1
|
Seitz BM, Watts SW, Fink GD. Reduction in Hindquarter Vascular Resistance Supports 5-HT 7 Receptor Mediated Hypotension. Front Physiol 2021; 12:679809. [PMID: 34248666 PMCID: PMC8264506 DOI: 10.3389/fphys.2021.679809] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/25/2021] [Indexed: 11/13/2022] Open
Abstract
The 5-HT7 receptor is the primary mediator of both the acute (<hours) and chronic (day-week) decreases in mean arterial pressure (MAP) during low dose 5-HT infusion in rats. Previous data show the hypotensive response during chronic 5-HT infusion is due to a decrease total peripheral resistance (TPR) and specifically splanchnic vascular resistance. We hypothesized that changes in vascular resistance in both the splanchnic and skeletal muscle vascular beds are critical to the cardiovascular effects mediated by the 5-HT7 receptor. Systemic and regional hemodynamic data were collected in conscious and anesthetized male rats using radiotelemetry, vascular catheters and transit-time flowmetry. Reversible antagonism of the 5-HT7 receptor was achieved with the selective antagonist SB269970 (33 μg/kg, iv). From the very beginning and throughout the duration (up to 5 days) of a low dose (25 μg/kg) infusion of 5-HT, TPR, and MAP were decreased while cardiac output (CO) was increased. In a separate group of rats, the contribution of the 5-HT7 receptor to the regional hemodynamic response was tested during 5-HT-induced hypertension. The decrease in MAP after 24 h of 5-HT (saline 83 ± 3 vs. 5-HT 72 ± 3 mmHg) was associated with a significant decrease in skeletal muscle vascular resistance (saline 6 ± 0.2 vs. 5-HT 4 ± 0.4 mmHg/min/mL) while splanchnic vascular resistance was similar in 5-HT and saline-treated rats. When SB269970 was administered acutely, MAP and skeletal muscle vascular resistance rapidly increased, whereas splanchnic resistance was unaffected. Our work suggests the most prominent regional hemodynamic response to 5-HT7 receptor activation paralleling the fall in MAP is a decrease in skeletal muscle vascular resistance.
Collapse
Affiliation(s)
- Bridget M Seitz
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Gregory D Fink
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
2
|
Shuai J, Gao Y, Chen L, Wang Z. Role of serotonin in regulation of pancreatic and mesenteric arterial function in diabetic mice. Eur J Pharmacol 2021; 901:174070. [PMID: 33798598 DOI: 10.1016/j.ejphar.2021.174070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 11/19/2022]
Abstract
The aim of this study was to investigate the reaction of pancreatic and mesenteric artery to 5-hydroxytryptamine (5-HT, serotonin) and the mechanism of nitric oxide in diabetes. Diabetic mice were induced by streptozotocin through intraperitoneal injection. The vascular tension of the pancreatic, mesenteric and brain basilar arteries in diabetic and control mice were measured by myograph in the applications of angiotensin II, 5-HT, 5-HT2A receptor agonist 2,5-dimethoxy-4-iodoamphetamine hydrochloride (DOI), 5-HT1B/1D receptor agonist sumatriptan, 5-HT2B receptor agonist BW723C86, 5-HT1D receptor antagonist Palonosetron and 5-HT2 receptor antagonist Sarpogrelate. The effect of 5-HT on arteries pretreated with L-NAME and sodium nitroprusside (SNP) on arteries pretreated with norepinephrine were measured. The mRNA expressions of eNOS, 5-HT1B, 5-HT1D, 5-HT2A and 5-HT2B in pancreatic and mesenteric arteries were measured by Real-time PCR. The concentration of 5-HT in plasma and eNOS in pancreatic and mesenteric arteries were tested. Our results showed that the tension of pancreatic and mesenteric arteries in diabetic mice impaired to 5-HT, but not Ang II, and to DOI and sumatriptan, but normalized by incubation with L-NAME. Pancreatic and mesenteric arteries showed no differences to SNP after pretreated with NE between diabetic and control mice. The mRNA of eNOS and 5-HT receptors in pancreatic and mesenteric artery showed no difference between control and diabetic mice. We conclude that the effect of 5-HT on the tension of pancreatic and mesenteric arteries decrease in diabetic mice. It may due to the decreased activity of 5-HT receptors and the activation of eNOS, which causes nitric oxide to release more and makes the tension of vessels decreased.
