1
|
Lasio MLD, Leshinski AC, Ducich NH, Flore LA, Lehman A, Shur N, Jayakar PB, Hainline BE, Basinger AA, Wilson WG, Diaz GA, Erbe RW, Koeberl DD, Vockley J, Bedoyan JK. Clinical, biochemical and molecular characterization of 12 patients with pyruvate carboxylase deficiency treated with triheptanoin. Mol Genet Metab 2023; 139:107605. [PMID: 37207470 PMCID: PMC10330474 DOI: 10.1016/j.ymgme.2023.107605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/21/2023]
Abstract
Pyruvate carboxylase (PC) deficiency is a rare autosomal recessive mitochondrial neurometabolic disorder of energy deficit resulting in high morbidity and mortality, with limited therapeutic options. The PC homotetramer has a critical role in gluconeogenesis, anaplerosis, neurotransmitter synthesis, and lipogenesis. The main biochemical and clinical findings in PC deficiency (PCD) include lactic acidosis, ketonuria, failure to thrive, and neurological dysfunction. Use of the anaplerotic agent triheptanoin on a limited number of individuals with PCD has had mixed results. We expand on the potential utility of triheptanoin in PCD by examining the clinical, biochemical, molecular, and health-related quality-of-life (HRQoL) findings in a cohort of 12 individuals with PCD (eight with Type A and two each with Types B and C) treated with triheptanoin ranging for 6 days to about 7 years. The main endpoints were changes in blood lactate and HRQoL scores, but collection of useful data was limited to about half of subjects. An overall trend of lactate reduction with time on triheptanoin was noted, but with significant variability among subjects and only one subject reaching close to statistical significance for this endpoint. Parent reported HRQoL assessments with treatment showed mixed results, with some subjects showing no change, some improvement, and some worsening of overall scores. Subjects with buried amino acids in the pyruvate carboxyltransferase domain of PC that undergo destabilizing replacements may be more likely to respond (with lactate reduction or HRQoL improvement) to triheptanoin compared to those with replacements that disrupt tetramerization or subunit-subunit interface contacts. The reason for this difference is unclear and requires further validation. We observed significant variability but an overall trend of lactate reduction with time on triheptanoin and mixed parent reported outcome changes by HRQoL assessments for subjects with PCD on long-term triheptanoin. The mixed results noted with triheptanoin therapy in this study could be due to endpoint data limitation, variability of disease severity between subjects, limitation of the parent reported HRQoL tool, or subject genotype variability. Alternative designed trials and more study subjects with PCD will be needed to validate important observations from this work.
Collapse
Affiliation(s)
- M Laura Duque Lasio
- Department of Pathology, University of Utah, Salt Lake City, UT, USA; Division of Genetic and Genomic Medicine, UPMC Children's Hospital of Pittsburgh and Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Angela C Leshinski
- Division of Genetic and Genomic Medicine, UPMC Children's Hospital of Pittsburgh and Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nicole H Ducich
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Leigh Anne Flore
- Division of Genetic, Genomic and Metabolic Disorders, Children's Hospital of Michigan, Detroit, MI and Central Michigan University College of Medicine, Mount Pleasant, MI, USA
| | - April Lehman
- Division of Genetic and Genomic Medicine, UPMC Children's Hospital of Pittsburgh and Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Division of Genetic, Genomic and Metabolic Disorders, Children's Hospital of Michigan, Detroit, MI and Central Michigan University College of Medicine, Mount Pleasant, MI, USA
| | - Natasha Shur
- Genetics and Metabolism, Rare Disease Institute, Children's National Hospital, Washington, DC, USA
| | - Parul B Jayakar
- Division of Genetics and Metabolism, Nicklaus Children's Hospital, Miami, FL, USA
| | - Bryan E Hainline
- Department of Medical and Molecular Genetics, Riley Hospital at Indiana University Health, Indianapolis, IN, USA
| | | | - William G Wilson
- Department of Pediatrics, University of Virginia Health, Charlottesville, VA, USA
| | - George A Diaz
- Division of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Richard W Erbe
- Departments of Pediatrics and Medicine, University at Buffalo, Buffalo, NY, USA
| | - Dwight D Koeberl
- Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Jerry Vockley
- Division of Genetic and Genomic Medicine, UPMC Children's Hospital of Pittsburgh and Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Jirair K Bedoyan
- Division of Genetic and Genomic Medicine, UPMC Children's Hospital of Pittsburgh and Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Maximum dose, safety, tolerability and ketonemia after triheptanoin in glucose transporter type 1 deficiency (G1D). Sci Rep 2023; 13:3465. [PMID: 36859467 PMCID: PMC9977760 DOI: 10.1038/s41598-023-30578-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/27/2023] [Indexed: 03/03/2023] Open
Abstract
Augmentation of anaplerosis, or replenishment of carbon lost during intermediary metabolic transitions, is desirable in energy metabolism defects. Triheptanoin, the triglyceride of 7-carbon heptanoic acid, is anaplerotic via direct oxidation or 5-carbon ketone body generation. In this context, triheptanoin can be used to treat Glucose transporter type 1 deficiency encephalopathy (G1D). An oral triheptanoin dose of 1 g/Kg/day supplies near 35% of the total caloric intake and impacted epilepsy and cognition in G1D. This provided the motivation to establish a maximum, potentially greater dose. Using a 3 + 3 dose-finding approach useful in oncology, we studied three age groups: 4-6, 6.8-10 and 11-16 years old. This allowed us to arrive at a maximum tolerated dose of 45% of daily caloric intake for each group. Safety was ascertained via analytical blood measures. One dose-limiting toxicity, occurring in 1 of 6 subjects, was encountered in the middle age group in the context of frequently reduced gastrointestinal tolerance for all groups. Ketonemia following triheptanoin was determined in another group of G1D subjects. In them, β-ketopentanoate and β-hydroxypentanoate concentrations were robustly but variably increased. These results enable the rigorous clinical investigation of triheptanoin in G1D by providing dosing and initial tolerability, safety and ketonemic potential.ClinicalTrials.gov registration: NCT03041363, first registration 02/02/2017.
Collapse
|
3
|
Pokrovsky MV, Korokin MV, Krayushkina AM, Zhunusov NS, Lapin KN, Soldatova MO, Kuzmin EA, Gudyrev OS, Kochkarova IS, Deikin AV. CONVENTIONAL APPROACHES TO THE THERAPY OF HEREDITARY MYOPATHIES. PHARMACY & PHARMACOLOGY 2022. [DOI: 10.19163/2307-9266-2022-10-5-416-431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The aim of the work was to analyze the available therapeutic options for the conventional therapy of hereditary myopathies.Materials and methods. When searching for the material for writing a review article, such abstract databases as PubMed and Google Scholar were used. The search was carried out on the publications during the period from 1980 to September 2022. The following words and their combinations were selected as parameters for the literature selection: “myopathy”, “Duchenne”, “myodystrophy”, “metabolic”, “mitochondrial”, “congenital”, “symptoms”, “replacement”, “recombinant”, “corticosteroids”, “vitamins”, “tirasemtiv”, “therapy”, “treatment”, “evidence”, “clinical trials”, “patients”, “dichloracetate”.Results. Congenital myopathies are a heterogeneous group of pathologies that are caused by atrophy and degeneration of muscle fibers due to mutations in genes. Based on a number of clinical and pathogenetic features, hereditary myopathies are divided into: 1) congenital myopathies; 2) muscular dystrophy; 3) mitochondrial and 4) metabolic myopathies. At the same time, treatment approaches vary significantly depending on the type of myopathy and can be based on 1) substitution of the mutant protein; 2) an increase in its expression; 3) stimulation of the internal compensatory pathways expression; 4) restoration of the compounds balance associated with the mutant protein function (for enzymes); 5) impact on the mitochondrial function (with metabolic and mitochondrial myopathies); 6) reduction of inflammation and fibrosis (with muscular dystrophies); as well as 7) an increase in muscle mass and strength. The current review presents current data on each of the listed approaches, as well as specific pharmacological agents with a description of their action mechanisms.Conclusion. Currently, the following pharmacological groups are used or undergoing clinical trials for the treatment of various myopathies types: inotropic, anti-inflammatory and antifibrotic drugs, antimyostatin therapy and the drugs that promote translation through stop codons (applicable for nonsense mutations). In addition, metabolic drugs, metabolic enzyme cofactors, mitochondrial biogenesis stimulators, and antioxidants can be used to treat myopathies. Finally, the recombinant drugs alglucosidase and avalglucosidase have been clinically approved for the replacement therapy of metabolic myopathies (Pompe’s disease).
Collapse
Affiliation(s)
| | | | | | | | - K. N. Lapin
- V.A. Negovsky Research Institute of General Reanimatology, Federal Scientific and Clinical Center for Resuscitation and Rehabilitology
| | | | - E. A. Kuzmin
- Sechenov First Moscow State Medical University (Sechenov University)
| | | | | | | |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW Metabolic myopathies are disorders that affect skeletal muscle substrate oxidation. Although some drugs and hormones can affect metabolism in skeletal muscle, this review will focus on the genetic metabolic myopathies. RECENT FINDINGS Impairments in glycogenolysis/glycolysis (glycogen storage disease), fatty acid transport/oxidation (fatty acid oxidation defects), and mitochondrial metabolism (mitochondrial myopathies) represent most metabolic myopathies; however, they often overlap clinically with structural genetic myopathies, referred to as pseudometabolic myopathies. Although metabolic myopathies can present in the neonatal period with hypotonia, hypoglycemia, and encephalopathy, most cases present clinically in children or young adults with exercise intolerance, rhabdomyolysis, and weakness. In general, the glycogen storage diseases manifest during brief bouts of high-intensity exercise; in contrast, fatty acid oxidation defects and mitochondrial myopathies usually manifest during longer-duration endurance-type activities, often with fasting or other metabolic stressors (eg, surgery, fever). The neurologic examination is often normal between events (except in the pseudometabolic myopathies) and evaluation requires one or more of the following tests: exercise stress testing, blood (eg, creatine kinase, acylcarnitine profile, lactate, amino acids), urine (eg, organic acids, myoglobin), muscle biopsy (eg, histology, ultrastructure, enzyme testing), and targeted (specific gene) or untargeted (myopathy panels) genetic tests. SUMMARY Definitive identification of a specific metabolic myopathy often leads to specific interventions, including lifestyle, exercise, and nutritional modifications; cofactor treatments; accurate genetic counseling; avoidance of specific triggers; and rapid treatment of rhabdomyolysis.
Collapse
|
5
|
Grillet PE, Badiou S, Lambert K, Sutra T, Plawecki M, Raynaud de Mauverger E, Brun JF, Mercier J, Gouzi F, Cristol JP. Biomarkers of Redox Balance Adjusted to Exercise Intensity as a Useful Tool to Identify Patients at Risk of Muscle Disease through Exercise Test. Nutrients 2022; 14:1886. [PMID: 35565853 PMCID: PMC9105000 DOI: 10.3390/nu14091886] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
The screening of skeletal muscle diseases constitutes an unresolved challenge. Currently, exercise tests or plasmatic tests alone have shown limited performance in the screening of subjects with an increased risk of muscle oxidative metabolism impairment. Intensity-adjusted energy substrate levels of lactate (La), pyruvate (Pyr), β-hydroxybutyrate (BOH) and acetoacetate (AA) during a cardiopulmonary exercise test (CPET) could constitute alternative valid biomarkers to select "at-risk" patients, requiring the gold-standard diagnosis procedure through muscle biopsy. Thus, we aimed to test: (1) the validity of the V'O2-adjusted La, Pyr, BOH and AA during a CPET for the assessment of the muscle oxidative metabolism (exercise and mitochondrial respiration parameters); and (2) the discriminative value of the V'O2-adjusted energy and redox markers, as well as five other V'O2-adjusted TCA cycle-related metabolites, between healthy subjects, subjects with muscle complaints and muscle disease patients. Two hundred and thirty subjects with muscle complaints without diagnosis, nine patients with a diagnosed muscle disease and ten healthy subjects performed a CPET with blood assessments at rest, at the estimated 1st ventilatory threshold and at the maximal intensity. Twelve subjects with muscle complaints presenting a severe alteration of their profile underwent a muscle biopsy. The V'O2-adjusted plasma levels of La, Pyr, BOH and AA, and their respective ratios showed significant correlations with functional and muscle fiber mitochondrial respiration parameters. Differences in exercise V'O2-adjusted La/Pyr, BOH, AA and BOH/AA were observed between healthy subjects, subjects with muscle complaints without diagnosis and muscle disease patients. The energy substrate and redox blood profile of complaining subjects with severe exercise intolerance matched the blood profile of muscle disease patients. Adding five tricarboxylic acid cycle intermediates did not improve the discriminative value of the intensity-adjusted energy and redox markers. The V'O2-adjusted La, Pyr, BOH, AA and their respective ratios constitute valid muscle biomarkers that reveal similar blunted adaptations in muscle disease patients and in subjects with muscle complaints and severe exercise intolerance. A targeted metabolomic approach to improve the screening of "at-risk" patients is discussed.
Collapse
Affiliation(s)
- Pierre-Edouard Grillet
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, CHU Montpellier, 34295 Montpellier, France; (P.-E.G.); (S.B.); (K.L.); (T.S.); (M.P.); (E.R.d.M.); (J.-F.B.); (J.M.); (J.-P.C.)
- Department of Biochemistry and Hormonology, CHU Montpellier, 34295 Montpellier, France
| | - Stéphanie Badiou
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, CHU Montpellier, 34295 Montpellier, France; (P.-E.G.); (S.B.); (K.L.); (T.S.); (M.P.); (E.R.d.M.); (J.-F.B.); (J.M.); (J.-P.C.)
- Department of Biochemistry and Hormonology, CHU Montpellier, 34295 Montpellier, France
| | - Karen Lambert
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, CHU Montpellier, 34295 Montpellier, France; (P.-E.G.); (S.B.); (K.L.); (T.S.); (M.P.); (E.R.d.M.); (J.-F.B.); (J.M.); (J.-P.C.)
| | - Thibault Sutra
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, CHU Montpellier, 34295 Montpellier, France; (P.-E.G.); (S.B.); (K.L.); (T.S.); (M.P.); (E.R.d.M.); (J.-F.B.); (J.M.); (J.-P.C.)
- Department of Biochemistry and Hormonology, CHU Montpellier, 34295 Montpellier, France
| | - Maëlle Plawecki
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, CHU Montpellier, 34295 Montpellier, France; (P.-E.G.); (S.B.); (K.L.); (T.S.); (M.P.); (E.R.d.M.); (J.-F.B.); (J.M.); (J.-P.C.)
- Department of Biochemistry and Hormonology, CHU Montpellier, 34295 Montpellier, France
| | - Eric Raynaud de Mauverger
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, CHU Montpellier, 34295 Montpellier, France; (P.-E.G.); (S.B.); (K.L.); (T.S.); (M.P.); (E.R.d.M.); (J.-F.B.); (J.M.); (J.-P.C.)
