1
|
Bani-Sadr A, Hermier M, de Bourguignon C, Mechtouff L, Eker OF, Cappucci M, Tommasino E, Martin A, Cho TH, Derex L, Nighoghossian N, Berthezene Y. Oxygen Extraction Fraction Mapping on Admission Magnetic Resonance Imaging May Predict Recovery of Hyperacute Ischemic Brain Lesions After Successful Thrombectomy: A Retrospective Observational Study. Stroke 2024; 55:2685-2693. [PMID: 39391984 DOI: 10.1161/strokeaha.124.047311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/21/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND In acute stroke, diffusion-weighted imaging (DWI) is used to assess the ischemic core. Dynamic-susceptibility contrast perfusion magnetic resonance imaging allows an estimation of the oxygen extraction fraction (OEF), but the outcome of DWI lesions with increased OEF postrecanalization is unclear. This study investigated the impact of OEF on the fate of DWI lesions in patients achieving recanalization after thrombectomy. METHODS This was a retrospective analysis of the HIBISCUS-STROKE cohort (Cohort of Patients to Identify Biological and Imaging Markers of Cardiovascular Outcomes in Stroke; NCT: 03149705), a single-center observational study that prospectively enrolled patients who underwent magnetic resonance imaging triage for thrombectomy and a day-6 T2-fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging. Automated postprocessing of admission dynamic-susceptibility contrast perfusion magnetic resonance imaging generated OEF maps. At visual analysis, the OEF status within DWI lesions was assessed in comparison to the contralateral side and correlated with volume changes (difference of ischemic lesion between admission DWI and registered day-6 T2-FLAIR). At voxel-based analysis, recovered DWI regions (lesions present on the admission DWI but absent on the registered day-6 T2-FLAIR) and nonrecovered regions were segmented to extract semiquantitative OEF values. RESULTS Of the participants enrolled from 2016 to 2022, 134 of 321 (41.7%) were included (median age, 71.0 years; 58.2% male; median baseline National Institutes of Health Scale score, 15.0). At visual analysis, 46 of 134 (34.3%) patients had increased OEF within DWI lesions. These patients were more likely to show a reduction in ischemic lesion volumes compared with those without increased OEF (median change, -4.0 versus 4.8 mL; P<0.0001). Multivariable analysis indicated that increased OEF within DWI lesions was associated with a reduction in ischemic lesion volumes from admission DWI to day-6 T2-FLAIR (odds ratio, 0.68 [95% CI, 0.49-0.87]; P=0.008). At voxel-based analysis, recovered DWI regions had increased OEF, while nonrecovered regions had decreased OEF (median, 126.9% versus -27.0%; P<0.0001). CONCLUSIONS Increased OEF within hyperacute DWI lesions was associated with ischemic lesion recovery between admission DWI and day-6 T2-FLAIR in patients achieving recanalization after thrombectomy. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifier: NCT03149705.
Collapse
Affiliation(s)
- Alexandre Bani-Sadr
- Department of Neuroradiology (A.B.-S., M.H., O.F.E., M.C., E.T., A.M., Y.B.), East Group Hospital, Hospices Civils de Lyon, Bron, France
- Centre de Recherche et de Traitement de l'Image pour la Santé (CREATIS) Laboratory, Centre National de la Recherche en Santé (CNRS) Unité Mixte de Recherche (UMR) 5220, Institut National de la Santé et de la Recherche Médicale (INSERM) U1294, Claude Bernard Lyon I University, Villeurbanne, France (A.B.-S., O.F.E., E.T., A.M., Y.B.)
| | - Marc Hermier
- Department of Neuroradiology (A.B.-S., M.H., O.F.E., M.C., E.T., A.M., Y.B.), East Group Hospital, Hospices Civils de Lyon, Bron, France
| | | | - Laura Mechtouff
- Stroke Department (L.M., T.-H.C., L.D., N.N.), East Group Hospital, Hospices Civils de Lyon, Bron, France
- CarMeN Laboratory, INSERM U1060/INRA U1397, Claude Bernard Lyon I University, Bron, France (L.M., T.-H.C., N.N.)
| | - Omer F Eker
- Department of Neuroradiology (A.B.-S., M.H., O.F.E., M.C., E.T., A.M., Y.B.), East Group Hospital, Hospices Civils de Lyon, Bron, France
- Centre de Recherche et de Traitement de l'Image pour la Santé (CREATIS) Laboratory, Centre National de la Recherche en Santé (CNRS) Unité Mixte de Recherche (UMR) 5220, Institut National de la Santé et de la Recherche Médicale (INSERM) U1294, Claude Bernard Lyon I University, Villeurbanne, France (A.B.-S., O.F.E., E.T., A.M., Y.B.)
| | - Matteo Cappucci
- Department of Neuroradiology (A.B.-S., M.H., O.F.E., M.C., E.T., A.M., Y.B.), East Group Hospital, Hospices Civils de Lyon, Bron, France
| | - Emanuele Tommasino
- Department of Neuroradiology (A.B.-S., M.H., O.F.E., M.C., E.T., A.M., Y.B.), East Group Hospital, Hospices Civils de Lyon, Bron, France
- Centre de Recherche et de Traitement de l'Image pour la Santé (CREATIS) Laboratory, Centre National de la Recherche en Santé (CNRS) Unité Mixte de Recherche (UMR) 5220, Institut National de la Santé et de la Recherche Médicale (INSERM) U1294, Claude Bernard Lyon I University, Villeurbanne, France (A.B.-S., O.F.E., E.T., A.M., Y.B.)
| | - Anna Martin
- Department of Neuroradiology (A.B.-S., M.H., O.F.E., M.C., E.T., A.M., Y.B.), East Group Hospital, Hospices Civils de Lyon, Bron, France
- Centre de Recherche et de Traitement de l'Image pour la Santé (CREATIS) Laboratory, Centre National de la Recherche en Santé (CNRS) Unité Mixte de Recherche (UMR) 5220, Institut National de la Santé et de la Recherche Médicale (INSERM) U1294, Claude Bernard Lyon I University, Villeurbanne, France (A.B.-S., O.F.E., E.T., A.M., Y.B.)
| | - Tae-Hee Cho
- Stroke Department (L.M., T.-H.C., L.D., N.N.), East Group Hospital, Hospices Civils de Lyon, Bron, France
- CarMeN Laboratory, INSERM U1060/INRA U1397, Claude Bernard Lyon I University, Bron, France (L.M., T.-H.C., N.N.)
| | - Laurent Derex
- Stroke Department (L.M., T.-H.C., L.D., N.N.), East Group Hospital, Hospices Civils de Lyon, Bron, France
| | - Nobert Nighoghossian
- Stroke Department (L.M., T.-H.C., L.D., N.N.), East Group Hospital, Hospices Civils de Lyon, Bron, France
- CarMeN Laboratory, INSERM U1060/INRA U1397, Claude Bernard Lyon I University, Bron, France (L.M., T.-H.C., N.N.)
| | - Yves Berthezene
- Department of Neuroradiology (A.B.-S., M.H., O.F.E., M.C., E.T., A.M., Y.B.), East Group Hospital, Hospices Civils de Lyon, Bron, France
- Centre de Recherche et de Traitement de l'Image pour la Santé (CREATIS) Laboratory, Centre National de la Recherche en Santé (CNRS) Unité Mixte de Recherche (UMR) 5220, Institut National de la Santé et de la Recherche Médicale (INSERM) U1294, Claude Bernard Lyon I University, Villeurbanne, France (A.B.-S., O.F.E., E.T., A.M., Y.B.)
| |
Collapse
|
2
|
Fainardi E, Busto G, Morotti A. Automated advanced imaging in acute ischemic stroke. Certainties and uncertainties. Eur J Radiol Open 2023; 11:100524. [PMID: 37771657 PMCID: PMC10523426 DOI: 10.1016/j.ejro.2023.100524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/30/2023] Open
Abstract
The purpose of this is study was to review pearls and pitfalls of advanced imaging, such as computed tomography perfusion and diffusion-weighed imaging and perfusion-weighted imaging in the selection of acute ischemic stroke (AIS) patients suitable for endovascular treatment (EVT) in the late time window (6-24 h from symptom onset). Advanced imaging can quantify infarct core and ischemic penumbra using specific threshold values and provides optimal selection parameters, collectively called target mismatch. More precisely, target mismatch criteria consist of core volume and/or penumbra volume and mismatch ratio (the ratio between total hypoperfusion and core volumes) with precise cut-off values. The parameters of target mismatch are automatically calculated with dedicated software packages that allow a quick and standardized interpretation of advanced imaging. However, this approach has several limitations leading to a misclassification of core and penumbra volumes. In fact, automatic software platforms are affected by technical artifacts and are not interchangeable due to a remarkable vendor-dependent variability, resulting in different estimate of target mismatch parameters. In addition, advanced imaging is not completely accurate in detecting infarct core, that can be under- or overestimated. Finally, the selection of candidates for EVT remains currently suboptimal due to the high rates of futile reperfusion and overselection caused by the use of very stringent inclusion criteria. For these reasons, some investigators recently proposed to replace advanced with conventional imaging in the selection for EVT, after the demonstration that non-contrast CT ASPECTS and computed tomography angiography collateral evaluation are not inferior to advanced images in predicting outcome in AIS patients treated with EVT. However, other authors confirmed that CTP and PWI/DWI postprocessed images are superior to conventional imaging in establishing the eligibility of patients for EVT. Therefore, the routine application of automatic assessment of advanced imaging remains a matter of debate. Recent findings suggest that the combination of conventional and advanced imaging might improving our selection criteria.
Collapse
Affiliation(s)
- Enrico Fainardi
- Neuroradiology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
- Neuroradiology Unit, Department of Radiology, Careggi University Hospital, Florence, Italy
| | - Giorgio Busto
- Neuroradiology Unit, Department of Radiology, Careggi University Hospital, Florence, Italy
| | - Andrea Morotti
- Department of Neurological and Vision Sciences, Neurology Unit, ASST Spedali Civili, Brescia, Italy
| |
Collapse
|
3
|
MRI Radiomics and Predictive Models in Assessing Ischemic Stroke Outcome-A Systematic Review. Diagnostics (Basel) 2023; 13:diagnostics13050857. [PMID: 36900001 PMCID: PMC10000411 DOI: 10.3390/diagnostics13050857] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Stroke is a leading cause of disability and mortality, resulting in substantial socio-economic burden for healthcare systems. With advances in artificial intelligence, visual image information can be processed into numerous quantitative features in an objective, repeatable and high-throughput fashion, in a process known as radiomics analysis (RA). Recently, investigators have attempted to apply RA to stroke neuroimaging in the hope of promoting personalized precision medicine. This review aimed to evaluate the role of RA as an adjuvant tool in the prognosis of disability after stroke. We conducted a systematic review following the PRISMA guidelines, searching PubMed and Embase using the keywords: 'magnetic resonance imaging (MRI)', 'radiomics', and 'stroke'. The PROBAST tool was used to assess the risk of bias. Radiomics quality score (RQS) was also applied to evaluate the methodological quality of radiomics studies. Of the 150 abstracts returned by electronic literature research, 6 studies fulfilled the inclusion criteria. Five studies evaluated predictive value for different predictive models (PMs). In all studies, the combined PMs consisting of clinical and radiomics features have achieved the best predictive performance compared to PMs based only on clinical or radiomics features, the results varying from an area under the ROC curve (AUC) of 0.80 (95% CI, 0.75-0.86) to an AUC of 0.92 (95% CI, 0.87-0.97). The median RQS of the included studies was 15, reflecting a moderate methodological quality. Assessing the risk of bias using PROBAST, potential high risk of bias in participants selection was identified. Our findings suggest that combined models integrating both clinical and advanced imaging variables seem to better predict the patients' disability outcome group (favorable outcome: modified Rankin scale (mRS) ≤ 2 and unfavorable outcome: mRS > 2) at three and six months after stroke. Although radiomics studies' findings are significant in research field, these results should be validated in multiple clinical settings in order to help clinicians to provide individual patients with optimal tailor-made treatment.
Collapse
|
4
|
Production of [ 11C]Carbon Labelled Flumazenil and L-Deprenyl Using the iMiDEV™ Automated Microfluidic Radiosynthesizer. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248843. [PMID: 36557975 PMCID: PMC9788284 DOI: 10.3390/molecules27248843] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
In the last decade, microfluidic techniques have been explored in radiochemistry, and some of them have been implemented in preclinical production. However, these are not suitable and reliable for preparing different types of radiotracers or dose-on-demand production. A fully automated iMiDEV™ microfluidic radiosynthesizer has been introduced and this study is aimed at using of the iMiDEV™ radiosynthesizer with a microfluidic cassette to produce [11C]flumazenil and [11C]L-deprenyl. These two are known PET radioligands for benzodiazepine receptors and monoamine oxidase-B (MAO-B), respectively. Methods were successfully developed to produce [11C]flumazenil and [11C]L-deprenyl using [11C]methyl iodide and [11C]methyl triflate, respectively. The final products 1644 ± 504 MBq (n = 7) and 533 ± 20 MBq (n = 3) of [11C]flumazenil and [11C]L-deprenyl were produced with radiochemical purities were over 98% and the molar activity for [11C]flumazenil and [11C]L-deprenyl was 1912 ± 552 GBq/µmol, and 1463 ± 439 GBq/µmol, respectively, at the end of synthesis. All the QC tests complied with the European Pharmacopeia. Different parameters, such as solvents, bases, methylating agents, precursor concentration, and different batches of cassettes, were explored to increase the radiochemical yield. Synthesis methods were developed using 3-5 times less precursor than conventional methods. The fully automated iMiDEV™ microfluidic radiosynthesizer was successfully applied to prepare [11C]flumazenil and [11C]L-deprenyl.