Collapse
Affiliation(s)
- Jian Shuai
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital, Wuhan University School of Medicine, Wuhan, 430071, China
| | - Yufang Gao
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Ling Chen
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital, Wuhan University School of Medicine, Wuhan, 430071, China
| | - Zhongli Wang
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital, Wuhan University School of Medicine, Wuhan, 430071, China.
| |
Collapse
|
3
|
Yabut JM, Crane JD, Green AE, Keating DJ, Khan WI, Steinberg GR. Emerging Roles for Serotonin in Regulating Metabolism: New Implications for an Ancient Molecule. Endocr Rev 2019; 40:1092-1107. [PMID: 30901029 PMCID: PMC6624793 DOI: 10.1210/er.2018-00283] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 03/18/2019] [Indexed: 12/12/2022]
Abstract
Serotonin is a phylogenetically ancient biogenic amine that has played an integral role in maintaining energy homeostasis for billions of years. In mammals, serotonin produced within the central nervous system regulates behavior, suppresses appetite, and promotes energy expenditure by increasing sympathetic drive to brown adipose tissue. In addition to these central circuits, emerging evidence also suggests an important role for peripheral serotonin as a factor that enhances nutrient absorption and storage. Specifically, glucose and fatty acids stimulate the release of serotonin from the duodenum, promoting gut peristalsis and nutrient absorption. Serotonin also enters the bloodstream and interacts with multiple organs, priming the body for energy storage by promoting insulin secretion and de novo lipogenesis in the liver and white adipose tissue, while reducing lipolysis and the metabolic activity of brown and beige adipose tissue. Collectively, peripheral serotonin acts as an endocrine factor to promote the efficient storage of energy by upregulating lipid anabolism. Pharmacological inhibition of serotonin synthesis or signaling in key metabolic tissues are potential drug targets for obesity, type 2 diabetes, and nonalcoholic fatty liver disease (NAFLD).
Collapse
Affiliation(s)
- Julian M Yabut
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada.,Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Justin D Crane
- Department of Biology, Northeastern University, Boston, Massachusetts
| | - Alexander E Green
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada.,Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Damien J Keating
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Waliul I Khan
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada.,Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Gregory R Steinberg
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada.,Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
4
|
Erikci A, Ucar G, Yabanoglu-Ciftci S. Role of serotonin in the regulation of renal proximal tubular epithelial cells. Ren Fail 2016; 38:1141-50. [PMID: 27277500 DOI: 10.1080/0886022x.2016.1194165] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In various renal injuries, tissue damage occurs and platelet activation is observed. Recent studies suggest that some factors, such as serotonin, are released into microenvironment upon platelet activation following renal injury. In the present study, we aimed to investigate whether platelets and platelet-released serotonin are involved in the functional regulation of renal proximal tubular epithelial cells (PTECs). PTECs were obtained by primary cell culture and treated with platelet lysate (PL) (2 × 10(6)/mL, 4 × 10(6)/mL, 8 × 10(6)/mL) or serotonin (1 μM or 5 μM) for 12 or 24 h. Phenotypic transdifferentiation of epithelial cells into myofibroblasts were demonstrated under light microscope and confirmed by the determination of α-smooth muscle actin gene expression. Serotonin and PL were shown to induce epithelial-mesenchymal transdifferentiation of PTECs. After stimulation of PTECs with serotonin or PL, matrix metalloproteinase-2, tissue inhibitor of metalloproteinase-1, and collagen-α1 gene expressions, which were reported to be elevated in renal injury, were determined by real-time PCR and found to be upregulated. Expressions of some inflammatory cytokines such as tumor necrosis factor-α, interleukin-6, and transforming growth factor-β1 were found to be increased in both protein and gene levels. Recently there is no published report on the effect of serotonin on renal PTECs. Results obtained in this study have lightened the role of serotonin and platelet-mediated effects of serotonin on fibrotic and inflammatory processes in PTECs.