- Department of Physiology, University of Montpellier, CHU Montpellier, 34295 Montpellier, France
| | - Jean-Frédéric Brun
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, CHU Montpellier, 34295 Montpellier, France; (P.-E.G.); (S.B.); (K.L.); (T.S.); (M.P.); (E.R.d.M.); (J.-F.B.); (J.M.); (J.-P.C.)
- Department of Physiology, University of Montpellier, CHU Montpellier, 34295 Montpellier, France
| | - Jacques Mercier
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, CHU Montpellier, 34295 Montpellier, France; (P.-E.G.); (S.B.); (K.L.); (T.S.); (M.P.); (E.R.d.M.); (J.-F.B.); (J.M.); (J.-P.C.)
- Department of Physiology, University of Montpellier, CHU Montpellier, 34295 Montpellier, France
| | - Fares Gouzi
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, CHU Montpellier, 34295 Montpellier, France; (P.-E.G.); (S.B.); (K.L.); (T.S.); (M.P.); (E.R.d.M.); (J.-F.B.); (J.M.); (J.-P.C.)
- Department of Physiology, University of Montpellier, CHU Montpellier, 34295 Montpellier, France
| | - Jean-Paul Cristol
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, CHU Montpellier, 34295 Montpellier, France; (P.-E.G.); (S.B.); (K.L.); (T.S.); (M.P.); (E.R.d.M.); (J.-F.B.); (J.M.); (J.-P.C.)
- Department of Biochemistry and Hormonology, CHU Montpellier, 34295 Montpellier, France
| |
Collapse
|
6
|
Treatment and Management of Hereditary Metabolic Myopathies. Neuromuscul Disord 2022. [DOI: 10.1016/b978-0-323-71317-7.00023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Gooch C, Dean SJ, Marzullo L. Repeatedly in Rhabdomyolysis. Pediatr Emerg Care 2021; 37:e1759-e1760. [PMID: 32205805 DOI: 10.1097/pec.0000000000002079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Repeated presentations of a rare symptom in a patient should make a physician stop and evaluate for rare conditions. This is a report of a teenager with multiple episodes of rhabdomyolysis and weakness. He was eventually diagnosed as having McArdle muscular dystrophy, or glycogen storage disease type V. His rhabdomyolysis has been severe, with a creatinine kinase level of >320,000 U/L, myoglobinuria, transaminitis, and elevated bilirubin. He has a low threshold for triggering rhabdomyolysis, such as doing an hour of aerobic exercise 2 days in a row. McArdle disease is a glycogen storage disorder in which the skeletal muscle cannot convert glycogen to glucose. Unlike other glycogen storage disorders, McArdle muscular dystrophy only affects the skeletal muscle, sparing the brain and visceral organs, leading to a vague phenotype. These patients have exercise intolerance, muscle cramps, and rhabdomyolysis. Many patients report loading with simple carbohydrates before exercise, as they have learned that this can increase their stamina. The vague symptoms can lead to decades of delay in diagnosis and significant mismanagement. Rhabdomyolysis is the most dangerous sign of McArdle disease, and it can lead to acute kidney injury, resulting in renal failure requiring dialysis in the severest cases.Rhabdomyolysis has numerous causes, but when it is recurrent, especially with seemingly insignificant triggers, one needs to develop a broader differential and pursue advanced testing. This testing can include specific exercise tests, genetic sequencing, and muscle biopsy. This case report will guide the clinician through the process of evaluating recurrent rhabdomyolysis, working through the differential diagnosis and testing options.1.
Collapse
Affiliation(s)
| | | | - Laurie Marzullo
- Pediatric Emergency Medicine, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
8
|
Holmes BB, Russ JB, Wu YW, Gallagher RC, Gano D. Clinical Reasoning: A 2-Day-Old Boy With Sudden Cardiac Arrest and Encephalopathy. Neurology 2021; 97:e1743-e1746. [PMID: 34158382 PMCID: PMC10513875 DOI: 10.1212/wnl.0000000000012408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Brandon B Holmes
- From the Neurology Residency Program (B.B.H.) and Child Neurology Residency Program (J.B.R.), Department of Neurology, University of California San Francisco; and the Departments of Neurology (Y.W.W., D.G.), and Pediatrics (R.C.G., D.G.), University of California San Francisco.
| | - Jeffrey B Russ
- From the Neurology Residency Program (B.B.H.) and Child Neurology Residency Program (J.B.R.), Department of Neurology, University of California San Francisco; and the Departments of Neurology (Y.W.W., D.G.), and Pediatrics (R.C.G., D.G.), University of California San Francisco
| | - Yvonne W Wu
- From the Neurology Residency Program (B.B.H.) and Child Neurology Residency Program (J.B.R.), Department of Neurology, University of California San Francisco; and the Departments of Neurology (Y.W.W., D.G.), and Pediatrics (R.C.G., D.G.), University of California San Francisco
| | - Renata C Gallagher
- From the Neurology Residency Program (B.B.H.) and Child Neurology Residency Program (J.B.R.), Department of Neurology, University of California San Francisco; and the Departments of Neurology (Y.W.W., D.G.), and Pediatrics (R.C.G., D.G.), University of California San Francisco
| | - Dawn Gano
- From the Neurology Residency Program (B.B.H.) and Child Neurology Residency Program (J.B.R.), Department of Neurology, University of California San Francisco; and the Departments of Neurology (Y.W.W., D.G.), and Pediatrics (R.C.G., D.G.), University of California San Francisco
| |
Collapse
|
9
|
Negro M, Cerullo G, Parimbelli M, Ravazzani A, Feletti F, Berardinelli A, Cena H, D'Antona G. Exercise, Nutrition, and Supplements in the Muscle Carnitine Palmitoyl-Transferase II Deficiency: New Theoretical Bases for Potential Applications. Front Physiol 2021; 12:704290. [PMID: 34408664 PMCID: PMC8365340 DOI: 10.3389/fphys.2021.704290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
Carnitine palmitoyltransferase II (CPTII) deficiency is the most frequent inherited disorder regarding muscle fatty acid metabolism, resulting in a reduced mitochondrial long-chain fatty acid oxidation during endurance exercise. This condition leads to a clinical syndrome characterized by muscle fatigue and/or muscle pain with a variable annual frequency of severe rhabdomyolytic episodes. While since the CPTII deficiency discovery remarkable scientific advancements have been reached in genetic analysis, pathophysiology and diagnoses, the same cannot be said for the methods of treatments. The current recommendations remain those of following a carbohydrates-rich diet with a limited fats intake and reducing, even excluding, physical activity, without, however, taking into account the long-term consequences of this approach. Suggestions to use carnitine and medium chain triglycerides remain controversial; conversely, other potential dietary supplements able to sustain muscle metabolism and recovery from exercise have never been taken into consideration. The aim of this review is to clarify biochemical mechanisms related to nutrition and physiological aspects of muscle metabolism related to exercise in order to propose new theoretical bases of treatment which, if properly tested and validated by future trials, could be applied to improve the quality of life of these patients.
Collapse
Affiliation(s)
- Massimo Negro
- Centro di Ricerca Interdipartimentale nelle Attivitá Motorie e Sportive (CRIAMS) - Sport Medicine Centre, University of Pavia, Voghera, Italy
| | - Giuseppe Cerullo
- Department of Movement Sciences and Wellbeing, University of Naples Parthenope, Naples, Italy
| | - Mauro Parimbelli
- Centro di Ricerca Interdipartimentale nelle Attivitá Motorie e Sportive (CRIAMS) - Sport Medicine Centre, University of Pavia, Voghera, Italy
| | - Alberto Ravazzani
- Centro di Ricerca Interdipartimentale nelle Attivitá Motorie e Sportive (CRIAMS) - Sport Medicine Centre, University of Pavia, Voghera, Italy
| | - Fausto Feletti
- Department of Internal Medicine, University of Pavia, Pavia, Italy
| | | | - Hellas Cena
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy.,Clinical Nutrition and Dietetics Service, Unit of Internal Medicine and Endocrinology, ICS Maugeri IRCCS, University of Pavia, Pavia, Italy
| | - Giuseppe D'Antona
- Centro di Ricerca Interdipartimentale nelle Attivitá Motorie e Sportive (CRIAMS) - Sport Medicine Centre, University of Pavia, Voghera, Italy.,Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
10
|
Metabolic Outcomes of Anaplerotic Dodecanedioic Acid Supplementation in Very Long Chain Acyl-CoA Dehydrogenase (VLCAD) Deficient Fibroblasts. Metabolites 2021; 11:metabo11080538. [PMID: 34436479 PMCID: PMC8412092 DOI: 10.3390/metabo11080538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022] Open
Abstract
Very long-chain acyl-CoA dehydrogenase deficiency (VLCADD, OMIM 609575) is associated with energy deficiency and mitochondrial dysfunction and may lead to rhabdomyolysis and cardiomyopathy. Under physiological conditions, there is a fine balance between the utilization of different carbon nutrients to maintain the Krebs cycle. The maintenance of steady pools of Krebs cycle intermediates is critical formitochondrial energy homeostasis especially in high-energy demanding organs such as muscle and heart. Even-chain dicarboxylic acids are established as alternative energy carbon sources that replenish the Krebs cycle by bypassing a defective β-oxidation pathway. Despite this, even-chain dicarboxylic acids are eliminated in the urine of VLCAD-affected individuals. In this study, we explore dodecanedioic acid (C12; DODA) supplementation and investigate its metabolic effect on Krebs cycle intermediates, glucose uptake, and acylcarnitine profiles in VLCAD-deficient fibroblasts. Our findings indicate that DODA supplementation replenishes the Krebs cycle by increasing the succinate pool, attenuates glycolytic flux, and reduces levels of toxic very long-chain acylcarnitines.
Collapse
|
11
|
Parimbelli M, Pezzotti E, Negro M, Calanni L, Allemano S, Bernardi M, Berardinelli A, D'Antona G. Nutrition and Exercise in a Case of Carnitine Palmitoyl-Transferase II Deficiency. Front Physiol 2021; 12:637406. [PMID: 33815142 PMCID: PMC8009997 DOI: 10.3389/fphys.2021.637406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
In the mild subtype of inherited carnitine palmitoyltransferase II (CPTII) deficiency, muscular mitochondrial fatty acid β-oxidation is impaired. In this condition, interventions involve daily dietary restriction of fats and increase of carbohydrates, whereas physical exercise is commonly contraindicated due to the risk of muscle pain and rhabdomyolysis. We present the case of a 14-year-old female with CPTII deficiency who underwent a 1-h session of unsupervised exercise training for 6 months, 3 days per week, including interval and resistance exercises, after diet assessment and correction. Before and after intervention, the resting metabolic rate (RMR) and respiratory quotient (RQ) were measured by indirect calorimetry, and a cardiopulmonary exercise test (CPET, 10 W/30 s to exhaustion) was performed. Interval training consisted of a 1 min run and a 5 min walk (for 15 min progressively increased to 30 min). During these efforts, the heart rate was maintained over 70% HR max corresponding to respiratory exchange ratio (RER) of 0.98. Resistance training included upper/lower split workouts (3 sets of 8 repetitions each, with 2 min rest between sets). Blood CK was checked before and 36 h after two training sessions chosen randomly without significant difference. After training, RMR increased (+8.1%) and RQ lowered into the physiological range (from 1.0 to 0.85). CPET highlighted an increase of peak power output (+16.7%), aerobic performance (VO2 peak, 8.3%) and anaerobic threshold (+5.7%), oxygen pulse (+4.5%) and a much longer isocapnic buffering duration (+335%). No muscle pain or rhabdomyolysis was reported. Results from our study highlight that training based on short-duration high-intensity exercise improves overall metabolism and aerobic fitness, thus being feasible, at least in a case of CPTII deficiency.
Collapse
Affiliation(s)
- Mauro Parimbelli
- Criams-Sport Medicine Centre Voghera, University of Pavia, Pavia, Italy
| | - Elena Pezzotti
- Child Neuropsychiatry, IRCCS Mondino Foundation, Pavia, Italy
| | - Massimo Negro
- Criams-Sport Medicine Centre Voghera, University of Pavia, Pavia, Italy
| | - Luca Calanni
- Criams-Sport Medicine Centre Voghera, University of Pavia, Pavia, Italy
| | - Silvia Allemano
- Criams-Sport Medicine Centre Voghera, University of Pavia, Pavia, Italy
| | - Marco Bernardi
- Department of Physiology and Pharmacology, University of Rome "La Sapienza", Rome, Italy
| | | | - Giuseppe D'Antona
- Criams-Sport Medicine Centre Voghera, University of Pavia, Pavia, Italy.,Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
12
|
Sklirou E, Alodaib AN, Dobrowolski SF, Mohsen AWA, Vockley J. Physiological Perspectives on the Use of Triheptanoin as Anaplerotic Therapy for Long Chain Fatty Acid Oxidation Disorders. Front Genet 2021; 11:598760. [PMID: 33584796 PMCID: PMC7875087 DOI: 10.3389/fgene.2020.598760] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/27/2020] [Indexed: 12/15/2022] Open
Abstract
Inborn errors of mitochondrial fatty acid oxidation (FAO) comprise the most common group of disorders identified through expanded newborn screening mandated in all 50 states in the United States, affecting 1:10,000 newborns. While some of the morbidity in FAO disorders (FAODs) can be reduced if identified through screening, a significant gap remains between the ability to diagnose these disorders and the ability to treat them. At least 25 enzymes and specific transport proteins are responsible for carrying out the steps of mitochondrial fatty acid metabolism, with at least 22 associated genetic disorders. Common symptoms in long chain FAODs (LC-FAODs) in the first week of life include cardiac arrhythmias, hypoglycemia, and sudden death. Symptoms later in infancy and early childhood may relate to the liver or cardiac or skeletal muscle dysfunction, and include fasting or stress-related hypoketotic hypoglycemia or Reye-like syndrome, conduction abnormalities, arrhythmias, dilated or hypertrophic cardiomyopathy, and muscle weakness or fasting- and exercise-induced rhabdomyolysis. In adolescent or adult-onset disease, muscular symptoms, including rhabdomyolysis, and cardiomyopathy predominate. Unfortunately, progress in developing better therapeutic strategies has been slow and incremental. Supplementation with medium chain triglyceride (MCT; most often a mixture of C8–12 fatty acids containing triglycerides) oil provides a fat source that can be utilized by patients with long chain defects, but does not eliminate symptoms. Three mitochondrial metabolic pathways are required for efficient energy production in eukaryotic cells: oxidative phosphorylation (OXPHOS), FAO, and the tricarboxylic (TCA) cycle, also called the Krebs cycle. Cell and mouse studies have identified a deficiency in TCA cycle intermediates in LC-FAODs, thought to be due to a depletion of odd chain carbon compounds in patients treated with a predominantly MCT fat source. Triheptanoin (triheptanoyl glycerol; UX007, Ultragenyx Pharmaceuticals) is chemically composed of three heptanoate (seven carbon fatty acid) molecules linked to glycerol through ester bonds that has the potential to replete TCA cycle intermediates through production of both acetyl-CoA and propionyl-CoA through medium chain FAO. Compassionate use, retrospective, and recently completed prospective studies demonstrate significant reduction of hypoglycemic events and improved cardiac function in LC-FAOD patients, but a less dramatic effect on muscle symptoms.