Collapse
|
5
|
Advanced Imaging in the Era of Tissue-Based Treatment for Acute Ischemic Stroke—a Practical Review. Curr Treat Options Neurol 2021. [DOI: 10.1007/s11940-021-00685-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Kure AJ, Savas H, Hijaz TA, Hussaini SF, Korutz AW. Advancements in Positron Emission Tomography/Magnetic Resonance Imaging and Applications to Diagnostic Challenges in Neuroradiology. Semin Ultrasound CT MR 2021; 42:434-451. [PMID: 34537113 DOI: 10.1053/j.sult.2021.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Since the clinical adoption of magnetic resonance (MR) in medical imaging, MR has proven to be a workhorse in diagnostic neuroradiology, with the ability to provide superb anatomic detail as well as additional functional and physiologic data, depending on the techniques utilized. Positron emission tomography/computed tomography has also shown irreplaceable diagnostic value in certain disease processes of the central nervous system by providing molecular and metabolic information through the development of numerous disease-specific PET tracers, many of which can be utilized as a diagnostic technique in and of themselves or can provide a valuable adjunct to information derived from MR. Despite these advances, many challenges still remain in neuroradiology, particularly in malignancy, neurodegenerative disease, epilepsy, and cerebrovascular disease. Through improvements in attenuation correction, motion correction, and PET detectors, combining the 2 modalities of PET and MR through simultaneous imaging has proven feasible and allows for improved spatial and temporal resolution without compromising either of the 2 individual modalities. The complementary information offered by both technologies has provided increased diagnostic accuracy in both research and many clinical applications in neuroradiology.
Collapse
Affiliation(s)
- Andrew J Kure
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, IL.
| | - Hatice Savas
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, IL.
| | - Tarek A Hijaz
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, IL.
| | - Syed F Hussaini
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, IL.
| | - Alexander W Korutz
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, IL.
| |
Collapse
|
7
|
Nagaraja N. Diffusion weighted imaging in acute ischemic stroke: A review of its interpretation pitfalls and advanced diffusion imaging application. J Neurol Sci 2021; 425:117435. [PMID: 33836457 DOI: 10.1016/j.jns.2021.117435] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/08/2021] [Accepted: 04/02/2021] [Indexed: 12/28/2022]
Abstract
Diffusion weighted imaging (DWI) is a widely used imaging technique to evaluate patients with stroke. It can detect brain ischemia within minutes of stroke onset. However, DWI has few potential pitfalls that should be recognized during interpretation. DWI lesion could be reversible in the early hours of stroke and the entire lesion may not represent ischemic core. False negative DWI could lead to diagnosis of DWI negative stroke or to a missed stroke diagnosis. Ischemic stroke mimics can occur on DWI with non-cerebrovascular neurological conditions. In this article, the history of DWI, its clinical applications, and potential pitfalls for use in acute ischemic stroke are reviewed. Advanced diffusion imaging techniques with reference to Diffusion Kurtosis Imaging and Diffusion Tensor Imaging that has been studied to evaluate ischemic core are discussed.
Collapse
Affiliation(s)
- Nandakumar Nagaraja
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA.
| |
Collapse
|
8
|
Lampinen B, Lätt J, Wasselius J, van Westen D, Nilsson M. Time dependence in diffusion MRI predicts tissue outcome in ischemic stroke patients. Magn Reson Med 2021; 86:754-764. [PMID: 33755261 PMCID: PMC8445077 DOI: 10.1002/mrm.28743] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/18/2022]
Abstract
Purpose: Reperfusion therapy enables effective treatment of ischemic stroke presenting within 4–6 hours. However, tissue progression from ischemia to infarction is variable, and some patients benefit from treatment up until 24 hours. Improved imaging techniques are needed to identify these patients. Here, it was hypothesized that time dependence in diffusion MRI may predict tissue outcome in ischemic stroke. Methods: Diffusion MRI data were acquired with multiple diffusion times in five non-reperfused patients at 2, 9, and 100 days after stroke onset. Maps of “rate of kurtosis change” (k), mean kurtosis, ADC, and fractional anisotropy were derived. The ADC maps defined lesions, normal-appearing tissue, and the lesion tissue that would either be infarcted or remain viable by day 100. Diffusion parameters were compared (1) between lesions and normal-appearing tissue, and (2) between lesion tissue that would be infarcted or remain viable. Results: Positive values of k were observed within stroke lesions on day 2 (P = .001) and on day 9 (P = .023), indicating diffusional exchange. On day 100, high ADC values indicated infarction of 50 ± 20% of the lesion volumes. Tissue infarction was predicted by high k values both on day 2 (P = .026) and on day 9 (P = .046), by low mean kurtosis values on day 2 (P = .043), and by low fractional anisotropy values on day 9 (P = .029), but not by low ADC values. Conclusions: Diffusion time dependence predicted tissue outcome in ischemic stroke more accurately than the ADC, and may be useful for predicting reperfusion benefit.
Collapse
Affiliation(s)
- Björn Lampinen
- Clinical Sciences Lund, Medical Radiation Physics, Lund University, Lund, Sweden
| | - Jimmy Lätt
- Center for Medical Imaging and Physiology, Skåne University Hospital Lund, Lund, Sweden
| | - Johan Wasselius
- Clinical Sciences Lund, Radiology, Lund University, Lund, Sweden
| | | | - Markus Nilsson
- Clinical Sciences Lund, Radiology, Lund University, Lund, Sweden
| |
Collapse
|
9
|
Li Y, Wang T, Zhang T, Lin Z, Li Y, Guo R, Zhao Y, Meng Z, Liu J, Yu X, Liang ZP, Nachev P. Fast high-resolution metabolic imaging of acute stroke with 3D magnetic resonance spectroscopy. Brain 2020; 143:3225-3233. [PMID: 33141145 PMCID: PMC7719019 DOI: 10.1093/brain/awaa264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/05/2020] [Accepted: 06/29/2020] [Indexed: 01/24/2023] Open
Abstract
Impaired oxygen and cellular metabolism is a hallmark of ischaemic injury in acute stroke. Magnetic resonance spectroscopic imaging (MRSI) has long been recognized as a potentially powerful tool for non-invasive metabolic imaging. Nonetheless, long acquisition time, poor spatial resolution, and narrow coverage have limited its clinical application. Here we investigated the feasibility and potential clinical utility of rapid, high spatial resolution, near whole-brain 3D metabolic imaging based on a novel MRSI technology. In an 8-min scan, we simultaneously obtained 3D maps of N-acetylaspartate and lactate at a nominal spatial resolution of 2.0 × 3.0 × 3.0 mm3 with near whole-brain coverage from a cohort of 18 patients with acute ischaemic stroke. Serial structural and perfusion MRI was used to define detailed spatial maps of tissue-level outcomes against which high-resolution metabolic changes were evaluated. Within hypoperfused tissue, the lactate signal was higher in areas that ultimately infarcted compared with those that recovered (P < 0.0001). Both lactate (P < 0.0001) and N-acetylaspartate (P < 0.001) differed between infarcted and other regions. Within the areas of diffusion-weighted abnormality, lactate was lower where recovery was observed compared with elsewhere (P < 0.001). This feasibility study supports further investigation of fast high-resolution MRSI in acute stroke.
Collapse
Affiliation(s)
- Yao Li
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Tianyao Wang
- Radiology Department, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Tianxiao Zhang
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zengping Lin
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yudu Li
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rong Guo
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yibo Zhao
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ziyu Meng
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jun Liu
- Radiology Department, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Xin Yu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Zhi-Pei Liang
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Parashkev Nachev
- High-Dimensional Neurology Group, Institute of Neurology, University College London, London, UK
| |
Collapse
|
10
|
Little PV, Kraft SE, Chireh A, Damberg P, Holmin S. Oxygen metabolism MRI - A comparison with perfusion imaging in a rat model of MCA branch occlusion and reperfusion. J Cereb Blood Flow Metab 2020; 40:2315-2327. [PMID: 31842668 PMCID: PMC7585917 DOI: 10.1177/0271678x19892271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 11/17/2022]
Abstract
The penumbra is sustained by an increased extraction of oxygen (OEF) from blood to brain tissue. Metabolic imaging may improve penumbra specificity when examining stroke patients with wake-up stroke and a long time between admission and symptom onset. We used MRI to examine OEF, and compared the volume of regions with elevated OEF to the volume of regions with perfusion deficit in a M2 occlusion model (M2CAO) with preserved collateral blood flow. OEF was calculated from BOLD MRI examining tissue R2', with ASL perfusion imaging employed to determine cerebral blood flows (CBF) and volumes. Diffusion imaging was used to identify the ischemic core (IC). Examinations were performed during and after transient M2CAO in rats. The IC-OEF mismatch was significantly smaller than the IC-CBF mismatch during M2CAO. The penumbra OEF was significantly increased during M2CAO, and decreased significantly after reperfusion. The IC-OEF mismatch may provide increased penumbra specificity compared to IC-CBF mismatch regimens. Results strongly indicate the potential of metabolic MRI for thrombectomy patient selection in cases with a long time from symptom onset to admission. Results demonstrate the effectiveness of reperfusion in alleviating metabolic disturbances in ischemic regions, emphasizing fast treatment to achieve significant neurological recovery in stroke patients.
Collapse
Affiliation(s)
- Philip V Little
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, BioClinicum, Karolinska University Hospital, Stockholm, Sweden
| | - Sandra E Kraft
- Karolinska Experimental Research and Imaging Center (KERIC), Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Arvin Chireh
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, BioClinicum, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Damberg
- Karolinska Experimental Research and Imaging Center (KERIC), Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Staffan Holmin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, BioClinicum, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
11
|
Alambyan V, Pace J, Sukpornchairak P, Yu X, Alnimir H, Tatton R, Chitturu G, Yarlagadda A, Ramos-Estebanez C. Imaging Guidance for Therapeutic Delivery: The Dawn of Neuroenergetics. Neurotherapeutics 2020; 17:522-538. [PMID: 32240530 PMCID: PMC7283376 DOI: 10.1007/s13311-020-00843-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Modern neurocritical care relies on ancillary diagnostic testing in the form of multimodal monitoring to address acute changes in the neurological homeostasis. Much of our armamentarium rests upon physiological and biochemical surrogates of organ or regional level metabolic activity, of which a great deal is invested at the metabolic-hemodynamic-hydrodynamic interface to rectify the traditional intermediaries of glucose consumption. Despite best efforts to detect cellular neuroenergetics, current modalities cannot appreciate the intricate coupling between astrocytes and neurons. Invasive monitoring is not without surgical complication, and noninvasive strategies do not provide an adequate spatial or temporal resolution. Without knowledge of the brain's versatile behavior in specific metabolic states (glycolytic vs oxidative), clinical practice would lag behind laboratory empiricism. Noninvasive metabolic imaging represents a new hope in delineating cellular, nigh molecular level energy exchange to guide targeted management in a diverse array of neuropathology.
Collapse
Affiliation(s)
- Vilakshan Alambyan
- Department of Neurology, Albert Einstein Medical Center, Philadelphia, Pennsylvania, USA
| | - Jonathan Pace
- Neurological Institute, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Persen Sukpornchairak
- Neurological Institute, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xin Yu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Hamza Alnimir
- Neurological Institute, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ryan Tatton
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Gautham Chitturu
- Department of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Anisha Yarlagadda
- Department of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ciro Ramos-Estebanez
- Neurological Institute, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA.
| |
Collapse
|
12
|
Simulations of the effect of diffusion on asymmetric spin echo based quantitative BOLD: An investigation of the origin of deoxygenated blood volume overestimation. Neuroimage 2019; 201:116035. [PMID: 31326570 PMCID: PMC6996000 DOI: 10.1016/j.neuroimage.2019.116035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/10/2019] [Accepted: 07/17/2019] [Indexed: 11/21/2022] Open
Abstract
Quantitative BOLD (qBOLD) is a technique for mapping oxygen extraction fraction (OEF) and deoxygenated blood volume (DBV) in the human brain. Recent measurements using an asymmetric spin echo (ASE) based qBOLD approach produced estimates of DBV which were systematically higher than measurements from other techniques. In this study, we investigate two hypotheses for the origin of this DBV overestimation using simulations and consider the implications for experimental measurements. Investigations were performed by combining Monte Carlo simulations of extravascular signal with an analytical model of the intravascular signal. HYPOTHESIS 1: DBV overestimation is due to the presence of intravascular signal which is not accounted for in the analysis model. Intravascular signal was found to have a weak effect on qBOLD parameter estimates. HYPOTHESIS 2: DBV overestimation is due to the effects of diffusion which are not accounted for in the analysis model. The effect of diffusion on the extravascular signal was found to result in a vessel radius dependent variation in qBOLD parameter estimates. In particular, DBV overestimation peaks for vessels with radii from 20 to 30 μm and is OEF dependent. This results in the systematic underestimation of OEF. IMPLICATIONS: The impact on experimental qBOLD measurements was investigated by simulating a more physiologically realistic distribution of vessel sizes with a small number of discrete radii. Overestimation of DBV consistent with previous experiments was observed, which was also found to be OEF dependent. This results in the progressive underestimation of the measured OEF. Furthermore, the relationship between the measured OEF and the true OEF was found to be dependent on echo time and spin echo displacement time. The results of this study demonstrate the limitations of current ASE based qBOLD measurements and provide a foundation for the optimisation of future acquisition approaches.
