1
|
Mokhosoev IM, Astakhov DV, Terentiev AA, Moldogazieva NT. Cytochrome P450 monooxygenase systems: Diversity and plasticity for adaptive stress response. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 193:19-34. [PMID: 39245215 DOI: 10.1016/j.pbiomolbio.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Superfamily of cytochromes P450 (CYPs) is composed of heme-thiolate-containing monooxygenase enzymes, which play crucial roles in the biosynthesis, bioactivation, and detoxification of a variety of organic compounds, both endogenic and exogenic. Majority of CYP monooxygenase systems are multi-component and contain various redox partners, cofactors and auxiliary proteins, which contribute to their diversity in both prokaryotes and eukaryotes. Recent progress in bioinformatics and computational biology approaches make it possible to undertake whole-genome and phylogenetic analyses of CYPomes of a variety of organisms. Considerable variations in sequences within and between CYP families and high similarity in secondary and tertiary structures between all CYPs along with dramatic conformational changes in secondary structure elements of a substrate binding site during catalysis have been reported. This provides structural plasticity and substrate promiscuity, which underlie functional diversity of CYPs. Gene duplication and mutation events underlie CYP evolutionary diversity and emergence of novel selectable functions, which provide the involvement of CYPs in high adaptability to changing environmental conditions and dietary restrictions. In our review, we discuss the recent advancements and challenges in the elucidating the evolutionary origin and mechanisms underlying the CYP monooxygenase system diversity and plasticity. Our review is in the view of hypothesis that diversity of CYP monooxygenase systems is translated into the broad metabolic profiles, and this has been acquired during the long evolutionary time to provide structural plasticity leading to high adaptative capabilities to environmental stress conditions.
Collapse
Affiliation(s)
| | - Dmitry V Astakhov
- Department of Biochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991, Moscow, Russia
| | - Alexander A Terentiev
- Department of Biochemistry and Molecular Biology, N.I. Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | | |
Collapse
|
2
|
Guo C, Zhang G, Wu C, Lei Y, Wang Y, Yang J. Emerging trends in small molecule inhibitors targeting aldosterone synthase: A new paradigm in cardiovascular disease treatment. Eur J Med Chem 2024; 274:116521. [PMID: 38820853 DOI: 10.1016/j.ejmech.2024.116521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/01/2024] [Accepted: 05/19/2024] [Indexed: 06/02/2024]
Abstract
Aldosterone synthase (CYP11B2) is the rate-limiting enzyme in aldosterone production. In recent years, CYP11B2 has become an appealing target for treating conditions associated with excess aldosterone, such as hypertension, heart failure, and cardiometabolic diseases. Several small-molecule inhibitors of CYP11B2 have demonstrated efficacy in both preclinical studies and clinical trials. Among them, the tetrahydroisoquinoline derivative Baxdrostat has entered clinical trial phases and demonstrated efficacy in treating patients with hypertension. However, the high homology (>93 %) between CYP11B2 and steroid-11β-hydroxylase (CYP11B1), which catalyzes cortisol production, implies that insufficient drug specificity can lead to severe side effects. Developing selective inhibitors for CYP11B2 remains a considerable challenge that requires ongoing attention. This review summarizes recent research progress on small-molecule inhibitors targeting CYP11B2, focusing on structure-activity relationships (SAR) and structural optimization. It discusses strategies for enhancing the specificity and inhibitory activity of inhibitors, while also exploring potential applications and future prospects for CYP11B2 inhibitors, providing a theoretical foundation for developing the new generation of CYP11B2-targeted medications.
Collapse
Affiliation(s)
- Cuiyu Guo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Guangbing Zhang
- Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chengyong Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yi Lei
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, General Practice Research Institute, West China Hospital, Sichuan University, China.
| | - Yuxi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jinliang Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China; Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
3
|
Loomis CL, Im SC, Scott EE. Adrenodoxin allosterically alters human cytochrome P450 11B enzymes to accelerate substrate binding and decelerate release. RSC Chem Biol 2024:d4cb00015c. [PMID: 39129792 PMCID: PMC11310744 DOI: 10.1039/d4cb00015c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/22/2024] [Indexed: 08/13/2024] Open
Abstract
Two human mitochondrial membrane CYP11B enzymes play a pivotal role in steroidogenesis. CYP11B1 generates the major glucocorticoid cortisol, while CYP11B2 catalysis yields the primary mineralocorticoid aldosterone. Catalysis by both requires electron delivery by a soluble iron-sulfur adrenodoxin redox partner. However recent studies have shown that adrenodoxin/CYP11B interaction alone allosterically increases substrate and inhibitor affinity as exhibited by decreased dissociation constant (K d) values. The current study moves beyond such equilibrium studies, by defining adrenodoxin effects on the rates of P450 ligand binding and release separately. Stopped-flow data clearly demonstrate that adrenodoxin interaction with the P450 proximal surfaces increases ligand binding in both P450 CYP11B active sites by increasing the on rate constant and decreasing the off rate constant. As substrate entry and exit from the sequestered P450 active site requires conformational changes on the distal side of the P450 enzyme, a likely explanation is that adrenodoxin binding allosterically modulates CYP11B conformational changes. The 93% identical CYP11B enzymes can bind and hydroxylate each other's native substrates differing only by a hydroxyl. However, CYP11B1 exhibits monophasic substrate binding and CYP11B2 biphasic substrate binding, even when the substrates are swapped. This indicates that small differences in amino acid sequence between human CYP11B1 and CYP11B2 enzymes are more functionally important in ligand binding and could suggest avenues for more selective inhibition of these drug targets. Both protein/protein interactions and protein/substrate interactions are most likely to act by modulating CYP11B conformational dynamics.
Collapse
Affiliation(s)
- Cara L Loomis
- Department of Biological Chemistry, University of Michigan Ann Arbor MI 48109 USA
| | - Sang-Choul Im
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, University of Michigan Ann Arbor MI USA
- Ann Arbor Veterans Affairs Medical Center Ann Arbor MI USA
| | - Emily E Scott
- Department of Biological Chemistry, University of Michigan Ann Arbor MI 48109 USA
- Department of Medicinal Chemistry, University of Michigan Ann Arbor MI 48109 USA
- Department of Pharmacology, University of Michigan Ann Arbor MI 48109 USA
| |
Collapse
|
4
|
Valentín-Goyco J, Im SC, Auchus RJ. Kinetics of Intermediate Release Enhances P450 11B2-Catalyzed Aldosterone Synthesis. Biochemistry 2024; 63:1026-1037. [PMID: 38564530 PMCID: PMC11259377 DOI: 10.1021/acs.biochem.3c00725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The mitochondrial enzyme cytochrome P450 11B2 (aldosterone synthase) catalyzes the 3 terminal transformations in the biosynthesis of aldosterone from 11-deoxycorticosterone (DOC): 11β-hydroxylation to corticosterone, 18-hydroxylation, and 18-oxidation. Prior studies have shown that P450 11B2 produces more aldosterone from DOC than from the intermediate corticosterone and that the reaction sequence is processive, with intermediates remaining bound to the active site between oxygenation reactions. In contrast, P450 11B1 (11β-hydroxylase), which catalyzes the terminal step in cortisol biosynthesis, shares a 93% amino acid sequence identity with P450 11B2, converts DOC to corticosterone, but cannot synthesize aldosterone from DOC. The biochemical and biophysical properties of P450 11B2, which enable its unique 18-oxygenation activity and processivity, yet are not also represented in P450 11B1, remain unknown. To understand the mechanism of aldosterone biosynthesis, we introduced point mutations at residue 320, which partially exchange the activities of P450 11B1 and P450 11B2 (V320A and A320V, respectively). We then investigated NADPH coupling efficiencies, binding kinetics and affinities, and product formation of purified P450 11B1 and P450 11B2, wild-type, and residue 320 mutations in phospholipid vesicles and nanodiscs. Coupling efficiencies for the 18-hydroxylase reaction with corticosterone as the substrate failed to correlate with aldosterone synthesis, ruling out uncoupling as a relevant mechanism. Conversely, corticosterone dissociation rates correlated inversely with aldosterone production. We conclude that intermediate dissociation kinetics, not coupling efficiency, enable P450 11B2 to synthesize aldosterone via a processive mechanism. Our kinetic data also suggest that the binding of DOC to P450 11B enzymes occurs in at least two distinct steps, favoring an induced-fit mechanism.
Collapse
Affiliation(s)
- Juan Valentín-Goyco
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, United States
- LTC Charles S. Kettles Veterans Affairs Medical Center, 2215 Fuller Road, Ann Arbor, MI 48105, United States
| | - Sang-Choul Im
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, United States
- LTC Charles S. Kettles Veterans Affairs Medical Center, 2215 Fuller Road, Ann Arbor, MI 48105, United States
| | - Richard J. Auchus
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, United States
- LTC Charles S. Kettles Veterans Affairs Medical Center, 2215 Fuller Road, Ann Arbor, MI 48105, United States
| |
Collapse
|
5
|
Ramírez RE, Buendia-Corona RE, Pérez-Xochipa I, Scior T. Computational Binding Study Hints at Ecdysone 20-Mono-Oxygenase as the Hitherto Unknown Target for Ring C-Seco Limonoid-Type Insecticides. Molecules 2024; 29:1628. [PMID: 38611907 PMCID: PMC11013123 DOI: 10.3390/molecules29071628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
The insecticidal property of ring C-seco limonoids has been discovered empirically and the target protein identified, but, to date, the molecular mechanism of action has not been described at the atomic scale. We elucidate on computational grounds whether nine C-seco limonoids present sufficiently high affinity to bind specifically with the putative target enzyme of the insects (ecdysone 20-monooxygenase). To this end, 3D models of ligands and the receptor target were generated and their interaction energies estimated by docking simulations. As a proof of concept, the tetrahydro-isoquinolinyl propenamide derivative QHC is the reference ligand bound to aldosterone synthase in the complex with PDB entry 4ZGX. It served as the 3D template for target modeling via homology. QHC was successfully docked back to its crystal pose in a one-digit nanomolar range. The reported experimental binding affinities span over the nanomolar to lower micromolar range. All nine limonoids were found with strong affinities in the range of -9 < ΔG < -13 kcal/mol. The molt hormone ecdysone showed a comparable ΔG energy of -12 kcal/mol, whereas -11 kcal/mol was the back docking result for the liganded crystal 4ZGX. In conclusion, the nine C-seco limonoids were strong binders on theoretical grounds in an activity range between a ten-fold lower to a ten-fold higher concentration level than insecticide ecdysone with its known target receptor. The comparable or even stronger binding hints at ecdysone 20-monooxygenase as their target biomolecule. Our assumption, however, is in need of future experimental confirmation before conclusions with certainty can be drawn about the true molecular mechanism of action for the C-seco limonoids under scrutiny.
Collapse
Affiliation(s)
- Ramsés E. Ramírez
- Departamento de Fisicomatemáticas, Facultad de Ciencias Químicas Benemérita, Universidad Autónoma de Puebla, Prol. 24 Sur, Puebla 72570, Mexico; (R.E.R.); (R.E.B.-C.)
| | - Ricardo E. Buendia-Corona
- Departamento de Fisicomatemáticas, Facultad de Ciencias Químicas Benemérita, Universidad Autónoma de Puebla, Prol. 24 Sur, Puebla 72570, Mexico; (R.E.R.); (R.E.B.-C.)
| | - Ivonne Pérez-Xochipa
- Departamento de Bioquímica Alimentos, Facultad de Ciencias Químicas Benemérita, Universidad Autónoma de Puebla, Prol. 24 Sur, Puebla 72570, Mexico;
| | - Thomas Scior
- Laboratorio de Simulaciones Moleculares Computacionales, Facultad de Ciencias Químicas Benemérita, Universidad Autónoma de Puebla, Prol. 24 Sur, Puebla 72570, Mexico
| |
Collapse
|
6
|
Garrelfs MR, Rinne T, Hillebrand JJ, Lauffer P, Bijlsma MW, Claahsen-van der Grinten HL, de Leeuw N, Finken MJ, Rotteveel J, Zwaveling-Soonawala N, Nieuwdorp M, van Trotsenburg AP, Mooij CF. Identification of a Novel CYP11B2 Variant in a Family with Varying Degrees of Aldosterone Synthase Deficiency. J Clin Res Pediatr Endocrinol 2024; 16:95-101. [PMID: 35848593 PMCID: PMC10938521 DOI: 10.4274/jcrpe.galenos.2022.2022-3-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/05/2022] [Indexed: 12/01/2022] Open
Abstract
Isolated aldosterone synthase deficiency is a rare autosomal recessive disorder caused by pathogenic variants in CYP11B2, resulting in impaired aldosterone synthesis. We report on a neonate with isolated aldosterone synthase deficiency caused by a novel homozygous CYP11B2 variant Chr8:NM_000498.3:c.400G>A p.(Gly134Arg). The patient presented shortly after birth with severe signs of aldosterone deficiency. Interestingly, segregation analysis revealed that the patient’s asymptomatic father was also homozygous for the CYP11B2 variant. Biochemical evaluation of the father indicated subclinical enzyme impairment, characterized by elevated aldosterone precursors. Apparently, this homozygous variant led to different clinical phenotypes in two affected relatives. In this manuscript we elaborate on the biochemical and genetic work-up performed and describe potential pitfalls in CYP11B2 sequencing due to its homology to CYP11B1.
