1
|
Alonso V, Ardura JA, Wang B, Sneddon WB, Friedman PA. A naturally occurring isoform inhibits parathyroid hormone receptor trafficking and signaling. J Bone Miner Res 2011; 26:143-55. [PMID: 20578167 PMCID: PMC3179322 DOI: 10.1002/jbmr.167] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Parathyroid hormone (PTH) regulates calcium homeostasis and bone remodeling through its cognitive receptor (PTHR). We describe here a PTHR isoform harboring an in-frame 42-bp deletion of exon 14 (Δe14-PTHR) that encodes transmembrane domain 7. Δe14-PTHR was detected in human kidney and buccal epithelial cells. We characterized its topology, cellular localization, and signaling, as well as its interactions with PTHR. The C-terminus of the Δe14-PTHR is extracellular, and cell surface expression is strikingly reduced compared with the PTHR. Δe14-PTHR displayed impaired trafficking and accumulated in endoplasmic reticulum. Signaling and activation of cAMP and ERK by Δe14-PTHR was decreased significantly compared with PTHR. Δe14-PTHR acts as a functional dominant-negative by suppressing the action of PTHR. Cells cotransfected with both receptors exhibit markedly reduced PTHR cell membrane expression, colocalization with Δe14-PTHR in endoplasmic reticulum, and diminished cAMP activation and ERK phosphorylation in response to challenge with PTH. Δe14-PTHR forms heterodimers with PTHR, which may account for cytoplasmic retention of PTHR in the presence of Δe14-PTHR. Analysis of the PTHR heteronuclear RNA suggests that base-pair complementarity in introns surrounding exon 14 causes exon skipping and accounts for generation of the Δe14-PTHR isoform. Thus Δe14-PTHR is a poorly functional receptor that acts as a dominant-negative of PTHR trafficking and signaling and may contribute to PTH resistance.
Collapse
Affiliation(s)
- Verónica Alonso
- Laboratory for G Protein-Coupled Receptor Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
2
|
Couvineau A, Wouters V, Bertrand G, Rouyer C, Gérard B, Boon LM, Grandchamp B, Vikkula M, Silve C. PTHR1 mutations associated with Ollier disease result in receptor loss of function. Hum Mol Genet 2008; 17:2766-75. [PMID: 18559376 PMCID: PMC2722890 DOI: 10.1093/hmg/ddn176] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
PTHR1-signaling pathway is critical for the regulation of endochondral ossification. Thus, abnormalities in genes belonging to this pathway could potentially participate in the pathogenesis of Ollier disease/Maffucci syndrome, two developmental disorders defined by the presence of multiple enchondromas. In agreement, a functionally deleterious mutation in PTHR1 (p.R150C) was identified in enchondromas from two of six unrelated patients with enchondromatosis. However, neither the p.R150C mutation (26 tumors) nor any other mutation in the PTHR1 gene (11 patients) could be identified in another study. To further define the role of PTHR1-signaling pathway in Ollier disease and Maffucci syndrome, we analyzed the coding sequences of four genes (PTHR1, IHH, PTHrP and GNAS1) in leucocyte and/or tumor DNA from 61 and 23 patients affected with Ollier disease or Maffucci syndrome, respectively. We identified three previously undescribed missense mutations in PTHR1 in patients with Ollier disease at the heterozygous state. Two mutations (p.G121E, p.A122T) were present only in enchondromas, and one (p.R255H) in both enchondroma and leukocyte DNA. Assessment of receptor function demonstrated that these three mutations impair PTHR1 function by reducing either the affinity of the receptor for PTH or the receptor expression at the cell surface. These mutations were not found in DNA from 222 controls. Including our data, PTHR1 functionally deleterious mutations have now been identified in five out 31 enchondromas from Ollier patients. These findings provide further support for the idea that heterozygous mutations in PTHR1 that impair receptor function participate in the pathogenesis of Ollier disease in some patients.