Collapse
|
13
|
Zaro-Weber O, Fleischer H, Reiblich L, Schuster A, Moeller-Hartmann W, Heiss WD. Penumbra detection in acute stroke with perfusion magnetic resonance imaging: Validation with 15 O-positron emission tomography. Ann Neurol 2019; 85:875-886. [PMID: 30937950 PMCID: PMC6593670 DOI: 10.1002/ana.25479] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/20/2019] [Accepted: 03/31/2019] [Indexed: 12/17/2022]
Abstract
Objective Accurate identification of the ischemic penumbra, the therapeutic target in acute clinical stroke, is of critical importance to identify patients who might benefit from reperfusion therapies beyond the established time windows. Therefore, we aimed to validate magnetic resonance imaging (MRI) mismatch–based penumbra detection against full quantitative positron emission tomography (15O‐PET), the gold standard for penumbra detection in acute ischemic stroke. Methods Ten patients (group A) with acute and subacute ischemic stroke underwent perfusion‐weighted (PW)/diffusion‐weighted MRI and consecutive full quantitative 15O‐PET within 48 hours of stroke onset. Penumbra as defined by 15O‐PET cerebral blood flow (CBF), oxygen extraction fraction, and oxygen metabolism was used to validate a wide range of established PW measures (eg, time‐to‐maximum [Tmax]) to optimize penumbral tissue detection. Validation was carried out using a voxel‐based receiver‐operating‐characteristic curve analysis. The same validation based on penumbra as defined by quantitative 15O‐PET CBF was performed for comparative reasons in 23 patients measured within 48 hours of stroke onset (group B). Results The PW map Tmax (area‐under‐the‐curve = 0.88) performed best in detecting penumbral tissue up to 48 hours after stroke onset. The optimal threshold to discriminate penumbra from oligemia was Tmax >5.6 seconds with a sensitivity and specificity of >80%. Interpretation The performance of the best PW measure Tmax to detect the upper penumbral flow threshold in ischemic stroke is excellent. Tmax >5.6 seconds–based penumbra detection is reliable to guide treatment decisions up to 48 hours after stroke onset and might help to expand reperfusion treatment beyond the current time windows. ANN NEUROL 2019;85:875–886.
Collapse
Affiliation(s)
- Olivier Zaro-Weber
- Max Planck Institute for Neurological Research, Cologne, Germany.,Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Hermann Fleischer
- Max Planck Institute for Neurological Research, Cologne, Germany.,Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lucas Reiblich
- Max Planck Institute for Neurological Research, Cologne, Germany.,Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
14
|
Stone AJ, Harston GWJ, Carone D, Okell TW, Kennedy J, Blockley NP. Prospects for investigating brain oxygenation in acute stroke: Experience with a non-contrast quantitative BOLD based approach. Hum Brain Mapp 2019; 40:2853-2866. [PMID: 30860660 PMCID: PMC6563088 DOI: 10.1002/hbm.24564] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 12/13/2022] Open
Abstract
Metabolic markers of baseline brain oxygenation and tissue perfusion have an important role to play in the early identification of ischaemic tissue in acute stroke. Although well established MRI techniques exist for mapping brain perfusion, quantitative imaging of brain oxygenation is poorly served. Streamlined-qBOLD (sqBOLD) is a recently developed technique for mapping oxygenation that is well suited to the challenge of investigating acute stroke. In this study a noninvasive serial imaging protocol was implemented, incorporating sqBOLD and arterial spin labelling to map blood oxygenation and perfusion, respectively. The utility of these parameters was investigated using imaging based definitions of tissue outcome (ischaemic core, infarct growth and contralateral tissue). Voxel wise analysis revealed significant differences between all tissue outcomes using pairwise comparisons for the transverse reversible relaxation rate (R 2 '), deoxygenated blood volume (DBV) and deoxyghaemoglobin concentration ([dHb]; p < 0.01 in all cases). At the patient level (n = 9), a significant difference was observed for [dHb] between ischaemic core and contralateral tissue. Furthermore, serial analysis at the patient level (n = 6) revealed significant changes in R 2 ' between the presentation and 1 week scans for both ischaemic core (p < 0.01) and infarct growth (p < 0.05). In conclusion, this study presents evidence supporting the potential of sqBOLD for imaging oxygenation in stroke.
Collapse
Affiliation(s)
- Alan J Stone
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - George W J Harston
- Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Davide Carone
- Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Thomas W Okell
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - James Kennedy
- Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas P Blockley
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Wang E, Wu Y, Cheung JS, Igarashi T, Wu L, Zhang X, Sun PZ. Mapping tissue pH in an experimental model of acute stroke - Determination of graded regional tissue pH changes with non-invasive quantitative amide proton transfer MRI. Neuroimage 2019; 191:610-617. [PMID: 30753926 DOI: 10.1016/j.neuroimage.2019.02.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 02/05/2019] [Accepted: 02/08/2019] [Indexed: 12/20/2022] Open
Abstract
pH-weighted amide proton transfer (APT) MRI is sensitive to tissue pH change during acute ischemia, complementing conventional perfusion and diffusion stroke imaging. However, the currently used pH-weighted magnetization transfer (MT) ratio asymmetry (MTRasym) analysis is of limited pH specificity. To overcome this, MT and relaxation normalized APT (MRAPT) analysis has been developed that to homogenize the background signal, thus providing highly pH conspicuous measurement. Our study aimed to calibrate MRAPT MRI toward absolute tissue pH mapping and determine regional pH changes during acute stroke. Using middle cerebral artery occlusion (MCAO) rats, we performed lactate MR spectroscopy and multi-parametric MRI. MRAPT MRI was calibrated against a region of interest (ROI)-based pH spectroscopy measurement (R2 = 0.70, P < 0.001), showing noticeably higher correlation coefficient than the simplistic MTRasym index. Capitalizing on this, we mapped brain tissue pH and semi-automatically segmented pH lesion, in addition to routine perfusion and diffusion lesions. Tissue pH from regions of the contralateral normal, perfusion/diffusion lesion mismatch and diffusion lesion was found to be 7.03 ± 0.04, 6.84 ± 0.10, 6.52 ± 0.19, respectively. Most importantly, we delineated the heterogeneous perfusion/diffusion lesion mismatch into perfusion/pH and pH/diffusion lesion mismatches, with their pH being 7.01 ± 0.04 and 6.71 ± 0.12, respectively (P < 0.05). To summarize, our study calibrated pH-sensitive MRAPT MRI toward absolute tissue pH mapping, semi-automatically segmented and determined graded tissue pH changes in ischemic tissue and demonstrated its feasibility for refined demarcation of heterogeneous metabolic disruption following acute stroke.
Collapse
Affiliation(s)
- Enfeng Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA; Department of Radiology, 3rd Affiliated Hospital, Zhengzhou University, Henan, China
| | - Yin Wu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA; Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Jerry S Cheung
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Takahiro Igarashi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Limin Wu
- Neuroscience Center and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Xiaoan Zhang
- Department of Radiology, 3rd Affiliated Hospital, Zhengzhou University, Henan, China
| | - Phillip Zhe Sun
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
16
|
Yin J, Sun H, Wang Z, Ni H, Shen W, Sun PZ. Diffusion Kurtosis Imaging of Acute Infarction: Comparison with Routine Diffusion and Follow-up MR Imaging. Radiology 2018; 287:651-657. [PMID: 29558293 DOI: 10.1148/radiol.2017170553] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Purpose To determine the relationship between diffusion-weighted imaging (DWI) and diffusion kurtosis imaging (DKI) in patients with acute stroke at admission and the tissue outcome 1 month after onset of stroke. Materials and Methods Patients with stroke underwent DWI (b values = 0, 1000 sec/mm2 along three directions) and DKI (b values = 0, 1000, 2000 sec/mm2 along 20 directions) within 24 hours after symptom onset and 1 month after symptom onset. For large lesions (diameter ≥ 1 cm), acute lesion volumes at DWI and DKI were compared with those at follow-up T2-weighted imaging by using Spearman correlation analysis. For small lesions (diameter < 1 cm), the number of acute lesions at DWI and DKI and follow-up T2-weighted imaging was counted and compared by using the McNemar test. Results Thirty-seven patients (mean age, 58 years; range, 35-82 years) were included. There were 32 large lesions and 138 small lesions. For large lesions, the volumes of acute lesions on kurtosis maps showed no difference from those on 1-month follow-up T2-weighted images (P = .532), with a higher correlation coefficient than those on the apparent diffusion coefficient and mean diffusivity maps (R2 = 0.730 vs 0.479 and 0.429). For small lesions, the number of acute lesions on DKI, but not on DWI, images was consistent with that on the follow-up T2-weighted images (P = .125). Conclusion DKI complements DWI for improved prediction of outcome of acute ischemic stroke. © RSNA, 2018.
Collapse
Affiliation(s)
- Jianzhong Yin
- From the Departments of Radiology (J.Y., H.N., W.S.) and Neurology (Z.W.), Tianjin First Central Hospital, Tianjin, China; Department of Medicine, Tianjin Medical University, Tianjin, China (H.S.); and Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 13th St, Room 2301 CNY, Charlestown, MA 02129 (P.Z.S.)
| | - Haizhen Sun
- From the Departments of Radiology (J.Y., H.N., W.S.) and Neurology (Z.W.), Tianjin First Central Hospital, Tianjin, China; Department of Medicine, Tianjin Medical University, Tianjin, China (H.S.); and Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 13th St, Room 2301 CNY, Charlestown, MA 02129 (P.Z.S.)
| | - Zhiyun Wang
- From the Departments of Radiology (J.Y., H.N., W.S.) and Neurology (Z.W.), Tianjin First Central Hospital, Tianjin, China; Department of Medicine, Tianjin Medical University, Tianjin, China (H.S.); and Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 13th St, Room 2301 CNY, Charlestown, MA 02129 (P.Z.S.)
| | - Hongyan Ni
- From the Departments of Radiology (J.Y., H.N., W.S.) and Neurology (Z.W.), Tianjin First Central Hospital, Tianjin, China; Department of Medicine, Tianjin Medical University, Tianjin, China (H.S.); and Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 13th St, Room 2301 CNY, Charlestown, MA 02129 (P.Z.S.)
| | - Wen Shen
- From the Departments of Radiology (J.Y., H.N., W.S.) and Neurology (Z.W.), Tianjin First Central Hospital, Tianjin, China; Department of Medicine, Tianjin Medical University, Tianjin, China (H.S.); and Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 13th St, Room 2301 CNY, Charlestown, MA 02129 (P.Z.S.)
| | - Phillip Zhe Sun
- From the Departments of Radiology (J.Y., H.N., W.S.) and Neurology (Z.W.), Tianjin First Central Hospital, Tianjin, China; Department of Medicine, Tianjin Medical University, Tianjin, China (H.S.); and Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 13th St, Room 2301 CNY, Charlestown, MA 02129 (P.Z.S.)
| |
Collapse
|
17
|
JOURNAL CLUB: Evaluation of Diffusion Kurtosis Imaging of Stroke Lesion With Hemodynamic and Metabolic MRI in a Rodent Model of Acute Stroke. AJR Am J Roentgenol 2018; 210:720-727. [PMID: 29470156 DOI: 10.2214/ajr.17.19134] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Diffusion kurtosis imaging (DKI) has emerged as a new acute stroke imaging approach, augmenting routine DWI. Although it has been shown that a diffusion lesion without kurtosis abnormality is more likely to recover after reperfusion, whereas a kurtosis lesion shows poor response, little is known about the underlying pathophysiologic profile of the kurtosis lesion versus the kurtosis lesion-diffusion lesion mismatch. MATERIALS AND METHODS We performed multiparametric MRI, including arterial spin labeling, pH-sensitive amide proton transfer, and DKI, in a rodent model of acute stroke caused by embolic middle cerebral artery occlusion. Diffusion and kurtosis lesions were semiautomatically segmented, and multiparametric MRI indexes were compared among the kurtosis lesion, diffusion lesion, kurtosis lesion-diffusion lesion mismatch, and the contralateral normal tissue area. RESULTS We confirmed a significant difference between diffusion lesion and kurtosis lesion volumes (mean [± SD] volume, 151 ± 65 vs 125 ± 47 mm3; p < 0.05). Although ischemic lesions have significantly reduced cerebral blood flow compared with contralateral normal tissue, we did not find a significant difference in cerebral blood flow between the kurtosis lesion and the kurtosis lesion-diffusion lesion mismatch (mean cerebral blood flow, 0.53 ± 0.10 vs 0.47 ± 0.14 mL/g of tissue per minute; p > 0.05). Of importance, the pH of the kurtosis lesion was significantly lower than that of the lesion mismatch (mean pH, 6.81 ± 0.08 vs 6.89 ± 0.09; p < 0.01). CONCLUSION The present study confirms that DKI provides an expedient approach for refining the heterogeneous DWI lesion that is associated with graded metabolic derangement, which is promising for improving the infarction core definition and ultimately helping to guide stroke treatment.