Collapse
Affiliation(s)
- Mark R. Garrelfs
- University of Amsterdam and Vrije Universiteit, Amsterdam University Medical Centers, Emma Children’s Hospital, Department of Pediatric Endocrinology, Amsterdam, The Netherlands
| | - Tuula Rinne
- Radboud University Medical Center, Department of Human Genetics, Nijmegen, The Netherlands
| | - Jacquelien J. Hillebrand
- University of Amsterdam and Vrije Universiteit, Amsterdam University Medical Centers, Department of Clinical Chemistry, Endocrine Laboratory, Amsterdam, The Netherlands
| | - Peter Lauffer
- University of Amsterdam and Vrije Universiteit, Amsterdam University Medical Centers, Emma Children’s Hospital, Department of Pediatric Endocrinology, Amsterdam, The Netherlands
| | - Merijn W. Bijlsma
- University of Amsterdam and Vrije Universiteit, Amsterdam University Medical Centers, Emma Children’s Hospital, Department of Pediatrics, Amsterdam, The Netherlands
| | | | - Nicole de Leeuw
- Radboud University Medical Center, Department of Human Genetics, Nijmegen, The Netherlands
| | - Martijn J.J. Finken
- University of Amsterdam and Vrije Universiteit, Amsterdam University Medical Centers, Emma Children’s Hospital, Department of Pediatric Endocrinology, Amsterdam, The Netherlands
| | - Joost Rotteveel
- University of Amsterdam and Vrije Universiteit, Amsterdam University Medical Centers, Emma Children’s Hospital, Department of Pediatric Endocrinology, Amsterdam, The Netherlands
| | - Nitash Zwaveling-Soonawala
- University of Amsterdam and Vrije Universiteit, Amsterdam University Medical Centers, Emma Children’s Hospital, Department of Pediatric Endocrinology, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- University of Amsterdam and Vrije Universiteit, Amsterdam University Medical Centers, Department of Endocrinology, Amsterdam, The Netherlands
| | - A.S. Paul van Trotsenburg
- University of Amsterdam and Vrije Universiteit, Amsterdam University Medical Centers, Emma Children’s Hospital, Department of Pediatric Endocrinology, Amsterdam, The Netherlands
| | - Christiaan F. Mooij
- University of Amsterdam and Vrije Universiteit, Amsterdam University Medical Centers, Emma Children’s Hospital, Department of Pediatric Endocrinology, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Tinivella A, Banchi M, Gambacorta G, Borghi F, Orlandi P, Baxendale IR, Di Paolo A, Bocci G, Pinzi L, Rastelli G. Discovery of a Potent Dual Inhibitor of Aromatase and Aldosterone Synthase. ACS Pharmacol Transl Sci 2023; 6:1870-1883. [PMID: 38093846 PMCID: PMC10714424 DOI: 10.1021/acsptsci.3c00183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/28/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2024]
Abstract
Estrogen deficiency derived from inhibition of estrogen biosynthesis is a typical condition of postmenopausal women and breast cancer (BCs) patients undergoing antihormone therapy. The ensuing increase in aldosterone levels is considered to be the major cause for cardiovascular diseases (CVDs) affecting these patients. Since estrogen biosynthesis is regulated by aromatase (CYP19A1), and aldosterone biosynthesis is modulated by aldosterone synthase (CYP11B2), a dual inhibitor would allow the treatment of BC while reducing the cardiovascular risks typical of these patients. Moreover, this strategy would help overcome some of the disadvantages often observed in single-target or combination therapies. Following an in-depth analysis of a library of synthesized benzylimidazole derivatives, compound X21 was found to be a potent and selective dual inhibitor of aromatase and aldosterone synthase, with IC50 values of 2.3 and 29 nM, respectively. Remarkably, the compound showed high selectivity with respect to 11β-hydroxylase (CYP11B1), as well as CYP3A4 and CYP1A2. When tested in cells, X21 showed potent antiproliferative activity against BC cell lines, particularly against the ER+ MCF-7 cells (IC50 of 0.26 ± 0.03 μM at 72 h), and a remarkable pro-apoptotic effect. In addition, the compound significantly inhibited mTOR phosphorylation at its IC50 concentration, thereby negatively modulating the PI3K/Akt/mTOR axis, which represents an escape for the dependency from ER signaling in BC cells. The compound was further investigated for cytotoxicity on normal cells and potential cardiotoxicity against hERG and Nav1.5 ion channels, demonstrating a safe biological profile. Overall, these assays demonstrated that the compound is potent and safe, thus constituting an excellent candidate for further evaluation.
Collapse
Affiliation(s)
- Annachiara Tinivella
- Department
of Life Sciences, University of Modena and
Reggio Emilia, Via G. Campi, Modena 41125, Italy
| | - Marta Banchi
- Department
of Clinical and Experimental Medicine, University
of Pisa, Via Roma 55, Pisa 56126, Italy
| | - Guido Gambacorta
- Department
of Chemistry, University of Durham, Lower Mount Joy, South Rd, Durham DH1 3LE, U.K.
| | - Federica Borghi
- Department
of Life Sciences, University of Modena and
Reggio Emilia, Via G. Campi, Modena 41125, Italy
| | - Paola Orlandi
- Department
of Clinical and Experimental Medicine, University
of Pisa, Via Roma 55, Pisa 56126, Italy
| | - Ian R. Baxendale
- Department
of Chemistry, University of Durham, Lower Mount Joy, South Rd, Durham DH1 3LE, U.K.
| | - Antonello Di Paolo
- Department
of Clinical and Experimental Medicine, University
of Pisa, Via Roma 55, Pisa 56126, Italy
| | - Guido Bocci
- Department
of Clinical and Experimental Medicine, University
of Pisa, Via Roma 55, Pisa 56126, Italy
| | - Luca Pinzi
- Department
of Life Sciences, University of Modena and
Reggio Emilia, Via G. Campi, Modena 41125, Italy
| | - Giulio Rastelli
- Department
of Life Sciences, University of Modena and
Reggio Emilia, Via G. Campi, Modena 41125, Italy
| |
Collapse
|
8
|
Pignatti E, Kollar J, Hafele E, Schuster D, Steele RE, Vogt B, Schumacher C, Groessl M. Structural and clinical characterization of CYP11B2 inhibition by dexfadrostat phosphate. J Steroid Biochem Mol Biol 2023; 235:106409. [PMID: 37827219 DOI: 10.1016/j.jsbmb.2023.106409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/14/2023]
Abstract
Aldosterone synthase (CYP11B2) represents a promising drug target because its genetic dysregulation is causally associated with cardiovascular disease, its autonomous activity leads to primary aldosteronism, and its deficiency leads to salt wasting syndromes. The serendipitous discovery that the dextro-rotatory stereoisomer of the racemic aromatase (CYP19A1) inhibitor CGS16949A mediates potent CYP11B2 inhibition led to the purification and clinical development of dexfadrostat phosphate. To characterize the pharmacophore of dexfadrostat phosphate, structure-based enzyme coordination with CYP11B2, CYP11B1 and CYP19A1 was combined with steroid turnover upon in vitro and clinical treatment. Dexfadrostat, but not its 5S-enantiomer (5S-fadrozole), precisely coordinates with the catalytic heme moiety in the space of the CYP11B2 substrate binding pocket forming a tight and stable complex. Conversely, neither rigid nor flexible docking led to a plausible coordination geometry for dexfadrostat in steroid 11β-hydroxylase (CYP11B1 - orthologue to CYP11B2) or in CYP19A1. The inhibitory preference of dexfadrostat was confirmed in vitro using an adrenal cortex-derived cell line. Dexfadrostat phosphate treatment of healthy subjects in the context of a clinical phase 1 study led to a dose-dependent decrease in urinary aldosterone secretion, accompanied by an increase in urinary corticosterone and deoxycorticosterone metabolites. Increased urinary corticosterone metabolites are indicative of CYP11B2 (18-oxidase) inhibition with clinical features reminiscent of patients with inborn corticosterone methyloxidase type II deficiency. An off-target effect on CYP19A1 was not observed as indicated by no clinical changes in testosterone and estradiol levels. Therefore, dexfadrostat exhibits the ideal structural features for binding and catalytic inhibition of CYP11B2 but not CYP11B1. Clinically, treatment with dexfadrostat phosphate leads to suppression of aldosterone levels by inhibiting predominantly one or both final CYP11B2-mediated reactions.
Collapse
Affiliation(s)
- Emanuele Pignatti
- Department of Pediatric Endocrinology, Diabetology and Metabolism, University Hospital Inselspital, University of Bern, 3010 Bern, Switzerland; Department for BioMedical Research, University Hospital Inselspital, University of Bern, 3010 Bern, Switzerland.
| | - Jakub Kollar
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Evelyn Hafele
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Daniela Schuster
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria
| | | | - Bruno Vogt
- Department of Nephrology and Hypertension, University Hospital Inselspital, University of Bern, 3010 Bern, Switzerland
| | | | - Michael Groessl
- Department for BioMedical Research, University Hospital Inselspital, University of Bern, 3010 Bern, Switzerland; Department of Nephrology and Hypertension, University Hospital Inselspital, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
9
|
Jäger MC, Kędzierski J, Gell V, Wey T, Kollár J, Winter DV, Schuster D, Smieško M, Odermatt A. Virtual screening and biological evaluation to identify pharmaceuticals potentially causing hypertension and hypokalemia by inhibiting steroid 11β-hydroxylase. Toxicol Appl Pharmacol 2023; 475:116638. [PMID: 37499767 DOI: 10.1016/j.taap.2023.116638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Several drugs were found after their market approval to unexpectedly inhibit adrenal 11β-hydroxylase (CYP11B1)-dependent cortisol synthesis. Known side-effects of CYP11B1 inhibition include hypertension and hypokalemia, due to a feedback activation of adrenal steroidogenesis, leading to supraphysiological concentrations of 11-deoxycortisol and 11-deoxycorticosterone that can activate the mineralocorticoid receptor. This results in potassium excretion and sodium and water retention, ultimately causing hypertension. With the risk known but usually not addressed in preclinical evaluation, this study aimed to identify drugs and drug candidates inhibiting CYP11B1. Two conceptually different virtual screening methods were combined, a pharmacophore based and an induced fit docking approach. Cell-free and cell-based CYP11B1 activity measurements revealed several inhibitors with IC50 values in the nanomolar range. Inhibitors include retinoic acid metabolism blocking agents (RAMBAs), azole antifungals, α2-adrenoceptor ligands, and a farnesyltransferase inhibitor. The active compounds share a nitrogen atom embedded in an aromatic ring system. Structure activity analysis identified the free electron pair of the nitrogen atom as a prerequisite for the drug-enzyme interaction, with its pKa value as an indicator of inhibitory potency. Another important parameter is drug lipophilicity, exemplified by etomidate. Changing its ethyl ester moiety to a more hydrophilic carboxylic acid group dramatically decreased the inhibitory potential, most likely due to less efficient cellular uptake. The presented work successfully combined different in silico and in vitro methods to identify several previously unknown CYP11B1 inhibitors. This workflow facilitates the identification of compounds that inhibit CYP11B1 and therefore pose a risk for inducing hypertension and hypokalemia.
Collapse
Affiliation(s)
- Marie-Christin Jäger
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Missionsstrasse 64, 4055 Basel, Switzerland; Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| | - Jacek Kędzierski
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Missionsstrasse 64, 4055 Basel, Switzerland; Division of Computational Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 61, 4056 Basel, Switzerland.
| | - Victoria Gell
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland; Division of Computational Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 61, 4056 Basel, Switzerland.
| | - Tim Wey
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| | - Jakub Kollár
- Institute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria.
| | - Denise V Winter
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Missionsstrasse 64, 4055 Basel, Switzerland; Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| | - Daniela Schuster
- Institute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria.
| | - Martin Smieško
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Missionsstrasse 64, 4055 Basel, Switzerland; Division of Computational Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 61, 4056 Basel, Switzerland.
| | - Alex Odermatt
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Missionsstrasse 64, 4055 Basel, Switzerland; Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| |
Collapse
|
10
|
Akone S, Hug JJ, Kaur A, Garcia R, Müller R. Structure Elucidation and Biosynthesis of Nannosterols A and B, Myxobacterial Sterols from Nannocystis sp. MNa10993. JOURNAL OF NATURAL PRODUCTS 2023; 86:915-923. [PMID: 37011180 PMCID: PMC10152446 DOI: 10.1021/acs.jnatprod.2c01143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Indexed: 05/04/2023]
Abstract
Myxobacteria represent an underinvestigated source of chemically diverse and biologically active secondary metabolites. Here, we report the discovery, isolation, structure elucidation, and biological evaluation of two new bacterial sterols, termed nannosterols A and B (1, 2), from the terrestrial myxobacterium Nannocystis sp. (MNa10993). Nannosterols feature a cholestanol core with numerous modifications including a secondary alcohol at position C-15, a terminal vicinal diol side chain at C-24-C-25 (1, 2), and a hydroxy group at the angular methyl group at C-18 (2), which is unprecedented for bacterial sterols. Another rare chemical feature of bacterial triterpenoids is a ketone group at position C-7, which is also displayed by 1 and 2. The combined exploration based on myxobacterial high-resolution secondary metabolome data and genomic in silico investigations exposed the nannosterols as frequently produced sterols within the myxobacterial suborder of Nannocystineae. The discovery of the nannosterols provides insights into the biosynthesis of these new myxobacterial sterols, with implications in understanding the evolution of sterol production by prokaryotes.