Collapse
Affiliation(s)
- Evgenia Sklirou
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ahmad N Alodaib
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Newborn Screening and Biochemical Genetics Lab, Department of Genetics, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Steven F Dobrowolski
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Al-Walid A Mohsen
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jerry Vockley
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Rare Disease Therapy, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
13
|
Zöggeler T, Stock K, Jörg-Streller M, Spenger J, Konstantopoulou V, Hufgard-Leitner M, Scholl-Bürgi S, Karall D. Long-term experience with triheptanoin in 12 Austrian patients with long-chain fatty acid oxidation disorders. Orphanet J Rare Dis 2021; 16:28. [PMID: 33446227 PMCID: PMC7807521 DOI: 10.1186/s13023-020-01635-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/27/2020] [Indexed: 12/31/2022] Open
Abstract
Background Long-chain fatty acid oxidation disorders (LC-FAOD) are a group of rare inborn errors of metabolism with autosomal recessive inheritance that may cause life-threatening events.
Treatment with triheptanoin, a synthetic seven-carbon fatty acid triglyceride compound with an anaplerotic effect, seems beneficial, but clinical experience is limited. We report our long-term experience in an Austrian cohort of LC-FAOD patients. Methods We retrospectively assessed clinical outcome and total hospitalization days per year before and after start with triheptanoin by reviewing medical records of 12 Austrian LC-FAOD patients Results For 12 Austrian LC-FAOD patients at three metabolic centers, triheptanoin was started shortly after birth in 3/12, and between 7.34 and 353.3 (median 44.5; mean 81.1) months of age in 9/12 patients. For 11 pediatric patients, mean duration of triheptanoin intake was 5.3 (median 3.9, range 1.2–15.7) years, 10/11 pediatric patients have an ongoing intake of triheptanoin. One patient quit therapy due to reported side effects. Total hospitalization days per year compared to before triheptanoin treatment decreased by 82.3% from 27.1 (range 11–65) days per year to 4.8 (range 0–13) days per year, and hospitalization days in the one year pre- compared to the one year post-triheptanoin decreased by 69.8% from 27.1 (range 4–75) days to 8.2 (range 0–25) days. All patients are in good clinical condition, show normal psychomotor development and no impairment in daily life activities. Conclusion In this retrospective observational study in an Austrian LC-FAOD cohort, triheptanoin data show improvement in disease course. Triheptanoin appears to be a safe and beneficial treatment option in LC-FAOD. For further clarification, additional prospective randomized controlled trials are needed.
Collapse
Affiliation(s)
- Thomas Zöggeler
- Department of Pediatrics I (Inherited Metabolic Disorders), Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Katharina Stock
- Department of Pediatrics III (Cardiology), Medical University of Innsbruck, Innsbruck, Austria
| | - Monika Jörg-Streller
- Department of Pediatrics I (Inherited Metabolic Disorders), Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Johannes Spenger
- University Children's Hospital, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), Salzburg, Austria
| | | | - Miriam Hufgard-Leitner
- Department of Internal Medicine III (Clinical Division of Endocrinology and Inherited Metabolic Disorders), Medical University of Vienna, Vienna, Austria
| | - Sabine Scholl-Bürgi
- Department of Pediatrics I (Inherited Metabolic Disorders), Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Daniela Karall
- Department of Pediatrics I (Inherited Metabolic Disorders), Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| |
Collapse
|
14
|
Abstract
Fatty acid oxidation disorders (FAOD) are a group of rare, autosomal recessive, metabolic disorders caused by variants of the genes for the enzymes and proteins involved in the transport and metabolism of fatty acids in the mitochondria. Those affected by FAOD are unable to convert fatty acids into tricarboxylic acid cycle intermediates such as acetyl-coenzyme A, resulting in decreased adenosine triphosphate and glucose for use as energy in a variety of high-energy-requiring organ systems. Signs and symptoms may manifest in infants but often also appear in adolescents or adults during times of increased metabolic demand, such as fasting, physiologic stress, and prolonged exercise. Patients with FAOD present with a highly heterogeneous clinical spectrum. The most common clinical presentations include hypoketotic hypoglycemia, liver dysfunction, cardiomyopathy, rhabdomyolysis, and skeletal myopathy, as well as peripheral neuropathy and retinopathy in some subtypes. Despite efforts to detect FAOD through newborn screening and manage patients early, symptom onset can be sudden and serious, even resulting in death. Therefore, it is critical to identify quickly and accurately the key signs and symptoms of patients with FAOD to manage metabolic decompensations and prevent serious comorbidities.
Collapse
Affiliation(s)
| | - Erin MacLeod
- Children's National Hospital, Washington, DC, USA
| | | | - Bryan Hainline
- Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
15
|
Gaston G, Gangoiti JA, Winn S, Chan B, Barshop BA, Harding CO, Gillingham MB. Cardiac tissue citric acid cycle intermediates in exercised very long-chain acyl-CoA dehydrogenase-deficient mice fed triheptanoin or medium-chain triglyceride. J Inherit Metab Dis 2020; 43:1232-1242. [PMID: 33448436 DOI: 10.1002/jimd.12284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 11/11/2022]
Abstract
Anaplerotic odd-chain fatty acid supplementation has been suggested as an approach to replenish citric acid cycle intermediate (CACi) pools and facilitate adenosine triphosphate (ATP) production in subjects with long-chain fatty acid oxidation disorders, but the evidence that cellular CACi depletion exists and that repletion occurs following anaplerotic substrate supplementation is limited. We exercised very long-chain acyl-CoA dehydrogenase-deficient (VLCAD-/-) and wild-type (WT) mice to exhaustion and collected cardiac tissue for measurement of CACi by targeted metabolomics. In a second experimental group, VLCAD-/- and WT mice that had been fed chow prepared with either medium-chain triglyceride (MCT) oil or triheptanoin for 4 weeks were exercised for 60 minutes. VLCAD-/- mice exhibited lower succinate in cardiac muscle at exhaustion than WT mice suggesting lower CACi in VLCAD-/- with prolonged exercise. In mice fed either MCT or triheptanoin, succinate and malate were greater in VLCAD-/- mice fed triheptanoin compared to VLCAD-/- animals fed MCT but lower than WT mice fed triheptanoin. Long-chain odd acylcarnitines such as C19 were elevated in VLCAD-/- and WT mice fed triheptanoin suggesting some elongation of the heptanoate, but it is unknown what proportion of heptanoate was oxidized vs elongated. Prolonged exercise was associated with decreased cardiac muscle succinate in VLCAD-/- mice in comparison to WT mice. VLCAD-/- fed triheptanoin had increased succinate compared to VLCAD-/- mice fed MCT but lower than WT mice fed triheptanoin. Cardiac CACi were higher following dietary ingestion of an anaplerotic substrate, triheptanoin, in comparison to MCT.
Collapse
Affiliation(s)
- Garen Gaston
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, USA
| | - Jon A Gangoiti
- Department of Pediatrics, Genetics Division, Biochemical Genetics Program, University of California San Diego, La Jolla, California, USA
| | - Shelley Winn
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, USA
| | - Benjamin Chan
- Biostatistics and Design Program, School of Public Health, Oregon Health & Science University, Portland, Oregon, USA
| | - Bruce A Barshop
- Department of Pediatrics, Genetics Division, Biochemical Genetics Program, University of California San Diego, La Jolla, California, USA
| | - Cary O Harding
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, USA
| | - Melanie B Gillingham
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
16
|
Schizophrenic Psychosis Symptoms in a Background of Mild-To-Moderate Carnitine Palmitoyltransferase II Deficiency: A Case Report. REPORTS 2020. [DOI: 10.3390/reports3040031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Schizophrenia is a multifaceted mental illness characterized by cognitive and neurobehavioral abnormalities. Carnitine palmitoyltransferase II (CPT II) deficiency is a metabolic disorder resulting in impaired transport of long-chain fatty acids from the cytosol to the mitochondrial inner membrane, where fatty acid β-oxidation takes place. Here, we present an interesting clinical case of an adolescent male that presented with psychosis and a history of mild-to-moderate CPT II deficiency. To identify germline genetic variation that may contribute to the phenotypes observed, we performed whole-exome sequencing on DNA from the proband, unaffected fraternal twin, and biological parents. The proband was identified to be homozygous for the p.Val368Ile and heterozygous for the p.Met647Val variant in CPT2. Each of these variants are benign on their own; however, their combined effect is unclear. Further, variation was identified in the dopamine β-hydroxylase (DBH) gene (c.339+2T>C), which may contribute to decreased activity of DBH; however, based on the patient’s presentation, severe DBH deficiency is unlikely. In conclusion, the variants identified in this study do not clearly explain the observed patient phenotypes, indicating that the complex phenotypes are likely caused by an interplay of genetic and environmental factors that warrant further investigation.
Collapse
|
17
|
Wanders RJA, Visser G, Ferdinandusse S, Vaz FM, Houtkooper RH. Mitochondrial Fatty Acid Oxidation Disorders: Laboratory Diagnosis, Pathogenesis, and the Complicated Route to Treatment. J Lipid Atheroscler 2020; 9:313-333. [PMID: 33024728 PMCID: PMC7521971 DOI: 10.12997/jla.2020.9.3.313] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial fatty acid (FA) oxidation deficiencies represent a genetically heterogeneous group of diseases in humans caused by defects in mitochondrial FA beta-oxidation (mFAO). A general characteristic of all mFAO disorders is hypoketotic hypoglycemia resulting from the enhanced reliance on glucose oxidation and the inability to synthesize ketone bodies from FAs. Patients with a defect in the oxidation of long-chain FAs are at risk to develop cardiac and skeletal muscle abnormalities including cardiomyopathy and arrhythmias, which may progress into early death, as well as rhabdomyolysis and exercise intolerance. The diagnosis of mFAO-deficient patients has greatly been helped by revolutionary developments in the field of tandem mass spectrometry (MS) for the analysis of acylcarnitines in blood and/or urine of candidate patients. Indeed, acylcarnitines have turned out to be excellent biomarkers; not only do they provide information whether a certain patient is affected by a mFAO deficiency, but the acylcarnitine profile itself usually immediately points to which enzyme is likely deficient. Another important aspect of acylcarnitine analysis by tandem MS is that this technique allows high-throughput analysis, which explains why screening for mFAO deficiencies has now been introduced in many newborn screening programs worldwide. In this review, we will describe the current state of knowledge about mFAO deficiencies, with particular emphasis on recent developments in the area of pathophysiology and treatment.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.,Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Gepke Visser
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.,Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Wehbe Z, Tucci S. Therapeutic potential of triheptanoin in metabolic and neurodegenerative diseases. J Inherit Metab Dis 2020; 43:385-391. [PMID: 31778232 DOI: 10.1002/jimd.12199] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 12/15/2022]
Abstract
In the past 15 years the potential of triheptanoin for the treatment of several human diseases in the area of clinical nutrition has grown considerably. Use of this triglyceride of the odd-chain fatty acid heptanoate has been proposed and applied for the treatment of several conditions in which the energy supply from citric acid cycle intermediates or fatty acid degradation are impaired. Neurological diseases due to disturbed glucose metabolism or metabolic diseases associated with impaired β-oxidation of long chain fatty acid may especially take advantage of alternative substrate sources offered by the secondary metabolites of triheptanoin. Epilepsy due to deficiency of the GLUT1 transporter, as well as diseases associated with dysregulation of neuronal signalling, have been treated with triheptanoin supplementation, and very recently the advantages of this oil in long-chain fatty acid oxidation disorders have been reported. The present review summarises the published literature on the metabolism of triheptanoin including clinical reports related to the use of triheptanoin.
Collapse
Affiliation(s)
- Zeinab Wehbe
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics and Adolescent Medicine, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sara Tucci
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics and Adolescent Medicine, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| |
Collapse
|
19
|
Joshi PR, Zierz S. Muscle Carnitine Palmitoyltransferase II (CPT II) Deficiency: A Conceptual Approach. Molecules 2020; 25:molecules25081784. [PMID: 32295037 PMCID: PMC7221885 DOI: 10.3390/molecules25081784] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/08/2020] [Accepted: 04/11/2020] [Indexed: 11/16/2022] Open
Abstract
Carnitine palmitoyltransferase (CPT) catalyzes the transfer of long- and medium-chain fatty acids from cytoplasm into mitochondria, where oxidation of fatty acids takes place. Deficiency of CPT enzyme is associated with rare diseases of fatty acid metabolism. CPT is present in two subforms: CPT I at the outer mitochondrial membrane and carnitine palmitoyltransferase II (CPT II) inside the mitochondria. Deficiency of CPT II results in the most common inherited disorder of long-chain fatty acid oxidation affecting skeletal muscle. There is a lethal neonatal form, a severe infantile hepato-cardio-muscular form, and a rather mild myopathic form characterized by exercise-induced myalgia, weakness, and myoglobinuria. Total CPT activity (CPT I + CPT II) in muscles of CPT II-deficient patients is generally normal. Nevertheless, in some patients, not detectable to reduced total activities are also reported. CPT II protein is also shown in normal concentration in patients with normal CPT enzymatic activity. However, residual CPT II shows abnormal inhibition sensitivity towards malonyl-CoA, Triton X-100 and fatty acid metabolites in patients. Genetic studies have identified a common p.Ser113Leu mutation in the muscle form along with around 100 different rare mutations. The biochemical consequences of these mutations have been controversial. Hypotheses include lack of enzymatically active protein, partial enzyme deficiency and abnormally regulated enzyme. The recombinant enzyme experiments that we recently conducted have shown that CPT II enzyme is extremely thermoliable and is abnormally inhibited by different emulsifiers and detergents such as malonyl-CoA, palmitoyl-CoA, palmitoylcarnitine, Tween 20 and Triton X-100. Here, we present a conceptual overview on CPT II deficiency based on our own findings and on results from other studies addressing clinical, biochemical, histological, immunohistological and genetic aspects, as well as recent advancements in diagnosis and therapeutic strategies in this disorder.
Collapse
|
20
|
Abstract
A 34-year-old man presents with recurrent episodes of acute reversible muscle weakness, soreness, pain, cramps and myoglobinuria with elevated creatine kinase. Symptoms were triggered by fasting, sustained long duration exercise and viral infection. A metabolic myopathy was suspected. Genetic testing showed a homozygous pathogenic variant in CPT2 gene resulting in deficiency of Carnitine Pamitoyl transferase II, an enzyme in the carnitine cycle. The cycle plays a vital role in transport of long chain hydrophobic fatty acids from the cytosol into the mitochondrial matrix for the production of energy via β-oxidation. Carnitine Pamitoyl transferase II deficiency is the most common inherited disorder of lipid metabolism affecting the skeletal muscle of adults. It is also the most frequent cause of hereditary myoglobinuria across all ages. Our case presents an analysis of important clinical features of carbohydrate and lipid metabolism disorders. It highlights how thermolability of the mutant enzyme, rather than its actual deficiency, explains triggering of muscle symptoms by prolonged exercise, infections, febrile episodes, or exposure to cold.