Collapse
Affiliation(s)
- Acelya Erikci
- a Department of Biochemistry, Faculty of Pharmacy , Hacettepe University , Ankara , Turkey
| | - Gulberk Ucar
- a Department of Biochemistry, Faculty of Pharmacy , Hacettepe University , Ankara , Turkey
| | | |
Collapse
|
5
|
Davis RP, Pattison J, Thompson JM, Tiniakov R, Scrogin KE, Watts SW. 5-hydroxytryptamine (5-HT) reduces total peripheral resistance during chronic infusion: direct arterial mesenteric relaxation is not involved. BMC Pharmacol 2012; 12:4. [PMID: 22559843 PMCID: PMC3418156 DOI: 10.1186/1471-2210-12-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 04/15/2012] [Indexed: 11/10/2022] Open
Abstract
Serotonin (5-hydroxytryptamine; 5-HT) delivered over 1 week results in a sustained fall in blood pressure in the sham and deoxycorticosterone acetate (DOCA)-salt rat. We hypothesized 5-HT lowers blood pressure through direct receptor-mediated vascular relaxation. In vivo, 5-HT reduced mean arterial pressure (MAP), increased heart rate, stroke volume, cardiac index, and reduced total peripheral resistance during a 1 week infusion of 5-HT (25 µg/kg/min) in the normotensive Sprague Dawley rat. The mesenteric vasculature was chosen as an ideal candidate for the site of 5-HT receptor mediated vascular relaxation given the high percentage of cardiac output the site receives. Real-time RT-PCR demonstrated that mRNA transcripts for the 5-HT2B, 5-HT1B, and 5-HT7 receptors are present in sham and DOCA-salt superior mesenteric arteries. Immunohistochemistry and Western blot validated the presence of the 5-HT2B, 5- HT1B and 5-HT7 receptor protein in sham and DOCA-salt superior mesenteric artery. Isometric contractile force was measured in endothelium-intact superior mesenteric artery and mesenteric resistance arteries in which the contractile 5- HT2A receptor was antagonized. Maximum concentrations of BW-723C86 (5- HT2B agonist), CP 93129 (5-HT1B agonist) or LP-44 (5-HT7 agonist) did not relax the superior mesenteric artery from DOCA-salt rats vs. vehicle. Additionally, 5-HT (10–9 M to 10–5 M) did not cause relaxation in either contracted mesenteric resistance arteries or superior mesenteric arteries from normotensive Sprague- Dawley rats. Thus, although 5-HT receptors known to mediate vascular relaxation are present in the superior mesenteric artery, they are not functional, and are therefore not likely involved in a 5-HT-induced fall in total peripheral resistance and MAP.
Collapse
Affiliation(s)
- Robert Patrick Davis
- Department of Pharmacology and Toxicology, Michigan State University, East, Lansing, MI 48824-1317, USA
| | | | | | | | | | | |
Collapse
|
6
|
Watts SW, Morrison SF, Davis RP, Barman SM. Serotonin and blood pressure regulation. Pharmacol Rev 2012; 64:359-88. [PMID: 22407614 DOI: 10.1124/pr.111.004697] [Citation(s) in RCA: 262] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
5-Hydroxytryptamine (5-HT; serotonin) was discovered more than 60 years ago as a substance isolated from blood. The neural effects of 5-HT have been well investigated and understood, thanks in part to the pharmacological tools available to dissect the serotonergic system and the development of the frequently prescribed selective serotonin-reuptake inhibitors. By contrast, our understanding of the role of 5-HT in the control and modification of blood pressure pales in comparison. Here we focus on the role of 5-HT in systemic blood pressure control. This review provides an in-depth study of the function and pharmacology of 5-HT in those tissues that can modify blood pressure (blood, vasculature, heart, adrenal gland, kidney, brain), with a focus on the autonomic nervous system that includes mechanisms of action and pharmacology of 5-HT within each system. We compare the change in blood pressure produced in different species by short- and long-term administration of 5-HT or selective serotonin receptor agonists. To further our understanding of the mechanisms through which 5-HT modifies blood pressure, we also describe the blood pressure effects of commonly used drugs that modify the actions of 5-HT. The pharmacology and physiological actions of 5-HT in modifying blood pressure are important, given its involvement in circulatory shock, orthostatic hypotension, serotonin syndrome and hypertension.
