1
|
Abstract
Vascular endothelial growth factor (VEGF) is well known for its angiogenic activity, but recent evidence has revealed a neuroprotective action of this factor on injured or diseased neurons. In the present review, we summarize the most relevant findings that have contributed to establish a link between VEGF deficiency and neuronal degeneration. At issue, 1) mutant mice with reduced levels of VEGF show adult-onset muscle weakness and motoneuron degeneration resembling amyotrophic lateral sclerosis (ALS), 2) administration of VEGF to different animal models of motoneuron degeneration improves motor performance and ameliorates motoneuronal degeneration, and 3) there is an association between low plasmatic levels of VEGF and human ALS. Altogether, the results presented in this review highlight VEGF as an essential motoneuron neurotrophic factor endowed with promising therapeutic potential for the treatment of motoneuron disorders.
Collapse
Affiliation(s)
- Paula M Calvo
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Rosendo G Hernández
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Angel M Pastor
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Rosa R de la Cruz
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
2
|
Bates DO, Beazley-Long N, Benest AV, Ye X, Ved N, Hulse RP, Barratt S, Machado MJ, Donaldson LF, Harper SJ, Peiris-Pages M, Tortonese DJ, Oltean S, Foster RR. Physiological Role of Vascular Endothelial Growth Factors as Homeostatic Regulators. Compr Physiol 2018; 8:955-979. [PMID: 29978898 DOI: 10.1002/cphy.c170015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The vascular endothelial growth factor (VEGF) family of proteins are key regulators of physiological systems. Originally linked with endothelial function, they have since become understood to be principal regulators of multiple tissues, both through their actions on vascular cells, but also through direct actions on other tissue types, including epithelial cells, neurons, and the immune system. The complexity of the five members of the gene family in terms of their different splice isoforms, differential translation, and specific localizations have enabled tissues to use these potent signaling molecules to control how they function to maintain their environment. This homeostatic function of VEGFs has been less intensely studied than their involvement in disease processes, development, and reproduction, but they still play a substantial and significant role in healthy control of blood volume and pressure, interstitial volume and drainage, renal and lung function, immunity, and signal processing in the peripheral and central nervous system. The widespread expression of VEGFs in healthy adult tissues, and the disturbances seen when VEGF signaling is inhibited support this view of the proteins as endogenous regulators of normal physiological function. This review summarizes the evidence and recent breakthroughs in understanding of the physiology that is regulated by VEGF, with emphasis on the role they play in maintaining homeostasis. © 2017 American Physiological Society. Compr Physiol 8:955-979, 2018.
Collapse
Affiliation(s)
- David O Bates
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | | | - Andrew V Benest
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Xi Ye
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Nikita Ved
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Richard P Hulse
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Shaney Barratt
- Academic Respiratory Unit, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Maria J Machado
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Lucy F Donaldson
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Steven J Harper
- School of Physiology, Pharmacology & Neuroscience, Medical School, University of Bristol, Bristol, United Kingdom
| | - Maria Peiris-Pages
- Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | - Domingo J Tortonese
- Centre for Comparative and Clinical Anatomy, University of Bristol, Bristol, United Kingdom
| | - Sebastian Oltean
- Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, United Kingdom
| | - Rebecca R Foster
- Bristol Renal, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
3
|
Ohta Y, Soucy G, Phaneuf D, Audet JN, Gros-Louis F, Rouleau GA, Blasco H, Corcia P, Andersen PM, Nordin F, Yamashita T, Abe K, Julien JP. Sex-dependent effects of chromogranin B P413L allelic variant as disease modifier in amyotrophic lateral sclerosis. Hum Mol Genet 2018; 25:4771-4786. [PMID: 28175304 PMCID: PMC5418737 DOI: 10.1093/hmg/ddw304] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/28/2016] [Accepted: 08/25/2016] [Indexed: 11/14/2022] Open
Abstract
Recent genetic studies yielded conflicting results regarding a role for the variant chromogranin B (CHGB)P413L allele as a disease modifier in ALS. Moreover, potential deleterious effects of the CHGBP413L variant in ALS pathology have not been investigated. Here we report that in transfected cultured cells, the variant CHGBL413 protein exhibited aberrant properties including mislocalization, failure to interact with mutant superoxide dismutase 1 (SOD1) and defective secretion. The CHGBL413 transgene in SOD1G37R mice precipitated disease onset and pathological changes related to misfolded SOD1 specifically in female mice. However, the CHGBL413 variant also slowed down disease progression in SOD1G37R mice, which is in line with a very slow disease progression that we report for a Swedish woman with ALS who is carrier of two mutant SOD1D90A alleles and two variant CHGBP413L and CHGBR458Q alleles. In contrast, overexpression of the common CHGBP413 allele in SOD1G37R mice did not affect disease onset but significantly accelerated disease progression and pathological changes. As in transgenic mice, the CHGBP413L allele conferred an earlier ALS disease onset in women of Japanese and French Canadian origins with less effect in men. Evidence is presented that the sex-dependent effects of CHGBL413 allelic variant in ALS may arise from enhanced neuronal expression of CHGB in females because of a sex-determining region Y element in the gene promoter. Thus, our results suggest that CHGB variants may act as modifiers of onset and progression in some ALS populations and especially in females because of higher expression levels compared to males.