Collapse
Affiliation(s)
- Saurabh G Shukla
- Neuromuscular Division, Department of Neurology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Ashok Verma
- Neuromuscular Division, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
21
|
Madsen KL, Laforêt P, Buch AE, Stemmerik MG, Ottolenghi C, Hatem SN, Raaschou-Pedersen DT, Poulsen NS, Atencio M, Luton MP, Ceccaldi A, Haller RG, Quinlivan R, Mochel F, Vissing J. No effect of triheptanoin on exercise performance in McArdle disease. Ann Clin Transl Neurol 2019; 6:1949-1960. [PMID: 31520525 PMCID: PMC6801166 DOI: 10.1002/acn3.50863] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/21/2019] [Accepted: 06/22/2019] [Indexed: 12/25/2022] Open
Abstract
Objective To study if treatment with triheptanoin, a 7‐carbon triglyceride, improves exercise tolerance in patients with McArdle disease. McArdle patients have a complete block in glycogenolysis and glycogen‐dependent expansion of tricarboxylic acid cycle (TCA), which may restrict fat oxidation. We hypothesized that triheptanoin metabolism generates substrates for the TCA, which potentially boosts fat oxidation and improves exercise tolerance in McArdle disease. Methods Double‐blind, placebo‐controlled, crossover study in patients with McArdle disease completing two treatment periods of 14 days each with a triheptanoin or placebo diet (1 g/kg/day). Primary outcome was change in mean heart rate during 20 min submaximal exercise on a cycle ergometer. Secondary outcomes were change in peak workload and oxygen uptake along with changes in blood metabolites and respiratory quotients. Results Nineteen of 22 patients completed the trial. Malate levels rose on triheptanoin treatment versus placebo (8.0 ± SD2.3 vs. 5.5 ± SD1.8 µmol/L, P < 0.001), but dropped from rest to exercise (P < 0.001). There was no difference in exercise heart rates between triheptanoin (120 ± SD16 bpm) and placebo (121 ± SD16 bpm) treatments. Compared with placebo, triheptanoin did not change the submaximal respiratory quotient (0.82 ± SD0.05 vs. 0.84 ± SD0.03), peak workload (105 ± SD38 vs. 102 ± SD31 Watts), or peak oxygen uptake (1938 ± SD499 vs. 1977 ± SD380 mL/min). Interpretation Despite increased resting plasma malate with triheptanoin, the increase was insufficient to generate a normal TCA turnover during exercise and the treatment has no effect on exercise capacity or oxidative metabolism in patients with McArdle disease.
Collapse
Affiliation(s)
- Karen L Madsen
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Pascal Laforêt
- Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, Service de Neurologie, Hôpital Raymond-Poincaré, AP-HP, Garches, France
| | - Astrid E Buch
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Mads G Stemmerik
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Chris Ottolenghi
- Metabolomics Unit, Service des Explorations fonctionnelles, Necker Hospital and Descartes University of Paris, AP-HP, Paris, France
| | - Stéphane N Hatem
- Institute of Cardiometabolism and Nutrition, La Pitié-Salpêtrière Hospital, AP-HP, Paris, France.,Cardiology Institute, La Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Daniel T Raaschou-Pedersen
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Nanna S Poulsen
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Maria Atencio
- Inserm U 1127, CNRS UMR 7225, ICM, F-75013, Paris, France
| | | | - Alexandre Ceccaldi
- Institute of Cardiometabolism and Nutrition, La Pitié-Salpêtrière Hospital, AP-HP, Paris, France.,Cardiology Institute, La Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Ronald G Haller
- Neuromuscular Center, Institute for Exercise and Environmental Medicine of Texas Health Presbyterian Hospital, Dallas, Texas.,Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center Dallas, Dallas, Texas
| | - Ros Quinlivan
- MRC Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, Queen Square, London, England
| | - Fanny Mochel
- Inserm U 1127, CNRS UMR 7225, ICM, F-75013, Paris, France.,Sorbonne Université, UPMC-Paris 6, UMR S 1127, Paris, France.,Department of Genetics and Reference Center for Adult Neurometabolic diseases, La Pitié-Salpêtrière University Hospital, APHP, Paris, France
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Abstract
Glucose is the long-established, obligatory fuel for brain that fulfills many critical functions, including ATP production, oxidative stress management, and synthesis of neurotransmitters, neuromodulators, and structural components. Neuronal glucose oxidation exceeds that in astrocytes, but both rates increase in direct proportion to excitatory neurotransmission; signaling and metabolism are closely coupled at the local level. Exact details of neuron-astrocyte glutamate-glutamine cycling remain to be established, and the specific roles of glucose and lactate in the cellular energetics of these processes are debated. Glycolysis is preferentially upregulated during brain activation even though oxygen availability is sufficient (aerobic glycolysis). Three major pathways, glycolysis, pentose phosphate shunt, and glycogen turnover, contribute to utilization of glucose in excess of oxygen, and adrenergic regulation of aerobic glycolysis draws attention to astrocytic metabolism, particularly glycogen turnover, which has a high impact on the oxygen-carbohydrate mismatch. Aerobic glycolysis is proposed to be predominant in young children and specific brain regions, but re-evaluation of data is necessary. Shuttling of glucose- and glycogen-derived lactate from astrocytes to neurons during activation, neurotransmission, and memory consolidation are controversial topics for which alternative mechanisms are proposed. Nutritional therapy and vagus nerve stimulation are translational bridges from metabolism to clinical treatment of diverse brain disorders.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences , Little Rock, Arkansas ; and Department of Cell Biology and Physiology, University of New Mexico , Albuquerque, New Mexico
| |
Collapse
|
23
|
Vockley J, Burton B, Berry GT, Longo N, Phillips J, Sanchez-Valle A, Tanpaiboon P, Grunewald S, Murphy E, Bowden A, Chen W, Chen CY, Cataldo J, Marsden D, Kakkis E. Results from a 78-week, single-arm, open-label phase 2 study to evaluate UX007 in pediatric and adult patients with severe long-chain fatty acid oxidation disorders (LC-FAOD). J Inherit Metab Dis 2019; 42:169-177. [PMID: 30740733 PMCID: PMC6348052 DOI: 10.1002/jimd.12038] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Long-chain fatty acid oxidation disorders (LC-FAOD) are rare disorders characterized by acute crises of energy metabolism and severe energy deficiency that may present with cardiomyopathy, hypoglycemia, and/or rhabdomyolysis, which can lead to frequent hospitalizations and early death. An open-label Phase 2 study evaluated the efficacy of UX007, an investigational odd-carbon medium-chain triglyceride, in 29 subjects with severe LC-FAOD. UX007 was administered over 78 weeks at a target dose of 25-35% total daily caloric intake (mean 27.5%). The frequency and duration of major clinical events (hospitalizations, emergency room visits, and emergency home interventions due to rhabdomyolysis, hypoglycemia, and cardiomyopathy) occurring during 78 weeks of UX007 treatment was compared with the frequency and duration of events captured retrospectively from medical records for 78 weeks before UX007 initiation. The mean annualized event rates decreased from 1.69 to 0.88 events/year following UX007 initiation (p = 0.021; 48.1% reduction). The mean annualized duration rate decreased from 5.96 to 2.96 days/year (p = 0.028; 50.3% reduction). Hospitalizations due to rhabdomyolysis, the most common event, decreased from 1.03 to 0.63 events/year (p = 0.104; 38.7% reduction). Initiation of UX007 eliminated hypoglycemia events leading to hospitalization (from 11 pre-UX007 hospitalizations, 0.30 events/year vs. 0; p = 0.067) and intensive care unit (ICU) care (from 2 pre-UX007 ICU admissions, 0.05 events/year vs. 0; p = 0.161) and reduced cardiomyopathy events (3 events vs. 1 event; 0.07 to 0.02 events/year; 69.7% decrease). The majority of treatment-related adverse events (AEs) were mild to moderate gastrointestinal symptoms, including diarrhea, vomiting, and abdominal or gastrointestinal pain, which can be managed with smaller, frequent doses mixed with food.
Collapse
Affiliation(s)
- Jerry Vockley
- University of Pittsburgh School of Medicine and Graduate School of Public Health, Pittsburgh, PA, USA
| | - Barbara Burton
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
| | | | | | - John Phillips
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | - Elaine Murphy
- National Hospital for Neurology and Neurosurgery, London, UK
| | | | | | | | | | | | - Emil Kakkis
- Ultragenyx Pharmaceutical Inc., Novato, CA, USA
| |
Collapse
|
24
|
Schiffmann R, Wallace ME, Rinaldi D, Ledoux I, Luton MP, Coleman S, Akman HO, Martin K, Hogrel JY, Blankenship D, Turner J, Mochel F. A double-blind, placebo-controlled trial of triheptanoin in adult polyglucosan body disease and open-label, long-term outcome. J Inherit Metab Dis 2018; 41:877-883. [PMID: 29110179 DOI: 10.1007/s10545-017-0103-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 09/17/2017] [Accepted: 10/15/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Adult polyglucosan body disease (APBD) is a progressive neurometabolic disorder caused by a deficiency of glycogen branching enzyme. We tested the efficacy of triheptanoin as a therapy for patients with APBD based on the hypothesis that decreased glycogen degradation leads to brain energy deficit. METHODS AND RESULTS This was a two-site, randomized crossover trial of 23 patients (age 35-73 years; 63% men) who received triheptanoin or vegetable oil as placebo. The trial took place over 1 year and was followed by a 4-year open-label phase. Generalized linear mixed models were used to analyze this study. At baseline, using the 6-min walk test, patients could walk a mean of 389 ± 164 m (range 95-672; n = 19), highlighting the great clinical heterogeneity of our cohort. The overall mean difference between patients on triheptanoin versus placebo was 6 m; 95% confidence interval (CI) -11 to 22; p = 0.50. Motion capture gait analysis, gait quality, and stair climbing showed no consistent direction of change. All secondary endpoints were statistically nonsignificant after false discovery rate adjustment. Triheptanoin was safe and generally well tolerated. During the open-label phase of the study, the most affected patients at baseline kept deteriorating while mildly disabled patients remained notably stable up to 4 years. CONCLUSIONS We cannot conclude that triheptanoin was effective in the treatment of APBD over a 6-month period, but we found it had a good safety profile. This study also emphasizes the difficulty of conducting trials in very rare diseases presenting with a wide clinical heterogeneity. ClinicalTrials.gov Identifier: NCT00947960.
Collapse
Affiliation(s)
- Raphael Schiffmann
- Baylor Scott & White Research Institute, Dallas, TX, USA.
- Institute of Metabolic Disease, 3812 Elm Street, Dallas, TX, 75226, USA.
| | - Mary E Wallace
- Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Daisy Rinaldi
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Brain and Spine Institute, Paris, France
| | - Isabelle Ledoux
- Institute of Myology, Neuromuscular Physiology and Evaluation Lab, F-75013, Paris, France
| | - Marie-Pierre Luton
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Brain and Spine Institute, Paris, France
| | - Scott Coleman
- Department of Orthopedics, Baylor University Medical Center, Dallas, TX, USA
| | - H Orhan Akman
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Karine Martin
- Clinical Research Unit, AP-HP, Pitié-Salpêtrière University Hospital, Paris, France
| | - Jean-Yves Hogrel
- Institute of Myology, Neuromuscular Physiology and Evaluation Lab, F-75013, Paris, France
| | | | - Jacob Turner
- Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Fanny Mochel
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Brain and Spine Institute, Paris, France
- Reference Center for Neurometabolic Diseases, Pitié-Salpêtrière University Hospital and Neurometabolic Research Group, University Pierre and Marie Curie, Paris, France
- Department of Genetics, AP-HP, Pitié-Salpêtrière University Hospital, Paris, France
| |
Collapse
|
25
|
McDonald T, Puchowicz M, Borges K. Impairments in Oxidative Glucose Metabolism in Epilepsy and Metabolic Treatments Thereof. Front Cell Neurosci 2018; 12:274. [PMID: 30233320 PMCID: PMC6127311 DOI: 10.3389/fncel.2018.00274] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/06/2018] [Indexed: 12/19/2022] Open
Abstract
There is mounting evidence that oxidative glucose metabolism is impaired in epilepsy and recent work has further characterized the metabolic mechanisms involved. In healthy people eating a traditional diet, including carbohydrates, fats and protein, the major energy substrate in brain is glucose. Cytosolic glucose metabolism generates small amounts of energy, but oxidative glucose metabolism in the mitochondria generates most ATP, in addition to biosynthetic precursors in cells. Energy is crucial for the brain to signal "normally," while loss of energy can contribute to seizure generation by destabilizing membrane potentials and signaling in the chronic epileptic brain. Here we summarize the known biochemical mechanisms that contribute to the disturbance in oxidative glucose metabolism in epilepsy, including decreases in glucose transport, reduced activity of particular steps in the oxidative metabolism of glucose such as pyruvate dehydrogenase activity, and increased anaplerotic need. This knowledge justifies the use of alternative brain fuels as sources of energy, such as ketones, TCA cycle intermediates and precursors as well as even medium chain fatty acids and triheptanoin.
Collapse
Affiliation(s)
- Tanya McDonald
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Michelle Puchowicz
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Karin Borges
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Metabolic myopathies are genetic disorders that impair intermediary metabolism in skeletal muscle. Impairments in glycolysis/glycogenolysis (glycogen-storage disease), fatty acid transport and oxidation (fatty acid oxidation defects), and the mitochondrial respiratory chain (mitochondrial myopathies) represent the majority of known defects. The purpose of this review is to develop a diagnostic and treatment algorithm for the metabolic myopathies. RECENT FINDINGS The metabolic myopathies can present in the neonatal and infant period as part of more systemic involvement with hypotonia, hypoglycemia, and encephalopathy; however, most cases present in childhood or in adulthood with exercise intolerance (often with rhabdomyolysis) and weakness. The glycogen-storage diseases present during brief bouts of high-intensity exercise, whereas fatty acid oxidation defects and mitochondrial myopathies present during a long-duration/low-intensity endurance-type activity or during fasting or another metabolically stressful event (eg, surgery, fever). The clinical examination is often normal between acute events, and evaluation involves exercise testing, blood testing (creatine kinase, acylcarnitine profile, lactate, amino acids), urine organic acids (ketones, dicarboxylic acids, 3-methylglutaconic acid), muscle biopsy (histology, ultrastructure, enzyme testing), MRI/spectroscopy, and targeted or untargeted genetic testing. SUMMARY Accurate and early identification of metabolic myopathies can lead to therapeutic interventions with lifestyle and nutritional modification, cofactor treatment, and rapid treatment of rhabdomyolysis.