Collapse
|
18
|
Abstract
Combined PET/MR imaging scanners capable of acquiring simultaneously the complementary information provided by the 2 imaging modalities are now available for human use. After addressing the hardware challenges for integrating the 2 imaging modalities, most of the efforts in the field have focused on developing MR-based attenuation correction methods for neurologic and whole-body applications, implementing approaches for improving one modality by using the data provided by the other and exploring research and clinical applications that could benefit from the synergistic use of the multimodal data.
Collapse
Affiliation(s)
- Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Building 149, 13th Street, Room 2.301, Charlestown, MA 02129, USA.
| |
Collapse
|
19
|
Evans NR, Tarkin JM, Buscombe JR, Markus HS, Rudd JHF, Warburton EA. PET imaging of the neurovascular interface in cerebrovascular disease. Nat Rev Neurol 2017; 13:676-688. [PMID: 28984315 DOI: 10.1038/nrneurol.2017.129] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cerebrovascular disease encompasses a range of pathologies that affect different components of the cerebral vasculature and brain parenchyma. Large artery atherosclerosis, acute cerebral ischaemia, and intracerebral small vessel disease all demonstrate altered metabolic processes that are key to their pathogenesis. Although structural imaging techniques such as MRI are the mainstay of clinical care and research in cerebrovascular disease, they have limited ability to detect these pathophysiological processes in vivo. By contrast, PET can detect and quantify metabolic processes that are relevant to each facet of cerebrovascular disease. Information obtained from PET studies has helped to shape the understanding of key concepts in cerebrovascular medicine, including vulnerable atherosclerotic plaque, salvageable ischaemic penumbra, neuroinflammation and selective neuronal loss after ischaemic insult. PET has also helped to elucidate the relationships between chronic hypoxia, neuroinflammation, and amyloid-β deposition in cerebral small vessel disease. This Review describes how PET-based imaging of metabolic processes at the neurovascular interface has contributed to our understanding of cerebrovascular disease.
Collapse
Affiliation(s)
- Nicholas R Evans
- Department of Clinical Neurosciences, University of Cambridge, Box 83, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Jason M Tarkin
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Box 157, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - John R Buscombe
- Department of Nuclear Medicine, Box 219, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge CB2 0QQ, UK
| | - Hugh S Markus
- Department of Clinical Neurosciences, University of Cambridge, Box 83, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - James H F Rudd
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Box 157, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Elizabeth A Warburton
- Department of Clinical Neurosciences, University of Cambridge, Box 83, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| |
Collapse
|
20
|
Wang E, Wu Y, Cheung JS, Zhou IY, Igarashi T, Zhang X, Sun PZ. pH imaging reveals worsened tissue acidification in diffusion kurtosis lesion than the kurtosis/diffusion lesion mismatch in an animal model of acute stroke. J Cereb Blood Flow Metab 2017; 37:3325-3333. [PMID: 28752790 PMCID: PMC5624397 DOI: 10.1177/0271678x17721431] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Diffusion weighted imaging (DWI) has been commonly used in acute stroke examination, yet a portion of DWI lesion may be salvageable. Recently, it has been shown that diffusion kurtosis imaging (DKI) defines the most severely damaged DWI lesion that does not renormalize following early reperfusion. We postulated that the diffusion and kurtosis lesion mismatch experience heterogeneous hemodynamic and/or metabolic injury. We investigated tissue perfusion, pH, diffusion, kurtosis and relaxation from regions of the contralateral normal area, diffusion lesion, kurtosis lesion and their mismatch in an animal model of acute stroke. Our study revealed significant kurtosis and diffusion lesion volume mismatch (19.7 ± 10.7%, P < 0.01). Although there was no significant difference in perfusion and diffusion between the kurtosis lesion and kurtosis/diffusion lesion mismatch, we showed lower pH in the kurtosis lesion (pH = 6.64 ± 0.12) from that of the kurtosis/diffusion lesion mismatch (6.84 ± 0.11, P < 0.05). Moreover, pH in the kurtosis lesion and kurtosis/diffusion mismatch agreed well with literature values for regions of ischemic core and penumbra, respectively. Our work documented initial evidence that DKI may reveal the heterogeneous metabolic derangement within the commonly used DWI lesion.
Collapse
Affiliation(s)
- Enfeng Wang
- 1 Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, USA.,2 Department of Radiology, Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Yin Wu
- 1 Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, USA.,3 Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jerry S Cheung
- 1 Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Iris Yuwen Zhou
- 1 Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Takahiro Igarashi
- 1 Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - XiaoAn Zhang
- 2 Department of Radiology, Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Phillip Zhe Sun
- 1 Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|
21
|
Heiss WD, Zaro Weber O. Validation of MRI Determination of the Penumbra by PET Measurements in Ischemic Stroke. J Nucl Med 2016; 58:187-193. [PMID: 27879370 DOI: 10.2967/jnumed.116.185975] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 11/10/2016] [Indexed: 11/16/2022] Open
Abstract
The concept of the ischemic penumbra was formulated on the basis of animal experiments showing functional impairment and electrophysiologic disturbances with decreasing flow to the brain below defined values (the threshold for function) and irreversible tissue damage with blood supply further decreased (the threshold for infarction). The perfusion range between these thresholds was termed the "penumbra," and restitution of flow above the functional threshold was able to reverse the deficits without permanent damage. In further experiments, the dependency of the development of irreversible lesions on the interaction of the severity and the duration of critically reduced blood flow was established, proving that the lower the flow, the shorter the time for efficient reperfusion. As a consequence, infarction develops from the core of ischemia to the areas of less severe hypoperfusion. The translation of this experimental concept as the basis for the efficient treatment of stroke requires noninvasive methods with which regional flow and energy metabolism can be repeatedly investigated to demonstrate penumbra tissue, which can benefit from therapeutic interventions. PET allows the quantification of regional cerebral blood flow, the regional oxygen extraction fraction, and the regional metabolic rate for oxygen. With these variables, clear definitions of irreversible tissue damage and of critically hypoperfused but potentially salvageable tissue (i.e., the penumbra) in stroke patients can be achieved. However, PET is a research tool, and its complex logistics limit clinical routine applications. Perfusion-weighted or diffusion-weighted MRI is a widely applicable clinical tool, and the "mismatch" between perfusion-weighted and diffusion-weighted abnormalities serves as an indicator of the penumbra. However, comparative studies of perfusion-weighted or diffusion-weighted MRI and PET have indicated overestimation of the core of irreversible infarction as well as of the penumbra by the MRI modalities. Some of these discrepancies can be explained by the nonselective application of relative perfusion thresholds, which might be improved by more complex analytic procedures. The heterogeneity of the MRI signatures used for the definition of the mismatch are also responsible for disappointing results in the application of perfusion-weighted or diffusion-weighted MRI to the selection of patients for clinical trials. As long as validation of the mismatch selection paradigm is lacking, the use of this paradigm as a surrogate marker of outcome is limited.
Collapse
|
22
|
|
23
|
Harston GWJ, Tee YK, Blockley N, Okell TW, Thandeswaran S, Shaya G, Sheerin F, Cellerini M, Payne S, Jezzard P, Chappell M, Kennedy J. Identifying the ischaemic penumbra using pH-weighted magnetic resonance imaging. ACTA ACUST UNITED AC 2015; 138:36-42. [PMID: 25564491 PMCID: PMC4285197 DOI: 10.1093/brain/awu374] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The original concept of the ischaemic penumbra suggested imaging of regional cerebral blood flow and metabolism would be required to identify tissue that may benefit from intervention. Amide proton transfer magnetic resonance imaging, a chemical exchange saturation transfer technique, has been used to derive cerebral intracellular pH in preclinical stroke models and has been proposed as a metabolic marker of ischaemic penumbra. In this proof of principle clinical study, we explored the potential of this pH-weighted magnetic resonance imaging technique at tissue-level. Detailed voxel-wise analysis was performed on data from a prospective cohort of 12 patients with acute ischaemic stroke. Voxels within ischaemic core had a more severe intracellular acidosis than hypoperfused tissue recruited to the final infarct (P < 0.0001), which in turn was more acidotic than hypoperfused tissue that survived (P < 0.0001). In addition, when confined to the grey matter perfusion deficit, intracellular pH (P < 0.0001), but not cerebral blood flow (P = 0.31), differed between tissue that infarcted and tissue that survived. Within the presenting apparent diffusion coefficient lesion, intracellular pH differed between tissue with early apparent diffusion lesion pseudonormalization and tissue with true radiographic recovery. These findings support the need for further investigation of pH-weighted imaging in patients with acute ischaemic stroke.
Collapse
Affiliation(s)
- George W J Harston
- 1 Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, UK
| | - Yee Kai Tee
- 2 Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, UK 3 Department of Mechatronics and Biomedical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Malaysia
| | - Nicholas Blockley
- 4 Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Thomas W Okell
- 4 Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | | | - Gabriel Shaya
- 1 Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, UK
| | - Fintan Sheerin
- 5 Department of Neuroradiology, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Martino Cellerini
- 5 Department of Neuroradiology, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Stephen Payne
- 2 Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, UK
| | - Peter Jezzard
- 4 Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Michael Chappell
- 2 Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, UK
| | - James Kennedy
- 1 Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, UK
| |
Collapse
|
24
|
Sun PZ, Wang Y, Mandeville E, Chan ST, Lo EH, Ji X. Validation of fast diffusion kurtosis MRI for imaging acute ischemia in a rodent model of stroke. NMR IN BIOMEDICINE 2014; 27:1413-8. [PMID: 25208309 PMCID: PMC4201862 DOI: 10.1002/nbm.3188] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 07/05/2014] [Accepted: 07/13/2014] [Indexed: 05/22/2023]
Abstract
Diffusion-weighted imaging (DWI) captures ischemic tissue that is likely to infarct, and has become one of the most widely used acute stroke imaging techniques. Diffusion kurtosis imaging (DKI) has lately been postulated as a complementary MRI method to stratify the heterogeneously damaged DWI lesion. However, the conventional DKI acquisition time is relatively long, limiting its use in the acute stroke setting. Recently, a fast kurtosis mapping method has been demonstrated in fixed brains and control subjects. The fast DKI approach provides mean diffusion and kurtosis measurements under substantially reduced scan time, making it amenable to acute stroke imaging. Because it is not practical to obtain and compare different means of DKI to test whether the fast DKI method can reliably detect diffusion and kurtosis lesions in acute stroke patients, our study investigated its diagnostic value using an animal model of acute stroke, a critical step before fast DKI acquisition can be routinely applied in the acute stroke setting. We found significant correlation, per voxel, between the diffusion and kurtosis coefficients measured using the fast and conventional DKI protocols. In acute stroke rats, the two DKI methods yielded diffusion and kurtosis lesions that were in good agreement. Importantly, substantial kurtosis-diffusion lesion mismatch was observed using the conventional (26 ± 13%, P < 0.01) and fast DKI methods (23 ± 8%, P < 0.01). In addition, regression analysis showed that the kurtosis-diffusion lesion mismatches obtained using conventional and fast DKI methods were substantially correlated (R(2) = 0.57, P = 0.02). Our results confirmed that the recently proposed fast DKI method is capable of capturing heterogeneous diffusion and kurtosis lesions in acute ischemic stroke, and thus is suitable for translational applications in the acute stroke clinical setting.
Collapse
Affiliation(s)
- Phillip Zhe Sun
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Yu Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Emiri Mandeville
- Neuroprotection Research Laboratory, Department of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Suk-Tak Chan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Eng H Lo
- Neuroprotection Research Laboratory, Department of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Xunming Ji
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
- Correspondence Author: Dr. Xunming Ji Cerebrovascular Diseases Research Institute Xuanwu Hospital of Capital Medical University 45 Changchun Street, Beijing 100053, China Phone: (86) 10-83198952
| |
Collapse
|
25
|
Bauer S, Wagner M, Seiler A, Hattingen E, Deichmann R, Nöth U, Singer OC. Quantitative T2'-mapping in acute ischemic stroke. Stroke 2014; 45:3280-6. [PMID: 25278559 DOI: 10.1161/strokeaha.114.006530] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND PURPOSE Quantitative T2'-mapping detects regional changes in the relation of oxygenated and deoxygenated haemoglobine and might reflect areas with increased oxygen extraction. T2'-mapping in conjunction with an elaborate algorithm for motion correction was performed in patients with acute large-vessel stroke, and quantitative T2'-values were determined within the diffusion-weighted imaging lesion and perfusion-restricted tissue. METHODS Eleven patients (median age, 71 years) with acute middle cerebral or internal carotid artery occlusion underwent MRI before scheduled endovascular treatment. MR-examination included diffusion- and perfusion-weighted imaging and quantitative, motion-corrected mapping of T2'. Time-to-peak maps were thresholded for different degrees of perfusion delays (eg, ≥0 s, ≥ 2s) when compared with a reference time-to-peak value from healthy contralateral tissue. Mean T2'-values in areas with reduced apparent diffusion coefficient and in areas with impaired perfusion were compared with T2'-values in corresponding contralateral areas. RESULTS Median time between symptom onset and MRI was 238 minutes. T2'-values were significantly reduced within the apparent diffusion coefficient -lesion when compared with contralateral healthy tissue (83 ms [67, 97] versus 97 ms [91, 111]; P<0.003). In perfusion-restricted tissue, T2'-values were also significantly lower when compared with contralateral healthy tissue (ie, for time to peak, ≥0 s 93 ms [86, 102] versus 104 [90, 110]; P=0.008) but were significantly higher than within the apparent diffusion coefficient lesion. The severity of the perfusion impairment had no influence on median T2'-values. CONCLUSIONS Motion-corrected T2'-mapping reveals significant and gradually declining values from healthy to perfusion-disturbed to apparent diffusion coefficient-restricted tissue. Current T2'-mapping can differentiate between the ischemic core and the perfusion-impaired areas but not on its own between penumbral and oligemic tissue.