Collapse
Affiliation(s)
- Yasuyuki Ohta
- Research Centre of Institut universitaire en santé mentale de Québec, Québec, QC, Canada,Department of Psychiatry and Neuroscience, Laval University, Québec, QC, Canada
| | - Genevieve Soucy
- Research Centre of Institut universitaire en santé mentale de Québec, Québec, QC, Canada,Department of Psychiatry and Neuroscience, Laval University, Québec, QC, Canada
| | - Daniel Phaneuf
- Research Centre of Institut universitaire en santé mentale de Québec, Québec, QC, Canada,Department of Psychiatry and Neuroscience, Laval University, Québec, QC, Canada
| | - Jean-Nicolas Audet
- Research Centre of Institut universitaire en santé mentale de Québec, Québec, QC, Canada,Department of Psychiatry and Neuroscience, Laval University, Québec, QC, Canada
| | - François Gros-Louis
- CHU de Québec Research Center, LOEX Hôpital de l'Enfant-Jésus, Quebec, QC, Canada
| | - Guy A Rouleau
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Hélène Blasco
- Centre de Ressources et Compétences SLA (CRCSLA), Federation des CRCSLA Tours-Limoges LITORALS, INSERM U 930, Université François-Rabelais de Tours, France
| | - Philippe Corcia
- Centre de Ressources et Compétences SLA (CRCSLA), Federation des CRCSLA Tours-Limoges LITORALS, INSERM U 930, Université François-Rabelais de Tours, France
| | - Peter M Andersen
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden,Department of Neurology, Ulm University, Ulm, Germany
| | - Frida Nordin
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Toru Yamashita
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Koji Abe
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Jean-Pierre Julien
- Research Centre of Institut universitaire en santé mentale de Québec, Québec, QC, Canada,Department of Psychiatry and Neuroscience, Laval University, Québec, QC, Canada
| |
Collapse
|
4
|
|
5
|
Wu Y, Zhang Y, Han X, Li X, Xue L, Xie A. Association of VEGF gene polymorphisms with sporadic Parkinson's disease in Chinese Han population. Neurol Sci 2016; 37:1923-1929. [PMID: 27481110 DOI: 10.1007/s10072-016-2691-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/28/2016] [Indexed: 10/21/2022]
Abstract
Recent evidence indicates that vascular endothelial growth factor (VEGF) is capable of protecting dopaminergic (DA) neurons. Parkinson's disease (PD) is a progressive neurodegenerative disease caused by the degeneration of nigrostriatal dopaminergic neurons. To evaluate the role of VEGF single nucleotide polymorphisms (SNPs) and haplotypes in PD, we performed a case-control study including 400 PD patients and 400 healthy-matched controls. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis and DNA sequencing were used to detect the rs699947, rs2010963 and rs3025039 polymorphisms of the VEGF gene in cases and controls. Our study revealed that T allelic frequency of rs3025039 polymorphism was significantly higher in PD subjects (OR 1.497, 95 % CI 1.099-2.040, P = 0.013) than that in controls. Significant association for rs3025039 could be found in additive model (TT vs. CT vs. CC: OR 1.489, 95 % CI 1.018-2.177, P = 0.040) and dominant model (TT + CT vs. CC: OR 1.538, 95 % CI 1.068-2.216, P = 0.021). Subgroup analyses performed by gender suggested that this association could be found in male, but not in female. Moreover, it also demonstrated a significant association in the subgroup of late-onset PD (LOPD). However, for rs699947 and rs2010963 polymorphisms, genotype or allele frequencies did not differ between groups. No significant association could be found between rs699947 and rs2010963 polymorphism and PD risk. None of the observed haplotypes showed significant association with PD. Therefore, these results suggested that the VEGF gene might be associated with risk of developing sporadic PD in Han Chinese and the rs3025039 polymorphism may be a risk factor for sporadic PD.
Collapse
Affiliation(s)
- Yubin Wu
- Department of Neurology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266003, Shandong, People's Republic of China
| | - Yingying Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266003, Shandong, People's Republic of China
| | - Xun Han
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Xiaoyuan Li
- Department of Neurology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266003, Shandong, People's Republic of China
| | - Li Xue
- Department of Rehabilitation, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Anmu Xie
- Department of Neurology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266003, Shandong, People's Republic of China.
| |
Collapse
|
6
|
Carilho R, de Carvalho M, Swash M, Pinto S, Pinto A, Costa J. Vascular endothelial growth factor and amyotrophic lateral sclerosis: the interplay with exercise and noninvasive ventilation. Muscle Nerve 2014; 49:545-50. [PMID: 23868282 DOI: 10.1002/mus.23955] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 06/09/2013] [Accepted: 07/06/2013] [Indexed: 12/12/2022]
Abstract
INTRODUCTION We evaluated plasma vascular endothelial growth factor (VEGF) levels in patients with amyotrophic lateral sclerosis (ALS) with reference to the effects of respiratory failure, noninvasive ventilation (NIV), and exercise. METHODS We studied plasma VEGF levels in 83 ALS patients, 20 healthy controls, and 10 patients with other disorders. There were 4 groups of ALS patients: G1, 27 patients without respiratory problems; G2, 14 patients stabilized on nocturnal NIV; G3, 30 patients presenting with respiratory failure; G4, 12 patients on an aerobic exercise protocol. RESULTS VEGF plasma levels did not differ significantly between ALS patients and controls, or between ALS groups. In G3, the mean VEGF levels increased 75% during NIV. In G4, the mean VEGF level increased by 300% during the exercise program. VEGF levels did not change during the course of the disease. CONCLUSIONS VEGF levels in ALS depend on changes in ventilation and exercise but are probably not affected by the disease process itself.