Collapse
|
27
|
Phowthongkum P, Ittiwut C, Shotelersuk V. Severe Hyperammonemic Encephalopathy Requiring Dialysis Aggravated by Prolonged Fasting and Intermittent High Fat Load in a Ramadan Fasting Month in a Patient with CPTII Homozygous Mutation. JIMD Rep 2017; 41:11-16. [PMID: 29159461 DOI: 10.1007/8904_2017_74] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/07/2017] [Accepted: 11/02/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Carnitine palmitoyltransferase II (CPTII) deficiency is a mitochondrial fatty acid oxidation disorder that can present antenatally as congenital brain malformations, or postnatally with lethal neonatal, severe infantile, or the most common adult myopathic forms. No case of severe hyperammonemia without liver dysfunction has been reported. CASE PRESENTATION We described a 23-year-old man who presented to the emergency department with seizures and was found to have markedly elevation of serum ammonia. Continuous renal replacement therapy was initiated with successfully decreased ammonia to a safety level. He had a prolonged history of epilepsies and encephalopathic attacks that was associated with high ammonia level. Molecular diagnosis revealed a homozygous mutation in CPTII. The plasma acylcarnitine profile was consistent with the diagnosis. Failure to produce acetyl-CoA, the precursor of urea cycle from fatty acid in prolonged fasting state in Ramadan month, worsening mitochondrial functions from circulating long chain fatty acid and valproate toxicities were believed to contribute to this critical metabolic decompensation. CONCLUSION Fatty acid oxidation disorders should be considered in the differential diagnosis of hyperammonemia even without liver dysfunction. To our knowledge, this is the first case of CPTII deficiency presented with severe hyperammonemic encephalopathy required dialysis after prolonged religious related fasting.
Collapse
Affiliation(s)
- P Phowthongkum
- Division of Medical Genetics and Genomics, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand. .,Medical Genetics Center, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand.
| | - C Ittiwut
- Center of Excellence for Medical Genetics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - V Shotelersuk
- Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
28
|
Gillingham MB, Heitner SB, Martin J, Rose S, Goldstein A, El-Gharbawy AH, Deward S, Lasarev MR, Pollaro J, DeLany JP, Burchill LJ, Goodpaster B, Shoemaker J, Matern D, Harding CO, Vockley J. Triheptanoin versus trioctanoin for long-chain fatty acid oxidation disorders: a double blinded, randomized controlled trial. J Inherit Metab Dis 2017; 40:831-843. [PMID: 28871440 PMCID: PMC6545116 DOI: 10.1007/s10545-017-0085-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND Observational reports suggest that supplementation that increases citric acid cycle intermediates via anaplerosis may have therapeutic advantages over traditional medium-chain triglyceride (MCT) treatment of long-chain fatty acid oxidation disorders (LC-FAODs) but controlled trials have not been reported. The goal of our study was to compare the effects of triheptanoin (C7), an anaplerotic seven-carbon fatty acid triglyceride, to trioctanoin (C8), an eight-carbon fatty acid triglyceride, in patients with LC-FAODs. METHODS A double blinded, randomized controlled trial of 32 subjects with LC-FAODs (carnitine palmitoyltransferase-2, very long-chain acylCoA dehydrogenase, trifunctional protein or long-chain 3-hydroxy acylCoA dehydrogenase deficiencies) who were randomly assigned a diet containing 20% of their total daily energy from either C7 or C8 for 4 months was conducted. Primary outcomes included changes in total energy expenditure (TEE), cardiac function by echocardiogram, exercise tolerance, and phosphocreatine recovery following acute exercise. Secondary outcomes included body composition, blood biomarkers, and adverse events, including incidence of rhabdomyolysis. RESULTS Patients in the C7 group increased left ventricular (LV) ejection fraction by 7.4% (p = 0.046) while experiencing a 20% (p = 0.041) decrease in LV wall mass on their resting echocardiogram. They also required a lower heart rate for the same amount of work during a moderate-intensity exercise stress test when compared to patients taking C8. There was no difference in TEE, phosphocreatine recovery, body composition, incidence of rhabdomyolysis, or any secondary outcome measures between the groups. CONCLUSIONS C7 improved LV ejection fraction and reduced LV mass at rest, as well as lowering heart rate during exercise among patients with LC-FAODs. CLINICAL TRIAL REGISTRATION Clinicaltrials.gov NCT01379625.
Collapse
Affiliation(s)
- Melanie B Gillingham
- Department of Molecular and Medical Genetics, Graduate Programs in Human Nutrition, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| | - Stephen B Heitner
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Julie Martin
- Department of Molecular and Medical Genetics, Graduate Programs in Human Nutrition, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Sarah Rose
- Department of Molecular and Medical Genetics, Graduate Programs in Human Nutrition, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
- PRA Health Sciences, Raleigh, NC, USA
| | - Amy Goldstein
- Neurogenetics and Metabolism, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | - Areeg Hassan El-Gharbawy
- Division of Medical Genetics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Stephanie Deward
- Division of Medical Genetics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
- GeneDx, Gaithersburg, MD, USA
| | - Michael R Lasarev
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, Portland, OR, USA
| | - Jim Pollaro
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| | - James P DeLany
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Luke J Burchill
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Bret Goodpaster
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- The Florida Hospital Translational Research Institute, and the Sanford Burnham Institute, Orlando, FL, USA
| | - James Shoemaker
- Department of Biochemistry and Molecular Biology, Saint Louis University, Saint Louis, MO, USA
| | - Dietrich Matern
- Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Cary O Harding
- Department of Molecular and Medical Genetics, Graduate Programs in Human Nutrition, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Jerry Vockley
- Division of Medical Genetics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
29
|
|
30
|
Mochel F. Triheptanoin for the treatment of brain energy deficit: A 14-year experience. J Neurosci Res 2017; 95:2236-2243. [PMID: 28688166 DOI: 10.1002/jnr.24111] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 06/10/2017] [Accepted: 06/15/2017] [Indexed: 12/11/2022]
Abstract
Triheptanoin is an odd-chain triglyceride with anaplerotic properties-that is, replenishing the pool of metabolic intermediates in the Krebs cycle. Unlike even-chain fatty acids metabolized to acetyl-CoA only, triheptanoin can indeed provide both acetyl-CoA and propionyl-CoA, two key carbon sources for the Krebs cycle. Triheptanoin was initially used in patients with long-chain fatty acid oxidation disorders. The first demonstration of the possible benefit of triheptanoin for brain energy deficit came from a patient with pyruvate carboxylase deficiency, a severe metabolic disease that affects anaplerosis in the brain. In an open-label study, triheptanoin was then shown to decrease nonepileptic paroxysmal manifestations by 90% in patients with glucose transporter 1 deficiency syndrome, a disease that affects glucose transport into the brain. 31 P magnetic resonance spectroscopy studies also indicated that triheptanoin was able to correct bioenergetics in the brain of patients with Huntington disease, a neurodegenerative disease associated with brain energy deficit. Altogether, these studies indicate that triheptanoin can be a treatment for brain energy deficit related to altered anaplerosis and/or glucose metabolism. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Fanny Mochel
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.,AP-HP, Pitié-Salpêtrière University Hospital, Department of Genetics, Paris, France.,University Pierre and Marie Curie, Neurometabolic Research Group, Paris, France
| |
Collapse
|
31
|
Vockley J, Burton B, Berry GT, Longo N, Phillips J, Sanchez-Valle A, Tanpaiboon P, Grunewald S, Murphy E, Humphrey R, Mayhew J, Bowden A, Zhang L, Cataldo J, Marsden DL, Kakkis E. UX007 for the treatment of long chain-fatty acid oxidation disorders: Safety and efficacy in children and adults following 24weeks of treatment. Mol Genet Metab 2017; 120:370-377. [PMID: 28189603 DOI: 10.1016/j.ymgme.2017.02.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/05/2017] [Accepted: 02/05/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Long-chain fatty acid oxidation disorders (LC-FAOD) lead to accumulation of high concentrations of potentially toxic fatty acid intermediates. Newborn screening and early intervention have reduced mortality, but most patients continue to experience frequent hospitalizations and significant morbidity despite treatment. The deficient energy state can cause serious liver, muscle, and heart disease, and may be associated with an increased risk of sudden death. Triheptanoin is a medium odd-chain fatty acid. Anaplerotic metabolites of triheptanoin have the potential to replace deficient tricarboxylic acid (TCA) cycle intermediates, resulting in net glucose production as a novel energy source for the treatment of LC-FAOD. STUDY DESIGN A single-arm, open-label, multicenter Phase 2 safety and efficacy study evaluated patients with severe LC-FAOD evidenced by ongoing related musculoskeletal, cardiac, and/or hepatic events despite treatment. After a four-week run-in on current regimen, investigational triheptanoin (UX007) was titrated to a target dose of 25-35% of total daily caloric intake. Patients were evaluated on several age/condition-eligible endpoints, including submaximal exercise tests to assess muscle function/endurance (12-minute walk test; 12MWT) and exercise tolerance (cycle ergometry), and health related quality of life (HR-QoL). Results through 24weeks of treatment are presented; total study duration is 78weeks. RESULTS Twenty-nine patients (0.8 to 58years) were enrolled; most qualified based on severe musculoskeletal disease. Twenty-five patients (86%) completed the 24-week treatment period. At Week 18, eligible patients (n=8) demonstrated a 28% increase (LS mean=+181.9 meters; p=0.087) from baseline (673.4meters) in 12MWT distance. At Week 24, eligible patients (n=7) showed a 60% increase in watts generated (LS mean=+409.3W; p=0.149) over baseline (744.6W) for the exercise tolerance test. Improvements in exercise tests were supported by significant improvements from baseline in the adult (n=5) self-reported SF-12v2 physical component summary score (LS mean=+8.9; p<0.001). No difference from baseline was seen in pediatric parent-reported (n=5) scores (SF-10) at Week 24. Eighteen patients (62%) had treatment-related adverse events, predominantly gastrointestinal (55%), mild-to-moderate in severity, similar to that seen with prior treatment with medium chain triglyceride (MCT) oil. One patient experienced a treatment-related serious adverse event of gastroenteritis. One patient discontinued from study due to diarrhea of moderate severity; the majority of patients (25/29; 86%) elected to continue treatment in the extension period. CONCLUSIONS In patients with severe LC-FAOD, UX007 interim study results demonstrated improved exercise endurance and tolerance, and were associated with positive changes in self-reported HR-QoL.
Collapse
Affiliation(s)
- J Vockley
- University of Pittsburgh, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA.
| | - B Burton
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - G T Berry
- Boston Children's Hospital, Boston, MA, USA
| | - N Longo
- University of Utah, Salt Lake City, UT, USA
| | - J Phillips
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - A Sanchez-Valle
- University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - P Tanpaiboon
- Children's National Medical Center, Washington, DC, USA
| | - S Grunewald
- Great Ormond Street Hospital, UCL Institute of Child Health, London, UK
| | - E Murphy
- Charles Dent Metabolic Unit, National Hospital for Neurology and Neurosurgery, London, UK
| | - R Humphrey
- University of Montana, Missoula, MT, USA
| | - J Mayhew
- Ultragenyx Pharmaceutical Inc., Novato, CA, USA
| | - A Bowden
- Ultragenyx Pharmaceutical Inc., Novato, CA, USA
| | - L Zhang
- Ultragenyx Pharmaceutical Inc., Novato, CA, USA
| | - J Cataldo
- Ultragenyx Pharmaceutical Inc., Novato, CA, USA
| | - D L Marsden
- Ultragenyx Pharmaceutical Inc., Novato, CA, USA
| | - E Kakkis
- Ultragenyx Pharmaceutical Inc., Novato, CA, USA
| |
Collapse
|
32
|
Gurney M, Cotter TG, Wittich CM. 28-Year-Old Woman With Malaise, Cough, Myalgia, and Dark Urine. Mayo Clin Proc 2017; 92:e1-e5. [PMID: 28062066 DOI: 10.1016/j.mayocp.2016.03.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/22/2016] [Accepted: 03/25/2016] [Indexed: 01/04/2023]
Affiliation(s)
- Mark Gurney
- Resident in Internal Medicine, Mayo School of Graduate Medical Education, Mayo Clinic, Rochester, MN
| | - Thomas G Cotter
- Resident in Internal Medicine, Mayo School of Graduate Medical Education, Mayo Clinic, Rochester, MN
| | - Christopher M Wittich
- Advisor to residents and Consultant in General Internal Medicine, Mayo Clinic, Rochester, MN.
| |
Collapse
|
33
|
Tucci S, Floegel U, Beermann F, Behringer S, Spiekerkoetter U. Triheptanoin: long-term effects in the very long-chain acyl-CoA dehydrogenase-deficient mouse. J Lipid Res 2016; 58:196-207. [PMID: 27884962 DOI: 10.1194/jlr.m072033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/07/2016] [Indexed: 12/31/2022] Open
Abstract
A rather new approach in the treatment of long-chain fatty acid oxidation disorders is represented by triheptanoin, a triglyceride with three medium-odd-chain heptanoic acids (C7), due to its anaplerotic potential. We here investigate the effects of a 1-year triheptanoin-based diet on the clinical phenotype of very long-chain-acyl-CoA-dehydrogenase-deficient (VLCAD-/-) mice. The cardiac function was assessed in VLCAD-/- mice by in vivo MRI. Metabolic adaptations were identified by the expression of genes regulating energy metabolism and anaplerotic processes using real-time PCR, and the results were correlated with the measurement of the glycolytic enzymes pyruvate dehydrogenase and pyruvate kinase. Finally, the intrahepatic lipid accumulation and oxidative stress in response to the long-term triheptanoin diet were assessed. Triheptanoin was not able to prevent the development of systolic dysfunction in VLCAD-/- mice despite an upregulation of cardiac glucose oxidation. Strikingly, the anaplerotic effects of triheptanoin were restricted to the liver. Despite this, the hepatic lipic content was increased upon triheptanoin supplementation. Our data demonstrate that the concept of anaplerosis does not apply to all tissues equally.