Collapse
Affiliation(s)
- Sergi
H. Akone
- Helmholtz-Institute
for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for
Infection Research (HZI), Department of Microbial Natural Products, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
- Department
of Pharmacy, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
- German
Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Helmholtz
International Laboratories, Department of Microbial Natural Products, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
- Department
of Chemistry, Faculty of Science, University
of Douala, P.O. Box 24157, Douala, Cameroon
| | - Joachim J. Hug
- Helmholtz-Institute
for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for
Infection Research (HZI), Department of Microbial Natural Products, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
- Department
of Pharmacy, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
- German
Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Helmholtz
International Laboratories, Department of Microbial Natural Products, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
| | - Amninder Kaur
- Helmholtz-Institute
for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for
Infection Research (HZI), Department of Microbial Natural Products, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
- Department
of Pharmacy, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
- German
Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Helmholtz
International Laboratories, Department of Microbial Natural Products, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
| | - Ronald Garcia
- Helmholtz-Institute
for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for
Infection Research (HZI), Department of Microbial Natural Products, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
- Department
of Pharmacy, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
- German
Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Helmholtz
International Laboratories, Department of Microbial Natural Products, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
| | - Rolf Müller
- Helmholtz-Institute
for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for
Infection Research (HZI), Department of Microbial Natural Products, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
- Department
of Pharmacy, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
- German
Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Helmholtz
International Laboratories, Department of Microbial Natural Products, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
| |
Collapse
|
11
|
Jäger MC, Patt M, González-Ruiz V, Boccard J, Wey T, Winter DV, Rudaz S, Odermatt A. Extended steroid profiling in H295R cells provides deeper insight into chemical-induced disturbances of steroidogenesis: Exemplified by prochloraz and anabolic steroids. Mol Cell Endocrinol 2023; 570:111929. [PMID: 37037411 DOI: 10.1016/j.mce.2023.111929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/12/2023]
Abstract
Human adrenocortical H295R cells have been validated by the OECD Test Guideline 456 to detect chemicals disrupting testosterone and 17β-estradiol (estradiol) biosynthesis. This study evaluated a novel approach to detect disturbances of steroidogenesis in H295R cells, exemplified by prochloraz and five anabolic steroids. Steroid profiles were assessed by an untargeted LC-MS-based method, providing a relative quantification of 57 steroids annotated according to their accurate masses and retention times. Such a panel of steroids included several mineralocorticoids, glucocorticoids, progestins and adrenal androgens. The coverage of a high number of metabolites in this extended steroid profiling facilitated grouping of chemicals with similar effects and detecting subtler differences between chemicals. It allowed, for example, distinguishing between the effects of turinabol and oxymetholone, supposed to act similarly in a previous characterization including only nine adrenal steroids. Furthermore, the results revealed that product/substrate ratios can provide superior information on altered enzyme activities compared to individual metabolite levels. For example, the 17α-hydroxypregnenolone/pregnenolone ratio was found to be a more sensitive marker for detecting 17α-hydroxylase inhibition by prochloraz than the corresponding individual steroids. These results illustrate that chemical grouping and calculation of product/substrate ratios can provide valuable information on mode-of-action and help prioritizing further experimental work.
Collapse
Affiliation(s)
- Marie-Christin Jäger
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Missionsstrasse 64, 4055, Basel, Switzerland; Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| | - Melanie Patt
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Missionsstrasse 64, 4055, Basel, Switzerland; Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| | - Víctor González-Ruiz
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Missionsstrasse 64, 4055, Basel, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva 4, Switzerland.
| | - Julien Boccard
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Missionsstrasse 64, 4055, Basel, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva 4, Switzerland.
| | - Tim Wey
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Missionsstrasse 64, 4055, Basel, Switzerland; Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| | - Denise V Winter
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Missionsstrasse 64, 4055, Basel, Switzerland; Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| | - Serge Rudaz
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Missionsstrasse 64, 4055, Basel, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva 4, Switzerland.
| | - Alex Odermatt
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Missionsstrasse 64, 4055, Basel, Switzerland; Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| |
Collapse
|
12
|
Hlavica P. Key regulators in the architecture of substrate access/egress channels in mammalian cytochromes P450 governing flexibility in substrate oxyfunctionalization. J Inorg Biochem 2023; 241:112150. [PMID: 36731371 DOI: 10.1016/j.jinorgbio.2023.112150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/31/2023]
Abstract
Cytochrome P450s (CYP) represent a superfamily of b-type hemoproteins catalyzing oxifunctionalization of a vast array of endogenous and exogenous compounds. The present review focuses on assessment of the topology of prospective determinants in substrate entry and product release channels of mammalian P450s, steering the conformational dynamics of substrate accessibility and productive ligand orientation toward the iron-oxene core. Based on a generalized, CYP3A4-related construct, the sum of critical elements from diverse target enzymes was found to cluster within the known substrate recognition sites. The majority of prevalent substrate access/egress tunnels revealed to be of fairly balanced functional importance. The hydrophobicity profile of the candidates revealed to be the most salient feature in functional interaction throughout the conduits, while bulkiness of the residues imposes steric restrictions on substrate traveling. Thus, small amino acids such as prolines and glycines serve as hinges, driving conformational flexibility in ligand passage. Similarly, bottlenecks in the tunnel architecture, being narrowest encounter points within the CYP3A4 model, have a vital function in substrate selectivity along with clusters of aromatic amino acids acting as gatekeepers. In addition, peripheral patches in conduits may house determinants modulating allosteric cooperativity between remote and central domains in the P450 structure. Remarkably, the bulk critical residues lining tunnels in the various isozymes reside in helices B'/C and F/G inclusive of their interhelical turns as well as in helix I. This suggests these regions to represent hotspots for targeted genetic engineering to tailor more sophisticated mammalian P450s exploitable in industrial, biotechnological and medicinal areas.
Collapse
Affiliation(s)
- Peter Hlavica
- Walther-Straub Institut fuer Pharmakologie und Toxikologie, Goethestrasse 33, D80336 Muenchen, Germany.
| |
Collapse
|
13
|
Ramakrishnan S, Kittles RA, Huss WJ, Wang J, Attwood K, Woloszynska A. Serum Androgen Metabolites Correlate with Clinical Variables in African and European American Men with Localized, Therapy Naïve Prostate Cancer. Metabolites 2023; 13:284. [PMID: 36837903 PMCID: PMC9962438 DOI: 10.3390/metabo13020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/26/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Dihydrotestosterone (DHT) and testosterone (T), which mediate androgen receptor nuclear translocation and target gene transcription, are crucial androgens and essential molecular triggers required for the proliferation and survival of prostate cancer cells. Therefore, androgen metabolism is commonly targeted in the treatment of prostate cancer. Using a high-pressure liquid chromatographic assay with tandem mass spectral detection, we determined the serum levels of metabolites produced during DHT/T biosynthesis in African American (AA) and European American (EA) men with localized, therapy naïve prostate cancer. Serum progesterone and related metabolites were significantly lower in AA men than in EA men, and these differences were associated with rapid disease progression. Multivariate analysis revealed significant differences between a subset of intermediate androgen metabolites between AA and EA men and between men with <=3 + 4 and >=4 + 3 Gleason score disease. AA men have a significantly higher frequency of single nucleotide polymorphisms in CYP11B1 and CYP11B2, enzymes that regulate corticosterone-aldosterone conversion. Finally, higher levels of T and pregnenolone were associated with a lower risk of progression-free survival only in AA men. This work provides new insight into androgen metabolism and racial disparities in prostate cancer by presenting evidence of dysregulated androgen biosynthesis in therapy naïve disease that correlates with clinical variables.
Collapse
Affiliation(s)
- Swathi Ramakrishnan
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Rick A. Kittles
- Community Health and Preventive Medicine, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Wendy J. Huss
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Jianmin Wang
- Department of Bioinformatics and BioStatistics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Kristopher Attwood
- Department of Bioinformatics and BioStatistics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Anna Woloszynska
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
14
|
Ikegawa K, Hasegawa Y. Adrenal gland involvement in 11-ketotestosterone production analyzed using LC-MS/MS. Front Endocrinol (Lausanne) 2023; 14:1051195. [PMID: 36742384 PMCID: PMC9895773 DOI: 10.3389/fendo.2023.1051195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION 11-ketotestosterone (11KT), which is derived by the bioconversion of testosterone via 11β-hydroxytestosterone (11OHT), is a potent agonist of the human androgen receptor. The adrenal gland is considered an important organ in 11KT production because CYP11B1, which catalyzes testosterone to 11OHT, is expressed in the adrenal glands. The present study aimed to demonstrate adrenal gland involvement in 11KT production in prepubertal children, a topic which has not yet been addressed by any previous studies. METHODS Three, retrospective, observational studies were performed. Study 1 enrolled patients aged 8 months to 7 years with severe Kawasaki disease (KD) who were treated with mPSL pulse. Studies 2 and 3 included patients who had received a corticotropin-releasing hormone (CRH) stimulation test and adrenocorticotropic hormone (ACTH) stimulation test, respectively. Samples were collected before and after treatment or drug administration, and serum 11KT, 11OHT, and other 11-oxygenated androgens were measured by LC-MS/MS. Steroid hormone values before and after medication were analyzed using the Wilcoxon signed rank test. RESULTS Studies 1, 2, and 3 included twenty patients with severe KD, eight patients with a CRH stimulation test, and eight patients with an ACTH stimulation test, respectively. Study 1 demonstrated that the median (IQR) 11KT level was significantly higher before, than after, mPSL pulse (0.39 (0.28-0.47) nmol/L versus 0.064 (0.012-0.075) nmol/L; P < 0.001). Studies 2 and 3 indicated no significant difference in the median 11KT value before and after the CRH or ACTH stimulation test while the 11OHT value was significantly higher after the test. CONCLUSION In conclusion, the mediation of 11KT production by ACTH demonstrated the importance of the adrenal glands in the synthesis of this androgen in prepubertal children.
Collapse
Affiliation(s)
- Kento Ikegawa
- Division of Endocrinology and Metabolism, Tokyo Metropolitan Children’s Medical Center, Tokyo, Japan
- Clinical Research Support Center, Tokyo Metropolitan Children’s Medical Center, Tokyo, Japan
- *Correspondence: Kento Ikegawa,
| | - Yukihiro Hasegawa
- Division of Endocrinology and Metabolism, Tokyo Metropolitan Children’s Medical Center, Tokyo, Japan
- Department of Pediatrics, Keio University of School of Medicine, Tokyo, Japan
| |
Collapse
|
15
|
Loomis CL, Brixius-Anderko S, Scott EE. Redox partner adrenodoxin alters cytochrome P450 11B1 ligand binding and inhibition. J Inorg Biochem 2022; 235:111934. [PMID: 35952394 PMCID: PMC9907956 DOI: 10.1016/j.jinorgbio.2022.111934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023]
Abstract
Human cytochrome P450 11B1 (CYP11B1) generation of the major glucocorticoid cortisol requires two electrons delivered sequentially by the iron‑sulfur protein adrenodoxin. While the expected adrenodoxin binding site is on the opposite side of the heme and 15-20 Å away, evidence is provided that adrenodoxin allosterically impacts CYP11B1 ligand binding and catalysis. The presence of adrenodoxin both decreases the dissociation constant (Kd) for substrate binding and increases the proportion of substrate that is bound at saturation. Adrenodoxin additionally decreases the Michaelis-Menten constant for the native substrate. Similar studies with several inhibitors also demonstrate the ability of adrenodoxin to modulate inhibition (IC50 values). Somewhat similar allosterism has recently been observed for the closely related CYP11B2/aldosterone synthase, but there are several marked differences in adrenodoxin effects on the two CYP11B enzymes. Comparison of the sequences and structures of these two CYP11B enzymes helps identify regions likely responsible for the functional differences. The allosteric effects of adrenodoxin on CYP11B enzymes underscore the importance of considering P450/redox partner interactions when evaluating new inhibitors.
Collapse
Affiliation(s)
- Cara L Loomis
- Departments of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Emily E Scott
- Departments of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Departments of Medicinal Chemistry, Pharmacology and Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
16
|
Differentiating Polycystic Ovary Syndrome from Adrenal Disorders. Diagnostics (Basel) 2022; 12:diagnostics12092045. [PMID: 36140452 PMCID: PMC9498167 DOI: 10.3390/diagnostics12092045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/08/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Although polycystic ovary syndrome (PCOS) is primarily considered a hyperandrogenic disorder in women characterized by hirsutism, menstrual irregularity, and polycystic ovarian morphology, an endocrinological investigation should be performed to rule out other hyperandrogenic disorders (e.g., virilizing tumors, non-classical congenital adrenal hyperplasia (NCAH), hyperprolactinemia, and Cushing’s syndrome) to make a certain diagnosis. PCOS and androgen excess disorders share clinical features such as findings due to hyperandrogenism, findings of metabolic syndrome, and menstrual abnormalities. The diagnosis of a woman with these symptoms is generally determined based on the patient’s history and rigorous clinical examination. Therefore, distinguishing PCOS from adrenal-originated androgen excess is an indispensable step in diagnosis. In addition to an appropriate medical history and physical examination, the measurement of relevant basal hormone levels and dynamic tests are required. A dexamethasone suppression test is used routinely to make a differential diagnosis between Cushing’s syndrome and PCOS. The most important parameter for differentiating PCOS from NCAH is the measurement of basal and ACTH-stimulated 17-OH progesterone (17-OHP) when required in the early follicular period. It should be kept in mind that rapidly progressive hyperandrogenic manifestations such as hirsutism may be due to an androgen-secreting adrenocortical carcinoma. This review discusses the pathophysiology of androgen excess of both adrenal and ovarian origins; outlines the conditions which lead to androgen excess; and aims to facilitate the differential diagnosis of PCOS from certain adrenal disorders.