Collapse
Affiliation(s)
- Rita Carilho
- Instituto de Tecnologia Química e Biológica, Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|
7
|
Pronto-Laborinho AC, Pinto S, de Carvalho M. Roles of vascular endothelial growth factor in amyotrophic lateral sclerosis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:947513. [PMID: 24987705 PMCID: PMC4022172 DOI: 10.1155/2014/947513] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/24/2014] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal devastating neurodegenerative disorder, involving progressive degeneration of motor neurons in spinal cord, brainstem, and motor cortex. Riluzole is the only drug approved in ALS but it only confers a modest improvement in survival. In spite of a high number of clinical trials no other drug has proved effectiveness. Recent studies support that vascular endothelial growth factor (VEGF), originally described as a key angiogenic factor, also plays a key role in the nervous system, including neurogenesis, neuronal survival, neuronal migration, and axon guidance. VEGF has been used in exploratory clinical studies with promising results in ALS and other neurological disorders. Although VEGF is a very promising compound, translating the basic science breakthroughs into clinical practice is the major challenge ahead. VEGF-B, presenting a single safety profile, protects motor neurons from degeneration in ALS animal models and, therefore, it will be particularly interesting to test its effects in ALS patients. In the present paper the authors make a brief description of the molecular properties of VEGF and its receptors and review its different features and therapeutic potential in the nervous system/neurodegenerative disease, particularly in ALS.
Collapse
Affiliation(s)
- Ana Catarina Pronto-Laborinho
- Institute of Physiology, Faculty of Medicine, University of Lisbon, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
- Instituto de Medicina Molecular (IMM), Translational Clinical Physiology Unit, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
| | - Susana Pinto
- Institute of Physiology, Faculty of Medicine, University of Lisbon, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
- Instituto de Medicina Molecular (IMM), Translational Clinical Physiology Unit, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
| | - Mamede de Carvalho
- Institute of Physiology, Faculty of Medicine, University of Lisbon, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
- Instituto de Medicina Molecular (IMM), Translational Clinical Physiology Unit, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
- Department of Neurosciences, Hospital Santa Maria, Centro Hospitalar Lisboa Norte, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
| |
Collapse
|
8
|
ALS and oxidative stress: the neurovascular scenario. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:635831. [PMID: 24367722 PMCID: PMC3866720 DOI: 10.1155/2013/635831] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 10/07/2013] [Accepted: 10/17/2013] [Indexed: 12/11/2022]
Abstract
Oxidative stress and angiogenic factors have been placed as the prime focus of scientific investigations after an establishment of link between vascular endothelial growth factor promoter (VEGF), hypoxia, and amyotrophic lateral sclerosis (ALS) pathogenesis. Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter and mutant superoxide dismutase 1 (SOD1) which are characterised by atrophy and muscle weakness resulted in phenotype resembling human ALS in mice. This results in lower motor neurodegeneration thus establishing an important link between motor neuron degeneration, vasculature, and angiogenic molecules. In this review, we have presented human, animal, and in vitro studies which suggest that molecules like VEGF have a therapeutic, diagnostic, and prognostic potential in ALS. Involvement of vascular growth factors and hypoxia response elements also highlights the converging role of oxidative stress and neurovascular network for understanding and treatment of various neurodegenerative disorders like ALS.
Collapse
|
9
|
Keifer OP, O'Connor DM, Boulis NM. Gene and protein therapies utilizing VEGF for ALS. Pharmacol Ther 2013; 141:261-71. [PMID: 24177067 DOI: 10.1016/j.pharmthera.2013.10.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 10/04/2013] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that is usually fatal within 2-5years. Unfortunately, the only treatment currently available is riluzole, which has a limited efficacy. As a redress, there is an expanding literature focusing on other potential treatments. One such potential treatment option utilizes the vascular endothelial growth factor (VEGF) family, which includes factors that are primarily associated with angiogenesis but are now increasingly recognized to have neurotrophic effects. Reduced expression of a member of this family, VEGF-A, in mice results in neurodegeneration similar to that of ALS, while treatment of animal models of ALS with either VEGF-A gene therapy or VEGF-A protein has yielded positive therapeutic outcomes. These basic research findings raise the potential for a VEGF therapy to be translated to the clinic for the treatment of ALS. This review covers the VEGF family, its receptors and neurotrophic effects as well as VEGF therapy in animal models of ALS and advances towards clinical trials.
Collapse
Affiliation(s)
- Orion P Keifer
- Department of Neurosurgery, Emory University, 101 Woodruff Circle, Atlanta, GA 30322, United States
| | - Deirdre M O'Connor
- Department of Neurosurgery, Emory University, 101 Woodruff Circle, Atlanta, GA 30322, United States
| | - Nicholas M Boulis
- Department of Neurosurgery, Emory University, 101 Woodruff Circle, Atlanta, GA 30322, United States.
| |
Collapse
|
10
|
Amyotrophic lateral sclerosis. Transl Neurosci 2012. [DOI: 10.1017/cbo9780511980053.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
11
|
Mihci E, Ozkaynak SS, Sallakci N, Kizilay F, Yavuzer U. VEGF polymorphisms and serum VEGF levels in Parkinson's disease. Neurosci Lett 2011; 494:1-5. [PMID: 21334418 DOI: 10.1016/j.neulet.2011.02.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 02/09/2011] [Accepted: 02/14/2011] [Indexed: 10/18/2022]
Abstract
Accumulated data within the recent years demonstrate that reduced levels of VEGF which is a well known angiogenic molecule might cause neurodegeneration in part by impairing neural tissue perfusion, vasoregulation and normal functioning of perivascular autonomic nerves. Additionally, VEGF has been reported to support neuroprotection in dopaminergic neurons by indirect and direct mechanisms and suppress apoptosis in dopaminergic neurons in vitro. The aim of the current study is first to demonstrate whether there is an association between the three common VEGF polymorphisms (-2578C/A, -634C/G and 936C/T) in the VEGF gene and idiopathic Parkinson's disease (IPD) which is a neurodegenerative disease caused by the progressive degeneration of nigrostriatal dopaminergic neurons, and second to see if the serum levels of VEGF is reduced in the patients with IPD. We screened the genotype and allele frequencies of three common functional polymorphisms of VEGF, namely -2578C/A, -634C/G and 936C/T in DNA samples of 126 patients with IPD and healthy control subjects and also we compared the median serum levels of VEGF between these two groups. No association was found between the inspected VEGF polymorphisms and IPD and also no difference was found between the serum VEGF levels of both groups. The current study failed to support the hypothesis that VEGF polymorphisms and/or reduced serum VEGF levels are likely contributors to the neurodegenerative process in IPD.
