1
|
Lai W, Huang S, Liu J, Zhou B, Yu Z, Brown J, Hong G. Toll-like receptor 4-dependent innate immune responses are mediated by intracrine corticosteroids and activation of glycogen synthase kinase-3β in astrocytes. FASEB J 2024; 38:e23781. [PMID: 38941212 DOI: 10.1096/fj.202301923rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/30/2024]
Abstract
Reactive astrocytes are important pathophysiologically and synthesize neurosteroids. We observed that LPS increased immunoreactive TLR4 and key steroidogenic enzymes in cortical astrocytes of rats and investigated whether corticosteroids are produced and mediate astrocytic TLR4-dependent innate immune responses. We found that LPS increased steroidogenic acute regulatory protein (StAR) and StAR-dependent aldosterone production in purified astrocytes. Both increases were blocked by the TLR4 antagonist TAK242. LPS also increased 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) and corticosterone production, and both were prevented by TAK242 and by siRNAs against 11β-HSD1, StAR, or aldosterone synthase (CYP11B2). Knockdown of 11β-HSD1, StAR, or CYP11B2 or blocking either mineralocorticoid receptors (MR) or glucocorticoid receptors (GR) prevented dephosphorylation of p-Ser9GSK-3β, activation of NF-κB, and the GSK-3β-dependent increases of C3, IL-1β, and TNF-α caused by LPS. Exogenous aldosterone mimicked the MR- and GSK-3β-dependent pro-inflammatory effects of LPS in astrocytes, but corticosterone did not. Supernatants from astrocytes treated with LPS reduced MAP2 and viability of cultured neurons except when astrocytic StAR or MR was inhibited. In adrenalectomized rats, intracerebroventricular injection of LPS increased astrocytic TLR4, StAR, CYP11B2, and 11β-HSD1, NF-κB, C3 and IL-1β, decreased astrocytic p-Ser9GSK-3β in the cortex and was neurotoxic, except when spironolactone was co-injected, consistent with the in vitro results. LPS also activated NF-κB in some NeuN+ and CD11b+ cells in the cortex, and these effects were prevented by spironolactone. We conclude that intracrine aldosterone may be involved in the TLR4-dependent innate immune responses of astrocytes and can trigger paracrine effects by activating astrocytic MR/GSK-3β/NF-κB signaling.
Collapse
Affiliation(s)
- Wenfang Lai
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, China
| | - Siying Huang
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, China
| | - Junjie Liu
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, China
| | - Binbin Zhou
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, China
| | - Zhengshuang Yu
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, China
| | - John Brown
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, China
| | - Guizhu Hong
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, China
| |
Collapse
|
2
|
Zheng Q, Li S, Li X, Liu R. Advances in the study of emodin: an update on pharmacological properties and mechanistic basis. Chin Med 2021; 16:102. [PMID: 34629100 PMCID: PMC8504117 DOI: 10.1186/s13020-021-00509-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/17/2021] [Indexed: 12/21/2022] Open
Abstract
Rhei Radix et Rhizoma, also known as rhubarb or Da Huang, has been widely used as a spice and as traditional herbal medicine for centuries, and is currently marketed in China as the principal herbs in various prescriptions, such as Da-Huang-Zhe-Chong pills and Da-Huang-Qing-Wei pills. Emodin, a major bioactive anthraquinone derivative extracted from rhubarb, represents multiple health benefits in the treatment of a host of diseases, such as immune-inflammatory abnormality, tumor progression, bacterial or viral infections, and metabolic syndrome. Emerging evidence has made great strides in clarifying the multi-targeting therapeutic mechanisms underlying the efficacious therapeutic potential of emodin, including anti-inflammatory, immunomodulatory, anti-fibrosis, anti-tumor, anti-viral, anti-bacterial, and anti-diabetic properties. This comprehensive review aims to provide an updated summary of recent developments on these pharmacological efficacies and molecular mechanisms of emodin, with a focus on the underlying molecular targets and signaling networks. We also reviewed recent attempts to improve the pharmacokinetic properties and biological activities of emodin by structural modification and novel material-based targeted delivery. In conclusion, emodin still has great potential to become promising therapeutic options to immune and inflammation abnormality, organ fibrosis, common malignancy, pathogenic bacteria or virus infections, and endocrine disease or disorder. Scientifically addressing concerns regarding the poor bioavailability and vague molecular targets would significantly contribute to the widespread acceptance of rhubarb not only as a dietary supplement in food flavorings and colorings but also as a health-promoting TCM in the coming years.