Collapse
Affiliation(s)
- Sonja Bauer
- From the Department of Neurology (S.B., A.S., O.C.S.), Institute for Neuroradiology (M.W., E.H.); and Brain Imaging Center (R.D., U.N.), University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Marlies Wagner
- From the Department of Neurology (S.B., A.S., O.C.S.), Institute for Neuroradiology (M.W., E.H.); and Brain Imaging Center (R.D., U.N.), University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Alexander Seiler
- From the Department of Neurology (S.B., A.S., O.C.S.), Institute for Neuroradiology (M.W., E.H.); and Brain Imaging Center (R.D., U.N.), University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Elke Hattingen
- From the Department of Neurology (S.B., A.S., O.C.S.), Institute for Neuroradiology (M.W., E.H.); and Brain Imaging Center (R.D., U.N.), University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Ralf Deichmann
- From the Department of Neurology (S.B., A.S., O.C.S.), Institute for Neuroradiology (M.W., E.H.); and Brain Imaging Center (R.D., U.N.), University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Ulrike Nöth
- From the Department of Neurology (S.B., A.S., O.C.S.), Institute for Neuroradiology (M.W., E.H.); and Brain Imaging Center (R.D., U.N.), University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Oliver C Singer
- From the Department of Neurology (S.B., A.S., O.C.S.), Institute for Neuroradiology (M.W., E.H.); and Brain Imaging Center (R.D., U.N.), University Hospital Frankfurt, Goethe University, Frankfurt, Germany.
| |
Collapse
|
26
|
Tsai YH, Lee MH, Weng HH, Chang SW, Yang JT, Huang YC. Fate of diffusion restricted lesions in acute intracerebral hemorrhage. PLoS One 2014; 9:e105970. [PMID: 25166754 PMCID: PMC4148355 DOI: 10.1371/journal.pone.0105970] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 07/29/2014] [Indexed: 11/18/2022] Open
Abstract
Background Diffusion-restricted lesions on diffusion-weighted imaging (DWI) are detected in patients with intracerebral hemorrhage (ICH). In this study, we aimed to determine the fate of DWI lesions in ICH patients and whether the presence of DWI lesions is associated with functional outcome in patients with ICH. Methods This prospective study enrolled 153 patients with acute ICH. Baseline MRI scans were performed within 2 weeks after ICH to detect DWI lesions and imaging markers for small vessel disease (SVD). Follow-up MRI scans were performed at 3 months after ICH to assess the fate of the DWI lesions. We analyzed the associations between the characteristics of DWI lesions with clinical features and functional outcome. Results Seventeen of the 153 patients (11.1%) had a total of 25 DWI lesions. Factors associated with DWI lesions were high initial systolic and mean arterial blood pressure (MAP) at the emergency room, additional lowering of MAP within 24 hours, and the presence of white matter hyperintensity and cerebral microbleeds. Thirteen of the 25 DWI lesions (52%) were not visible on follow-up T2-weighted or fluid-attenuated inversion recovery images and were associated with high apparent diffusion coefficient value and a sharper decease in MAP. The regression of DWI lesions was associated with good functional outcome. Conclusions More than half of the DWI lesions in the ICH patients did not transition to visible, long-term infarction. Only if the DWI lesion finally transitioned to final infarction was a poor functional outcome predicted. A DWI lesion may be regarded as an ischemic change of SVD and does not always indicate certain cerebral infarction or permanent tissue injury.
Collapse
Affiliation(s)
- Yuan-Hsiung Tsai
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital at Chiayi, Chang-Gung University College of Medicine, Taoyuan, Taiwan
| | - Ming-Hsueh Lee
- Department of Neurosurgery, Chang Gung Memorial Hospital at Chiayi, Chang-Gung University College of Medicine, Taoyuan, Taiwan
| | - Hsu-Huei Weng
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital at Chiayi, Chang-Gung University College of Medicine, Taoyuan, Taiwan
| | - Sheng-Wei Chang
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital at Chiayi, Chang-Gung University College of Medicine, Taoyuan, Taiwan
| | - Jen-Tsung Yang
- Department of Neurosurgery, Chang Gung Memorial Hospital at Chiayi, Chang-Gung University College of Medicine, Taoyuan, Taiwan
| | - Yen-Chu Huang
- Department of Neurology, Chang Gung Memorial Hospital at Chiayi, Chang-Gung University College of Medicine, Taoyuan, Taiwan
- * E-mail:
| |
Collapse
|
27
|
Robertson CA, McCabe C, Lopez-Gonzalez MR, Deuchar GA, Dani K, Holmes WM, Muir KW, Santosh C, Macrae IM. Detection of ischemic penumbra using combined perfusion and T2* oxygen challenge imaging. Int J Stroke 2014; 10:42-50. [PMID: 25042078 PMCID: PMC4283703 DOI: 10.1111/ijs.12327] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 05/27/2014] [Indexed: 01/28/2023]
Abstract
Background Acute ischemic stroke is common and disabling, but there remains a paucity of acute treatment options and available treatment (thrombolysis) is underutilized. Advanced brain imaging, designed to identify viable hypoperfused tissue (penumbra), could target treatment to a wider population. Existing magnetic resonance imaging and computed tomography-based technologies are not widely used pending validation in ongoing clinical trials. T2* oxygen challenge magnetic resonance imaging, by providing a more direct readout of tissue viability, has the potential to identify more patients likely to benefit from thrombolysis – irrespective of time from stroke onset – and patients within and beyond the 4·5 h thrombolysis treatment window who are unlikely to benefit and are at an increased risk of hemorrhage. Aims This study employs serial multimodal imaging and voxel-based analysis to develop optimal data processing for T2* oxygen challenge penumbra assessment. Tissue in the ischemic hemisphere is compartmentalized into penumbra, ischemic core, or normal using T2* oxygen challenge (single threshold) or T2* oxygen challenge plus cerebral blood flow (dual threshold) data. Penumbra defined by perfusion imaging/apparent diffusion coefficient mismatch (dual threshold) is included for comparison. Methods Permanent middle cerebral artery occlusion was induced in male Sprague-Dawley rats (n = 6) prior to serial multimodal imaging: T2* oxygen challenge, diffusion-weighted and perfusion imaging (cerebral blood flow using arterial spin labeling). Results Across the different methods evaluated, T2* oxygen challenge combined with perfusion imaging most closely predicted 24 h infarct volume. Penumbra volume declined from one to four-hours post-stroke: mean ± SD, 77 ± 44 to 49 ± 37 mm3 (single T2* oxygen challenge-based threshold); 55 ± 41 to 37 ± 12 mm3 (dual T2* oxygen challenge/cerebral blood flow); 84 ± 64 to 42 ± 18 mm3 (dual cerebral blood flow/apparent diffusion coefficient), as ischemic core grew: 155 ± 37 to 211 ± 36 mm3 (single apparent diffusion coefficient threshold); 178 ± 56 to 205 ± 33 mm3 (dual T2* oxygen challenge/cerebral blood flow); 139 ± 30 to 168 ± 38 mm3 (dual cerebral blood flow/apparent diffusion coefficient). There was evidence of further lesion growth beyond four-hours (T2-defined edema-corrected infarct, 231 ± 19 mm3). Conclusions In conclusion, T2* oxygen challenge combined with perfusion imaging has advantages over alternative magnetic resonance imaging techniques for penumbra detection by providing serial assessment of available penumbra based on tissue viability.
Collapse
Affiliation(s)
- Craig A Robertson
- Centre for Stroke and Brain Imaging Research, Institute of Neuroscience and Psychology, College of Medicine, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Dani KA, Warach S. Metabolic imaging of ischemic stroke: the present and future. AJNR Am J Neuroradiol 2014; 35:S37-43. [PMID: 24722308 DOI: 10.3174/ajnr.a3789] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Measures of cerebral metabolism may be useful in the selection of patients for reperfusion therapies and as end points in clinical trials. However, there are currently no clinically routine techniques that provide such data directly. We review how imaging modalities in current clinical use may provide surrogate markers of metabolic activity. Promising techniques for metabolic imaging that are currently in the pipeline are reviewed.
Collapse
Affiliation(s)
- K A Dani
- From the Institute of Neurosciences and Psychology (K.A.D.), University of Glasgow, Institute of Neurological Sciences, Glasgow, United Kingdom
| | - S Warach
- Department of Neurology and Neurotherapeutics (S.W.), UT Southwestern, Dallas, Texas.
| |
Collapse
|
29
|
Alawneh JA, Moustafa RR, Marrapu ST, Jensen-Kondering U, Morris RS, Jones PS, Aigbirhio FI, Fryer TD, Carpenter TA, Warburton EA, Baron JC. Diffusion and perfusion correlates of the 18F-MISO PET lesion in acute stroke: pilot study. Eur J Nucl Med Mol Imaging 2013; 41:736-44. [PMID: 24126468 DOI: 10.1007/s00259-013-2581-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 09/12/2013] [Indexed: 12/22/2022]
Abstract
PURPOSE Mapping the ischaemic penumbra in acute stroke is of considerable clinical interest. For this purpose, mapping tissue hypoxia with (18)F-misonidazole (FMISO) PET is attractive, and is straightforward compared to (15)O PET. Given the current emphasis on penumbra imaging using diffusion/perfusion MR or CT perfusion, investigating the relationships between FMISO uptake and abnormalities with these modalities is important. METHODS According to a prospective design, three patients (age 54-81 years; admission NIH stroke scale scores 16-22) with an anterior circulation stroke and extensive penumbra on CT- or MR-based perfusion imaging successfully completed FMISO PET, diffusion-weighted imaging and MR angiography 6-26 h after stroke onset, and follow-up FLAIR to map the final infarction. All had persistent proximal occlusion and a poor outcome despite thrombolysis. Significant FMISO trapping was defined voxel-wise relative to ten age-matched controls and mapped onto coregistered maps of the penumbra and irreversibly damaged ischaemic core. RESULTS FMISO trapping was present in all patients (volume range 18-119 ml) and overlapped mainly with the penumbra but also with the core in each patient. There was a significant (p ≤ 0.001) correlation in the expected direction between FMISO uptake and perfusion, with a sharp FMISO uptake bend around the expected penumbra threshold. CONCLUSION FMISO uptake had the expected overlap with the penumbra and relationship with local perfusion. However, consistent with recent animal data, our study suggests FMISO trapping may not be specific to the penumbra. If confirmed in larger samples, this preliminary finding would have potential implications for the clinical application of FMISO PET in acute ischaemic stroke.
Collapse
Affiliation(s)
- Josef A Alawneh
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
He Z, Lim JKH, Nguyen CTO, Vingrys AJ, Bui BV. Coupling blood flow and neural function in the retina: a model for homeostatic responses to ocular perfusion pressure challenge. Physiol Rep 2013; 1:e00055. [PMID: 24303137 PMCID: PMC3835011 DOI: 10.1002/phy2.55] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 07/12/2013] [Accepted: 07/15/2013] [Indexed: 01/23/2023] Open
Abstract
Retinal function is known to be more resistant than blood flow to acute reduction of ocular perfusion pressure (OPP). To understand the mechanisms underlying the disconnect between blood flow and neural function, a mathematical model is developed in this study, which proposes that increased oxygen extraction ratio compensates for relative ischemia to sustain retinal function. In addition, the model incorporates a term to account for a pressure-related mechanical stress on neurons when OPP reduction is achieved by intraocular pressure (IOP) elevation. We show that this model, combining ocular blood flow, oxygen extraction ratio, and IOP mechanical stress on neurons, accounts for retinal function over a wide range of OPP manipulations. The robustness of the model is tested against experimental data where ocular blood flow, oxygen tension, and retinal function were simultaneously measured during acute OPP manipulation. The model provides a basis for understanding the retinal hemodynamic responses to short-term OPP challenge.
Collapse
Affiliation(s)
- Zheng He
- Department of Optometry & Vision Sciences, University of Melbourne Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
31
|
Jensen-Kondering U, Böhm R. Asymmetrically hypointense veins on T2*w imaging and susceptibility-weighted imaging in ischemic stroke. World J Radiol 2013; 5:156-165. [PMID: 23671751 PMCID: PMC3647207 DOI: 10.4329/wjr.v5.i4.156] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 03/07/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To review the literature on the assessment of venous vessels to estimate the penumbra on T2*w imaging and susceptibility-weighted imaging (SWI).
METHODS: Literature that reported on the assessment of penumbra by T2*w imaging or SWI and used a validation method was included. PubMed and relevant stroke and magnetic resonance imaging (MRI) related conference abstracts were searched. Abstracts that had overlapping content with full text articles were excluded. The retrieved literature was scanned for further relevant references. Only clinical literature published in English was considered, patients with Moya-Moya syndrome were disregarded. Data is given as cumulative absolute and relative values, ranges are given where appropriate.