Collapse
Affiliation(s)
- Ebru Mihci
- Akdeniz University, Faculty of Medicine, Department of Neurology, 07059 Antalya, Turkey.
| | | | | | | | | |
Collapse
|
12
|
Henriques A, Pitzer C, Schneider A. Neurotrophic growth factors for the treatment of amyotrophic lateral sclerosis: where do we stand? Front Neurosci 2010; 4:32. [PMID: 20592948 PMCID: PMC2902233 DOI: 10.3389/fnins.2010.00032] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2010] [Accepted: 05/07/2010] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that results in progressive loss of motoneurons, motor weakness and death within 3–5 years after disease onset. Therapeutic options remain limited despite substantial number of approaches that have been tested clinically. Many neurotrophic growth factors are known to promote the survival of neurons and foster regeneration in the central nervous system. Various neurotrophic factors have been investigated pre-clinically and clinically for the treatment of ALS. Although pre-clinical data appeared promising, no neurotrophic factors succeeded yet in a clinical phase III trial. In this review we discuss the rationale behind those factors, possible reasons for clinical failures, and argue for a renewal of hope in this powerful class of drugs for the treatment of ALS.
Collapse
|
13
|
Abstract
Frontotemporal lobar degeneration (FTLD) is a highly familial condition and is increasingly being recognized as an important form of dementia. The literature published on this disease is often difficult to collate due to the wide range in nomenclature used. Thankfully, consensus recommendations have now been published to address this issue and hopefully the community will adopt these as intended. Much progress has been made in our understanding of the clinical, pathological and genetic understanding of FTLD in recent years. Progranulin and TDP-43 have recently been identified as new important proteins involved in the pathophysiology of FTLD and this latter protein may have potential as a biomarker of this disease. However, much remains before we have a full picture of the genes that cause FTLD and the biological pathways in which they function. The purpose of this review is to summarize the current concepts and recent advances in our knowledge of this disease.
Collapse
Affiliation(s)
- S M Pickering-Brown
- Clinical Neurosciences Research Group, Faculty of Human and Medical Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
14
|
Ruiz de Almodovar C, Lambrechts D, Mazzone M, Carmeliet P. Role and therapeutic potential of VEGF in the nervous system. Physiol Rev 2009; 89:607-48. [PMID: 19342615 DOI: 10.1152/physrev.00031.2008] [Citation(s) in RCA: 337] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The development of the nervous and vascular systems constitutes primary events in the evolution of the animal kingdom; the former provides electrical stimuli and coordination, while the latter supplies oxygen and nutrients. Both systems have more in common than originally anticipated. Perhaps the most striking observation is that angiogenic factors, when deregulated, contribute to various neurological disorders, such as neurodegeneration, and might be useful for the treatment of some of these pathologies. The prototypic example of this cross-talk between nerves and vessels is the vascular endothelial growth factor or VEGF. Although originally described as a key angiogenic factor, it is now well established that VEGF also plays a crucial role in the nervous system. We describe the molecular properties of VEGF and its receptors and review the current knowledge of its different functions and therapeutic potential in the nervous system during development, health, disease and in medicine.
Collapse
|
15
|
Del Bo R, Ghezzi S, Scarpini E, Bresolin N, Comi GP. VEGF genetic variability is associated with increased risk of developing Alzheimer's disease. J Neurol Sci 2009; 283:66-8. [PMID: 19272614 DOI: 10.1016/j.jns.2009.02.318] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Specific polymorphisms within the vascular endothelial growth factor (VEGF) gene promoter region are of particular interest: VEGF variability has been associated with increased risk of developing a wide variety of disorders from diabetes to neurodegenerative diseases, suggesting functions not confined to its originally described vascular effects. A hypothetical loss of the VEGF-mediated neuroprotective effect has been proposed as a cause of neurodegenerative disorders. An impaired regulation of VEGF expression has been also reported in Alzheimer's disease (AD) pathogenesis. Recently, VEGF gene promoter polymorphisms have been associated with an increased risk for AD in the Italian population. Conversely, two subsequent studies failed to find a positive association between VEGF variability and greater risk for AD. To better clarify this issue, a meta-analysis of all published association studies has been performed. Overall, polymorphic variants within VEGF gene promoter confer greater risk for AD at least in the Italian population; the meta-analysis provides evidence of a role of the functional variant C(-2578)A in the pathogenesis of the disease, although the pooled odds ratio obtained represents a modest effect. These findings provide new evidence for an additional candidate genetic risk factor for AD that can be tested in further studies.
Collapse
Affiliation(s)
- Roberto Del Bo
- Dino Ferrari Centre, Department of Neurological Sciences, University of Milan, IRCCS Foundation Ospedale Maggiore Policlinico Mangiagalli and Regina Elena, Milan, Italy.
| | | | | | | | | |
Collapse
|
16
|
Abstract
Amyotrophic lateral sclerosis (ALS) was first described by Charcot in 1869 as what we would now call a sporadic disease-a disease believed to occur without a strong genetic influence. Only within the past 10 years has it been possible to fully explore genetic influence on disorders that seem to occur sporadically but likely result from the convergence of multiple genetic and environmental factors. This article reviews the genetics of familial ALS and summarizes current investigations of genetic influence in sporadic ALS. Genetic study clearly offers the potential for identification of molecular targets that would allow development of rational therapies for various forms of ALS, but much work remains.
