvironment. We propose that FSH-regulated gap junctional communication ensures that differentiation processes occurring in distinct cellular compartments within the follicle are precisely coordinated to ensure production of a fertilizable egg.
Collapse
Affiliation(s)
- Stephany El-Hayek
- Department of Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada Department of Biology, McGill University, Montreal, Quebec, Canada Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Hugh J Clarke
- Department of Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada Department of Biology, McGill University, Montreal, Quebec, Canada Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
11
|
Stewart MKG, Simek J, Laird DW. Insights into the role of connexins in mammary gland morphogenesis and function. Reproduction 2015; 149:R279-90. [DOI: 10.1530/rep-14-0661] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/19/2015] [Indexed: 12/15/2022]
Abstract
Gap junctions formed of connexin subunits link adjacent cells by direct intercellular communication that is essential for normal tissue homeostasis in the mammary gland. The mammary gland undergoes immense remodeling and requires exquisite regulation to control the proliferative, differentiating, and cell death mechanisms regulating gland development and function. The generation of novel genetically modified mice with reduced or ablated connexin function within the mammary gland has advanced our understanding of the role of gap junctions during the complex and dynamic process of mammary gland development. These studies have revealed an important stage-specific role for Cx26 (GJA1) and Cx43 (GJB2), while Cx30 (GJB6) and Cx32 (Gjb1) can be eliminated without compromising the gland. Yet, there remain gaps in our understanding of the role of mammary gland gap junctions.
Collapse
|