Collapse
Affiliation(s)
- Qi Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Shuo Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China.
| |
Collapse
|
3
|
Martorell M, Castro N, Victoriano M, Capó X, Tejada S, Vitalini S, Pezzani R, Sureda A. An Update of Anthraquinone Derivatives Emodin, Diacerein, and Catenarin in Diabetes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:3313419. [PMID: 34589130 PMCID: PMC8476274 DOI: 10.1155/2021/3313419] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/09/2021] [Indexed: 12/15/2022]
Abstract
Diabetes is part of metabolic diseases and is characterized by high blood sugar levels over a prolonged period as result of an insulin-deficient production or an inappropriate response to insulin by our cells. This chronic disease was the direct cause of 1.6 million deaths in 2016 as reported by the World Health Organization. Emodin is a natural product and active ingredient of various Chinese herbs with the chemical formula 1,3,8-trihydroxy-6-methylanthraquinone. Diacerein is another naturally occurring anthraquinone (1,8-diacetoxy-3-carboxyanthraquinone) commonly used as commercial drug to treat osteoarthritis. These two anthraquinone derivatives have been shown to exert antidiabetic activities. Emodin seems to enhance the glucose tolerance and insulin sensibility via activation of PPARγ and modulation of metabolic-related genes. Diacerein seems to decrease inflammatory cytokines and increase insulin secretion enhancing insulin sensibility and therefore improving glucose control. Other naturally occurring anthraquinone derivatives, such as catenarin (1,4,6,8-tetrahydroxy-3-methylanthraquinone), have been shown to have antidiabetic activities although few studies have been performed. The synthesis of new emodin derivatives is increasing, but these new molecules have not been tested for diabetes treatment. In the current work, available literature on anthraquinone derivatives' effects in diabetes disease is reviewed. Moreover, we discuss the chemistry, food sources, bioavailability, and toxicity of the naturally occurring anthraquinone with antidiabetic effects.
Collapse
Affiliation(s)
- Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción 4070386, Chile
- Centre for Healthy Living, University of Concepción, Concepción 4070386, Chile
| | - Natalia Castro
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción 4070386, Chile
| | - Montserrat Victoriano
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción 4070386, Chile
| | - Xavier Capó
- Research Group in Community Nutrition and Oxidative Stress, University Research Institute of Health Sciences (IUNICS), University of the Balearic Islands, Palma de Mallorca 07122, Spain
| | - Silvia Tejada
- Laboratory of Neurophysiology, Department of Biology, University Research Institute of Health Sciences (IUNICS), University of Balearic Islands, Palma E-07122, Balearic Islands, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, Madrid E-28029, Spain
- Research Institute of the Balearic Islands, Palma de Mallorca E-07120, Spain
| | - Sara Vitalini
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Via G. Celoria 2 20133, Milan, Italy
| | - Raffaele Pezzani
- Phytotherapy Lab (PhT-Lab), Endocrinology Unit, Department of Medicine (DIMED), University of Padova, via Ospedale 105, Padova 35128, Italy
- AIROB, Associazione Italiana per la Ricerca Oncologica di Base, Padova, Italy
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University Research Institute of Health Sciences (IUNICS), University of the Balearic Islands, Palma de Mallorca 07122, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, Madrid E-28029, Spain
- Research Institute of the Balearic Islands, Palma de Mallorca E-07120, Spain
| |
Collapse
|
4
|
Han C, Wu X, Zou N, Zhang Y, Yuan J, Gao Y, Chen W, Yao J, Li C, Hou J, Qin D. Cichorium pumilum Jacq Extract Inhibits LPS-Induced Inflammation via MAPK Signaling Pathway and Protects Rats From Hepatic Fibrosis Caused by Abnormalities in the Gut-Liver Axis. Front Pharmacol 2021; 12:683613. [PMID: 33995112 PMCID: PMC8117150 DOI: 10.3389/fphar.2021.683613] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