Collapse
Affiliation(s)
- Sara Tucci
- Department of General Pediatrics, Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Ulrich Floegel
- Department of Molecular Cardiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Frauke Beermann
- Department of General Pediatrics, Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Sidney Behringer
- Department of General Pediatrics, Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Ute Spiekerkoetter
- Department of General Pediatrics, Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg, Germany
| |
Collapse
|
34
|
Triheptanoin Protects Motor Neurons and Delays the Onset of Motor Symptoms in a Mouse Model of Amyotrophic Lateral Sclerosis. PLoS One 2016; 11:e0161816. [PMID: 27564703 PMCID: PMC5001695 DOI: 10.1371/journal.pone.0161816] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 08/14/2016] [Indexed: 12/12/2022] Open
Abstract
There is increasing evidence that energy metabolism is disturbed in Amyotrophic Lateral Sclerosis (ALS) patients and animal models. Treatment with triheptanoin, the triglyceride of heptanoate, is a promising approach to provide alternative fuel to improve oxidative phosphorylation and aid ATP generation. Heptanoate can be metabolized to propionyl-CoA, which after carboxylation can produce succinyl-CoA and thereby re-fill the tricarboxylic acid (TCA) cycle (anaplerosis). Here we tested the hypothesis that treatment with triheptanoin prevents motor neuron loss and delays the onset of disease symptoms in female mice overexpressing the mutant human SOD1G93A (hSOD1G93A) gene. When oral triheptanoin (35% of caloric content) was initiated at P35, motor neuron loss at 70 days of age was attenuated by 33%. In untreated hSOD1G93A mice, the loss of hind limb grip strength began at 16.7 weeks. Triheptanoin maintained hind limb grip strength for 2.8 weeks longer (p<0.01). Loss of balance on the rotarod and reduction of body weight were delayed by 13 and 11 days respectively (both p<0.01). Improved motor function occurred in parallel with alterations in the expression of genes associated with muscle metabolism. In gastrocnemius muscles, the mRNA levels of pyruvate, 2-oxoglutarate and succinate dehydrogenases and methyl-malonyl mutase were reduced by 24–33% in 10 week old hSOD1G93A mice when compared to wild-type mice, suggesting that TCA cycling in skeletal muscle may be slowed in this ALS mouse model at a stage when muscle strength is still normal. At 25 weeks of age, mRNA levels of succinate dehydrogenases, glutamic pyruvic transaminase 2 and the propionyl carboxylase β subunit were reduced by 69–84% in control, but not in triheptanoin treated hSOD1G93A animals. Taken together, our results suggest that triheptanoin slows motor neuron loss and the onset of motor symptoms in ALS mice by improving TCA cycling.
Collapse
|
35
|
Abstract
One large group of hereditary myopathies characterized by recurrent myoglobinuria, almost invariably triggered by exercise, comprises metabolic disorders of two main fuels, glycogen and long-chain fatty acids, or mitochondrial diseases of the respiratory chain. Differential diagnosis is required to distinguish the three conditions, although all cause a crisis of muscle energy. Muscle biopsy may be useful when performed well after the episode of rhabdomyolysis. Molecular genetics is increasingly the diagnostic test of choice to discover the underlying genetic basis.
Collapse
|
36
|
Lalani SR, Liu P, Rosenfeld JA, Watkin LB, Chiang T, Leduc MS, Zhu W, Ding Y, Pan S, Vetrini F, Miyake CY, Shinawi M, Gambin T, Eldomery MK, Akdemir ZHC, Emrick L, Wilnai Y, Schelley S, Koenig MK, Memon N, Farach LS, Coe BP, Azamian M, Hernandez P, Zapata G, Jhangiani SN, Muzny DM, Lotze T, Clark G, Wilfong A, Northrup H, Adesina A, Bacino CA, Scaglia F, Bonnen PE, Crosson J, Duis J, Maegawa GHB, Coman D, Inwood A, McGill J, Boerwinkle E, Graham B, Beaudet A, Eng CM, Hanchard NA, Xia F, Orange JS, Gibbs RA, Lupski JR, Yang Y. Recurrent Muscle Weakness with Rhabdomyolysis, Metabolic Crises, and Cardiac Arrhythmia Due to Bi-allelic TANGO2 Mutations. Am J Hum Genet 2016; 98:347-57. [PMID: 26805781 PMCID: PMC4746334 DOI: 10.1016/j.ajhg.2015.12.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 12/10/2015] [Indexed: 12/25/2022] Open
Abstract
The underlying genetic etiology of rhabdomyolysis remains elusive in a significant fraction of individuals presenting with recurrent metabolic crises and muscle weakness. Using exome sequencing, we identified bi-allelic mutations in TANGO2 encoding transport and Golgi organization 2 homolog (Drosophila) in 12 subjects with episodic rhabdomyolysis, hypoglycemia, hyperammonemia, and susceptibility to life-threatening cardiac tachyarrhythmias. A recurrent homozygous c.460G>A (p.Gly154Arg) mutation was found in four unrelated individuals of Hispanic/Latino origin, and a homozygous ∼34 kb deletion affecting exons 3-9 was observed in two families of European ancestry. One individual of mixed Hispanic/European descent was found to be compound heterozygous for c.460G>A (p.Gly154Arg) and the deletion of exons 3-9. Additionally, a homozygous exons 4-6 deletion was identified in a consanguineous Middle Eastern Arab family. No homozygotes have been reported for these changes in control databases. Fibroblasts derived from a subject with the recurrent c.460G>A (p.Gly154Arg) mutation showed evidence of increased endoplasmic reticulum stress and a reduction in Golgi volume density in comparison to control. Our results show that the c.460G>A (p.Gly154Arg) mutation and the exons 3-9 heterozygous deletion in TANGO2 are recurrent pathogenic alleles present in the Latino/Hispanic and European populations, respectively, causing considerable morbidity in the homozygotes in these populations.
Collapse
Affiliation(s)
- Seema R Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Miraca Genetics Laboratories, Houston, TX 77030, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Levi B Watkin
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital Center for Human Immuno-Biology, Houston, TX 77030, USA
| | - Theodore Chiang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Magalie S Leduc
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Miraca Genetics Laboratories, Houston, TX 77030, USA
| | - Wenmiao Zhu
- Baylor Miraca Genetics Laboratories, Houston, TX 77030, USA
| | - Yan Ding
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shujuan Pan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Christina Y Miyake
- Department of Pediatric Cardiology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Marwan Shinawi
- Division of Genetics and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tomasz Gambin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mohammad K Eldomery
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Lisa Emrick
- Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yael Wilnai
- Division of Medical Genetics, Stanford School of Medicine, Stanford, CA 94304, USA
| | - Susan Schelley
- Division of Medical Genetics, Stanford School of Medicine, Stanford, CA 94304, USA
| | - Mary Kay Koenig
- Division of Child & Adolescent Neurology, Department of Pediatrics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Nada Memon
- Division of Cardiology, DCH Regional Medical Center, Tuscaloosa, AL 35401, USA
| | - Laura S Farach
- Division of Medical Genetics, Department of Pediatrics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Bradley P Coe
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Mahshid Azamian
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Patricia Hernandez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gladys Zapata
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shalini N Jhangiani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Donna M Muzny
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Timothy Lotze
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gary Clark
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Angus Wilfong
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hope Northrup
- Division of Medical Genetics, Department of Pediatrics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Adekunle Adesina
- Department of Pathology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Carlos A Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Penelope E Bonnen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jane Crosson
- Division of Pediatric Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jessica Duis
- Mckusick-Nathans Inst. of Genetic Medicine & Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gustavo H B Maegawa
- Mckusick-Nathans Inst. of Genetic Medicine & Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pediatrics, Division of Genetics & Metabolism, University of Florida, Gainsville, FL 32610, USA
| | - David Coman
- Department of Metabolic Medicine, Lady Cilento Children's Hospital, South Brisbane, QLD 4101, Australia
| | - Anita Inwood
- Department of Metabolic Medicine, Lady Cilento Children's Hospital, South Brisbane, QLD 4101, Australia
| | - Jim McGill
- Department of Metabolic Medicine, Lady Cilento Children's Hospital, South Brisbane, QLD 4101, Australia
| | - Eric Boerwinkle
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Human Genetics Center, School of Public Health, University of Houston Health Science Center, Houston, TX 77030, USA
| | - Brett Graham
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Art Beaudet
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christine M Eng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Miraca Genetics Laboratories, Houston, TX 77030, USA
| | - Neil A Hanchard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fan Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Miraca Genetics Laboratories, Houston, TX 77030, USA
| | - Jordan S Orange
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital Center for Human Immuno-Biology, Houston, TX 77030, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - Yaping Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Miraca Genetics Laboratories, Houston, TX 77030, USA.
| |
Collapse
|
37
|
Shima A, Yasuno T, Yamada K, Yamaguchi M, Kohno R, Yamaguchi S, Kido H, Fukuda H. First Japanese Case of Carnitine Palmitoyltransferase II Deficiency with the Homozygous Point Mutation S113L. Intern Med 2016; 55:2659-61. [PMID: 27629963 DOI: 10.2169/internalmedicine.55.6288] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Carnitine palmitoyltransferase II (CPT II) deficiency is a rare inherited disorder related to recurrent episodes of rhabdomyolysis. The adult myopathic form of CPT II deficiency is relatively benign and difficult to diagnose. The point mutation S113L in CPT2 is very common in Caucasian patients, whereas F383Y is the most common mutation among Japanese patients. We herein present a case of CPT II deficiency in a Japanese patient homozygous for the missense mutation S113L. The patient showed a decreased frequency of rhabdomyolysis recurrence after the administration of a diet containing medium-chain triglyceride oil and supplementation with carnitine and bezafibrate.
Collapse
Affiliation(s)
- Atsushi Shima
- Department of Neurology, Saiseikai Noe Hospital, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
The odd-carbon medium-chain fatty triglyceride triheptanoin does not reduce hepatic steatosis. Clin Nutr 2015; 36:229-237. [PMID: 26778339 DOI: 10.1016/j.clnu.2015.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 10/18/2015] [Accepted: 11/06/2015] [Indexed: 11/23/2022]
Abstract
BACKGROUND & AIMS Non-alcoholic fatty-liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome. Previously, we showed that a high-protein diet minimized diet-induced development of fatty liver and even reversed pre-existing steatosis. A high-protein diet leads to amino-acid catabolism, which in turn causes anaplerosis of the tricarboxylic-acid (TCA) cycle. Therefore, we hypothesized that anaplerosis of the TCA cycle could be responsible for the high-protein diet-induced improvement of NAFLD by channeling amino acids into the TCA cycle. Next we considered that an efficient anaplerotic agent, the odd-carbon medium-chain triglyceride triheptanoin (TH), might have similar beneficial effects. METHODS C57BL/6J mice were fed low-fat (8en%) or high-fat (42en%) oleate-containing diets with or without 15en% TH for 3 weeks. RESULTS TH treatment enhanced the hepatic capacity for fatty-acid oxidation by a selective increase in hepatic Ppara, Acox, and Cd36 expression, and a decline in plasma acetyl-carnitines. It also induced pyruvate cycling through an increased hepatic PCK1 protein concentration and it increased thermogenesis reflected by an increased Ucp2 mRNA content. TH, however, did not reduce hepatic lipid content. CONCLUSION The comparison of the present effects of dietary triheptanoin with a previous study by our group on protein supplementation shows that the beneficial effects of the high-protein diet are not mimicked by TH. This argues against anaplerosis as the sole explanatory mechanism for the anti-steatotic effect of a high-protein diet.
Collapse
|
39
|
Roe CR, Brunengraber H. Anaplerotic treatment of long-chain fat oxidation disorders with triheptanoin: Review of 15 years Experience. Mol Genet Metab 2015; 116:260-8. [PMID: 26547562 PMCID: PMC4712637 DOI: 10.1016/j.ymgme.2015.10.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 10/20/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND The treatment of long-chain mitochondrial β-oxidation disorders (LC-FOD) with a low fat-high carbohydrate diet, a diet rich in medium-even-chain triglycerides (MCT), or a combination of both has been associated with high morbidity and mortality for decades. The pathological tableau appears to be caused by energy deficiency resulting from reduced availability of citric acid cycle (CAC) intermediates required for optimal oxidation of acetyl-CoA. This hypothesis was investigated by diet therapy with carnitine and anaplerotic triheptanoin (TH). METHODS Fifty-two documented LC-FOD patients were studied in this investigation (age range: birth to 51 years). Safety monitoring included serial quantitative measurements of routine blood chemistries, blood levels of carnitine and acylcarnitines, and urinary organic acids. RESULTS The average frequency of serious clinical complications were reduced from ~60% with conventional diet therapy to 10% with TH and carnitine treatment and mortality decreased from ~65% with conventional diet therapy to 3.8%. Carnitine supplementation was uncomplicated. CONCLUSION The energy deficiency in LC-FOD patients was corrected safely and more effectively with the triheptanoin diet and carnitine supplement than with conventional diet therapy. Safe intervention in neonates and infants will permit earlier intervention following pre-natal diagnosis or diagnosis by expanded newborn screening.
Collapse
Affiliation(s)
- Charles R Roe
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX 75390, USA; Investigations were performed at the Institute of Metabolic Disease, Baylor University Medical Center, Dallas, TX, USA.
| | - Henri Brunengraber
- Departments of Nutrition and Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
40
|
Houten SM, Violante S, Ventura FV, Wanders RJA. The Biochemistry and Physiology of Mitochondrial Fatty Acid β-Oxidation and Its Genetic Disorders. Annu Rev Physiol 2015; 78:23-44. [PMID: 26474213 DOI: 10.1146/annurev-physiol-021115-105045] [Citation(s) in RCA: 489] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mitochondrial fatty acid β-oxidation (FAO) is the major pathway for the degradation of fatty acids and is essential for maintaining energy homeostasis in the human body. Fatty acids are a crucial energy source in the postabsorptive and fasted states when glucose supply is limiting. But even when glucose is abundantly available, FAO is a main energy source for the heart, skeletal muscle, and kidney. A series of enzymes, transporters, and other facilitating proteins are involved in FAO. Recessively inherited defects are known for most of the genes encoding these proteins. The clinical presentation of these disorders may include hypoketotic hypoglycemia, (cardio)myopathy, arrhythmia, and rhabdomyolysis and illustrates the importance of FAO during fasting and in hepatic and (cardio)muscular function. In this review, we present the current state of knowledge on the biochemistry and physiological functions of FAO and discuss the pathophysiological processes associated with FAO disorders.