Collapse
|
17
|
Yin L, Pan Y, Xue Y, Chen X, You T, Huang J, Xu Q, Hu Q. Design, Synthesis, and Biological Evaluations of Pyridyl 4,5,6,7-Tetrahydro-4,7-Methanobenzo[ d]isoxazoles as Potent and Selective Inhibitors of 11β-Hydroxylase. J Med Chem 2022; 65:11876-11888. [PMID: 35975976 DOI: 10.1021/acs.jmedchem.2c01037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inhibition of CYP11B1 is a promising therapy for severe diseases caused by excessive cortisol. Enantiomer discrimination provides clues to achieve selectivity that CYP11B1 and homologous CYP11B2 were selectively bound by S- and R-fadrozole, respectively, in distinct binding modes. Pyridyl 4,5,6,7-tetrahydro-4,7-methanobenzo[d]isoxazoles showing a similar binding mode to S-fadrozole in CYP11B1 were designed as potent and selective CYP11B1 inhibitors. Compound 7aa exhibited a highly potent CYP11B1 inhibition similar to that of the drug osilodrostat (IC50's of 9 and 6 nM, respectively) but was 1500-fold more selective over CYP11B2 compared to osilodrostat (selectivity factors of 125 versus 0.08, respectively). Strong reductions of plasma cortisol concentrations by compound 7aa were demonstrated in rats without interference in aldosterone production after oral application. It showed no inhibition against a panel of steroidogenic and hepatic CYP enzymes. Exhibiting a good pharmacokinetic profile, compound 7aa was considered as a drug candidate for further development.
Collapse
Affiliation(s)
- Lina Yin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 East Waihuan Road, 510006 Panyu, Guangzhou, P. R. China
| | - Youtian Pan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 East Waihuan Road, 510006 Panyu, Guangzhou, P. R. China
| | - Yuanyuan Xue
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 East Waihuan Road, 510006 Panyu, Guangzhou, P. R. China
| | - Xiaoli Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 East Waihuan Road, 510006 Panyu, Guangzhou, P. R. China
| | - Taiyun You
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 East Waihuan Road, 510006 Panyu, Guangzhou, P. R. China
| | - Jiahui Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 East Waihuan Road, 510006 Panyu, Guangzhou, P. R. China
| | - Qihao Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 East Waihuan Road, 510006 Panyu, Guangzhou, P. R. China
| | - Qingzhong Hu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 East Waihuan Road, 510006 Panyu, Guangzhou, P. R. China
| |
Collapse
|
18
|
Combining virtual screening and in vitro evaluation for the discovery of potential CYP11B2 inhibitors. Future Med Chem 2022; 14:1239-1250. [PMID: 35912798 DOI: 10.4155/fmc-2022-0119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: To search for highly bioactive hits for CYP11B2 inhibitors by virtual screening and in vitro evaluation. Materials & methods: Virtual screening of potential CYP11B2 inhibitors was performed by molecular docking and molecular dynamics simulation. Compound activity was determined by in vitro evaluation using MTT and ELISA assays. Results & conclusion: Based on the results of molecular docking and molecular dynamics simulation, nine lead hits were selected for in vitro biochemical testing. All hits in in vitro experiments had lower inhibitory effects on cell proliferation and certain inhibitory effects on aldosterone secretion. These hits may be excellent candidates for CYP11B2 inhibitors.
Collapse
|
19
|
Cussen L, McDonnell T, Bennett G, Thompson CJ, Sherlock M, O'Reilly MW. Approach to androgen excess in women: Clinical and biochemical insights. Clin Endocrinol (Oxf) 2022; 97:174-186. [PMID: 35349173 PMCID: PMC9541126 DOI: 10.1111/cen.14710] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/15/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022]
Abstract
Androgen excess in women typically presents clinically with hirsutism, acne or androgenic alopecia. In the vast majority of cases, the underlying aetiology is polycystic ovary syndrome (PCOS), a common chronic condition that affects up to 10% of all women. Identification of women with non-PCOS pathology within large cohorts of patients presenting with androgen excess represents a diagnostic challenge for the endocrinologist, and rare pathology including nonclassic congenital adrenal hyperplasia, severe insulin resistance syndromes, Cushing's disease or androgen-secreting tumours of the ovary or adrenal gland may be missed in the absence of a pragmatic screening approach. Detailed clinical history, physical examination and biochemical phenotyping are critical in risk-stratifying women who are at the highest risk of non-PCOS disorders. Red flag features such as rapid onset symptoms, overt virilization, postmenopausal onset or severe biochemical disturbances should prompt investigations for underlying neoplastic pathology, including dynamic testing and imaging where appropriate. This review will outline a proposed diagnostic approach to androgen excess in women, including an introduction to androgen metabolism and provision of a suggested algorithmic strategy to identify non-PCOS pathology according to clinical and biochemical phenotype.
Collapse
Affiliation(s)
- Leanne Cussen
- Department of Medicine, Royal College of Surgeons in Ireland (RCSI)University of Medicine and Health SciencesDublinRepublic of Ireland
- Department of EndocrinologyBeaumont HospitalDublinRepublic of Ireland
| | - Tara McDonnell
- Department of Medicine, Royal College of Surgeons in Ireland (RCSI)University of Medicine and Health SciencesDublinRepublic of Ireland
- Department of EndocrinologyBeaumont HospitalDublinRepublic of Ireland
| | - Gillian Bennett
- Department of EndocrinologyBeaumont HospitalDublinRepublic of Ireland
| | - Christopher J. Thompson
- Department of Medicine, Royal College of Surgeons in Ireland (RCSI)University of Medicine and Health SciencesDublinRepublic of Ireland
- Department of EndocrinologyBeaumont HospitalDublinRepublic of Ireland
| | - Mark Sherlock
- Department of Medicine, Royal College of Surgeons in Ireland (RCSI)University of Medicine and Health SciencesDublinRepublic of Ireland
- Department of EndocrinologyBeaumont HospitalDublinRepublic of Ireland
| | - Michael W. O'Reilly
- Department of Medicine, Royal College of Surgeons in Ireland (RCSI)University of Medicine and Health SciencesDublinRepublic of Ireland
- Department of EndocrinologyBeaumont HospitalDublinRepublic of Ireland
| |
Collapse
|
20
|
Dong H, You J, Zhao Y, Zheng D, Zhong Y, Li G, Weng Z, Luo H, Jiang S. Study on the Characteristics of Small-Molecule Kinase Inhibitors-Related Drug-Induced Liver Injury. Front Pharmacol 2022; 13:838397. [PMID: 35529445 PMCID: PMC9068902 DOI: 10.3389/fphar.2022.838397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/11/2022] [Indexed: 11/30/2022] Open
Abstract
Background and Aim: More than half of the small-molecule kinase inhibitors (KIs) induced liver injury clinically. Meanwhile, studies have shown a close relationship between mitochondrial damage and drug-induced liver injury (DILI). We aimed to study KIs and the binding between drugs and mitochondrial proteins to find factors related to DILI occurrence. Methods: A total of 1,223 oral FDA-approved drugs were collected and analyzed, including 44 KIs. Fisher’s exact test was used to analyze DILI potential and risk of different factors. A total of 187 human mitochondrial proteins were further collected, and high-throughput molecular docking was performed between human mitochondrial proteins and drugs in the data set. The molecular dynamics simulation was used to optimize and evaluate the dynamic binding behavior of the selected mitochondrial protein/KI complexes. Results: The possibility of KIs to produce DILI is much higher than that of other types (OR = 46.89, p = 9.28E-13). A few DILI risk factors were identified, including molecular weight (MW) between 400 and 600, the defined daily dose (DDD) ≥ 100 mg/day, the octanol–water partition coefficient (LogP) ≥ 3, and the degree of liver metabolism (LM) more than 50%. Drugs that met this combination of rules were found to have a higher DILI risk than controls (OR = 8.28, p = 4.82E-05) and were more likely to cause severe DILI (OR = 8.26, p = 5.06E-04). The docking results showed that KIs had a significant higher affinity with human mitochondrial proteins (p = 4.19E-11) than other drug types. Furthermore, the five proteins with the lowest docking score were selected for molecular dynamics simulation, and the smallest fluctuation of the backbone RMSD curve was found in the protein 5FS8/KI complexes, which indicated the best stability of the protein 5FS8 bound to KIs. Conclusions: KIs were found to have the highest odds ratio of causing DILI. MW was significantly related to the production of DILI, and the average docking scores of KI drugs were found to be significantly different from other classes. Further analysis identified the top binding mitochondrial proteins for KIs, and specific binding sites were analyzed. The optimization of molecular docking results by molecular dynamics simulation may contribute to further studying the mechanism of DILI.
Collapse
Affiliation(s)
- Huiqun Dong
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Jia You
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yu Zhao
- College of Mathematics and Computer Science, Fuzhou University, Fuzhou, China
| | - Danhua Zheng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Yi Zhong
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
- College of Mathematics and Computer Science, Fuzhou University, Fuzhou, China
| | - Gaozheng Li
- College of Mathematics and Computer Science, Fuzhou University, Fuzhou, China
| | - Zuquan Weng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
- College of Mathematics and Computer Science, Fuzhou University, Fuzhou, China
- *Correspondence: Zuquan Weng, ; Heng Luo, ; Shan Jiang,
| | - Heng Luo
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
- College of Mathematics and Computer Science, Fuzhou University, Fuzhou, China
- MetaNovas Biotech Inc., Foster City, CA, United States
- *Correspondence: Zuquan Weng, ; Heng Luo, ; Shan Jiang,
| | - Shan Jiang
- Department of Vascular Thyroid Surgery, Affiliated Union Hospital, Fujian Medical University, Fuzhou, China
- *Correspondence: Zuquan Weng, ; Heng Luo, ; Shan Jiang,
| |
Collapse
|
21
|
Abdi SAH, Alzahrani A, Alghamdi S, Alquraini A, Alghamdi A. Hexaconazole exposure ravages biosynthesis pathway of steroid hormones: revealed by molecular dynamics and interaction. Toxicol Res (Camb) 2022; 11:60-76. [PMID: 35237412 PMCID: PMC8882804 DOI: 10.1093/toxres/tfab113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/05/2021] [Accepted: 11/03/2021] [Indexed: 12/25/2023] Open
Abstract
Widespread application of hexaconazole for agriculture purpose poses a threat to human health by disrupting normal endocrine homeostasis. To avoid adverse health effects on human, it is crucial to identify the effects of hexaconazole on key enzymes responsible for steroidal hormone synthesis. In view of this, present study was conducted to investigate the interaction mechanisms of hexaconazole with key enzymes in comparison with their food drug administration (FDA) approved inhibitor by molecular docking and molecular dynamics simulations. Results indicate that hexaconazole contacts with the active site of the key enzymes required for steroidal hormonal synthesis. Results pertaining to root-mean-square deviation, root-mean-square calculation, radius of gyration, hydrogen bonding and solvent accessible surface area exhibited that the interaction pattern and stability of interaction of hexaconazole was similar to enzyme specific inhibitor. In addition, ligand and enzyme complex interaction energy of hexaconazole was almost similar to key enzyme and FDA-approved enzyme specific inhibitor complex. This study offers a molecular level of understanding of hexaconazole with different enzymes required for steroidal hormonal synthesis. Findings of the study clearly suggest that hexaconazole has efficacy to stably interact with various enzyme required to progress the pathway of hormonal synthesis. If incessant exposure of hexaconazole occurs during agricultural work it may lead to ravage hormonal synthesis or potent endocrine disruption. The result of binding energy and complex interaction energy is depicted in the graphical abstract.