RESULTS: Forty-three publications including 1145 patients could be identified. T2*w imaging was used in 16 publications (627 patients), SWI in 26 publications (453 patients). Only one publication used both (65 patients). The cumulative presence of hypointense vessel sign was 54% (range 32%-100%) for T2* (668 patients) and 81% (range 34%-100%) for SWI (334 patients). There was rare mentioning of interrater agreement (6 publications, 210 patients) and reliability (1 publication, 20 patients) but the numbers reported ranged from good to excellent. In most publications (n = 22) perfusion MRI was used as a validation method (617 patients). More patients were scanned in the subacute than in the acute phase (596 patients vs 320 patients). Clinical outcome was reported in 13 publications (521 patients) but was not consistent.
CONCLUSION: The low presence of vessels signs on T2*w imaging makes SWI much more promising. More research is needed to obtain formal validation and quantification.
Collapse
|
32
|
Albach FN, Brunecker P, Usnich T, Villringer K, Ebinger M, Fiebach JB, Nolte CH. Complete Early Reversal of Diffusion-Weighted Imaging Hyperintensities After Ischemic Stroke Is Mainly Limited to Small Embolic Lesions. Stroke 2013; 44:1043-8. [DOI: 10.1161/strokeaha.111.676346] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose—
Case reports have demonstrated complete early reversal of hyperintensities on diffusion-weighted imaging (DWI) after clinically diagnosed stroke. We aimed to investigate systematically the rate and characteristics of reversible diffusion hyperintensities (RDHs) in the first week after stroke.
Methods—
Patients with clinical diagnosis of an acute cerebrovascular event and evidence of ischemia on DWI were included. MRI scans were performed on admission, on the following day, and 4 to 7 days after onset of symptoms with DWI and fluid-attenuated inversion recovery. Baseline and follow-up DWIs were coregistered and examined for individual RDHs. Characteristics of patients and of hyperintensities associated with early reversal were identified.
Results—
We included 153 patients with a median National Institutes of Health Stroke Scale score of 4 (interquartile range, 2–8). In 3 patients (2%), MR images normalized completely. Thirty-seven patients (24%) displayed individual RDHs. Of 611 initial DWI hyperintensities, 97 (16%) reversed. Thirteen percent of the RDHs had corresponding abnormalities on fluid-attenuated inversion recovery images at the third measurement. Median size of the RDHs was 0.029 mL (interquartile range, 0.013–0.055). RDHs were associated with a multiple infarct pattern (odds ratio, 22.1; 95% confidence interval, 4.5–109.7) and symptomatic carotid stenosis (odds ratio, 5.5; 95% confidence interval, 1.4–21.5). Fifty-nine percent of the patients with RDHs had new additional lesions on follow-up DWI. RDHs were not associated with functional improvement on the National Institutes of Health Stroke Scale score.
Conclusions—
In this population of mainly minor to moderate stroke patients, complete normalization of MR images was rare. Complete reversal of individual DWI hyperintensities was limited to very small lesions and mostly occurred in embolic stroke patients.
Clinical Trial Registration—
URL:
http://www.clinicaltrials.gov
. Unique identifier: NCT00715533.
Collapse
Affiliation(s)
- Fredrik N. Albach
- From the Department of Neurology (F.N.A., T.U., M.E., C.H.N.) and Center for Stroke Research Berlin (P.B., K.V., M.E., J.B.F., C.H.N.), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Brunecker
- From the Department of Neurology (F.N.A., T.U., M.E., C.H.N.) and Center for Stroke Research Berlin (P.B., K.V., M.E., J.B.F., C.H.N.), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tatiana Usnich
- From the Department of Neurology (F.N.A., T.U., M.E., C.H.N.) and Center for Stroke Research Berlin (P.B., K.V., M.E., J.B.F., C.H.N.), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Kersten Villringer
- From the Department of Neurology (F.N.A., T.U., M.E., C.H.N.) and Center for Stroke Research Berlin (P.B., K.V., M.E., J.B.F., C.H.N.), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Martin Ebinger
- From the Department of Neurology (F.N.A., T.U., M.E., C.H.N.) and Center for Stroke Research Berlin (P.B., K.V., M.E., J.B.F., C.H.N.), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jochen B. Fiebach
- From the Department of Neurology (F.N.A., T.U., M.E., C.H.N.) and Center for Stroke Research Berlin (P.B., K.V., M.E., J.B.F., C.H.N.), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christian H. Nolte
- From the Department of Neurology (F.N.A., T.U., M.E., C.H.N.) and Center for Stroke Research Berlin (P.B., K.V., M.E., J.B.F., C.H.N.), Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
33
|
Dani KA, An L, Henning EC, Shen J, Warach S. Multivoxel MR spectroscopy in acute ischemic stroke: comparison to the stroke protocol MRI. Stroke 2013; 43:2962-7. [PMID: 23091121 DOI: 10.1161/strokeaha.112.656058] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND PURPOSE Few patients with stroke have been imaged with MR spectroscopy (MRS) within the first few hours after onset. We compared data from current MRI protocols to MRS in subjects with ischemic stroke. METHODS MRS was incorporated into the standard clinical MRI stroke protocol for subjects <24 hours after onset. MRI and clinical correlates for the metabolic data from MRS were sought. RESULTS One hundred thirty-six MRS voxels from 32 subjects were analyzed. Lactate preceded the appearance of the lesion on diffusion-weighted imaging in some voxels but in others lagged behind it. Current protocols may predict up to 41% of the variance of MRS metabolites. Serum glucose concentration and time to maximum partially predicted the concentration of all major metabolites. CONCLUSIONS MRS may be helpful in acute stroke, especially for lactate detection when perfusion-weighted imaging is unavailable. Current MRI protocols do provide surrogate markers for some indices of metabolic activity.
Collapse
Affiliation(s)
- Krishna A Dani
- Section on Stroke Diagnostics and Therapeutics, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
PET and MRI provide complementary information in the study of the human brain. Simultaneous PET/MRI data acquisition allows the spatial and temporal correlation of the measured signals, creating opportunities impossible to realize using stand-alone instruments. This paper reviews the methodologic improvements and potential neurologic and psychiatric applications of this novel technology. We first present methods for improving the performance and information content of each modality by using the information provided by the other technique. On the PET side, we discuss methods that use the simultaneously acquired MRI data to improve the PET data quantification. On the MRI side, we present how improved PET quantification can be used to validate several MRI techniques. Finally, we describe promising research, translational, and clinical applications that can benefit from these advanced tools.
Collapse
Affiliation(s)
- Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, USA.
| | | | | | | |
Collapse
|
35
|
Dynamic functional cerebral blood volume responses to normobaric hyperoxia in acute ischemic stroke. J Cereb Blood Flow Metab 2012; 32:1800-9. [PMID: 22739619 PMCID: PMC3434635 DOI: 10.1038/jcbfm.2012.87] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Studies suggest that neuroprotective effects of normobaric oxygen (NBO) therapy in acute stroke are partly mediated by hemodynamic alterations. We investigated cerebral hemodynamic effects of repeated NBO exposures. Serial magnetic resonance imaging (MRI) was performed in Wistar rats subjected to focal ischemic stroke. Normobaric oxygen-induced functional cerebral blood volume (fCBV) responses were analyzed. All rats had diffusion-weighted MRI (DWI) lesions within larger perfusion deficits, with DWI lesion expansion after 3 hours. Functional cerebral blood volume responses to NBO were spatially and temporally heterogeneous. Contralateral healthy tissue responded consistently with vasoconstriction that increased with time. No significant responses were evident in the acute DWI lesion. In hypoperfused regions surrounding the acute DWI lesion, tissue that remained viable until the end of the experiment showed relative preservation of mean fCBV at early time points, with some rats showing increased fCBV (vasodilation); however, these regions later exhibited significantly decreased fCBV (vasoconstriction). Tissue that became DWI abnormal by study-end initially showed marginal fCBV changes that later became moderate fCBV reductions. Our results suggest that a reverse-steal hemodynamic effect may occur in peripheral ischemic zones during NBO treatment of focal stroke. In addition, CBV responses to NBO challenge may have potential as an imaging marker to distinguish ischemic core from salvageable tissues.
Collapse
|
36
|
Baron JC, Jones T. Oxygen metabolism, oxygen extraction and positron emission tomography: Historical perspective and impact on basic and clinical neuroscience. Neuroimage 2012; 61:492-504. [DOI: 10.1016/j.neuroimage.2011.12.036] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 12/08/2011] [Accepted: 12/15/2011] [Indexed: 10/14/2022] Open
|
37
|
Holmes WM, Lopez-Gonzalez MR, Gallagher L, Deuchar GA, Macrae IM, Santosh C. Novel MRI detection of the ischemic penumbra: direct assessment of metabolic integrity. NMR IN BIOMEDICINE 2012; 25:295-304. [PMID: 21751274 DOI: 10.1002/nbm.1748] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 04/12/2011] [Accepted: 04/17/2011] [Indexed: 05/31/2023]
Abstract
We describe a novel magnetic resonance imaging technique to directly assess the metabolic integrity of penumbral tissue following stroke. For ischemically stressed tissue to be salvageable, it has to be capable of recovering aerobic metabolism (in place of anaerobic metabolism) on reperfusion. We probed ischemic brain tissue by altering the rate of oxygen delivery using a challenge of 100% oxygen ventilation. Any change from anaerobic to aerobic metabolism should alter the rate of lactate production and hence, levels of tissue lactate. Stroke was induced by permanent middle cerebral artery occlusion in rats. In Series 1 (n = 6), changes in tissue lactate during and following 100% oxygen challenge were monitored using (1)H magnetic resonance spectroscopy (MRS). Diffusion weighted imaging (DWI) and perfusion weighted imaging (PWI) were used to locate MRS voxels within the ischemic core, the homotopic contralateral striatum and within PWI/DWI mismatch (i.e. presumed penumbra). After 20 min of oxygen, lactate signal change was -16.1 ± 8.8% (mean ± SD) in PWI/DWI mismatch, +2.8 ± 5.1% in the ischemic core, and -0.6 ± 7.6% in the contralateral striatum. Return to air ventilation for 20 min resulted in a reversal, with lactate increasing by 46 ± 25.3% in the PWI/DWI mismatch, 6.6 ± 6.2% in the ischemic core, and -5 ± 11.4% in the contralateral striatum. In Series 2 (n = 6), a novel form of spectroscopic imaging was used to acquire lactate change maps to spatially identify regions of lactate change within the ischemic brain. This technique has potential clinical utility by identifying tissue that displays anaerobic metabolism capable of recovering aerobic metabolism when oxygen delivery is increased, which could provide a more precise assessment of penumbra.
Collapse
Affiliation(s)
- William M Holmes
- Glasgow Experimental MRI Centre, Division of Clinical Neuroscience, Faculty of Medicine, University of Glasgow, G61 1QH, Scotland, UK.
| | | | | | | | | | | |
Collapse
|
38
|
Watanabe M, Qureshi AI. Are CT Angiography Source Images Accurate for Evaluating Infarct Volume? J Neuroimaging 2012; 23:163-4. [DOI: 10.1111/j.1552-6569.2011.00672.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
39
|
Pulli B, Schaefer PW, Hakimelahi R, Chaudhry ZA, Lev MH, Hirsch JA, González RG, Yoo AJ. Acute ischemic stroke: infarct core estimation on CT angiography source images depends on CT angiography protocol. Radiology 2011; 262:593-604. [PMID: 22187626 DOI: 10.1148/radiol.11110896] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To test whether the relationship between acute ischemic infarct size on concurrent computed tomographic (CT) angiography source images and diffusion-weighted (DW) magnetic resonance images is dependent on the parameters of CT angiography acquisition protocols. MATERIALS AND METHODS This retrospective study had institutional review board approval, and all records were HIPAA compliant. Data in 100 patients with anterior-circulation acute ischemic stroke and large vessel occlusion who underwent concurrent CT angiography and DW imaging within 9 hours of symptom onset were analyzed. Measured areas of hyperintensity at acute DW imaging were used as the standard of reference for infarct size. Information regarding lesion volumes and CT angiography protocol parameters was collected for each patient. For analysis, patients were divided into two groups on the basis of CT angiography protocol differences (patients in group 1 were imaged with the older, slower protocol). Intermethod agreement for infarct size was evaluated by using the Wilcoxon signed rank test, as well as by using Spearman correlation and Bland-Altman analysis. Multivariate analysis was performed to identify predictors of marked (≥20%) overestimation of infarct size on CT angiography source images. RESULTS In group 1 (n=35), median hypoattenuation volumes on CT angiography source images were slightly underestimated compared with DW imaging hyperintensity volumes (33.0 vs 41.6 mL, P=.01; ratio=0.83), with high correlation (ρ=0.91). In group 2 (n=65), median volume on CT angiography source images was much larger than that on DW images (94.8 vs 17.8 mL, P<.0001; ratio=3.5), with poor correlation (ρ=0.49). This overestimation on CT angiography source images would have inappropriately excluded from reperfusion therapy 44.4% or 90.3% of patients eligible according to DW imaging criteria on the basis of a 100-mL absolute threshold or a 20% or greater mismatch threshold, respectively. Atrial fibrillation and shorter time from contrast material injection to image acquisition were independent predictors of marked (≥20%) infarct size overestimation on CT angiography source images. CONCLUSION CT angiography protocol changes designed to speed imaging and optimize arterial opacification are associated with significant overestimation of infarct size on CT angiography source images.