Collapse
Affiliation(s)
- Sander M Houten
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029; ,
| | - Sara Violante
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029; ,
| | - Fatima V Ventura
- Metabolism and Genetics Group, Research Institute for Medicines and Pharmaceutical Sciences, iMed.ULisboa, 1649-003 Lisboa, Portugal; .,Department of Biochemistry and Human Biology, Faculty of Pharmacy, University of Lisbon, 1649-003 Lisboa, Portugal
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, University of Amsterdam, 1100 DE Amsterdam, The Netherlands; .,Department of Pediatrics, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
41
|
Vockley J, Marsden D, McCracken E, DeWard S, Barone A, Hsu K, Kakkis E. Long-term major clinical outcomes in patients with long chain fatty acid oxidation disorders before and after transition to triheptanoin treatment--A retrospective chart review. Mol Genet Metab 2015; 116:53-60. [PMID: 26116311 PMCID: PMC4561603 DOI: 10.1016/j.ymgme.2015.06.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/16/2015] [Accepted: 06/16/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND Long chain fatty acid oxidation disorders (LC-FAODs) are caused by defects in the metabolic pathway that converts stored long-chain fatty acids into energy, leading to a deficiency in mitochondrial energy production during times of physiologic stress and fasting. Severe and potentially life threatening clinical manifestations include rhabdomyolysis, hypoglycemia, hypotonia/weakness, cardiomyopathy and sudden death. We present the largest cohort of patients to date treated with triheptanoin, a specialized medium odd chain (C7) triglyceride, as a novel energy source for the treatment of LC-FAOD. METHODS This was a retrospective, comprehensive medical record review study of data from 20 of a total 24 patients with LC-FAOD who were treated for up to 12.5 years with triheptanoin, as part of a compassionate use protocol. Clinical outcomes including hospitalization event rates, number of hospitalization days/year, and abnormal laboratory values were determined for the total period of the study before and after triheptanoin treatment, as well as for specified periods before and after initiation of triheptanoin treatment. Other events of interest were documented including rhabdomyolysis, hypoglycemia, and cardiomyopathy. RESULTS LC-FAOD in these 20 subjects was associated with 320 hospitalizations from birth to the end date of study. The mean hospitalization days/year decreased significantly by 67% during the period after triheptanoin initiation (n=15; 5.76 vs 17.55 vs; P=0.0242) and a trend toward a 35% lower hospitalization event rate was observed in the period after triheptanoin initiation compared with the before-treatment period (n=16 subjects >6 months of age; 1.26 vs 1.94; P=0.1126). The hypoglycemia event rate per year in 9 subjects with hypoglycemia problems declined significantly by 96% (0.04 vs 0.92; P=0.0091) and related hospitalization days/year were also significantly reduced (n=9; 0.18 vs 8.42; P=0.0257). The rhabdomyolysis hospital event rate in 11 affected subjects was similar before and after treatment but the number of hospitalization days/year trended lower in the period after triheptanoin initiation (n=9; 2.36 vs 5.94; P=0.1224) and peak CK levels trended toward a 68% decrease from 85,855 to 27,597 units in 7 subjects with reported peak CK values before and after treatment (P=0.1279). Triheptanoin was generally well tolerated. Gastrointestinal symptoms were the most commonly reported side effects. CONCLUSIONS This retrospective study represents the largest analysis reported to date of treatment of LC-FAOD with triheptanoin. The data suggest that triheptanoin improves the course of disease by decreasing the incidence and duration of major clinical manifestations and should be the focus of prospective investigations. Significant heterogeneity in the routine clinical care provided to subjects during the periods studied and the natural variation of clinical course of LC-FAODs with time emphasize the need of additional study of the use of triheptanoin.
Collapse
Affiliation(s)
- Jerry Vockley
- University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA; University of Pittsburgh, Graduate School of Public Health, Pittsburgh, PA, USA.
| | | | | | - Stephanie DeWard
- University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Amanda Barone
- University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Kristen Hsu
- Ultragenyx Pharmaceutical Inc., Novato, CA, USA
| | - Emil Kakkis
- Ultragenyx Pharmaceutical Inc., Novato, CA, USA
| |
Collapse
|
42
|
Karall D, Brunner-Krainz M, Kogelnig K, Konstantopoulou V, Maier EM, Möslinger D, Plecko B, Sperl W, Volkmar B, Scholl-Bürgi S. Clinical outcome, biochemical and therapeutic follow-up in 14 Austrian patients with Long-Chain 3-Hydroxy Acyl CoA Dehydrogenase Deficiency (LCHADD). Orphanet J Rare Dis 2015; 10:21. [PMID: 25888220 PMCID: PMC4407779 DOI: 10.1186/s13023-015-0236-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/29/2015] [Indexed: 12/31/2022] Open
Abstract
Background LCHADD is a long-fatty acid oxidation disorder with immediate symptoms and long-term complications. We evaluated data on clinical status, biochemical parameters, therapeutic regimens and outcome of Austrian LCHADD patients. Study design Clinical and outcome data including history, diagnosis, short- and long-term manifestations, growth, psychomotor development, hospitalizations, therapy of 14 Austrian patients with LCHADD were evaluated. Biochemically, we evaluated creatine kinase (CK) and acyl carnitine profiles. Results All LCHADD patients are homozygous for the common mutation. Three are siblings. Diagnosis was first established biochemically. Nine/14 (64%) were prematures, with IRDS occurring in six. In nine (64%), diagnosis was established through newborn screening, the remaining five (36%) were diagnosed clinically. Four pregnancies were complicated by HELLP syndrome, one by preeclampsia. In two, intrauterine growth retardation and placental insufficiency were reported. Five were diagnosed with hepatopathy at some point, seven with cardiomyopathy and eight with retinopathy, clinically relevant only in one patient. Polyneuropathy is only present in one. Three patients have a PEG, one is regularly fed via NG-tube. Growth is normal in all, as well as psychomotor development, except for two extremely premature girls. In 11 patients, 165 episodes with elevated creatine kinase concentrations were observed with 6-31 (median 14) per patient; three have shown no elevated CK concentrations. Median total carnitine on therapy was 19 μmol/l (range 11-61). For 14 patients, there have been 181 hospitalizations (median 9 per patient), comprising 1337 in-patient-days. All centres adhere to treatment with a fat-defined diet; patients have between 15% and 40% of their energy intake from fat (median 29%), out of which between 20% and 80% are medium-chain triglycerides (MCT) (median 62%). Four patients have been treated with heptanoate (C7). Conclusion Our data show LCHADD outcome can be favourable. Growth and psychomotor development is normal, except in two prematures. Frequency of CK measurements decreases with age, correlating with a decreasing number of hospitalizations. About 50% develop complications affecting different organ systems. There is no relevant difference between the patients treated in the respective centers. Concluding from single case reports, anaplerotic therapy with heptanoate should be further evaluated.
Collapse
Affiliation(s)
- Daniela Karall
- Medical University of Innsbruck, Clinic for Pediatrics, Inherited Metabolic Disorders, Anichstrasse 35, 6020, Innsbruck, Austria.
| | | | - Katharina Kogelnig
- Medical University of Innsbruck, Clinic for Pediatrics, Inherited Metabolic Disorders, Anichstrasse 35, 6020, Innsbruck, Austria.
| | | | - Esther M Maier
- Dr. von Hauner Children's Hospital, University of Munich, Munich, Germany.
| | | | | | | | | | - Sabine Scholl-Bürgi
- Medical University of Innsbruck, Clinic for Pediatrics, Inherited Metabolic Disorders, Anichstrasse 35, 6020, Innsbruck, Austria.
| |
Collapse
|
43
|
Pascual JM, Liu P, Mao D, Kelly DI, Hernandez A, Sheng M, Good LB, Ma Q, Marin-Valencia I, Zhang X, Park JY, Hynan LS, Stavinoha P, Roe CR, Lu H. Triheptanoin for glucose transporter type I deficiency (G1D): modulation of human ictogenesis, cerebral metabolic rate, and cognitive indices by a food supplement. JAMA Neurol 2015; 71:1255-65. [PMID: 25110966 DOI: 10.1001/jamaneurol.2014.1584] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Disorders of brain metabolism are multiform in their mechanisms and manifestations, many of which remain insufficiently understood and are thus similarly treated. Glucose transporter type I deficiency (G1D) is commonly associated with seizures and with electrographic spike-waves. The G1D syndrome has long been attributed to energy (ie, adenosine triphosphate synthetic) failure such as that consequent to tricarboxylic acid (TCA) cycle intermediate depletion. Indeed, glucose and other substrates generate TCAs via anaplerosis. However, TCAs are preserved in murine G1D, rendering energy-failure inferences premature and suggesting a different hypothesis, also grounded on our work, that consumption of alternate TCA precursors is stimulated and may be detrimental. Second, common ketogenic diets lead to a therapeutically counterintuitive reduction in blood glucose available to the G1D brain and prove ineffective in one-third of patients. OBJECTIVE To identify the most helpful outcomes for treatment evaluation and to uphold (rather than diminish) blood glucose concentration and stimulate the TCA cycle, including anaplerosis, in G1D using the medium-chain, food-grade triglyceride triheptanoin. DESIGN, SETTING, AND PARTICIPANTS Unsponsored, open-label cases series conducted in an academic setting. Fourteen children and adults with G1D who were not receiving a ketogenic diet were selected on a first-come, first-enrolled basis. INTERVENTION Supplementation of the regular diet with food-grade triheptanoin. MAIN OUTCOMES AND MEASURES First, we show that, regardless of electroencephalographic spike-waves, most seizures are rarely visible, such that perceptions by patients or others are inadequate for treatment evaluation. Thus, we used quantitative electroencephalographic, neuropsychological, blood analytical, and magnetic resonance imaging cerebral metabolic rate measurements. RESULTS One participant (7%) did not manifest spike-waves; however, spike-waves promptly decreased by 70% (P = .001) in the other participants after consumption of triheptanoin. In addition, the neuropsychological performance and cerebral metabolic rate increased in most patients. Eleven patients (78%) had no adverse effects after prolonged use of triheptanoin. Three patients (21%) experienced gastrointestinal symptoms, and 1 (7%) discontinued the use of triheptanoin. CONCLUSIONS AND RELEVANCE Triheptanoin can favorably influence cardinal aspects of neural function in G1D. In addition, our outcome measures constitute an important framework for the evaluation of therapies for encephalopathies associated with impaired intermediary metabolism.
Collapse
Affiliation(s)
- Juan M Pascual
- Rare Brain Disorders Program, Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas2Department of Physiology, The University of Texas Southwestern Medical Center, Dallas3Department of Pediatrics, The Un
| | - Peiying Liu
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas
| | - Deng Mao
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas
| | - Dorothy I Kelly
- Rare Brain Disorders Program, Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas
| | - Ana Hernandez
- Department of Psychology, Children's Medical Center Dallas, Dallas, Texas
| | - Min Sheng
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas
| | - Levi B Good
- Rare Brain Disorders Program, Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas
| | - Qian Ma
- Rare Brain Disorders Program, Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas
| | - Isaac Marin-Valencia
- Rare Brain Disorders Program, Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas3Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas
| | - Xuchen Zhang
- Rare Brain Disorders Program, Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas
| | - Jason Y Park
- Eugene McDermott Center for Human Growth and Development/Center for Human Genetics, The University of Texas Southwestern Medical Center, Dallas7Advanced Diagnostics Laboratory, Children's Medical Center, Dallas, Texas8Department of Pathology, The Universi
| | - Linda S Hynan
- Department of Clinical Sciences (Biostatistics), The University of Texas Southwestern Medical Center, Dallas10Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas
| | - Peter Stavinoha
- Department of Psychology, Children's Medical Center Dallas, Dallas, Texas10Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas
| | - Charles R Roe
- Rare Brain Disorders Program, Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas
| | - Hanzhang Lu
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas10Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
44
|
Adanyeguh IM, Rinaldi D, Henry PG, Caillet S, Valabregue R, Durr A, Mochel F. Triheptanoin improves brain energy metabolism in patients with Huntington disease. Neurology 2015; 84:490-5. [PMID: 25568297 DOI: 10.1212/wnl.0000000000001214] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Based on our previous work in Huntington disease (HD) showing improved energy metabolism in muscle by providing substrates to the Krebs cycle, we wished to obtain a proof-of-concept of the therapeutic benefit of triheptanoin using a functional biomarker of brain energy metabolism validated in HD. METHODS We performed an open-label study using (31)P brain magnetic resonance spectroscopy (MRS) to measure the levels of phosphocreatine (PCr) and inorganic phosphate (Pi) before (rest), during (activation), and after (recovery) a visual stimulus. We performed (31)P brain MRS in 10 patients at an early stage of HD and 13 controls. Patients with HD were then treated for 1 month with triheptanoin after which they returned for follow-up including (31)P brain MRS scan. RESULTS At baseline, we confirmed an increase in Pi/PCr ratio during brain activation in controls-reflecting increased adenosine triphosphate synthesis-followed by a return to baseline levels during recovery (p = 0.013). In patients with HD, we validated the existence of an abnormal brain energy profile as previously reported. After 1 month, this profile remained abnormal in patients with HD who did not receive treatment. Conversely, the MRS profile was improved in patients with HD treated with triheptanoin for 1 month with the restoration of an increased Pi/PCr ratio during visual stimulation (p = 0.005). CONCLUSION This study suggests that triheptanoin is able to correct the bioenergetic profile in the brain of patients with HD at an early stage of the disease. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that, for patients with HD, treatment with triheptanoin for 1 month restores an increased MRS Pi/PCr ratio during visual stimulation.
Collapse
Affiliation(s)
- Isaac Mawusi Adanyeguh
- From Inserm U 1127 (I.M.A., D.R., R.V., A.D., F.M.), CNRS UMR 7225, Sorbonne Universités, UPMC University Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France; Center for Magnetic Resonance Research (P.-G.H.), University of Minnesota, Minneapolis; Departments of Dietetics (S.C.) and Genetics (A.D., F.M.), AP-HP, Pitié-Salpêtrière University Hospital, Paris; and Center for NeuroImaging Research (R.V.), Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Daisy Rinaldi
- From Inserm U 1127 (I.M.A., D.R., R.V., A.D., F.M.), CNRS UMR 7225, Sorbonne Universités, UPMC University Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France; Center for Magnetic Resonance Research (P.-G.H.), University of Minnesota, Minneapolis; Departments of Dietetics (S.C.) and Genetics (A.D., F.M.), AP-HP, Pitié-Salpêtrière University Hospital, Paris; and Center for NeuroImaging Research (R.V.), Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Pierre-Gilles Henry
- From Inserm U 1127 (I.M.A., D.R., R.V., A.D., F.M.), CNRS UMR 7225, Sorbonne Universités, UPMC University Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France; Center for Magnetic Resonance Research (P.-G.H.), University of Minnesota, Minneapolis; Departments of Dietetics (S.C.) and Genetics (A.D., F.M.), AP-HP, Pitié-Salpêtrière University Hospital, Paris; and Center for NeuroImaging Research (R.V.), Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Samantha Caillet
- From Inserm U 1127 (I.M.A., D.R., R.V., A.D., F.M.), CNRS UMR 7225, Sorbonne Universités, UPMC University Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France; Center for Magnetic Resonance Research (P.-G.H.), University of Minnesota, Minneapolis; Departments of Dietetics (S.C.) and Genetics (A.D., F.M.), AP-HP, Pitié-Salpêtrière University Hospital, Paris; and Center for NeuroImaging Research (R.V.), Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Romain Valabregue
- From Inserm U 1127 (I.M.A., D.R., R.V., A.D., F.M.), CNRS UMR 7225, Sorbonne Universités, UPMC University Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France; Center for Magnetic Resonance Research (P.-G.H.), University of Minnesota, Minneapolis; Departments of Dietetics (S.C.) and Genetics (A.D., F.M.), AP-HP, Pitié-Salpêtrière University Hospital, Paris; and Center for NeuroImaging Research (R.V.), Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Alexandra Durr
- From Inserm U 1127 (I.M.A., D.R., R.V., A.D., F.M.), CNRS UMR 7225, Sorbonne Universités, UPMC University Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France; Center for Magnetic Resonance Research (P.-G.H.), University of Minnesota, Minneapolis; Departments of Dietetics (S.C.) and Genetics (A.D., F.M.), AP-HP, Pitié-Salpêtrière University Hospital, Paris; and Center for NeuroImaging Research (R.V.), Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Fanny Mochel
- From Inserm U 1127 (I.M.A., D.R., R.V., A.D., F.M.), CNRS UMR 7225, Sorbonne Universités, UPMC University Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France; Center for Magnetic Resonance Research (P.-G.H.), University of Minnesota, Minneapolis; Departments of Dietetics (S.C.) and Genetics (A.D., F.M.), AP-HP, Pitié-Salpêtrière University Hospital, Paris; and Center for NeuroImaging Research (R.V.), Institut du Cerveau et de la Moelle épinière, Paris, France.