Collapse
Affiliation(s)
- Sayed Aliul Hasan Abdi
- Department of Pharmaceutical Chemistry, Faculty of Clinical Pharmacy, Albaha University, 1988, Saudi Arabia
| | - Abdulaziz Alzahrani
- Department of Pharmaceutical Chemistry, Faculty of Clinical Pharmacy, Albaha University, 1988, Saudi Arabia
| | - Saleh Alghamdi
- Department of Clinical Pharmacy, Faculty of Clinical Pharmacy, Albaha University, 1988, Saudi Arabia, Saudi Arabia
| | - Ali Alquraini
- Department of Pharmaceutical Chemistry, Faculty of Clinical Pharmacy, Albaha University, 1988, Saudi Arabia
| | - Adel Alghamdi
- Department of Pharmaceutical Chemistry, Faculty of Clinical Pharmacy, Albaha University, 1988, Saudi Arabia
| |
Collapse
|
22
|
Liu W, Li Z, Chu S, Ma X, Wang X, Jiang M, Bai G. Atractylenolide-I covalently binds to CYP11B2, selectively inhibits aldosterone synthesis, and improves hyperaldosteronism. Acta Pharm Sin B 2022; 12:135-148. [PMID: 35127376 PMCID: PMC8799885 DOI: 10.1016/j.apsb.2021.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/10/2021] [Accepted: 08/31/2021] [Indexed: 01/13/2023] Open
Abstract
Hyperaldosteronism is a common disease that is closely related to endocrine hypertension and other cardiovascular diseases. Cytochrome P450 11B2 (CYP11B2), an important enzyme in aldosterone (ALD) synthesis, is a promising target for the treatment of hyperaldosteronism. However, selective inhibitors targeting CYP11B2 are still lacking due to the high similarity with CYP11B1. In this study, atractylenolide-I (AT-I) was found to significantly reduce the production of ALD but had no effect on cortisol synthesis, which is catalyzed by CYP11B1. Chemical biology studies revealed that due to the presence of Ala320, AT-I is selectively bound to the catalytic pocket of CYP11B2, and the C8/C9 double bond of AT-I can be epoxidized, which then undergoes nucleophilic addition with the sulfhydryl group of Cys450 in CYP11B2. The covalent binding of AT-I disrupts the interaction between heme and CYP11B2 and inactivates CYP11B2, leading to the suppression of ALD synthesis; AT-I shows a significant therapeutic effect for improving hyperaldosteronism.
Collapse
Affiliation(s)
- Wenjuan Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Zhenqiang Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Simeng Chu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Xiaoyao Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Xiaoying Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
- Corresponding authors. Tel./fax: +86 22 23506930.
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
- Corresponding authors. Tel./fax: +86 22 23506930.
| |
Collapse
|
23
|
Raju DR, Kumar A, BK N, Shetty A, PS A, Kumar RP, Lalitha R, Sigamani G. Extensive modelling and quantum chemical study of sterol C-22 desaturase mechanism: A commercially important cytochrome P450 family. Catal Today 2021. [DOI: 10.1016/j.cattod.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
24
|
Takahashi Y, Yamazaki K, Kamatani Y, Kubo M, Matsuda K, Asai S. A genome-wide association study identifies a novel candidate locus at the DLGAP1 gene with susceptibility to resistant hypertension in the Japanese population. Sci Rep 2021; 11:19497. [PMID: 34593835 PMCID: PMC8484335 DOI: 10.1038/s41598-021-98144-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 09/03/2021] [Indexed: 01/11/2023] Open
Abstract
Numerous genetic variants associated with hypertension and blood pressure are known, but there is a paucity of evidence from genetic studies of resistant hypertension, especially in Asian populations. To identify novel genetic loci associated with resistant hypertension in the Japanese population, we conducted a genome-wide association study with 2705 resistant hypertension cases and 21,296 mild hypertension controls, all from BioBank Japan. We identified one novel susceptibility candidate locus, rs1442386 on chromosome 18p11.3 (DLGAP1), achieving genome-wide significance (odds ratio (95% CI) = 0.85 (0.81–0.90), P = 3.75 × 10−8) and 18 loci showing suggestive association, including rs62525059 of 8q24.3 (CYP11B2) and rs3774427 of 3p21.1 (CACNA1D). We further detected biological processes associated with resistant hypertension, including chemical synaptic transmission, regulation of transmembrane transport, neuron development and neurological system processes, highlighting the importance of the nervous system. This study provides insights into the etiology of resistant hypertension in the Japanese population.
Collapse
Affiliation(s)
- Yasuo Takahashi
- Division of Genomic Epidemiology and Clinical Trials, Clinical Trials Research Center, Nihon University School of Medicine, 30-1 Oyaguchi-Kami Machi, Itabashi-ku, Tokyo, 173-8610, Japan.
| | - Keiko Yamazaki
- Division of Genomic Epidemiology and Clinical Trials, Clinical Trials Research Center, Nihon University School of Medicine, 30-1 Oyaguchi-Kami Machi, Itabashi-ku, Tokyo, 173-8610, Japan.,Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yoichiro Kamatani
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Koichi Matsuda
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Satoshi Asai
- Division of Genomic Epidemiology and Clinical Trials, Clinical Trials Research Center, Nihon University School of Medicine, 30-1 Oyaguchi-Kami Machi, Itabashi-ku, Tokyo, 173-8610, Japan. .,Division of Pharmacology, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-Kami Machi, Itabashi-ku, Tokyo, 173-8610, Japan.
| |
Collapse
|
25
|
Spatially restricted substrate-binding site of cortisol-synthesizing CYP11B1 limits multiple hydroxylations and hinders aldosterone synthesis. Curr Res Struct Biol 2021; 3:192-205. [PMID: 34485929 PMCID: PMC8408562 DOI: 10.1016/j.crstbi.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 11/22/2022] Open
Abstract
Human cytochromes P45011β (CYP11B1) and P450aldo (CYP11B2) are monooxygenases that synthesize cortisol through steroid 11β-hydroxylation and aldosterone through a three-step process comprising 11β-hydroxylation and two 18-hydroxylations, respectively. CYP11B1 also catalyzes 18-monohydroxylation and 11β,18-dihydroxylation. To study the molecular basis of such catalytic divergence of the two enzymes, we examined a CYP11B1 mutant (Mt-CYP11B1) with amino acid replacements on the distal surface by determining the catalytic activities and crystal structure in the metyrapone-bound form at 1.4-Å resolution. Mt-CY11B1 retained both 11β-hydroxylase and 18-hydroxylase activities of the wild type (Wt-CYP11B1) but lacked 11β,18-dihydroxylase activity. Comparisons of the crystal structure of Mt-CYP11B1 to those of Wt-CYP11B1 and CYP11B2 that were already reported show that the mutation reduced the innermost space putatively surrounding the C3 side of substrate 11-deoxycorticosterone (DOC) bound to Wt-CYP11B1, while the corresponding space in CYP11B2 is enlarged markedly and accessible to bulk water through a channel. Molecular dynamics simulations of their DOC-bound forms supported the above findings and revealed that the enlarged space of CYP11B2 had a hydrogen bonding network involving water molecules that position DOC. Thus, upon positioning 11β-hydroxysteroid for 18-hydroxylation in their substrate-binding sites, steric hindrance could occur more strongly in Mt-CYP11B1 than in Wt-CYP11B1 but less in CYP11B2. Our investigation employing Mt-CYP11B1 sheds light on the divergence in structure and function between CYP11B1 and CYP11B2 and suggests that CYP11B1 with spatially-restricted substrate-binding site serves as 11β-hydroxylase, while CYP11B2 with spatially-extended substrate-binding site successively processes additional 18-hydroxylations to produce aldosterone. CYP11B1 and CYP11B2 catalyze steroid hydroxylation for syntheses of cortisol and aldosterone, respectively. Structural basis for their differences in ability of multiple hydroxylations remains unclear. A CYP11B1 mutant generated is characterized by monohydroxylase activities. X-ray crystallography and molecular dynamics simulation reveal spatial restriction in substrate-binding site of the mutant. Spatial dimension of the substrate-binding sites is crucial for differential production of gluco- and mineralocorticoids.
Collapse
|
26
|
Wu J, Ding X, Tan X. A patent review of aldosterone synthase inhibitors (2014-present). Expert Opin Ther Pat 2021; 32:13-28. [PMID: 34365871 DOI: 10.1080/13543776.2021.1965991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Aldosterone synthase (AS) is a key enzyme involved in the final three rate-limiting steps of the biosynthesis pathway of aldosterone, and its inhibition has been considered as an effective strategy to treat hypertension, heart failure, and related cardio-metabolic diseases. AREA COVERED This review provides an update on the discovery and development of aldosterone synthase inhibitors by means of patents published between January 2014 and March 2021. The molecules are classified by pharmaceutical company with progress that has been made in clinical trials being highlighted. EXPERT OPINION Mineralocorticoid receptor antagonists (MRAs) and aldosterone synthase inhibitors (ASI) represent two of the main approaches for the blockade of aldosterone. Clinical success, as well as foreseen side effects of steroidal MRAs, prompted the discovery and development of ASI. Since the observation of decreased cortisol levels in clinical trials for LCI699, subsequent efforts have been largely focused on improving its selectivity over hCYP11B1. Candidates with improved potency and selectivity are under investigation across a wide range of indications. Whether ASI will provide an additional therapeutic advantage over current safe and selective non-steroidal MRAs is highly anticipated.
Collapse
Affiliation(s)
- Jun Wu
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai, China
| | - Xiao Ding
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai, China
| | - Xuefei Tan
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai, China
| |
Collapse
|
27
|
Brixius-Anderko S, Scott EE. Aldosterone Synthase Structure With Cushing Disease Drug LCI699 Highlights Avenues for Selective CYP11B Drug Design. Hypertension 2021; 78:751-759. [PMID: 34247511 DOI: 10.1161/hypertensionaha.121.17615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
| | - Emily E Scott
- Departments of Medicinal Chemistry (S.B.-A., E.E.S.), University of Michigan, Ann Arbor.,Pharmacology (E.E.S.), University of Michigan, Ann Arbor
| |
Collapse
|
28
|
Zhu H, Liu M, Li H, Guan T, Zhang Q, Chen Y, Liu Y, Hartmann RR, Yin L, Hu Q. Design, synthesis and biological evaluation of pyridyl substituted benzoxazepinones as potent and selective inhibitors of aldosterone synthase. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Bernhardt R, Neunzig J. Underestimated reactions and regulation patterns of adrenal cytochromes P450. Mol Cell Endocrinol 2021; 530:111237. [PMID: 33722664 DOI: 10.1016/j.mce.2021.111237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/18/2021] [Accepted: 02/27/2021] [Indexed: 11/20/2022]
Abstract
Although cytochrome P450 (CYP) systems including the adrenal ones are being investigated since many years, there are still reactions and regulation patterns that have been underestimated ever since. This review discusses neglected ones to bring them into the focus of investigators working in the field. Novel substrates and reactions described for adrenal CYPs recently point to the fact that different from what has been believed for many years, adrenal CYPs are less selective than previously thought. The conversion of steroid sulfates, intermediates of steroid biosynthesis as well as of exogenous compounds are being discussed here in more detail and consequences for further studies are drawn. Furthermore, it was shown that protein-protein interactions may have an important effect not only on the activity of adrenal CYPs, but also on the product pattern of the reactions. It was found that, as expected, the stoichiometry of CYP:redox partner plays an important role for tuning the activity. In addition, competition between different CYPs for the redox partner and for electrons and possible alterations by mutants in the efficiency of electron transfer play an important role for the activity and product pattern. Moreover, the influence of phosphorylation and small charged molecules like natural polyamines on the activity of adrenal systems has been demonstrated in-vitro indicating a possible regulation of adrenal CYP reactions by affecting redox partner recognition and binding affinity. Finally, an effect of the genetic background on the consequences of mutations in adrenal CYPs found in patients was suggested from corresponding in-vitro studies indicating that a different genetic background might be able to significantly affect the activity of a CYP mutant.
Collapse
Affiliation(s)
- Rita Bernhardt
- Department of Biochemistry, Campus B2.2, Saarland University, D-66123, Saarbrücken, Germany.
| | - Jens Neunzig
- Institute of Molecular Plant Biology, Campus A2.4, Saarland University, D-66123, Saarbrücken, Germany
| |
Collapse
|
30
|
Olson-Manning CF. Elaboration of the Corticosteroid Synthesis Pathway in Primates through a Multistep Enzyme. Mol Biol Evol 2021; 37:2257-2267. [PMID: 32196091 DOI: 10.1093/molbev/msaa080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Metabolic networks are complex cellular systems dependent on the interactions among, and regulation of, the enzymes in the network. Although there is great diversity of types of enzymes that make up metabolic networks, the models meant to understand the possible evolutionary outcomes following duplication neglect specifics about the enzyme, pathway context, and cellular constraints. To illuminate the mechanisms that shape the evolution of biochemical pathways, I functionally characterize the consequences of gene duplication of an enzyme family that performs multiple subsequent enzymatic reactions (a multistep enzyme) in the corticosteroid pathway in primates. The products of the corticosteroid pathway (aldosterone and cortisol) are steroid hormones that regulate metabolism and stress response in tetrapods. These steroid hormones are synthesized by a multistep enzyme Cytochrome P450 11B (CYP11B) that performs subsequent steps on different carbon atoms of the steroid derivatives. Through ancestral state reconstruction and in vitro characterization, I find that the primate ancestor of the CYP11B1 and CYP11B2 paralogs had moderate ability to synthesize both cortisol and aldosterone. Following duplication in Old World primates, the CYP11B1 homolog specialized on the production of cortisol, whereas its paralog, CYP11B2, maintained its ability to perform multiple subsequent steps as in the ancestral pathway. Unlike CYP11B1, CYP11B2 could not specialize on the production of aldosterone because it is constrained to perform earlier steps in the corticosteroid synthesis pathway to achieve the final product aldosterone. These results suggest that enzyme function, pathway context, along with tissue-specific regulation, both play a role in shaping potential outcomes of metabolic network elaboration.