The development of liver fibrosis is closely related to the gut microbiota, and the "gut-liver axis" is the most important connection between the two. ethyl acetate extract of Cichorium pumilum Jacq (CGEA) is an herbal extract consisting mainly of sesquiterpenoids. The anti-inflammatory and hepatoprotective effects of CGEA have been reported, but the anti-fibrotic effects of CGEA via intestinal microbes and the "gut-liver axis" cycle have rarely been reported. In this study, we observed that CGEA not only directly attenuated inflammatory factor levels in inflamed mice, but also attenuated liver inflammation as well as liver fibrosis degeneration in rats with liver fibrosis caused by colitis. We observed in vitro that CGEA significantly promoted the growth of Bifidobacterium adolescentis. Similarly, fecal 16S rDNA sequencing of liver fibrosis rats showed that CGEA intervention significantly altered the composition of the intestinal microbiota of liver fibrosis rats. CGEA increased the abundance of intestinal microbiota, specifically, CGEA increased the ratio of Firmicutes to Bacteroidetes, CGEA could significantly increase the levels of Ruminococcus. In addition, CGEA intervention significantly protected intestinal mucosal tissues and improved intestinal barrier function in rats. Lactucin is the main sesquiterpenoid in CGEA, and HPLC results showed its content in CGEA was up to 6%. Lactucin has been reported to have significant anti-inflammatory activity, and in this study, we found that Lactucin decreased p38 kinases (p38), phosphorylation of the extracellular signal-regulated kinase (ERK) and protein kinase B (AKT) protein phosphorylation in lipopolysaccharide (LPS)-activated RAW264.7 cells, thereby reducing mRNA expression and protein expression of pro-inflammatory factors inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and inhibiting the release of inflammatory factors interleukin (IL)-6 and nitric oxide (NO), exerting anti-inflammatory effects. In summary, the prevention of liver fibrosis caused by intestinal inflammation by CGEA may be achieved by regulating the intestinal microbiota and restoring the intestinal barrier thereby improving the "gut-liver axis" circulation, reducing liver inflammation, and ultimately alleviating liver fibrosis. Notably, the direct anti-inflammatory effect of CGEA may be due to its content of Lactucin, which can exert anti-inflammatory effects by inhibiting the phosphorylation of Mitogen-activated protein kinase (MAPK) and Akt signaling pathways.
Collapse
Affiliation(s)
- Chang Han
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China
| | - Xi Wu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Nan Zou
- First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Yunsheng Zhang
- Husbandry Research Institute, Xinjiang Academy of Animal Science, Urumqi, China
| | - Jinqi Yuan
- First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Yuefeng Gao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wen Chen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China
| | - Jia Yao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China
| | - Cong Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China
| | - Jinqiu Hou
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China
| | - Dongmei Qin
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China
| |
Collapse
|
5
|
Lai W, Xie X, Zhang X, Wang Y, Chu K, Brown J, Chen L, Hong G. Inhibition of Complement Drives Increase in Early Growth Response Proteins and Neuroprotection Mediated by Salidroside After Cerebral Ischemia. Inflammation 2018; 41:449-463. [PMID: 29198014 DOI: 10.1007/s10753-017-0701-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Salidroside is neuroprotective across a wide therapeutic time-window after cerebral ischemia-reperfusion injury (IRI). Here, we investigated the role of complement in mediating effects of salidroside after cerebral IRI in rats. Rats were administrated with vehicle or salidroside 50 mg/kg, given daily for either 24 or 48 h, after middle cerebral artery occlusion (MCAO) for 2 h and reperfusion for 1 h. Levels of proteins in ischemic brain were measured by immunofluorescence and western blotting. We observed early increases in the deposition of immunoglobulin M, mannose-binding lectin 2, and annexin IV on cerebral endothelial cells, induction of the complement components C3 and C3a, by 24 h after IRI, and a later significant increase in the complement component C1q by 48 h. Salidroside prevented these changes. The neuroplasticity-related early growth response proteins Egr1, Egr2, and Egr4 and activity-regulated cytoskeleton-associated protein increased transiently in the first 6 h after IRI but then decreased below baseline by 48 h after IRI. Neither salidroside nor a C3a receptor antagonist (C3aRA) affected these proteins 24 h after IRI, but both reversed their later decreases to similar and non-additive extents. Salidroside and C3aRA increased NeuN in a non-additive manner after IRI. Our results suggest that salidroside exerts neuroprotection by reducing early activation of the lectin pathway on the cerebral endothelium and inhibiting the gradual activation of the classical pathway after cerebral IRI. This prolonged neuroprotection may depend, at least in part, on increased expression of neuroplasticity-related genes driven by reduced complement activation.