Collapse
Affiliation(s)
- Nailah Siddique
- Neuromuscular Disorders Program, Northwestern University, Feinberg School of Medicine, Tarry Building, Room13-715, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | | |
Collapse
|
17
|
Abstract
In amyotrophic lateral sclerosis (ALS), an adult-onset progressive degeneration of motor neurons occurring as sporadic and familial disease, there is emerging evidence for and against the role of vascular endothelial growth factor (VEGF), an endothelial cell mitogen crucial for angiogenesis, in its etiopathogenesis. Our understanding of the role of VEGF in ALS has come from studies of both experimental models and human cases. In this article, I have examined in detail the in vitro and in vivo evidence for and against VEGF in ALS, concluding that more compelling evidence is required before we can conclusively link VEGF to ALS in humans.
Collapse
Affiliation(s)
- Sivakumar Sathasivam
- Department of Neurology, The Walton Centre for Neurology & Neurosurgery, Lower Lane, Liverpool L9 7LJ, UK.
| |
Collapse
|
18
|
Kim JS, Yim SV, Koh IS, Choi JS, Yoo JY, Lee KS, Lim Y, Lee KH. Single-nucleotide polymorphisms (SNPs) and haplotype analysis in vascular endothelial growth factor (VEGF) gene in the patients with Parkinson disease and lung cancer. Arch Gerontol Geriatr 2008; 48:287-90. [PMID: 18359110 DOI: 10.1016/j.archger.2008.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2007] [Revised: 02/05/2008] [Accepted: 02/06/2008] [Indexed: 01/19/2023]
Abstract
The epidemiologic data on smoking in association with Parkinson disease (PD) is puzzling. A lower incidence of smoking-related malignancies, especially lung cancer, has been reported by several studies in the patients with PD. In this study, we investigated polymorphic variations in the vascular endothelial growth factor (VEGF) gene, which has been proposed having a pivotal role in progressive damage of nigral dopaminergic neurons, between Korean patients with 188 PD and 321 lung cancer patients. There were no significant differences in the tested single-nucleotide polymorphisms (SNPs) between patients with PD and lung cancer; however, one haplotype was significantly different in comparisons between the two diseases. These results suggest that VEGF genetic polymorphisms might help understand the low incidence of lung cancer in the patients with PD.
Collapse
Affiliation(s)
- Joong-Seok Kim
- Department of Neurology, The Catholic University of Korea, Kangnam St. Mary's Hospital, 505 Banpo-dong, Seocho-gu, Seoul 137-701, South Korea.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Cozzolino M, Ferri A, Carrì MT. Amyotrophic lateral sclerosis: from current developments in the laboratory to clinical implications. Antioxid Redox Signal 2008; 10:405-43. [PMID: 18370853 DOI: 10.1089/ars.2007.1760] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a late-onset progressive degeneration of motor neurons occurring both as a sporadic and a familial disease. The etiology of ALS remains unknown, but one fifth of instances are due to specific gene defects, the best characterized of which is point mutations in the gene coding for Cu/Zn superoxide dismutase (SOD1). Because sporadic and familial ALS affect the same neurons with similar pathology, it is hoped that understanding these gene defects will help in devising therapies effective in both forms. A wealth of evidence has been collected in rodents made transgenic for mutant SOD1, which represent the best available models for familial ALS. Mutant SOD1 likely induces selective vulnerability of motor neurons through a combination of several mechanisms, including protein misfolding, mitochondrial dysfunction, oxidative damage, cytoskeletal abnormalities and defective axonal transport, excitotoxicity, inadequate growth factor signaling, and inflammation. Damage within motor neurons is enhanced by noxious signals originating from nonneuronal neighboring cells, where mutant SOD1 induces an inflammatory response that accelerates disease progression. The clinical implication of these findings is that promising therapeutic approaches can be derived from multidrug treatments aimed at the simultaneous interception of damage in both motor neurons and nonmotor neuronal cells.
Collapse
|
20
|
Génétique des maladies du motoneurone. Rev Neurol (Paris) 2008; 164:115-30. [DOI: 10.1016/j.neurol.2007.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 09/25/2007] [Accepted: 10/21/2007] [Indexed: 02/08/2023]
|
21
|
Praline J, Corcia P. Genetica della sclerosi laterale amiotrofica. Neurologia 2008. [DOI: 10.1016/s1634-7072(08)70528-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
22
|
Gellera C, Colombrita C, Ticozzi N, Castellotti B, Bragato C, Ratti A, Taroni F, Silani V. Identification of new ANG gene mutations in a large cohort of Italian patients with amyotrophic lateral sclerosis. Neurogenetics 2007; 9:33-40. [DOI: 10.1007/s10048-007-0111-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 11/21/2007] [Indexed: 01/10/2023]
|
23
|
van Es MA, Van Vught PW, Blauw HM, Franke L, Saris CG, Andersen PM, Van Den Bosch L, de Jong SW, van 't Slot R, Birve A, Lemmens R, de Jong V, Baas F, Schelhaas HJ, Sleegers K, Van Broeckhoven C, Wokke JHJ, Wijmenga C, Robberecht W, Veldink JH, Ophoff RA, van den Berg LH. ITPR2 as a susceptibility gene in sporadic amyotrophic lateral sclerosis: a genome-wide association study. Lancet Neurol 2007; 6:869-77. [PMID: 17827064 DOI: 10.1016/s1474-4422(07)70222-3] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a devastating disease characterised by progressive degeneration of motor neurons in the brain and spinal cord. ALS is thought to be multifactorial, with both environmental and genetic causes. Our aim was to identify genetic variants that predispose for sporadic ALS. METHODS We did a three-stage genome-wide association study in 461 patients with ALS and 450 controls from The Netherlands, using Illumina 300K single-nucleotide polymorphism (SNP) chips. The SNPs that were most strongly associated with ALS were analysed in a further 876 patients and 906 controls in independent sample series from The Netherlands, Belgium, and Sweden. We also investigated the possible pathological functions of associated genes using expression data from whole blood of patients with sporadic ALS and of control individuals who were included in the genome-wide association study. FINDINGS A genetic variant in the inositol 1,4,5-triphosphate receptor 2 gene (ITPR2) was associated with ALS (p=0.012 after Bonferroni correction). Combined analysis of all samples (1337 patients and 1356 controls) confirmed this association (p=3.28x10(-6), odds ratio 1.58, 95% CI 1.30-1.91). ITPR2 expression was greater in the peripheral blood of 126 ALS patients than in that of 126 healthy controls (p=0.00016). INTERPRETATION Genetic variation in ITPR2 is a susceptibility factor for ALS. ITPR2 is a strong candidate susceptibility gene for ALS because it is involved in glutamate-mediated neurotransmission, is one of the main regulators of intracellular calcium concentrations, and has an important role in apoptosis.