Collapse
Affiliation(s)
- Carrie F Olson-Manning
- Department of Biology, Augustana University, Sioux Falls, SD.,Department of Ecology and Evolution, University of Chicago, Chicago, IL
| |
Collapse
|
31
|
Glass SM, Reddish MJ, Child SA, Wilkey CJ, Stec DF, Guengerich FP. Characterization of human adrenal cytochrome P450 11B2 products of progesterone and androstenedione oxidation. J Steroid Biochem Mol Biol 2021; 208:105787. [PMID: 33189850 PMCID: PMC7954869 DOI: 10.1016/j.jsbmb.2020.105787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/19/2020] [Accepted: 10/26/2020] [Indexed: 11/17/2022]
Abstract
Cytochrome P450 (P450) 11B1 and 11B2 both catalyze the 11β-hydroxylation of 11-deoxycorticosterone and the subsequent 18-hydroxylation of the product. P450 11B2, but not P450 11B1, catalyzes a further C-18 oxidation to yield aldosterone. 11-Oxygenated androgens are of interest, and 11-hydroxy progesterone has been reported to be a precursor of these. Oxidation of progesterone by purified recombinant P450 11B2 yielded a mono-hydroxy derivative as the major product, and co-chromatography with commercial standards and 2-D NMR spectroscopy indicated 11β-hydroxylation. 18-Hydroxyprogesterone and a dihydroxyprogesterone were also formed. Similarly, oxidation of androstenedione by P450 11B2 yielded 11β-hydroxyandrostenedione, 18-hydroxyandrostenedione, and a dihydroxyandrostenedione. The steady-state kinetic parameters for androstenedione and progesterone 11β-hydroxylation were similar to those reported for the classic substrate 11-deoxycorticosterone. The source of 11α-hydroxyprogesterone in humans remains unresolved.
Collapse
Affiliation(s)
- Sarah M Glass
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States
| | - Michael J Reddish
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States; Department of Chemistry and Fermentation Sciences, Appalachian State University, Boone, NC, 28608, United States
| | - Stella A Child
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States
| | - Clayton J Wilkey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States
| | - Donald F Stec
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37122, United States
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States.
| |
Collapse
|
32
|
Yablokov EO, Sushko TA, Kaluzhskiy LA, Kavaleuski AA, Mezentsev YV, Ershov PV, Gilep AA, Ivanov АS, Strushkevich NV. Substrate-induced modulation of protein-protein interactions within human mitochondrial cytochrome P450-dependent system. J Steroid Biochem Mol Biol 2021; 208:105793. [PMID: 33271253 DOI: 10.1016/j.jsbmb.2020.105793] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/18/2020] [Accepted: 11/14/2020] [Indexed: 12/28/2022]
Abstract
Steroidogenesis is strictly regulated at multiple levels, as produced steroid hormones are crucial to maintain physiological functions. Cytochrome P450 enzymes are key players in adrenal steroid hormone biosynthesis and function within short redox-chains in mitochondria and endoplasmic reticulum. However, mechanisms regulating supply of reducing equivalents in the mitochondrial CYP-dependent system are not fully understood. In the present work, we aimed to estimate how the specific steroids, substrates, intermediates and products of multistep reactions modulate protein-protein interactions between adrenodoxin (Adx) and mitochondrial CYP11 s. Using the SPR technology we determined that steroid substrates affect affinity and stability of CYP11s-Adx complexes in an isoform-specific mode. In particular, cholesterol induces a 4-fold increase in the rate of CYP11A1 - Adx complex formation without significant effect on dissociation (koff decreased ∼1.5-fold), overall increasing complex affinity. At the same time steroid substrates decrease the affinity of both CYP11B1 - Adx and CYP11B2 - Adx complexes, predominantly reducing their stability (4-7 fold). This finding reveals differentiation of protein-protein interactions within the mitochondrial pool of CYPs, which have the same electron donor. The regulation of electron supply by the substrates might affect the overall steroid hormones production. Our experimental data provide further insight into protein-protein interactions within CYP-dependent redox chains involved in steroidogenesis.
Collapse
Affiliation(s)
- E O Yablokov
- Institute of Biomedical Chemistry, 119121, Pogodinskaya str. 10, Building 8, Moscow, Russia.
| | - T A Sushko
- Department of Bioengineering, School of Engineering, The University of Tokyo, 4-6 - 1 Shirokanedai, Minato-ku, 108-8639, Tokyo, Japan
| | - L A Kaluzhskiy
- Institute of Biomedical Chemistry, 119121, Pogodinskaya str. 10, Building 8, Moscow, Russia
| | - A A Kavaleuski
- Institute of Bioorganic Chemistry National Academy of Sciences of Belarus, 220141, Kuprevicha str. 5/2, Minsk, Belarus
| | - Y V Mezentsev
- Institute of Biomedical Chemistry, 119121, Pogodinskaya str. 10, Building 8, Moscow, Russia
| | - P V Ershov
- Institute of Biomedical Chemistry, 119121, Pogodinskaya str. 10, Building 8, Moscow, Russia
| | - A A Gilep
- Institute of Bioorganic Chemistry National Academy of Sciences of Belarus, 220141, Kuprevicha str. 5/2, Minsk, Belarus
| | - А S Ivanov
- Institute of Biomedical Chemistry, 119121, Pogodinskaya str. 10, Building 8, Moscow, Russia
| | - N V Strushkevich
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205, Moscow, Russia
| |
Collapse
|
33
|
Beck KR, Odermatt A. Antifungal therapy with azoles and the syndrome of acquired mineralocorticoid excess. Mol Cell Endocrinol 2021; 524:111168. [PMID: 33484741 DOI: 10.1016/j.mce.2021.111168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 10/22/2022]
Abstract
The syndromes of mineralocorticoid excess describe a heterogeneous group of clinical manifestations leading to endocrine hypertension, typically either through direct activation of mineralocorticoid receptors or indirectly by impaired pre-receptor enzymatic regulation or through disturbed renal sodium homeostasis. The phenotypes of these disorders can be caused by inherited gene variants and somatic mutations or may be acquired upon exposures to exogenous substances. Regarding the latter, the symptoms of an acquired mineralocorticoid excess have been reported during treatment with azole antifungal drugs. The current review describes the occurrence of mineralocorticoid excess particularly during the therapy with posaconazole and itraconazole, addresses the underlying mechanisms as well as inter- and intra-individual differences, and proposes a therapeutic drug monitoring strategy for these two azole antifungals. Moreover, other therapeutically used azole antifungals and ongoing efforts to avoid adverse mineralocorticoid effects of azole compounds are shortly discussed.
Collapse
Affiliation(s)
- Katharina R Beck
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Alex Odermatt
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
34
|
Merakou C, Fylaktou I, Sertedaki A, Dracopoulou M, Voutetakis A, Efthymiadou A, Christoforidis A, Dacou-Voutetakis C, Chrysis D, Kanaka-Gantenbein C. Molecular Analysis of the CYP11B2 Gene in 62 Patients with Hypoaldosteronism Due to Aldosterone Synthase Deficiency. J Clin Endocrinol Metab 2021; 106:e182-e191. [PMID: 33098647 DOI: 10.1210/clinem/dgaa765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Indexed: 02/11/2023]
Abstract
CONTEXT Isolated congenital hypoaldosteronism presents in early infancy with symptoms including vomiting, severe dehydration, salt wasting, and failure to thrive. The main causes of this rare autosomal recessive disorder is pathogenic variants of the CYP11B2 gene leading to aldosterone synthase deficiency. OBJECTIVE To investigate the presence of CYP11B2 pathogenic variants in a cohort of patients with a clinical, biochemical, and hormonal profile suggestive of aldosterone synthase deficiency. DESIGN Clinical and molecular study. SETTING Tertiary academic Children's Hospital, Center for Rare Pediatric Endocrine Diseases. PATIENTS AND METHODS Sixty-two patients (56 unrelated patients and 6 siblings), with hypoaldosteronism and their parents, underwent CYP11B2 gene sequencing after its selective amplification against the highly homologous CYP11B1 gene. In silico analysis of the identified novel variants was carried out to evaluate protein stability and potential pathogenicity. RESULTS CYP11B2 gene sequencing revealed that 62 patients carried a total of 12 different pathogenic CYP11B2 gene variants, 6 of which are novel. Importantly, 96% of the 56 patients carried the previously reported p.T185I variant either in homozygosity or in compound heterozygosity with another variant. The 6 novel variants detected were: p.M1I, p.V129M, p.R141Q, p.A165T, p.R448C, and the donor splice site variant of intron 8, c.1398 + 1G > A. CONCLUSION Molecular diagnosis was achieved in 62 patients with aldosterone synthase deficiency, the largest cohort thus far reported. Six novel genetic variants were identified as possibly pathogenic, extending the spectrum of reported molecular defects of the CYP11B2 gene.
Collapse
Affiliation(s)
- Christina Merakou
- Division of Endocrinology, Diabetes and Metabolism, Center for Rare Pediatric Endocrine Diseases, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, "Agia Sophia" Children's Hospital, Athens, Greece
| | - Irene Fylaktou
- Division of Endocrinology, Diabetes and Metabolism, Center for Rare Pediatric Endocrine Diseases, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, "Agia Sophia" Children's Hospital, Athens, Greece
| | - Amalia Sertedaki
- Division of Endocrinology, Diabetes and Metabolism, Center for Rare Pediatric Endocrine Diseases, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, "Agia Sophia" Children's Hospital, Athens, Greece
| | - Maria Dracopoulou
- Division of Endocrinology, Diabetes and Metabolism, Center for Rare Pediatric Endocrine Diseases, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, "Agia Sophia" Children's Hospital, Athens, Greece
| | - Antonis Voutetakis
- Division of Endocrinology, Diabetes and Metabolism, Center for Rare Pediatric Endocrine Diseases, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, "Agia Sophia" Children's Hospital, Athens, Greece
| | - Alexandra Efthymiadou
- Division of Endocrinology and Diabetes, Department of Pediatrics, Medical School, University of Patras, Patras, Greece
| | - Athanasios Christoforidis
- First Pediatric Department, School of Medicine, Faculty of Medical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Catherine Dacou-Voutetakis
- Division of Endocrinology, Diabetes and Metabolism, Center for Rare Pediatric Endocrine Diseases, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, "Agia Sophia" Children's Hospital, Athens, Greece
| | - Dionisios Chrysis
- Division of Endocrinology and Diabetes, Department of Pediatrics, Medical School, University of Patras, Patras, Greece
| | - Christina Kanaka-Gantenbein
- Division of Endocrinology, Diabetes and Metabolism, Center for Rare Pediatric Endocrine Diseases, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, "Agia Sophia" Children's Hospital, Athens, Greece
| |
Collapse
|
35
|
Brixius-Anderko S, Scott EE. Structural and functional insights into aldosterone synthase interaction with its redox partner protein adrenodoxin. J Biol Chem 2021; 296:100794. [PMID: 34015331 PMCID: PMC8215293 DOI: 10.1016/j.jbc.2021.100794] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 01/27/2023] Open
Abstract
Aldosterone is the major mineralocorticoid in the human body controlling blood pressure and salt homeostasis. Overproduction of aldosterone leads to primary aldosteronism, which is the most common form of secondary hypertension with limited treatment options. Production of aldosterone by cytochrome P450 11B2 (CYP11B2, aldosterone synthase) requires two reduction events with the electrons delivered by the iron/sulfur protein adrenodoxin. Very limited information is available about the structural and functional basis of adrenodoxin/CYP11B2 interaction, which impedes the development of new treatment options for primary aldosteronism. A systematic study was carried out to determine if adrenodoxin interaction with CYP11B2 might also have an allosteric component in addition to electron transfer. Indeed, local increases in adrenodoxin concentration promote binding of the substrate 11-deoxycorticosterone and the inhibitor osilodrostat (LCI699) in the active site-over 17 Å away-as well as enhance the inhibitory effect of this latter drug. The CYP11B2 structure in complex with adrenodoxin identified specific residues at the protein-protein interface interacting via five salt bridges and four hydrogen bonds. Comparisons with cholesterol-metabolizing CYP11A1 and cortisol-producing CYP11B1, which also bind adrenodoxin, revealed substantial structural differences in these regions. The structural and functional differences between different P450 interactions with adrenodoxin may provide valuable clues for an orthogonal treatment approach for primary aldosteronism by specifically targeting the interaction between CYP11B2 and adrenodoxin.
Collapse
Affiliation(s)
| | - Emily E Scott
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA; Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
36
|
Aldosterone synthase inhibitors for cardiovascular diseases: A comprehensive review of preclinical, clinical and in silico data. Pharmacol Res 2020; 163:105332. [PMID: 33271294 DOI: 10.1016/j.phrs.2020.105332] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/27/2020] [Accepted: 11/23/2020] [Indexed: 01/23/2023]
Abstract
Aldosterone, the main mineralocorticoid hormone, plays a fundamental role in maintaining blood pressure (BP)and volume under hypovolemic conditions. However, in numerous diseases, where it is produced in excess, it plays a detrimental role and contributes to cardiovascular events and ultimately to death in a multitude of patients. The seminal observation that the fungicide-derivative fadrozole blunted steroidogenesis has led to develop several agents to inhibit aldosterone synthase (AS, CYP11B2), the mitochondrial NADH-dependent enzyme that is necessary for aldosterone biosynthesis. Aldosterone synthase inhibitors (ASI) have, thereafter, been conceived and investigated in phase I and phase II studies. We herein reviewed the ASIs available so far considering their chemical structure, the related aldosterone synthase binding and pharmacodynamic properties. We also examined the promising results obtained with ASIs that have already been tested in phase II human studies.