Collapse
Affiliation(s)
- Stephanie W Watts
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824-1317, USA.
| | | | | | | |
Collapse
|
7
|
Participation of cyclooxygenase pathway in the vasoconstriction induced by 5-HT in the in situ autoperfused kidney of long-term diabetic rats. Eur J Pharmacol 2011; 659:37-44. [DOI: 10.1016/j.ejphar.2011.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 02/15/2011] [Accepted: 03/01/2011] [Indexed: 12/12/2022]
|
8
|
Morán A, Ortiz de Urbina AV, Martín ML, García M, Rodriguez-Barbero A, Dorado F, San Román L. Characterization of contractile 5-hydroxytryptamine receptor subtypes in the in situ autoperfused kidney in the anaesthetized rat. Eur J Pharmacol 2008; 592:133-7. [PMID: 18644367 DOI: 10.1016/j.ejphar.2008.06.106] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 05/28/2008] [Accepted: 06/27/2008] [Indexed: 11/25/2022]
Abstract
Using several 5-hydroxytryptamine (5-HT) agonists and antagonists, we attempted to characterize the receptor subtypes involved in the contractile response to 5-HT in the in situ autoperfused rat kidney. An intra-arterial (i.a.) bolus injection of 5-HT (0.00000125 to 0.1 microg/kg) increased renal perfusion pressure in a dose-dependent way but did not affect the systemic blood pressure. The selective 5-HT2 receptor agonist alpha-methyl-5-HT (alpha-methyl-5-hydroxytryptamine) and the non-selective 5-HT2C receptor agonist (1-(3-chlorophenyl)piperazine), m-CPP, caused a local vasoconstrictor effect in the autoperfused rat kidney, whereas BW723C86, a selective 5-HT2B receptor agonist, the 5-HT1 receptor agonist 5-carboxamidotryptamine, 5-CT, and the selective 5-HT3 receptor agonist m-CPBG (1-(m-chlorophenyl)-biguanide) did not modify the renal perfusion pressure. The vasoconstrictor effect elicited by alpha-methyl-5-HT and m-CPP was significantly decreased by ritanserin (a 5-HT2 receptor antagonist), SB 206553 (3,5-Dihydro-5-methyl-N-3pyridinylbenzo[1,2.b:4,5-b']dipyrrole(1H)-carboxamide hydrochloride), a selective 5-HT2B/2C receptor antagonist and enalapril, but was not modified by pretreatment with spiperone (a 5-HT2A receptor antagonist). The results of protein expression analyses allow us to postulate that 5HT-SRC (a 5-HT2C receptor protein) is expressed in renal tissue and differentially expressed in renal artery. Our data suggest also that the serotonergic vasoconstrictor response induced in the in situ autoperfused rat kidney would be mediated by local 5-HT2C receptor activation.