Collapse
Affiliation(s)
- Benjamin Pulli
- Division of Neuroradiology and Interventional Neuroradiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Gray 241, Boston, MA 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Olivot JM. Imaging of brain ischemia. Rev Neurol (Paris) 2011; 167:873-80. [DOI: 10.1016/j.neurol.2011.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 10/11/2011] [Accepted: 10/11/2011] [Indexed: 11/29/2022]
|
41
|
Yoo AJ, Pulli B, Gonzalez RG. Imaging-based treatment selection for intravenous and intra-arterial stroke therapies: a comprehensive review. Expert Rev Cardiovasc Ther 2011; 9:857-76. [PMID: 21809968 DOI: 10.1586/erc.11.56] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Reperfusion therapy is the only approved treatment for acute ischemic stroke. The current approach to patient selection is primarily based on the time from stroke symptom onset. However, this algorithm sharply restricts the eligible patient population, and neglects large variations in collateral circulation that ultimately determine the therapeutic time window in individual patients. Time alone is unlikely to remain the dominant parameter. Alternative approaches to patient selection involve advanced neuroimaging methods including MRI diffusion-weighted imaging, magnetic resonance and computed tomography perfusion imaging and noninvasive angiography that provide potentially valuable information regarding the state of the brain parenchyma and the neurovasculature. These techniques have now been used extensively, and there is emerging evidence on how specific imaging data may result in improved clinical outcomes. This article will review the major studies that have investigated the role of imaging in patient selection for both intravenous and intra-arterial therapies.
Collapse
Affiliation(s)
- Albert J Yoo
- Massachusetts General Hospital, 55 Fruit Street, Gray 241, Boston, MA 02114, USA.
| | | | | |
Collapse
|
42
|
Abstract
Background and Purpose—
Deep watershed infarcts are frequent in high-grade carotid disease and are thought to result from hemodynamic impairment, particularly when adopting a rosary-like pattern. However, a role for microembolism has also been suggested, though never directly tested. Here, we studied the relationships among microembolic signals (MES) on transcranial Doppler, rosary-like deep watershed infarcts on brain imaging, and cerebral hemodynamic compromise on positron emission tomography (PET), all in severe symptomatic carotid disease. We hypothesized that rosary-like infarcts would be significantly associated with worse hemodynamic status, independent of the presence of MES.
Methods—
Sixteen patients with ≥70% carotid disease ipsilateral to recent transient ischemic attack/minor stroke underwent magnetic resonance imaging including diffusion-weighted imaging,
15
O-PET, and transcranial Doppler. Mean transit time, a specific marker for hemodynamic impairment, was obtained in the symptomatic and unaffected hemispheres.
Results—
Eleven of 16 patients had rosary-like infarcts (Rosary+) and 8 patients had MES. Mean transit time was significantly higher (
P
=0.008) in Rosary+ patients than in healthy controls (
n
=10), and prevalence of MES was not different between Rosary+ and Rosary− patients. Contrary to our hypothesis, however, the presence of MES within the Rosary+ subset was associated (
P
=0.03) with a better hemodynamic status than in their absence, with a significant (
P
=0.02) negative correlation between mean transit time and rate of MES/h.
Conclusions—
Contrary to mainstream understanding, rosary-like infarcts were not independent of presence and rate of MES, suggesting that microembolism plays a role in their pathogenesis, probably in association with hemodynamic impairment. Pending confirmation in a larger sample, these findings have management implications for patients with carotid disease and rosary-like infarcts.
Collapse
|
43
|
Heiss WD. The ischemic penumbra: correlates in imaging and implications for treatment of ischemic stroke. The Johann Jacob Wepfer award 2011. Cerebrovasc Dis 2011; 32:307-20. [PMID: 21921593 DOI: 10.1159/000330462] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The concept of the ischemic penumbra was formulated 30 years ago based on experiments in animal models showing functional impairment and electrophysiological disturbances with decreasing flow to the brain below defined values (the threshold for function) and irreversible tissue damage with the blood supply further decreased (the threshold for infarction). The perfusion range between these thresholds was termed 'penumbra', and restitution of flow above the functional threshold was able to reverse the deficits without permanent damage. However, in further experiments, the dependency of the development of irreversible lesions on the interaction of the severity and duration of critically reduced blood flow was established - proving that the lower the flow, the shorter the time for efficient reperfusion. Therefore, infarction develops from the core of ischemia to the areas of less severe hypoperfusion. The propagation of irreversible tissue damage is characterized by a complex cascade of interconnected electrophysiological, molecular, metabolic and perfusional disturbances. Waves of depolarizations, the peri-infarct spreading depression-like depolarizations, inducing activation of ion pumps and liberation of excitatory transmitters, have dramatic consequences as drastically increased metabolic demand cannot be satisfied in regions with critically reduced blood supply. The translation of experimental concept into the basis for efficient treatment of stroke requires non-invasive methods by which regional flow and energy metabolism can be repeatedly investigated to demonstrate penumbra tissue that can benefit from therapeutic interventions. Positron emission tomography (PET) allows the quantification of regional cerebral blood flow, the regional metabolic rate for oxygen and the regional oxygen extraction fraction. From these variables, clear definitions of irreversible tissue damage and critically perfused but potentially salvageable tissue (i.e. the penumbra) can be achieved in animal models and stroke patients. Additionally, further tracers can be used for early detection of irreversible tissue damage, e.g. by the central benzodiazepine receptor ligand flumazenil. However, PET is a research tool and its complex logistics limit clinical routine applications. As a widely applicable clinical tool, perfusion/diffusion-weighted (PW/DW) MRI is used, and the 'mismatch' between the PW and the DW abnormalities serve as an indicator of the penumbra. However, comparative studies of PW/DW-MRI and PET have pointed to an overestimation of the core of irreversible infarction as well as of the penumbra by MRI modalities. Some of these discrepancies can be explained by unselective application of relative perfusion thresholds, which might be improved by more complex analytical procedures. Heterogeneity of the MRI signatures used for the definition of the mismatch are also responsible for disappointing results in the application of PW/DW-MRI for the selection of patients for clinical trials. As long as a validation of the mismatch selection paradigm is lacking, its use as a surrogate marker of outcome is limited.
Collapse
|
44
|
Abstract
Original experimental studies in nonhuman primate models of focal ischemia showed flow-related changes in evoked potentials that suggested a circumferential zone of low regional cerebral blood flow with normal K(+) homeostasis, around a core of permanent injury in the striatum or the cortex. This became the basis for the definition of the ischemic penumbra. Imaging techniques of the time suggested a homogeneous core of injury, while positing a surrounding 'penumbral' region that could be salvaged. However, both molecular studies and observations of vascular integrity indicate a more complex and dynamic situation in the ischemic core that also changes with time. The microvascular, cellular, and molecular events in the acute setting are compatible with heterogeneity of the injury within the injury center, which at early time points can be described as multiple 'mini-cores' associated with multiple 'mini-penumbras'. These observations suggest the progression of injury from many small foci to a homogeneous defect over time after the onset of ischemia. Recent observations with updated imaging techniques and data processing support these dynamic changes within the core and the penumbra in humans following focal ischemia.
Collapse
Affiliation(s)
- Gregory J del Zoppo
- Department of Medicine (Division of Hematology), University of Washington School of Medicine, Seattle, Washington 98104, USA.
| | | | | | | |
Collapse
|
45
|
Carrera E, Jones PS, Alawneh JA, Klærke Mikkelsen I, Cho TH, Siemonsen S, Guadagno JV, Mouridsen K, Ribe L, Hjort N, Fryer TD, Carpenter TA, Aigbirhio FI, Fiehler J, Nighoghossian N, Warburton EA, Ostergaard L, Baron JC. Predicting Infarction Within the Diffusion-Weighted Imaging Lesion. Stroke 2011; 42:1602-7. [DOI: 10.1161/strokeaha.110.606970] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Emmanuel Carrera
- From the Department Clinical Neurosciences (E.C., P.S.J., J.A., J.V.G., E.A.W., J.C.B.), Cambridge University, Cambridge, UK; CFIN (I.K.-M., K.M., L.R., N.H., L.O.), Aarhus University, Aarhus, Denmark; Hopital Neurologique (T.H.C., N.N.), Creatis UMR 5515-Inserm U630, Lyon, France; the Neuroradiology Department (S.S., J.F.), University Medical Center, Hamburg, Germany; Wolfson Brain Imaging Centre (T.D.F., T.A.C., F.I.A.), Cambridge University, Cambridge, UK; and INSERM U894 (J.C.B.), Paris, France
| | - P. Simon Jones
- From the Department Clinical Neurosciences (E.C., P.S.J., J.A., J.V.G., E.A.W., J.C.B.), Cambridge University, Cambridge, UK; CFIN (I.K.-M., K.M., L.R., N.H., L.O.), Aarhus University, Aarhus, Denmark; Hopital Neurologique (T.H.C., N.N.), Creatis UMR 5515-Inserm U630, Lyon, France; the Neuroradiology Department (S.S., J.F.), University Medical Center, Hamburg, Germany; Wolfson Brain Imaging Centre (T.D.F., T.A.C., F.I.A.), Cambridge University, Cambridge, UK; and INSERM U894 (J.C.B.), Paris, France
| | - Josef A. Alawneh
- From the Department Clinical Neurosciences (E.C., P.S.J., J.A., J.V.G., E.A.W., J.C.B.), Cambridge University, Cambridge, UK; CFIN (I.K.-M., K.M., L.R., N.H., L.O.), Aarhus University, Aarhus, Denmark; Hopital Neurologique (T.H.C., N.N.), Creatis UMR 5515-Inserm U630, Lyon, France; the Neuroradiology Department (S.S., J.F.), University Medical Center, Hamburg, Germany; Wolfson Brain Imaging Centre (T.D.F., T.A.C., F.I.A.), Cambridge University, Cambridge, UK; and INSERM U894 (J.C.B.), Paris, France
| | - Irene Klærke Mikkelsen
- From the Department Clinical Neurosciences (E.C., P.S.J., J.A., J.V.G., E.A.W., J.C.B.), Cambridge University, Cambridge, UK; CFIN (I.K.-M., K.M., L.R., N.H., L.O.), Aarhus University, Aarhus, Denmark; Hopital Neurologique (T.H.C., N.N.), Creatis UMR 5515-Inserm U630, Lyon, France; the Neuroradiology Department (S.S., J.F.), University Medical Center, Hamburg, Germany; Wolfson Brain Imaging Centre (T.D.F., T.A.C., F.I.A.), Cambridge University, Cambridge, UK; and INSERM U894 (J.C.B.), Paris, France
| | - Tae-Hee Cho
- From the Department Clinical Neurosciences (E.C., P.S.J., J.A., J.V.G., E.A.W., J.C.B.), Cambridge University, Cambridge, UK; CFIN (I.K.-M., K.M., L.R., N.H., L.O.), Aarhus University, Aarhus, Denmark; Hopital Neurologique (T.H.C., N.N.), Creatis UMR 5515-Inserm U630, Lyon, France; the Neuroradiology Department (S.S., J.F.), University Medical Center, Hamburg, Germany; Wolfson Brain Imaging Centre (T.D.F., T.A.C., F.I.A.), Cambridge University, Cambridge, UK; and INSERM U894 (J.C.B.), Paris, France
| | - Suzanne Siemonsen
- From the Department Clinical Neurosciences (E.C., P.S.J., J.A., J.V.G., E.A.W., J.C.B.), Cambridge University, Cambridge, UK; CFIN (I.K.-M., K.M., L.R., N.H., L.O.), Aarhus University, Aarhus, Denmark; Hopital Neurologique (T.H.C., N.N.), Creatis UMR 5515-Inserm U630, Lyon, France; the Neuroradiology Department (S.S., J.F.), University Medical Center, Hamburg, Germany; Wolfson Brain Imaging Centre (T.D.F., T.A.C., F.I.A.), Cambridge University, Cambridge, UK; and INSERM U894 (J.C.B.), Paris, France
| | - Joseph V. Guadagno
- From the Department Clinical Neurosciences (E.C., P.S.J., J.A., J.V.G., E.A.W., J.C.B.), Cambridge University, Cambridge, UK; CFIN (I.K.-M., K.M., L.R., N.H., L.O.), Aarhus University, Aarhus, Denmark; Hopital Neurologique (T.H.C., N.N.), Creatis UMR 5515-Inserm U630, Lyon, France; the Neuroradiology Department (S.S., J.F.), University Medical Center, Hamburg, Germany; Wolfson Brain Imaging Centre (T.D.F., T.A.C., F.I.A.), Cambridge University, Cambridge, UK; and INSERM U894 (J.C.B.), Paris, France
| | - Kim Mouridsen