Collapse
Affiliation(s)
- Alain Couvineau
- INSERM U773, Centre de Recherche Biomédicale Bichat Beaujon CRB3
| | - Vinciane Wouters
- Laboratory of Human Molecular Genetics, de Duve Institute, Université catholique de Louvain, B-1348 Brussels, Belgium
| | - Guylène Bertrand
- AP-HP, Hôpital Bichat Claude Bernard, Service de Biochimie hormonale et génétique, Université Paris 7, UFR Médicale, 75018 Paris, France
| | | | - Bénédicte Gérard
- AP-HP, Hôpital Bichat Claude Bernard, Service de Biochimie hormonale et génétique, Université Paris 7, UFR Médicale, 75018 Paris, France
| | - Laurence M. Boon
- Laboratory of Human Molecular Genetics, de Duve Institute, Université catholique de Louvain, B-1348 Brussels, Belgium
- Division of Plastic Surgery, Center for Vascular Anomalies, Cliniques universitaires St Luc, 10-1200 Brussels, Belgium
| | - Bernard Grandchamp
- AP-HP, Hôpital Bichat Claude Bernard, Service de Biochimie hormonale et génétique, Université Paris 7, UFR Médicale, 75018 Paris, France
| | - Miikka Vikkula
- Laboratory of Human Molecular Genetics, de Duve Institute, Université catholique de Louvain, B-1348 Brussels, Belgium
| | - Caroline Silve
- INSERM U773, Centre de Recherche Biomédicale Bichat Beaujon CRB3
- AP-HP, Hôpital Bichat Claude Bernard, Service de Biochimie hormonale et génétique, Université Paris 7, UFR Médicale, 75018 Paris, France
- To whom correspondence should be addressed. Tel: +33 1 40 48 80 17; Fax: +33 1 40 48 83 40;
| |
Collapse
|
3
|
Clemens TL, Cormier S, Eichinger A, Endlich K, Fiaschi-Taesch N, Fischer E, Friedman PA, Karaplis AC, Massfelder T, Rossert J, Schlüter KD, Silve C, Stewart AF, Takane K, Helwig JJ. Parathyroid hormone-related protein and its receptors: nuclear functions and roles in the renal and cardiovascular systems, the placental trophoblasts and the pancreatic islets. Br J Pharmacol 2001; 134:1113-36. [PMID: 11704631 PMCID: PMC1573066 DOI: 10.1038/sj.bjp.0704378] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2001] [Accepted: 09/10/2001] [Indexed: 11/09/2022] Open
Abstract
The cloning of the so-called 'parathyroid hormone-related protein' (PTHrP) in 1987 was the result of a long quest for the factor which, by mimicking the actions of PTH in bone and kidney, is responsible for the hypercalcemic paraneoplastic syndrome, humoral calcemia of malignancy. PTHrP is distinct from PTH in a number of ways. First, PTHrP is the product of a separate gene. Second, with the exception of a short N-terminal region, the structure of PTHrP is not closely related to that of PTH. Third, in contrast to PTH, PTHrP is a paracrine factor expressed throughout the body. Finally, most of the functions of PTHrP have nothing in common with those of PTH. PTHrP is a poly-hormone which comprises a family of distinct peptide hormones arising from post-translational endoproteolytic cleavage of the initial PTHrP translation products. Mature N-terminal, mid-region and C-terminal secretory forms of PTHrP are thus generated, each of them having their own physiologic functions and probably their own receptors. The type 1 PTHrP receptor, binding both PTH(1-34) and PTHrP(1-36), is the only cloned receptor so far. PTHrP is a PTH-like calciotropic hormone, a myorelaxant, a growth factor and a developmental regulatory molecule. The present review reports recent aspects of PTHrP pharmacology and physiology, including: (a) the identification of new peptides and receptors of the PTH/PTHrP system; (b) the recently discovered nuclear functions of PTHrP and the role of PTHrP as an intracrine regulator of cell growth and cell death; (c) the physiological and developmental actions of PTHrP in the cardiovascular and the renal glomerulo-vascular systems; (d) the role of PTHrP as a regulator of pancreatic beta cell growth and functions, and, (e) the interactions of PTHrP and calcium-sensing receptors for the control of the growth of placental trophoblasts. These new advances have contributed to a better understanding of the pathophysiological role of PTHrP, and will help to identify its therapeutic potential in a number of diseases.