Collapse
Affiliation(s)
- Asunción Morán
- Departamento de Fisiología y Farmacología, Laboratorio de Farmacognosia y Farmacología, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, ES-37007, Spain.
| | | | | | | | | | | | | |
Collapse
|
9
|
Calama E, Ortíz de Urbina AV, Morán A, Martín ML, San Román L. Effect of 5-hydroxytryptamine on neurogenic vasoconstriction in the isolated, autoperfused hindquarters of the rat. Clin Exp Pharmacol Physiol 2006; 32:894-900. [PMID: 16173953 DOI: 10.1111/j.1440-1681.2010.04281.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. In the present study, we analysed the effect of different doses of 5-hydroxytryptamine (5-HT; intravenous infusions of 0.001-40 microg/kg per min) in the autoperfused hindquarters of the rat subjected to electrical stimulation (frequencies of 0.5-20 Hz) of the lumbar chains, investigating the relationship between the adrenergic and serotonergic systems in this vascular bed. 2. Because we observed that 5-HT inhibited the increases in perfusion pressure induced by electrical stimulation of the lumbar chains, we used different agonists and antagonists to analyse the mechanism of action of 5-HT. 3. The effect of 5-HT was inhibited by methiothepin (a non-specific 5-HT receptor antagonist), but not by ritanserin (a selective 5-HT2 receptor antagonist). The effects of 5-HT were mimicked by 5-carboxamidotryptamine (a 5-HT1 receptor agonist) and L-694 247 (a selective 5-HT1D receptor agonist), but not by 8-hydroxy-2-dipropylaminotetralin (a 5-HT1A receptor agonist), CGS-12066B (a 5-HT1B receptor agonist), alpha-methyl-5-HT (a 5-HT2 receptor agonist), 1-(3-chlorophenyl) piperazine (a 5-HT2C receptor agonist) or 1-phenylbiguanide (a 5-HT3 receptor agonist). The selective 5-HT1D/1B receptor antagonist BRL 15572 inhibited the effect of the agonist L-694 247. 4. Our data suggest that 5-HT inhibits the increases in perfusion pressure induced by the electrical stimulation of the lumbar chains, acting on presynaptic 5-HT1D receptors and decreasing the release of noradrenaline from the sympathetic nerves in the hindquarter vascular bed of the rat.
Collapse
Affiliation(s)
- E Calama
- Laboratorio de Farmacognosia y Farmacología, Departamento de Fisiología y Farmacología, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | | | | | | | | |
Collapse
|
10
|
Calama E, Morán A, Ortiz de Urbina AV, Martín ML, San Román L. m-CPP, a 5-HT 2C Receptor Agonist That Modifies the Perfusion Pressure of the Hindquarter Vascular Bed of Anesthetized Rat. Pharmacology 2005; 73:70-5. [PMID: 15452415 DOI: 10.1159/000081078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2004] [Accepted: 06/14/2004] [Indexed: 11/19/2022]
Abstract
In the present work we studied the actions of the intra-arterial administration of meta-chlorophenylpiperazine (m-CPP - a 5-HT(2C) receptor agonist) in the hindquarters of the anesthetized rat. The lowest doses used (0.001, 0.01, 0.1, 0.25 and 0.5 microg/kg) induced vasodilatation whereas the highest doses produced vasoconstriction (1, 6.25, 12.5 and 25 microg/kg). Both vasodilatation and vasoconstriction were inhibited by the 5-HT(1,2 )receptor antagonist methiothepin, whereas the 5-HT(2 )receptor antagonist ritanserin blocked only the vasoconstrictor responses. 1-[4-(1-Adamantanecarboxamido)butyl]-4-(2-methoxyphenyl)piperazine (a 5-HT(1A) receptor antagonist) and ICI 118,551 (a beta(2)-receptor antagonist) failed to modify the vasodilator responses of m-CPP. Both BRL 15572 (a 5-HT(1D) receptor antagonist) and GR 55562 (a 5-HT(1B) receptor antagonist) only partially inhibited this action. Our data reveal that m-CPP induces the 5-HT(1 )and/or non-specific vasodilator effect and 5-HT(2) vasoconstrictor effects in the hindquarter vascular bed of the rat.
Collapse
Affiliation(s)
- E Calama
- Laboratorio de Farmacognosia y Farmacología, Departamento de Fisiología y Farmacología, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | | | | | | | | |
Collapse
|