Collapse
Affiliation(s)
- Michael A van Es
- Department of Neurology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
BACKGROUND The findings of recent genetic polymorphism studies in ALS suggest that the influence of genetic risk factors for the disease may vary by ethnicity. It is now widely accepted that the incidence of ALS is uniform across Caucasian populations, but whether racial variation across other ethnicities exists remains unknown. METHOD Systematic review of the known literature on the incidence, prevalence, and mortality of ALS across all ethnicities. To facilitate comparison, studies were grouped according to the type of data presented and examined for sources of case ascertainment and inclusion criteria. RESULTS The literature search identified 61 publications. Lower standardized incidence rates were observed in Asian than Caucasian populations. Within the United States, several incidence and mortality studies have identified lower ALS frequency among African American and Hispanic populations than among non-Hispanic Caucasians. These observations are supported by the other data sources. CONCLUSIONS The incidence of ALS may be lower among African, Asian, and Hispanic ethnicities than among whites. We conclude with proposals for a prospective epidemiologic study concentrating on non-Caucasian populations.
Collapse
Affiliation(s)
- Simon Cronin
- Irish ALS Research Group, Neurology Department, Beaumont Hospital, Dublin 9, Ireland
| | | | | |
Collapse
|
25
|
Brockington A, Wokke B, Nixon H, Hartley J, Shaw PJ. Screening of the transcriptional regulatory regions of vascular endothelial growth factor receptor 2 (VEGFR2) in amyotrophic lateral sclerosis. BMC MEDICAL GENETICS 2007; 8:23. [PMID: 17456229 PMCID: PMC1868706 DOI: 10.1186/1471-2350-8-23] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Accepted: 04/24/2007] [Indexed: 11/10/2022]
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) has neurotrophic activity which is mediated by its main agonist receptor, VEGFR2. Dysregulation of VEGF causes motor neurone degeneration in a mouse model of amyotrophic lateral sclerosis (ALS), and expression of VEGFR2 is reduced in motor neurones and spinal cord of patients with ALS. METHODS We have screened the promoter region and 4 exonic regions of functional significance of the VEGFR2 gene in a UK population of patients with ALS, for mutations and polymorphisms that may affect expression or function of this VEGF receptor. RESULTS No mutations were identified in the VEGFR2 gene. We found no association between polymorphisms in the regulatory regions of the VEGFR2 gene and ALS. CONCLUSION Mechanisms other than genetic variation may downregulate expression or function of the VEGFR2 receptor in patients with ALS.
Collapse
Affiliation(s)
- Alice Brockington
- Academic Neurology Unit, University of Sheffield, E Floor, Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Beatrijs Wokke
- Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Hannah Nixon
- Academic Neurology Unit, University of Sheffield, E Floor, Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Judith Hartley
- Academic Neurology Unit, University of Sheffield, E Floor, Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Pamela J Shaw
- Academic Neurology Unit, University of Sheffield, E Floor, Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| |
Collapse
|
26
|
Kasperaviciute D, Weale ME, Shianna KV, Banks GT, Simpson CL, Hansen VK, Turner MR, Shaw CE, Al-Chalabi A, Pall HS, Goodall EF, Morrison KE, Orrell RW, Beck M, Jablonka S, Sendtner M, Brockington A, Ince PG, Hartley J, Nixon H, Shaw PJ, Schiavo G, Wood NW, Goldstein DB, Fisher EMC. Large-scale pathways-based association study in amyotrophic lateral sclerosis. Brain 2007; 130:2292-301. [PMID: 17439985 DOI: 10.1093/brain/awm055] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sporadic amyotrophic lateral sclerosis (ALS), a devastating neurodegenerative disease, most likely results from complex genetic and environmental interactions. Although a number of association studies have been performed in an effort to find genetic components of sporadic ALS, most of them resulted in inconsistent findings due to a small number of genes investigated in relatively small sample sizes, while the replication of results was rarely attempted. Defects in retrograde axonal transport, vesicle trafficking and xenobiotic metabolism have been implicated in neurodegeneration and motor neuron death both in human disease and animal models. To assess the role of common genetic variation in these pathways in susceptibility to sporadic ALS, we performed a pathway-based candidate gene case-control association study with replication. Furthermore, we determined reliability of whole genome amplified DNA in a large-scale association study. In the first stage of the study, 1277 putative functional and tagging SNPs in 134 genes spanning 8.7 Mb were genotyped in 822 British sporadic ALS patients and 872 controls using whole genome amplified DNA. To detect variants with modest effect size and discriminate among false positive findings 19 SNPs showing a trend of association in the initial screen were genotyped in a replication sample of 580 German sporadic ALS patients and 361 controls. We did not detect strong evidence of association with any of the genes investigated in the discovery sample (lowest uncorrected P-value 0.00037, lowest permutation corrected P-value 0.353). None of the suggestive associations was replicated in a second sample, further excluding variants with moderate effect size. We conclude that common variation in the investigated pathways is unlikely to have a major effect on susceptibility to sporadic ALS. The genotyping efficiency was only slightly decreased ( approximately 1%) and genotyping quality was not affected using whole genome amplified DNA. It is reliable for large scale genotyping studies of diseases such as ALS, where DNA sample collections are limited because of low disease prevalence and short survival time.