Collapse
|
37
|
Child SA, Reddish MJ, Glass SM, Goldfarb MH, Barckhausen IR, Guengerich FP. Functional interactions of adrenodoxin with several human mitochondrial cytochrome P450 enzymes. Arch Biochem Biophys 2020; 694:108596. [PMID: 32980349 DOI: 10.1016/j.abb.2020.108596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/11/2022]
Abstract
Seven of the 57 human cytochrome P450 (P450) enzymes are mitochondrial and carry out important reactions with steroids and vitamins A and D. These seven P450s utilize an electron transport chain that includes NADPH, NADPH-adrenodoxin reductase (AdR), and adrenodoxin (Adx) instead of the diflavin NADPH-P450 reductase (POR) used by the other P450s in the endoplasmic reticulum. Although numerous studies have been published involving mitochondrial P450 systems, the experimental conditions vary considerably. We compared human Adx and bovine Adx, a commonly used component, and found very similar catalytic activities in reactions catalyzed by human P450s 11B2, 27A1, and 27C1. Binding constants of 6-200 nM were estimated for Adx binding to these P450s using microscale thermophoresis. All P450 catalytic reactions were saturated at 10 μM Adx, and higher concentrations were not inhibitory up to at least 50 μM. Collectively these studies demonstrate the tight binding of Adx (both human and bovine) to AdR and to several mitochondrial P450s and provide guidance for optimization of Adx-dependent P450 reactions.
Collapse
Affiliation(s)
- Stella A Child
- The Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States
| | - Michael J Reddish
- The Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States
| | - Sarah M Glass
- The Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States
| | - Margo H Goldfarb
- The Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States
| | - Ian R Barckhausen
- The Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States
| | - F Peter Guengerich
- The Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States.
| |
Collapse
|
38
|
Turcu AF, El-Maouche D, Zhao L, Nanba AT, Gaynor A, Veeraraghavan P, Auchus RJ, Merke DP. Androgen excess and diagnostic steroid biomarkers for nonclassic 21-hydroxylase deficiency without cosyntropin stimulation. Eur J Endocrinol 2020; 183:63-71. [PMID: 32487778 PMCID: PMC7458124 DOI: 10.1530/eje-20-0129] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/29/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVES The clinical presentation of patients with nonclassic 21-hydroxylase deficiency (N21OHD) is similar with that for other disorders of androgen excess. The diagnosis of N21OHD typically requires cosyntropin stimulation. Additionally, the management of such patients is limited by the lack of reliable biomarkers of androgen excess. Herein, we aimed to: (1.) compare the relative contribution of traditional and 11-oxyandrogens in N21OHD patients and (2.) identify steroids that accurately diagnose N21OHD with a single baseline blood draw. DESIGN We prospectively enrolled patients who underwent a cosyntropin stimulation test for suspected N21OHD in two tertiary referral centers between January 2016 and August 2019. METHODS Baseline sera were used to quantify 15 steroids by liquid chromatography-tandem mass spectrometry. Logistic regression modeling was implemented to select steroids that best discriminate N21OHD from controls. RESULTS Of 86 participants (72 females), median age 26, 32 patients (25 females) had N21OHD. Age, sex distribution, and BMI were similar between patients with N21OHD and controls. Both testosterone and androstenedione were similar in patients with N21OHD and controls, while four 11-oxyandrogens were significantly higher in patients with N21OHD (ratios between medians: 1.7 to 2.2, P < 0.01 for all). 17α-Hydroxyprogesterone (6.5-fold), 16α-hydroxyprogesterone (4.1-fold), and 21-deoxycortisol (undetectable in 80% of the controls) were higher, while corticosterone was 3.6-fold lower in patients with N21OHD than in controls (P < 0.001). Together, baseline 17α-hydroxyprogesterone, 21-deoxycortisol, and corticosterone showed perfect discrimination between N21OHD and controls. CONCLUSIONS Adrenal 11-oxyandrogens are disproportionately elevated compared to conventional androgens in N21OHD. Steroid panels can accurately diagnose N21OHD in unstimulated blood tests.
Collapse
Affiliation(s)
- Adina F. Turcu
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, 40109
| | - Diala El-Maouche
- National Institutes of Health (NIH) Clinical Center, Bethesda, MD, 20892
| | - Lili Zhao
- School of Public Health, University of Michigan, Ann Arbor, MI, 40109
| | - Aya T. Nanba
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, 40109
| | - Alison Gaynor
- National Institutes of Health (NIH) Clinical Center, Bethesda, MD, 20892
| | | | - Richard J. Auchus
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, 40109
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, 40109
| | - Deborah P. Merke
- National Institutes of Health (NIH) Clinical Center, Bethesda, MD, 20892
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892
| |
Collapse
|
39
|
Beck KR, Telisman L, van Koppen CJ, Thompson GR, Odermatt A. Molecular mechanisms of posaconazole- and itraconazole-induced pseudohyperaldosteronism and assessment of other systemically used azole antifungals. J Steroid Biochem Mol Biol 2020; 199:105605. [PMID: 31982514 DOI: 10.1016/j.jsbmb.2020.105605] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/27/2022]
Abstract
Recent reports described cases of severe hypertension and hypokalemia accompanied by low renin and aldosterone levels during antifungal therapy with posaconazole and itraconazole. These conditions represent characteristics of secondary endocrine hypertension caused by mineralocorticoid excess. Different mechanisms can cause mineralocorticoid excess, including inhibition of the adrenal steroidogenic enzymes CYP17A1 and CYP11B1, inhibition of the peripheral cortisol oxidizing enzyme 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) or direct activation of the mineralocorticoid receptor (MR). Compared to previous experiments revealing a threefold more potent inhibition of 11β-HSD2 by itraconazole than with posaconazole, the current study found sevenfold stronger CYP11B1 inhibition by posaconazole over itraconazole. Both compounds most potently inhibited CYP11B2. The major pharmacologically active itraconazole metabolite hydroxyitraconazole (OHI) resembled the effects of itraconazole but was considerably less active. Molecular modeling calculations assessed the binding of posaconazole, itraconazole and OHI to 11β-HSD2 and the relevant CYP enzymes, and predicted important interactions not formed by the other systemically used azole antifungals, thus providing an initial explanation for the observed inhibitory activities. Together with available clinical observations, the presented data suggest that itraconazole primarily causes pseudohyperaldosteronism through cortisol-induced MR activation due to 11β-HSD2 inhibition, and posaconazole by CYP11B1 inhibition and accumulation of the mineralocorticoids 11-deoxycorticosterone and 11-deoxycortisol because of hypothalamus-pituitary-adrenal axis (HPA) feedback activation. Therapeutic drug monitoring and introduction of upper plasma target levels may help preventing the occurrence of drug-induced hypertension and hypokalemia. Furthermore, the systemically used azole antifungals voriconazole, isavuconazole and fluconazole did not affect any of the mineralocorticoid excess targets, offering alternative therapeutic options.
Collapse
Affiliation(s)
- Katharina R Beck
- Swiss Centre for Applied Human Toxicology (SCAHT) and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| | - Lucija Telisman
- Swiss Centre for Applied Human Toxicology (SCAHT) and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| | - Chris J van Koppen
- Department of Pharmaceutical and Medicinal Chemistry, Universitätscampus C2.3, 66123 Saarbrücken, Germany.
| | - George R Thompson
- Department of Internal Medicine, Division of Infectious Diseases, University of California Davis Medical Center, Davis, California, USA.
| | - Alex Odermatt
- Swiss Centre for Applied Human Toxicology (SCAHT) and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| |
Collapse
|
40
|
Wang D, Lu C, Yu J, Zhang M, Zhu W, Gu J. Chinese Medicine for Psoriasis Vulgaris Based on Syndrome Pattern: A Network Pharmacological Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:5239854. [PMID: 32419809 PMCID: PMC7204377 DOI: 10.1155/2020/5239854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/13/2020] [Accepted: 01/23/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The long-term use of conventional therapy for psoriasis vulgaris remains a challenge due to limited or no patient response and severe side effects. Complementary and alternative treatments such as traditional Chinese medicine (TCM) are widely used in East Asia. TCM treatment is based on individual syndrome types. Three TCM formulae, Compound Qingdai Pills (F1), Yujin Yinxie Tablets (F2), and Xiaoyin Tablets (F3), are used for blood heat, blood stasis, and blood dryness type of psoriasis vulgaris, respectively. OBJECTIVES To explore the mechanism of three TCM formulae for three syndrome types of psoriasis vulgaris. METHODS The compounds of the three TCM formulae were retrieved from the Psoriasis Database of Traditional Chinese Medicine (PDTCM). Their molecular properties of absorption, distribution, metabolism, excretion and toxicity (ADME/T), and drug-likeness were compared by analyzing the distribution of compounds in the chemical space. The cellular targets of the compounds were predicted by molecular docking. By constructing the compound-target network and analyzing network centrality, key targets and compounds for each formula were screened. Three syndrome types of psoriasis vulgaris related pathways and biological processes (BPs) were enriched by the Database for Annotation, Visualization, and Integrated Discovery (DAVID) v6.8. RESULTS The compounds of the three formulae exhibited structural diversity, good drug-like properties, and ADME/T properties. A total of 72, 97 and 85 targets were found to have interactions with compounds of F1, F2, and F3, respectively. The three formulae were all related to 53 targets, 8 pathways, 9 biological processes, and 10 molecular functions (MFs). In addition, each formula had unique targets and regulated different pathways and BPs. CONCLUSION The three TCM formulae exhibited common mechanisms to some extent. The differences at molecular and systems levels may contribute to their unique applications in individualized treatment.
Collapse
Affiliation(s)
- Dongmei Wang
- Dermatology Hospital of Southern Medical University, Guangzhou 510091, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, China
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Chuanjian Lu
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, China
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jingjie Yu
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, China
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Miaomiao Zhang
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, China
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Wei Zhu
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, China
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jiangyong Gu
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, China
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Department of Biochemistry, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
41
|
Barnard M, Mostaghel EA, Auchus RJ, Storbeck KH. The role of adrenal derived androgens in castration resistant prostate cancer. J Steroid Biochem Mol Biol 2020; 197:105506. [PMID: 31672619 PMCID: PMC7883395 DOI: 10.1016/j.jsbmb.2019.105506] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 01/02/2023]
Abstract
Castration resistant prostate cancer (CRPC) remains androgen dependant despite castrate levels of circulating testosterone following androgen deprivation therapy, the first line of treatment for advanced metstatic prostate cancer. CRPC is characterized by alterations in the expression levels of steroidgenic enzymes that enable the tumour to derive potent androgens from circulating adrenal androgen precursors. Intratumoral androgen biosynthesis leads to the localized production of both canonical androgens such as 5α-dihydrotestosterone (DHT) as well as less well characterized 11-oxygenated androgens, which until recently have been overlooked in the context of CRPC. In this review we discuss the contribution of both canonical and 11-oxygenated androgen precursors to the intratumoral androgen pool in CRPC. We present evidence that CRPC remains androgen dependent and discuss the alterations in steroidogenic enzyme expression and how these affect the various pathways to intratumoral androgen biosynthesis. Finally we summarize the current treatment strategies for targeting adrenal derived androgen biosynthesis.
Collapse
Affiliation(s)
- Monique Barnard
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Elahe A Mostaghel
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Medicine, University of Washington, Seattle, WA, USA; Geriatric Research, Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, USA
| | - Richard J Auchus
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Karl-Heinz Storbeck
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
42
|
Akram M, Patt M, Kaserer T, Temml V, Waratchareeyakul W, Kratschmar DV, Haupenthal J, Hartmann RW, Odermatt A, Schuster D. Identification of the fungicide epoxiconazole by virtual screening and biological assessment as inhibitor of human 11β-hydroxylase and aldosterone synthase. J Steroid Biochem Mol Biol 2019; 192:105358. [PMID: 30965118 DOI: 10.1016/j.jsbmb.2019.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 04/05/2019] [Accepted: 04/06/2019] [Indexed: 12/22/2022]
Abstract
Humans are constantly exposed to a multitude of environmental chemicals that may disturb endocrine functions. It is crucial to identify such chemicals and uncover their mode-of-action to avoid adverse health effects. 11β-hydroxylase (CYP11B1) and aldosterone synthase (CYP11B2) catalyze the formation of cortisol and aldosterone, respectively, in the adrenal cortex. Disruption of their synthesis by exogenous chemicals can contribute to cardio-metabolic diseases, chronic kidney disease, osteoporosis, and immune-related disorders. This study applied in silico screening and in vitro evaluation for the discovery of xenobiotics inhibiting CYP11B1 and CYP11B2. Several databases comprising environmentally relevant pollutants, chemicals in body care products, food additives and drugs were virtually screened using CYP11B1 and CYP11B2 pharmacophore models. A first round of biological testing used hamster cells overexpressing human CYP11B1 or CYP11B2 to analyze 25 selected virtual hits. Three compounds inhibited CYP11B1 and CYP11B2 with IC50 values below 3 μM. The most potent inhibitor was epoxiconazole (IC50 value of 623 nM for CYP11B1 and 113 nM for CYP11B2, respectively); flurprimidol and ancymidol were moderate inhibitors. In a second round, these three compounds were tested in human adrenal H295R cells endogenously expressing CYP11B1 and CYP11B2, confirming the potent inhibition by epoxiconazole and the more moderate effects by flurprimidol and ancymidol. Thus, the in silico screening, prioritization of chemicals for initial biological tests and use of H295R cells to provide initial mechanistic information is a promising strategy to identify potential endocrine disruptors inhibiting corticosteroid synthesis. A critical assessment of human exposure levels and in vivo evaluation of potential corticosteroid disrupting effects by epoxiconazole is required.