Collapse
Affiliation(s)
- Wenfang Lai
- Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China
| | - XiuLi Xie
- Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China
| | - Xiaoqin Zhang
- Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China
| | - Yingzheng Wang
- Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China
| | - Kedan Chu
- Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China
| | - John Brown
- Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China
| | - Lidian Chen
- Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China
| | - Guizhu Hong
- Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China.
| |
Collapse
|
6
|
Wei Y, Hong H, Zhang X, Lai W, Wang Y, Chu K, Brown J, Hong G, Chen L. Salidroside Inhibits Inflammation Through PI3K/Akt/HIF Signaling After Focal Cerebral Ischemia in Rats. Inflammation 2018; 40:1297-1309. [PMID: 28478514 DOI: 10.1007/s10753-017-0573-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Salidroside is being investigated for its therapeutic potential in stroke because it is neuroprotective over an extended therapeutic window of time. In the present study, we investigated the mechanisms underlying the anti-inflammatory effects of salidroside (50 mg/kg intraperitoneally) in rats, given 1 h after reperfusion of a middle cerebral artery that had been occluded for 2 h. After 24 h, we found that salidroside increased the neuronal nuclear protein NeuN and reduced the marker of microglia and macrophages CD11b in the peri-infarct area of the brain. Salidroside also decreased IL-6, IL-1β, TNF-α, CD14, CD44, and iNOs mRNAs. At the same time, salidroside increased the ratio of phosphorylated protein kinase B (p-Akt) to total Akt. The phosphoinositide 3-kinase (PI3K) inhibitor LY294002 prevented this increase in p-Akt and reversed the inhibitory effects of salidroside on CD11b and inflammatory mediators. Salidroside also elevated the protein levels of hypoxia-inducible factor (HIF) subunits HIF1α, HIF2α, HIF3α, and of erythropoietin (EPO). The stimulatory effects of salidroside on HIFα subunits were blocked by LY294002. Moreover, YC-1, a HIF inhibitor, abolished salidroside-mediated increase of HIF1α and prevented the inhibitory effects of salidroside on CD11b and inflammatory mediators. Taken together, our results provide evidence for the first time that all three HIFα subunits and EPO can be regulated by PI3K/Akt in cerebral tissue, and that salidroside entrains this signaling pathway to induce production of HIFα subunits and EPO, one or more of which mediate the anti-inflammatory effects of salidroside after cerebral IRI.
Collapse
Affiliation(s)
- Yicong Wei
- Center of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China
| | - Haimian Hong
- Center of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China
| | - Xiaoqin Zhang
- Center of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China
| | - Wenfang Lai
- Center of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China
| | - Yingzheng Wang
- Center of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China
| | - Kedan Chu
- Center of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China
| | - John Brown
- Center of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China
| | - Guizhu Hong
- Center of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China
| | - Lidian Chen
- Center of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China.
| |
Collapse
|