- From the Department Clinical Neurosciences (E.C., P.S.J., J.A., J.V.G., E.A.W., J.C.B.), Cambridge University, Cambridge, UK; CFIN (I.K.-M., K.M., L.R., N.H., L.O.), Aarhus University, Aarhus, Denmark; Hopital Neurologique (T.H.C., N.N.), Creatis UMR 5515-Inserm U630, Lyon, France; the Neuroradiology Department (S.S., J.F.), University Medical Center, Hamburg, Germany; Wolfson Brain Imaging Centre (T.D.F., T.A.C., F.I.A.), Cambridge University, Cambridge, UK; and INSERM U894 (J.C.B.), Paris, France
| | - Lars Ribe
- From the Department Clinical Neurosciences (E.C., P.S.J., J.A., J.V.G., E.A.W., J.C.B.), Cambridge University, Cambridge, UK; CFIN (I.K.-M., K.M., L.R., N.H., L.O.), Aarhus University, Aarhus, Denmark; Hopital Neurologique (T.H.C., N.N.), Creatis UMR 5515-Inserm U630, Lyon, France; the Neuroradiology Department (S.S., J.F.), University Medical Center, Hamburg, Germany; Wolfson Brain Imaging Centre (T.D.F., T.A.C., F.I.A.), Cambridge University, Cambridge, UK; and INSERM U894 (J.C.B.), Paris, France
| | - Niels Hjort
- From the Department Clinical Neurosciences (E.C., P.S.J., J.A., J.V.G., E.A.W., J.C.B.), Cambridge University, Cambridge, UK; CFIN (I.K.-M., K.M., L.R., N.H., L.O.), Aarhus University, Aarhus, Denmark; Hopital Neurologique (T.H.C., N.N.), Creatis UMR 5515-Inserm U630, Lyon, France; the Neuroradiology Department (S.S., J.F.), University Medical Center, Hamburg, Germany; Wolfson Brain Imaging Centre (T.D.F., T.A.C., F.I.A.), Cambridge University, Cambridge, UK; and INSERM U894 (J.C.B.), Paris, France
| | - Tim D. Fryer
- From the Department Clinical Neurosciences (E.C., P.S.J., J.A., J.V.G., E.A.W., J.C.B.), Cambridge University, Cambridge, UK; CFIN (I.K.-M., K.M., L.R., N.H., L.O.), Aarhus University, Aarhus, Denmark; Hopital Neurologique (T.H.C., N.N.), Creatis UMR 5515-Inserm U630, Lyon, France; the Neuroradiology Department (S.S., J.F.), University Medical Center, Hamburg, Germany; Wolfson Brain Imaging Centre (T.D.F., T.A.C., F.I.A.), Cambridge University, Cambridge, UK; and INSERM U894 (J.C.B.), Paris, France
| | - T. Adrian Carpenter
- From the Department Clinical Neurosciences (E.C., P.S.J., J.A., J.V.G., E.A.W., J.C.B.), Cambridge University, Cambridge, UK; CFIN (I.K.-M., K.M., L.R., N.H., L.O.), Aarhus University, Aarhus, Denmark; Hopital Neurologique (T.H.C., N.N.), Creatis UMR 5515-Inserm U630, Lyon, France; the Neuroradiology Department (S.S., J.F.), University Medical Center, Hamburg, Germany; Wolfson Brain Imaging Centre (T.D.F., T.A.C., F.I.A.), Cambridge University, Cambridge, UK; and INSERM U894 (J.C.B.), Paris, France
| | - Franklin I. Aigbirhio
- From the Department Clinical Neurosciences (E.C., P.S.J., J.A., J.V.G., E.A.W., J.C.B.), Cambridge University, Cambridge, UK; CFIN (I.K.-M., K.M., L.R., N.H., L.O.), Aarhus University, Aarhus, Denmark; Hopital Neurologique (T.H.C., N.N.), Creatis UMR 5515-Inserm U630, Lyon, France; the Neuroradiology Department (S.S., J.F.), University Medical Center, Hamburg, Germany; Wolfson Brain Imaging Centre (T.D.F., T.A.C., F.I.A.), Cambridge University, Cambridge, UK; and INSERM U894 (J.C.B.), Paris, France
| | - Jens Fiehler
- From the Department Clinical Neurosciences (E.C., P.S.J., J.A., J.V.G., E.A.W., J.C.B.), Cambridge University, Cambridge, UK; CFIN (I.K.-M., K.M., L.R., N.H., L.O.), Aarhus University, Aarhus, Denmark; Hopital Neurologique (T.H.C., N.N.), Creatis UMR 5515-Inserm U630, Lyon, France; the Neuroradiology Department (S.S., J.F.), University Medical Center, Hamburg, Germany; Wolfson Brain Imaging Centre (T.D.F., T.A.C., F.I.A.), Cambridge University, Cambridge, UK; and INSERM U894 (J.C.B.), Paris, France
| | - Norbert Nighoghossian
- From the Department Clinical Neurosciences (E.C., P.S.J., J.A., J.V.G., E.A.W., J.C.B.), Cambridge University, Cambridge, UK; CFIN (I.K.-M., K.M., L.R., N.H., L.O.), Aarhus University, Aarhus, Denmark; Hopital Neurologique (T.H.C., N.N.), Creatis UMR 5515-Inserm U630, Lyon, France; the Neuroradiology Department (S.S., J.F.), University Medical Center, Hamburg, Germany; Wolfson Brain Imaging Centre (T.D.F., T.A.C., F.I.A.), Cambridge University, Cambridge, UK; and INSERM U894 (J.C.B.), Paris, France
| | - Elizabeth A. Warburton
- From the Department Clinical Neurosciences (E.C., P.S.J., J.A., J.V.G., E.A.W., J.C.B.), Cambridge University, Cambridge, UK; CFIN (I.K.-M., K.M., L.R., N.H., L.O.), Aarhus University, Aarhus, Denmark; Hopital Neurologique (T.H.C., N.N.), Creatis UMR 5515-Inserm U630, Lyon, France; the Neuroradiology Department (S.S., J.F.), University Medical Center, Hamburg, Germany; Wolfson Brain Imaging Centre (T.D.F., T.A.C., F.I.A.), Cambridge University, Cambridge, UK; and INSERM U894 (J.C.B.), Paris, France
| | - Leif Ostergaard
- From the Department Clinical Neurosciences (E.C., P.S.J., J.A., J.V.G., E.A.W., J.C.B.), Cambridge University, Cambridge, UK; CFIN (I.K.-M., K.M., L.R., N.H., L.O.), Aarhus University, Aarhus, Denmark; Hopital Neurologique (T.H.C., N.N.), Creatis UMR 5515-Inserm U630, Lyon, France; the Neuroradiology Department (S.S., J.F.), University Medical Center, Hamburg, Germany; Wolfson Brain Imaging Centre (T.D.F., T.A.C., F.I.A.), Cambridge University, Cambridge, UK; and INSERM U894 (J.C.B.), Paris, France
| | - Jean-Claude Baron
- From the Department Clinical Neurosciences (E.C., P.S.J., J.A., J.V.G., E.A.W., J.C.B.), Cambridge University, Cambridge, UK; CFIN (I.K.-M., K.M., L.R., N.H., L.O.), Aarhus University, Aarhus, Denmark; Hopital Neurologique (T.H.C., N.N.), Creatis UMR 5515-Inserm U630, Lyon, France; the Neuroradiology Department (S.S., J.F.), University Medical Center, Hamburg, Germany; Wolfson Brain Imaging Centre (T.D.F., T.A.C., F.I.A.), Cambridge University, Cambridge, UK; and INSERM U894 (J.C.B.), Paris, France
| |
Collapse
|
46
|
Abstract
Depicting the salvageable tissue is increasingly used in the clinical setting following stroke. As absolute cerebral blood flow (CBF) is difficult to measure using perfusion magnetic resonance or computed tomography and has limitations as a penumbral marker, time-based variables, particularly the mean transit time (MTT), are routinely used as surrogates. However, a direct validation of MTT as a predictor of the penumbra threshold using gold-standard positron emission tomography (PET) is lacking. Using (15)O-PET data sets obtained from two independent acute stroke samples (N=7 and N=30, respectively), we derived areas under the curve (AUCs), optimal thresholds (OTs), and 90%-specificity thresholds (90%-Ts) from receiver operating characteristic curves for absolute MTT, MTT delay, and MTT ratio to predict three penumbra thresholds ('classic': CBF <20 mL/100 g per min; 'normalized': CBF ratio <0.5; and 'stringent': both CBF <20 mL/100 g per min and oxygen extraction fraction >0.55). In sample 1, AUCs ranged from 0.79 to 0.92, indicating good validity; OTs ranged from 7.8 to 8.3 seconds, 2.8 to 4.7 seconds, and 151% to 267% for absolute MTT, MTT delay, and MTT ratio, respectively, while as expected, 90%-Ts were longer. There was no significant difference between sample 1 and sample 2 for any of the above measurements, save for a single MTT parameter with a single penumbra threshold. These consistent findings from gold-standard PET obtained in two independent cohorts document that MTT is a very good surrogate to CBF for depicting the penumbra threshold.
Collapse
|
47
|
Grigoryan M, Tung CE, Albers GW. Role of diffusion and perfusion MRI in selecting patients for reperfusion therapies. Neuroimaging Clin N Am 2011; 21:247-57, ix-x. [PMID: 21640298 DOI: 10.1016/j.nic.2011.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
After onset of ischemic stroke, potentially viable tissue at risk (ischemic penumbra) may be salvageable. Currently, intravenous alteplase is approved for up to 4.5 hours after symptom onset of acute ischemic stroke. Increasing this time window may allow many more patients to be treated. The ability to use MRI to help define the irreversibly damaged brain (infarct core) and the reversible ischemic penumbra shows great promise for stroke treatment. Recent advances in penumbral imaging technology may enable a phase III trial of an intravenous thrombolytic to be performed beyond 4.5 hours using techniques to select patients with penumbral tissue.
Collapse
Affiliation(s)
- Mikayel Grigoryan
- Stanford Stroke Center, Department of Neurology and Neurological Sciences, Stanford University Medical Center, 780 Welch Road, Palo Alto, CA 94304, USA.
| | | | | |
Collapse
|
48
|
Assessment of baseline hemodynamic parameters within infarct progression areas in acute stroke patients using perfusion-weighted MRI. Neuroradiology 2010; 53:571-6. [DOI: 10.1007/s00234-010-0793-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 10/26/2010] [Indexed: 10/18/2022]
|
49
|
Sun PZ, Benner T, Copen WA, Sorensen AG. Early experience of translating pH-weighted MRI to image human subjects at 3 Tesla. Stroke 2010; 41:S147-51. [PMID: 20876492 DOI: 10.1161/strokeaha.110.595777] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE In acute stroke, mismatch between lesions seen on diffusion- (DWI) and perfusion-weighted (PWI) MRI has been used to identify ischemic tissue before irreversible damage. Nevertheless, the concept of PWI/DWI mismatch is oversimplified and the ischemic tissue metabolic status and outcome are often heterogeneous. Tissue pH, a well-regulated physiological index that alters on disrupted tissue metabolism, may provide a surrogate metabolic imaging marker that augments the DWI and PWI for penumbra imaging. METHODS pH-weighted MRI was obtained by probing the pH-dependent amide proton transfer between endogenous mobile proteins/peptides and tissue water. The technique was validated using animal stroke models, optimized for human use, and preliminarily tested for imaging healthy volunteers. RESULTS pH-weighted MRI is sensitive and specific to ischemic tissue acidosis. pH MRI can be optimized for clinical use, and a pilot human study showed it is feasible using a standard 3 Tesla MRI scanner. CONCLUSIONS Ischemic acidosis can be imaged via an endogenous pH-weighted MRI technique, which complements conventional PWI and DWI for penumbra imaging. pH-weighted MRI has been optimized and appears feasible and practical in imaging human subjects. Additional study is necessary to elucidate the diagnostic use of pH MRI in stroke patients.
Collapse
Affiliation(s)
- Phillip Zhe Sun
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Athinoula A Martinos Center for Biomedical Imaging, Charlestown, Mass 02129, USA.
| | | | | | | |
Collapse
|
50
|
Abstract
The 'penumbra' is a concept coined in animal experiments suggesting that functionally impaired tissue can survive and recover if sufficient reperfusion is re-established within a limited time period, which depends on the level of residual flow. In an ischaemic territory, irreversible damage progresses over time from the centre of the most severe flow reduction to the periphery with less disturbed perfusion. This centrifugal progression of irreversible tissue damage is characterised by a complex cascade of interconnected electrophysiological, molecular, metabolic and perfusion disturbances. Waves of depolarisations, the peri infarct spreading depressions, inducing activation of ion pumps and liberation of excitatory transmitters play an important role in the drastically increased metabolic demand during reduced oxygen supply causing hypoxic tissue changes and lactacidosis, which further damage the tissue. Positron emission tomography allows the quantification of regional cerebral blood flow, the regional metabolic rate for oxygen and the regional oxygen extraction fraction, which can be used to identify regions with a critical reduction in these physiologic variables as indicators of penumbra and irreversible damage within ischaemic territories in animal models and patients with stroke. These positron emission tomography methods require arterial blood sampling and due to the complex logistics involved, are limited for routine application. Therefore, newer tracers were developed for the noninvasive detection of irreversible tissue damage (flumazenil) and of hypoxic tissue changes (fluoromisonidazole). As a widely applicable clinical tool, diffusion/perfusion-weighted magnetic resonance imaging is used; the 'mismatch' between perfusion and diffusion changes serves as a surrogate marker of the penumbra. However, in comparative studies of magnetic resonance imaging and positron emission tomography, diffusion-weighted imaging showed a high false-positive rate of irreversible damage, and the perfusion-weighted-diffusion-weighted mismatch overestimated the penumbra as defined by positron emission tomography. Advanced analytical procedures of magnetic resonance imaging data may improve the reliability of these surrogate markers but should be validated with quantitative procedures.
Collapse
|