Collapse
Affiliation(s)
- Muhammad Akram
- Institute of Pharmacy / Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria; Department of Medicinal and Pharmaceutical Chemistry, Institute of Pharmacy, Paracelsus Medical University, Strubergasse 22, 5020, Salzburg, Austria.
| | - Melanie Patt
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| | - Teresa Kaserer
- Institute of Pharmacy / Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria.
| | - Veronika Temml
- Institute of Pharmacy / Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria.
| | - Watcharee Waratchareeyakul
- Department of Chemistry, Faculty of Science and Technology, Rambhai Barni Rajabhat University, 22000, Chanthaburi, Thailand.
| | - Denise V Kratschmar
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| | - Joerg Haupenthal
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Universitätscampus E8 1, 66123, Saarbrücken, Germany.
| | - Rolf W Hartmann
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Universitätscampus E8 1, 66123, Saarbrücken, Germany; Department of Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, 66123, Saarbrücken, Germany.
| | - Alex Odermatt
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| | - Daniela Schuster
- Institute of Pharmacy / Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria; Department of Medicinal and Pharmaceutical Chemistry, Institute of Pharmacy, Paracelsus Medical University, Strubergasse 22, 5020, Salzburg, Austria.
| |
Collapse
|
43
|
Crystallographic Studies of Steroid-Protein Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1135:27-45. [PMID: 31098809 DOI: 10.1007/978-3-030-14265-0_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Steroid molecules have a wide range of function in eukaryotes, including the control and maintenance of membranes, hormonal control of transcription, and intracellular signaling. X-ray crystallography has served as a successful tool for gaining understanding of the structural and mechanistic aspects of these functions by providing snapshots of steroids in complex with various types of proteins. These proteins include nuclear receptors activated by steroid hormones, several families of enzymes involved in steroid synthesis and metabolism, and proteins involved in signaling and trafficking pathways. Proteins found in some bacteria that bind and metabolize steroids have been investigated as well. A survey of the steroid-protein complexes that have been studied using crystallography and the insight learned from them is presented.
Collapse
|
44
|
Reddish MJ, Guengerich FP. Human cytochrome P450 11B2 produces aldosterone by a processive mechanism due to the lactol form of the intermediate 18-hydroxycorticosterone. J Biol Chem 2019; 294:12975-12991. [PMID: 31296661 DOI: 10.1074/jbc.ra119.009830] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/10/2019] [Indexed: 12/17/2022] Open
Abstract
Human cytochrome P450 (P450) 11B2 catalyzes the formation of aldosterone, the major endogenous human mineralocorticoid. Aldosterone is important for the regulation of electrolyte homeostasis. Mutations and overexpression of P450 11B2 (also known as aldosterone synthase) can lead to hypertension, congestive heart failure, and diabetic nephropathy. The enzyme is therefore a target for drug development to manage these various disorders. P450 11B2 catalyzes aldosterone formation from 11-deoxycorticosterone through three distinct oxidation steps. It is currently unknown to which degree these reactions happen in sequence without the intermediate products dissociating from the enzyme (i.e. processively) or whether these reactions happen solely distributively, in which the intermediate products must first dissociate and then rebind to the enzyme before subsequent oxidation. We present here a comprehensive investigation of processivity in P450 11B2-catalyzed reactions using steady-state, pre-steady-state, pulse-chase, equilibrium-binding titrations, and stopped-flow binding studies. We utilized the data obtained to develop a kinetic model for P450 11B2 and tested this model by enzyme kinetics simulations. We found that although aldosterone is produced processively, the enzyme preferentially utilizes a distributive mechanism that ends with the production of 18-OH corticosterone. This seemingly contradictory observation could be resolved by considering the ability of the intermediate product 18-OH corticosterone to exist as a lactol form, with the equilibrium favoring the ring-closed lactol configuration. In summary, our refined model for P450 11B2 catalysis indicates isomerization of the intermediate to a lactol can explain why P450 11B2 must produce aldosterone through a processive mechanism despite favoring a distributive mechanism.
Collapse
Affiliation(s)
- Michael J Reddish
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146.
| |
Collapse
|
45
|
A large-scale comparative analysis of affinity, thermodynamics and functional characteristics of interactions of twelve cytochrome P450 isoforms and their redox partners. Biochimie 2019; 162:156-166. [DOI: 10.1016/j.biochi.2019.04.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/24/2019] [Indexed: 12/16/2022]
|
46
|
Beck KR, Thompson GR, Odermatt A. Drug-induced endocrine blood pressure elevation. Pharmacol Res 2019; 154:104311. [PMID: 31212012 DOI: 10.1016/j.phrs.2019.104311] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/08/2019] [Accepted: 06/10/2019] [Indexed: 11/16/2022]
Abstract
Patients with uncontrolled hypertension are at risk for cardiovascular complications. The majority of them suffers from unidentified forms of hypertension and a fraction has so-called secondary hypertension with an identifiable cause. The patient's medications, its use of certain herbal supplements and over-the-counter agents represent potential causal factors for secondary hypertension that are often overlooked. The current review focuses on drugs that are likely to elevate blood pressure by affecting the human endocrine system at the level of steroid synthesis or metabolism, mineralocorticoid receptor activity, or by affecting the catecholaminergic system. Drugs with known adverse effects but where benefits outweigh their risks, drug candidates and market withdrawals are reviewed. Finally, potential therapeutic strategies are discussed.
Collapse
Affiliation(s)
- Katharina R Beck
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - George R Thompson
- Department of Internal Medicine, Division of Infectious Diseases and the Department of Medical Microbiology and Immunology, University of California Davis Medical Center, Davis, California, USA
| | - Alex Odermatt
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
47
|
Rege J, Turcu AF, Else T, Auchus RJ, Rainey WE. Steroid biomarkers in human adrenal disease. J Steroid Biochem Mol Biol 2019; 190:273-280. [PMID: 30707926 PMCID: PMC6707065 DOI: 10.1016/j.jsbmb.2019.01.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/24/2019] [Accepted: 01/27/2019] [Indexed: 01/24/2023]
Abstract
Adrenal steroidogenesis is a robust process, involving a series of enzymatic reactions that facilitate conversion of cholesterol into biologically active steroid hormones under the stimulation of angiotensin II, adrenocorticotropic hormone and other regulators. The biosynthesis of mineralocorticoids, glucocorticoids, and adrenal-derived androgens occur in separate adrenocortical zones as a result of the segregated expression of steroidogenic enzymes and cofactors. This mini review provides the principles of adrenal steroidogenesis, including the classic and under-appreciated 11-oxygenated androgen pathways. Several adrenal diseases result from dysregulated adrenal steroid synthesis. Herein, we review growing evidence that adrenal diseases exhibit characteristic modifications from normal adrenal steroid pathways that provide opportunities for the discovery of biomarker steroids that would improve diagnosis and monitoring of adrenal disorders.
Collapse
Affiliation(s)
- Juilee Rege
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Adina F Turcu
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, United States
| | - Tobias Else
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, United States
| | - Richard J Auchus
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, United States; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, United States
| | - William E Rainey
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, United States; Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
48
|
Rendic SP, Peter Guengerich F. Human cytochrome P450 enzymes 5-51 as targets of drugs and natural and environmental compounds: mechanisms, induction, and inhibition - toxic effects and benefits. Drug Metab Rev 2019; 50:256-342. [PMID: 30717606 DOI: 10.1080/03602532.2018.1483401] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytochrome P450 (P450, CYP) enzymes have long been of interest due to their roles in the metabolism of drugs, pesticides, pro-carcinogens, and other xenobiotic chemicals. They have also been of interest due to their very critical roles in the biosynthesis and metabolism of steroids, vitamins, and certain eicosanoids. This review covers the 22 (of the total of 57) human P450s in Families 5-51 and their substrate selectivity. Furthermore, included is information and references regarding inducibility, inhibition, and (in some cases) stimulation by chemicals. We update and discuss important aspects of each of these 22 P450s and questions that remain open.
Collapse
Affiliation(s)
| | - F Peter Guengerich
- b Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , TN , USA
| |
Collapse
|
49
|
Mangelis A, Jühlen R, Dieterich P, Peitzsch M, Lenders JWM, Hahner S, Schirbel A, Eisenhofer G. A steady state system for in vitro evaluation of steroidogenic pathway dynamics: Application for CYP11B1, CYP11B2 and CYP17 inhibitors. J Steroid Biochem Mol Biol 2019; 188:38-47. [PMID: 30529282 DOI: 10.1016/j.jsbmb.2018.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/08/2018] [Accepted: 12/06/2018] [Indexed: 11/15/2022]
Abstract
Disorders featuring dysregulated adrenal steroidogenesis, such as primary aldosteronism, can benefit from targeted therapies. The aldosterone and cortisol producing enzymes, aldosterone synthase (CYP11B2) and 11-beta-hydroxylase (CYP11B1), share 93% homology requiring selective drugs for pharmacological treatment. Herein, we introduce an effective in vitro assay for evaluation of steroidogenic enzyme kinetics based on intracellular flux calculations. H295RA cells were cultured in chambers under constant medium flow. Four hourly samples were collected (control samples), followed by collections over an additional four hours after treatment with fadrozole (10 nM), metyrapone (10 μM), SI_191 (5 nM), a novel CYP11B2 inhibitor or SI_254 (100 nM), a newly synthesized 17-alpha-hydroxylase/17,20-lyase inhibitor. Mass spectrometric measurements of multiple steroids combined with linear system computational modeling facilitated calculation of intracellular fluxes and changes in rate constants at different steroidogenic pathway steps, enabling selectivity of drugs for those steps to be evaluated. While treatment with fadrozole, metyrapone and SI_191 all reduced fluxes of aldosterone, corticosterone and cortisol production, treatment with SI_254 led to increased flux through the mineralocorticoid pathway and reduced production of steroids downstream of 17-alpha-hydroxylase/17,20-lyase. Drug-induced decreases in rate constants revealed higher selectivity of SI_191 compared to other drugs for CYP11B2 over CYP11B1, this reflecting additional inhibitory actions of SI_191 on catalytic steps of CYP11B2 downstream from the initial 11-beta-hydroxlase step. By culturing cells under perfusion the described system provides a realistic model for simple and rapid calculations of intracellular fluxes and changes in rate constants, thereby offering a robust procedure for investigating drug or other effects at specific steps of steroidogenesis.
Collapse
Affiliation(s)
- Anastasios Mangelis
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ramona Jühlen
- Department of Pediatrics, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Peter Dieterich
- Institute of Physiology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Mirko Peitzsch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jacques W M Lenders
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Department of General Internal Medicine, Radboud University Medical Center, Geert Grooteplein 8, 6525, Nijmegen, the Netherlands
| | - Stefanie Hahner
- Endocrinology and Diabetes Unit, Department of Medicine I, University Hospital Würzburg, Germany
| | - Andreas Schirbel
- Department of Nuclear Medicine, University Hospital Würzburg, Germany
| | - Graeme Eisenhofer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Department of Internal Medicine III, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
50
|
Usanov SA, Kliuchenovich AV, Strushkevich NV. Drug design strategies for Cushing's syndrome. Expert Opin Drug Discov 2018; 14:143-151. [PMID: 30572739 DOI: 10.1080/17460441.2019.1559146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Cushing's syndrome (CS) is a metabolic disorder caused by chronic hypercortisolism. CS is associated with cardiovascular, metabolic, skeletal and psychological dysfunctions and can be fatal if left untreated. The first-line treatment for all forms of CS is a surgery. However, medical therapy has to be chosen if surgical resection is not an option or is deemed ineffective. Currently available therapeutics are either not selective and have side effects or are only available as an injection (pasireotide). Areas covered: The authors discuss the recent drug developments for the medical treatment of CS through two validated molecular targets. Specifically, the authors look at selective inhibitors of CYP11B1 that reduce cortisol production by inhibiting steroid 11beta-hydroxylase and glucocorticoid receptor (GR) antagonists that interrupt cortisol-mediating transcriptional regulation of related genes. Expert opinion: Patients with CS have limited treatment options; indeed, there is an unmet need for new compounds that target CYP11B1 selectively versus several steroidogenic enzymes and/or GR-signaling pathways. The complexity of steroid biosynthesis and signaling requires the application of structure-based drug discovery techniques that use molecular targets and highly similar off-targets. Significant differences in steroidogenesis between humans and other species necessitates caution over the choice of in vivo model for the preclinical evaluation of future potential compounds.
Collapse
Affiliation(s)
- S A Usanov
- a Institute of Bioorganic Chemistry of the National Academy of Science of Belarus , Minsk , Republic of Belarus
| | - A V Kliuchenovich
- b Target Medicals LLC , Skolkovo Innovation Center (Technopark) , Moscow , Russian Federation
| | - N V Strushkevich
- a Institute of Bioorganic Chemistry of the National Academy of Science of Belarus , Minsk , Republic of Belarus
| |
Collapse
|