| |
Collapse
|
45
|
Habarou F, Brassier A, Rio M, Chrétien D, Monnot S, Barbier V, Barouki R, Bonnefont JP, Boddaert N, Chadefaux-Vekemans B, Le Moyec L, Bastin J, Ottolenghi C, de Lonlay P. Pyruvate carboxylase deficiency: An underestimated cause of lactic acidosis. Mol Genet Metab Rep 2014. [PMID: 28649521 PMCID: PMC5471145 DOI: 10.1016/j.ymgmr.2014.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Pyruvate carboxylase (PC) is a biotin-containing mitochondrial enzyme that catalyzes the conversion of pyruvate to oxaloacetate, thereby being involved in gluconeogenesis and in energy production through replenishment of the tricarboxylic acid (TCA) cycle with oxaloacetate. PC deficiency is a very rare metabolic disorder. We report on a new patient affected by the moderate form (the American type A). Diagnosis was nearly fortuitous, resulting from the revision of an initial diagnosis of mitochondrial complex IV (C IV) defect. The patient presented with severe lactic acidosis and pronounced ketonuria, associated with lethargy at age 23 months. Intellectual disability was noted at this time. Amino acids in plasma and organic acids in urine did not show patterns of interest for the diagnostic work-up. In skin fibroblasts PC showed no detectable activity whereas biotinidase activity was normal. We had previously reported another patient with the severe form of PC deficiency and we show that she also had secondary C IV deficiency in fibroblasts. Different anaplerotic treatments in vivo and in vitro were tested using fibroblasts of both patients with 2 different types of PC deficiency, type A (patient 1) and type B (patient 2). Neither clinical nor biological effects in vivo and in vitro were observed using citrate, aspartate, oxoglutarate and bezafibrate. In conclusion, this case report suggests that the moderate form of PC deficiency may be underdiagnosed and illustrates the challenges raised by energetic disorders in terms of diagnostic work-up and therapeutical strategy even in a moderate form.
Collapse
Affiliation(s)
- F Habarou
- Centre de Référence des Maladies Héréditaires du Métabolisme, Hôpital Necker, APHP, Paris, France.,INSERM U1124, Université Paris Descartes, Paris, France.,Service de Biochimie Métabolomique et Protéomique, Hôpital Necker, APHP, Paris, France
| | - A Brassier
- Centre de Référence des Maladies Héréditaires du Métabolisme, Hôpital Necker, APHP, Paris, France.,Université Paris Descartes, Paris, France
| | - M Rio
- Département de Génétique, Hôpital Necker, APHP, Paris, France
| | | | - S Monnot
- Département de Génétique, Hôpital Necker, APHP, Paris, France.,IHU Imagine, UMR1163, France
| | - V Barbier
- Centre de Référence des Maladies Héréditaires du Métabolisme, Hôpital Necker, APHP, Paris, France
| | - R Barouki
- Centre de Référence des Maladies Héréditaires du Métabolisme, Hôpital Necker, APHP, Paris, France.,INSERM U1124, Université Paris Descartes, Paris, France.,Service de Biochimie Métabolomique et Protéomique, Hôpital Necker, APHP, Paris, France
| | - J P Bonnefont
- Département de Génétique, Hôpital Necker, APHP, Paris, France.,INSERM U781, Paris, France
| | - N Boddaert
- Service de Radiologie Pédiatrique, Hôpital Necker, APHP, Paris, France
| | - B Chadefaux-Vekemans
- Centre de Référence des Maladies Héréditaires du Métabolisme, Hôpital Necker, APHP, Paris, France.,INSERM U1124, Université Paris Descartes, Paris, France.,Service de Biochimie Métabolomique et Protéomique, Hôpital Necker, APHP, Paris, France
| | - L Le Moyec
- INSERM U902, Université d'Evry Val d'Essonne, INSERM UBIAE U902, Boulevard François Miterrand, 91025 Evry, France
| | - J Bastin
- INSERM U1124, Université Paris Descartes, Paris, France
| | - C Ottolenghi
- Centre de Référence des Maladies Héréditaires du Métabolisme, Hôpital Necker, APHP, Paris, France.,INSERM U1124, Université Paris Descartes, Paris, France.,Service de Biochimie Métabolomique et Protéomique, Hôpital Necker, APHP, Paris, France
| | - P de Lonlay
- Centre de Référence des Maladies Héréditaires du Métabolisme, Hôpital Necker, APHP, Paris, France.,Université Paris Descartes, Paris, France.,INSERM U781, Paris, France
| |
Collapse
|
46
|
Park MJ, Aja S, Li Q, Degano AL, Penati J, Zhuo J, Roe CR, Ronnett GV. Anaplerotic triheptanoin diet enhances mitochondrial substrate use to remodel the metabolome and improve lifespan, motor function, and sociability in MeCP2-null mice. PLoS One 2014; 9:e109527. [PMID: 25299635 PMCID: PMC4192301 DOI: 10.1371/journal.pone.0109527] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 09/11/2014] [Indexed: 01/13/2023] Open
Abstract
Rett syndrome (RTT) is an autism spectrum disorder (ASD) caused by mutations in the X-linked MECP2 gene that encodes methyl-CpG binding protein 2 (MeCP2). Symptoms range in severity and include psychomotor disabilities, seizures, ataxia, and intellectual disability. Symptom onset is between 6-18 months of age, a critical period of brain development that is highly energy-dependent. Notably, patients with RTT have evidence of mitochondrial dysfunction, as well as abnormal levels of the adipokines leptin and adiponectin, suggesting overall metabolic imbalance. We hypothesized that one contributor to RTT symptoms is energy deficiency due to defective nutrient substrate utilization by the TCA cycle. This energy deficit would lead to a metabolic imbalance, but would be treatable by providing anaplerotic substrates to the TCA cycle to enhance energy production. We show that dietary therapy with triheptanoin significantly increased longevity and improved motor function and social interaction in male mice hemizygous for Mecp2 knockout. Anaplerotic therapy in Mecp2 knockout mice also improved indicators of impaired substrate utilization, decreased adiposity, increased glucose tolerance and insulin sensitivity, decreased serum leptin and insulin, and improved mitochondrial morphology in skeletal muscle. Untargeted metabolomics of liver and skeletal muscle revealed increases in levels of TCA cycle intermediates with triheptanoin diet, as well as normalizations of glucose and fatty acid biochemical pathways consistent with the improved metabolic phenotype in Mecp2 knockout mice on triheptanoin. These results suggest that an approach using dietary supplementation with anaplerotic substrate is effective in improving symptoms and metabolic health in RTT.
Collapse
Affiliation(s)
- Min Jung Park
- The Center for Metabolism and Obesity Research, The Johns Hopkins University, School of Medicine, Baltimore, MD, United States of America
- Department of Neuroscience, The Johns Hopkins University, School of Medicine, Baltimore, MD, United States of America
| | - Susan Aja
- The Center for Metabolism and Obesity Research, The Johns Hopkins University, School of Medicine, Baltimore, MD, United States of America
- Department of Neuroscience, The Johns Hopkins University, School of Medicine, Baltimore, MD, United States of America
- * E-mail:
| | - Qun Li
- The Center for Metabolism and Obesity Research, The Johns Hopkins University, School of Medicine, Baltimore, MD, United States of America
- Department of Neuroscience, The Johns Hopkins University, School of Medicine, Baltimore, MD, United States of America
| | - Alicia L. Degano
- The Center for Metabolism and Obesity Research, The Johns Hopkins University, School of Medicine, Baltimore, MD, United States of America
- Department of Neuroscience, The Johns Hopkins University, School of Medicine, Baltimore, MD, United States of America
- Departamento de Química Biológica, CIQUIBIC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Judith Penati
- Department of Neuroscience, The Johns Hopkins University, School of Medicine, Baltimore, MD, United States of America
| | - Justin Zhuo
- Department of Neuroscience, The Johns Hopkins University, School of Medicine, Baltimore, MD, United States of America
| | - Charles R. Roe
- The Center for Metabolism and Obesity Research, The Johns Hopkins University, School of Medicine, Baltimore, MD, United States of America
- Department of Neuroscience, The Johns Hopkins University, School of Medicine, Baltimore, MD, United States of America
| | - Gabriele V. Ronnett
- The Center for Metabolism and Obesity Research, The Johns Hopkins University, School of Medicine, Baltimore, MD, United States of America
- Department of Neuroscience, The Johns Hopkins University, School of Medicine, Baltimore, MD, United States of America
- Department of Neurology, The Johns Hopkins University, School of Medicine, Baltimore, MD, United States of America
- Department of Biological Chemistry, The Johns Hopkins University, School of Medicine, Baltimore, MD, United States of America
- Department of Brain Sciences, DGIST, Daegu, South Korea
| |
Collapse
|
47
|
Karall D, Mair G, Albrecht U, Niedermayr K, Karall T, Schobersberger W, Scholl-Bürgi S. Sports in LCHAD Deficiency: Maximal Incremental and Endurance Exercise Tests in a 13-Year-Old Patient with Long-Chain 3-Hydroxy Acyl-CoA Dehydrogenase Deficiency (LCHADD) and Heptanoate Treatment. JIMD Rep 2014; 17:7-12. [PMID: 24997711 DOI: 10.1007/8904_2014_313] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 03/26/2014] [Accepted: 03/28/2014] [Indexed: 12/31/2022] Open
Abstract
Exercise and subsequent catabolism is a potential trigger for creatine kinase (CK) concentration increase (rhabdomyolysis) in patients with LCHADD, therefore we evaluated the clinical and biochemical stability under physical exertion conditions at the age of 13 years in a currently 14-year-old LCHADD patient treated with heptanoate.LCHADD was diagnosed during first decompensation at age 20 months. In the following 2 years, the patient had several episodes of rhabdomyolysis. Heptanoate 0.5-1 g/kg/day was started at 4 years, with no further CK elevations since. He is clinically stable, has retinopathy without vision impairment or polyneuropathy. Maximal incremental and endurance exercise tests were performed to evaluate both clinical and metabolic stability during and after exertion.Physical fitness was adequate for age (maximum blood lactate 7.0 mmol/L, appropriate lactate performance curve, maximum heart rate of 196 bpm, maximum power 139 Watt = 2.68 Watt/kg body weight). There were no signs of clinical (muscle pain, dark urine) or metabolic derangement (stable CK, acyl carnitine profiles, blood gas analyses) - neither after maximal incremental nor endurance exertion.This case illustrates that both under maximal incremental and endurance exertion, clinical and biochemical parameters remained stable in this currently 14-year-old LCHADD patient receiving heptanoate treatment.
Collapse
Affiliation(s)
- D Karall
- Division of Inherited Metabolic Disorders, Medical University Innsbruck, Clinic for Pediatrics I, Inherited Metabolic Disorders, Innsbruck, Austria,
| | | | | | | | | | | | | |
Collapse
|
48
|
Reid CA, Mullen S, Kim TH, Petrou S. Epilepsy, energy deficiency and new therapeutic approaches including diet. Pharmacol Ther 2014; 144:192-201. [PMID: 24924701 DOI: 10.1016/j.pharmthera.2014.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 02/08/2023]
Abstract
Metabolic dysfunction leading to epilepsy is well recognised. Dietary therapy, in particular the ketogenic diet, is now considered an effective option. Recent genetic studies have highlighted the central role that metabolism can play in setting seizure susceptibility. Here we discuss various metabolic disorders implicated in epilepsy focusing on energy deficiency due to genetic and environmental causes. We argue that low, uncompensated brain glucose levels can precipitate seizures. We will also explore mechanisms of disease and therapy in an attempt to identify common metabolic pathways involved in modulating seizure susceptibility. Finally, newer therapeutic approaches based on diet manipulation in the context of energy deficiency are discussed.
Collapse
Affiliation(s)
- Christopher A Reid
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia.
| | - Saul Mullen
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Tae Hwan Kim
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Steven Petrou
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia; Centre for Neural Engineering, The University of Melbourne, Parkville, Melbourne, Australia; Department of Electrical Engineering, The University of Melbourne, Parkville, Melbourne, Australia
| |
Collapse
|
49
|
Patel R, Singh H, Willens D, Drake S. Bilateral supernumerary kidneys: how much is too much? BMJ Case Rep 2014; 2014:bcr-2013-202677. [PMID: 24692375 DOI: 10.1136/bcr-2013-202677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A middle aged African-American woman with a stable history of carnitine palmitoyl transferase II (CPT II) deficiency presented with myalgias for 1 week. Physical examination and laboratory findings were consistent with severe sepsis secondary to pyelonephritis leading to rhabdomyolysis. Subsequent CT of the abdomen revealed bilateral supernumerary kidneys with non-obstructive calculi within the supernumerary kidneys. Abnormal ureteral development of the supernumerary kidneys likely led to an increased risk for urinary tract infections (UTIs) and renal calculi resulting in pyelonephritis. The stress of this infection overwhelmed the muscle CPT II enzyme load, putting her in a state of rhabdomyolysis. In addition to fluids and antibiotics, she was provided a diet rich in carbohydrates and low in fats so as to limit long-chain fatty acid oxidation. Supernumerary nephrectomy was not considered during this admission. During follow-up, she developed obstructive ureteral calculi requiring placement of a right-sided ureteral stent.
Collapse
Affiliation(s)
- Ruchir Patel
- Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan, USA
| | | | | | | |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW The metabolic myopathies result from inborn errors of metabolism affecting intracellular energy production due to defects in glycogen, lipid, adenine nucleotides, and mitochondrial metabolism. This article provides an overview of the most common metabolic myopathies. RECENT FINDINGS Our knowledge of metabolic myopathies has expanded rapidly in recent years, providing us with major advances in the detection of genetic and biochemical defects. New and improved diagnostic tools are now available for some of these disorders, and targeted therapies for specific biochemical deficits have been developed (ie, enzyme replacement therapy for acid maltase deficiency). SUMMARY The diagnostic approach for patients with suspected metabolic myopathy should start with the recognition of a static or dynamic pattern (fixed versus exercise-induced weakness). Individual presentations vary according to age of onset and the severity of each particular biochemical dysfunction. Additional clinical clues include the presence of multisystem disease, family history, and laboratory characteristics. Appropriate investigations, timely treatment, and genetic counseling are discussed for the most common conditions.
Collapse
|