Collapse
Affiliation(s)
- Thomas L Clemens
- Department of Medicine, University of Cincinnati, Cincinnati, Ohio, U.S.A
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio, U.S.A
| | - Sarah Cormier
- INSERM U 426 and Institut Federatif de Recherche ‘Cellules Epitheliales', Faculte de Medecine Xavier Bichat, Paris, France
| | - Anne Eichinger
- Section of Renovascular Pharmacology and Physiology, INSERM E0015-ULP, University Louis Pasteur School of Medicine, Strasbourg, France
| | - Karlhans Endlich
- Institut für Anatomie und Zellbiologie 1, Universität Heidelberg, Heidelberg, Germany
| | - Nathalie Fiaschi-Taesch
- Section of Renovascular Pharmacology and Physiology, INSERM E0015-ULP, University Louis Pasteur School of Medicine, Strasbourg, France
- Division of Endocrinology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, PA 15213, U.S.A
| | - Evelyne Fischer
- Department of Nephrology, University Hospital of Strasbourg, Strasbourg, France
| | - Peter A Friedman
- Department of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, U.S.A
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, U.S.A
| | | | - Thierry Massfelder
- Section of Renovascular Pharmacology and Physiology, INSERM E0015-ULP, University Louis Pasteur School of Medicine, Strasbourg, France
| | - Jérôme Rossert
- INSERM U489 and Departments of Nephrology and Pathology, Paris VI University, France
| | | | - Caroline Silve
- INSERM U 426 and Institut Federatif de Recherche ‘Cellules Epitheliales', Faculte de Medecine Xavier Bichat, Paris, France
| | - Andrew F Stewart
- Division of Endocrinology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, PA 15213, U.S.A
| | - Karen Takane
- Division of Endocrinology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, PA 15213, U.S.A
| | - Jean-Jacques Helwig
- Section of Renovascular Pharmacology and Physiology, INSERM E0015-ULP, University Louis Pasteur School of Medicine, Strasbourg, France
| |
Collapse
|
4
|
Jobert AS, Zhang P, Couvineau A, Bonaventure J, Roume J, Le Merrer M, Silve C. Absence of functional receptors for parathyroid hormone and parathyroid hormone-related peptide in Blomstrand chondrodysplasia. J Clin Invest 1998; 102:34-40. [PMID: 9649554 PMCID: PMC509062 DOI: 10.1172/jci2918] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We report the absence of functional parathyroid hormone (PTH)/PTH-related peptide (PTHrP) receptors (PTH/PTHrP receptor) in Blomstrand chondrodysplasia, a genetic disorder characterized by advanced endochondral bone maturation. Analysis of PTH/PTHrP receptor genomic DNA from a patient with Blomstrand chondrodysplasia demonstrated that the patient was heterozygous for a point mutation (G--> A substitution at nucleotide 1176) inherited from the mother. Analysis of PTH/PTHrP receptor cDNA demonstrated that: (a) this point mutation caused the deletion of the first 11 amino acids of exon M5 (encoding the fifth transmembrane domain of the receptor), resulting from the use of a novel splice site created by the base substitution; (b) the mutant receptor was well expressed in COS-7 cells, but did not bind PTH or PTHrP, and failed to induce detectable stimulation of either cAMP or inositol phosphate production in response to these ligands; and (c) the paternal allele was not expressed. Thus, only the abnormal and nonfunctional PTH/PTHrP receptors encoded by the maternal allele were expressed by chondrocytes from this patient. In view of the known role played by the PTH/PTHrP receptor in bone and cartilage development, these results strongly support the conclusion that the absence of functional PTH/ PTHrP receptors is responsible for the skeletal abnormalities seen in Blomstrand chondrodysplasia, abnormalities that are the mirror image of those observed in Jansen's chondrodysplasia. These findings emphasize the importance of signaling through this receptor in human fetal skeletal development.
Collapse
Affiliation(s)
- A S Jobert
- INSERM U. 426, Faculté de Médecine Xavier Bichat, 16 rue Henri Huchard, 75018, Paris, France
| | | | | | | | | | | | | |
Collapse
|