Collapse
Affiliation(s)
- Dalia Kasperaviciute
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Just N, Moreau C, Lassalle P, Gosset P, Perez T, Brunaud-Danel V, Wallaert B, Destée A, Defebvre L, Tonnel AB, Devos D. High erythropoietin and low vascular endothelial growth factor levels in cerebrospinal fluid from hypoxemic ALS patients suggest an abnormal response to hypoxia. Neuromuscul Disord 2007; 17:169-73. [PMID: 17142042 DOI: 10.1016/j.nmd.2006.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 10/10/2006] [Accepted: 10/18/2006] [Indexed: 02/06/2023]
Abstract
Animal studies have highlighted the potentially neuroprotective role of vascular endothelial growth factor (VEGF). Low levels of this growth factor have been found in the cerebrospinal fluid (CSF) of patients with amyotrophic lateral sclerosis (ALS). VEGF (and other proteins, such as erythropoietin (EPO)) are produced in response to hypoxia via a common pathway involving a specific transcription factor (hypoxia-inducible factor, HIF) and a hypoxia responsive element (HRE) in the respective genes' promoter regions. In this study, we report finding the expected, high levels of VEGF and EPO in CSF from hypoxemic neurological controls, whereas EPO (but not VEGF) levels are high in the CSF from hypoxemic ALS patients. Hence, the VEGF levels in CSF from patients with ALS were significantly lower than those seen in hypoxemic controls. There was a trend towards higher CSF levels of EPO in hypoxemic ALS patients than in hypoxemic controls. Our results suggest that VEGF may not be produced in sufficient amounts in chronically hypoxic ALS patients and that this dysfunction may participate in the pathogenesis of the disease. The high EPO levels in hypoxemic ALS patients nevertheless suggest an intact common oxygen-sensor pathway.
Collapse
Affiliation(s)
- N Just
- Department of Pneumology, A. Calmette Hospital, Lille University Medical Centre, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Gonzalez de Aguilar JL, Echaniz-Laguna A, Fergani A, René F, Meininger V, Loeffler JP, Dupuis L. Amyotrophic lateral sclerosis: all roads lead to Rome. J Neurochem 2007; 101:1153-60. [PMID: 17250677 DOI: 10.1111/j.1471-4159.2006.04408.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most frequent adult-onset motor neuron disease characterized by degeneration of upper and lower motor neurons, generalized weakness and muscle atrophy. Most cases of ALS appear sporadically but some forms of the disease result from mutations in the gene encoding the antioxidant enzyme Cu/Zn superoxide dismutase (SOD1). Several other mutated genes have also been found to predispose to ALS including, among others, one that encodes the regulator of axonal retrograde transport dynactin. As all roads lead to the proverbial Rome, we discuss here how distinct molecular pathways may converge to the same final result that is motor neuron death. We critically review the basic research on SOD1-linked ALS to propose a pioneering model of a 'systemic' form of the disease, causally involving multiple cell types, either neuronal or non-neuronal. Contrasting this, we also postulate that other neuron-specific defects, as those triggered by dynactin dysfunction, may account for a primary motor neuron disease that would represent 'pure' neuronal forms of ALS. Identifying different disease subtypes is an unavoidable step toward the understanding of the physiopathology of ALS and will hopefully help to design specific treatments for each subset of patients.
Collapse
Affiliation(s)
- Jose-Luis Gonzalez de Aguilar
- Inserm, U692, Laboratoire de Signalisations Moléculaires et Neurodégénérescence, Université Louis Pasteur, Faculté de Médecine, UMRS692, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Abstract
Amyotrophic lateral sclerosis is a late-onset progressive neurodegenerative disease affecting motor neurons. The etiology of most ALS cases remains unknown, but 2% of instances are due to mutations in Cu/Zn superoxide dismutase (SOD1). Since sporadic and familial ALS affects the same neurons with similar pathology, it is hoped that therapies effective in mutant SOD1 models will translate to sporadic ALS. Mutant SOD1 induces non-cell-autonomous motor neuron killing by an unknown gain of toxicity. Selective vulnerability of motor neurons likely arises from a combination of several mechanisms, including protein misfolding, mitochondrial dysfunction, oxidative damage, defective axonal transport, excitotoxicity, insufficient growth factor signaling, and inflammation. Damage within motor neurons is enhanced by damage incurred by nonneuronal neighboring cells, via an inflammatory response that accelerates disease progression. These findings validate therapeutic approaches aimed at nonneuronal cells.
Collapse
Affiliation(s)
- Séverine Boillée
- Ludwig Institute for Cancer Research and Departments of Medicine and Neuroscience, University of California, San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
31
|
Bogaert E, Van Damme P, Van Den Bosch L, Robberecht W. Vascular endothelial growth factor in amyotrophic lateral sclerosis and other neurodegenerative diseases. Muscle Nerve 2006; 34:391-405. [PMID: 16856151 DOI: 10.1002/mus.20609] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The angiogenic activity of vascular endothelial growth factor (VEGF) is well known. Recently, it has become evident that VEGF is involved in central nervous system physiology and may play a role in the pathogenesis of neurological diseases. In particular, it may be involved in the mechanism of motor neuron degeneration in amyotrophic lateral sclerosis (ALS), and has been hypothesized to be implicated in the pathogenesis of peripheral neuropathies such as occur in the so-called POEMS syndrome and diabetes. VEGF is also being studied as a possible treatment option in some of these disorders. In this review we critically analyze the data supporting the notion that VEGF is a factor involved in motor neuron degeneration and review the studies linking VEGF to other diseases of the peripheral and central nervous systems.
Collapse
Affiliation(s)
- Elke Bogaert
- Laboratory of Neurobiology, University of Leuven, Campus Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|
32
|
Pasinelli P, Brown RH. Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat Rev Neurosci 2006; 7:710-23. [PMID: 16924260 DOI: 10.1038/nrn1971] [Citation(s) in RCA: 841] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a paralytic disorder caused by motor neuron degeneration. Mutations in more than 50 human genes cause diverse types of motor neuron pathology. Moreover, defects in five Mendelian genes lead to motor neuron disease, with two mutations reproducing the ALS phenotype. Analyses of these genetic effects have generated new insights into the diverse molecular pathways involved in ALS pathogenesis. Here, we present an overview of the mechanisms for motor neuron death and of the role of non-neuronal cells in ALS.
Collapse
Affiliation(s)
- Piera Pasinelli
- Day Neuromuscular Research Laboratory, Massachusetts General Hospital, Room 3125, Building 114, 16th Street, Navy Yard, Charlestown, Massachusetts 02429, USA
| | | |
Collapse
|
33
|
Simpson CL, Al-Chalabi A. Amyotrophic lateral sclerosis as a complex genetic disease. Biochim Biophys Acta Mol Basis Dis 2006; 1762:973-85. [PMID: 16973338 DOI: 10.1016/j.bbadis.2006.08.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2006] [Revised: 07/25/2006] [Accepted: 08/02/2006] [Indexed: 12/11/2022]
Abstract
In complex diseases like ALS, there are multiple genetic and environmental factors all contributing to disease liability. The genetic factors causing susceptibility to developing ALS can be considered a spectrum from single genes with large effect sizes causing classical Mendelian ALS, to genes of smaller effect, producing apparently sporadic disease. We examine the statistical genetic principles that underpin this model and review what is known about ALS as a disease with complex genetics.
Collapse
Affiliation(s)
- Claire L Simpson
- MRC Centre for Neurodegeneration Research P 043, King's College London, Institute of Psychiatry, London SE5 8AF, UK
| | | |
Collapse
|
34
|
Lambrechts D, Lafuste P, Carmeliet P, Conway EM. Another angiogenic gene linked to amyotrophic lateral sclerosis. Trends Mol Med 2006; 12:345-7. [PMID: 16843725 DOI: 10.1016/j.molmed.2006.06.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 06/12/2006] [Accepted: 06/30/2006] [Indexed: 10/24/2022]
Abstract
A new study by Greenway and colleagues links mutations in the angiogenin gene to patients with amyotrophic lateral sclerosis (ALS)--a progressive and fatal motoneuron disease. This is an unexpected finding because angiogenin was originally identified as a molecule involved in the formation of blood vessels (angiogenesis). Angiogenin bears striking similarity to vascular endothelial growth factor (VEGF), which is the prototypic angiogenic factor that has recently emerged as a molecule with important neuroprotective activities. Besides VEGF, angiogenin is the second so-called angiogenic factor implicated in ALS, raising the question of whether additional angiogenic factors might have a role in ALS. Overall, these findings identify angiogenin as a novel candidate gene in the pathogenesis of ALS--a discovery that ultimately might lead to the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Diether Lambrechts
- The Center for Transgene Technology and Gene Therapy, Flanders Interuniversity Institute for Biotechnology (VIB), KU Leuven, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|
35
|
Lambrechts D, Carmeliet P. VEGF at the neurovascular interface: therapeutic implications for motor neuron disease. Biochim Biophys Acta Mol Basis Dis 2006; 1762:1109-21. [PMID: 16784838 DOI: 10.1016/j.bbadis.2006.04.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 04/21/2006] [Accepted: 04/27/2006] [Indexed: 12/11/2022]
Abstract
VEGF was discovered almost 25 years ago, and its angiogenic activity has been extensively studied ever since. Accumulating evidence indicates, however, that VEGF also has direct effects on neuronal cells. VEGF exerts neuroprotective effects on various cultured neurons of the central nervous system. In vivo, VEGF controls the correct migration of facial branchiomotor neurons in the developing hindbrain and stimulates the proliferation of neural stem cells in enriched environments and after cerebral ischemia. Transgenic mice expressing reduced levels of VEGF develop late-onset motor neuron degeneration, reminiscent of amyotrophic lateral sclerosis (ALS), whereas reduced levels of VEGF have been implicated in a polyglutamine-induced model of motor neuron degeneration. Recent data further reveal that intracerebroventricular delivery of recombinant VEGF protein delays disease onset and prolongs survival of ALS rats, whereas intramuscular administration of a VEGF-expressing lentiviral vector increases the life expectancy of ALS mice by as much as 30%. Deciphering the precise role of VEGF at the neurovascular interface promises to uncover new insights into the development and pathology of the nervous system, helpful to design novel strategies to treat (motor) neurodegenerative disorders.
Collapse
Affiliation(s)
- Diether Lambrechts
- Center for Transgene Technology and Gene Therapy, Flanders Interuniversitary Institute for Biotechnology, KULeuven, Campus Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium
| | | |
Collapse
|