1
|
Giovannelli F, Borgheresi A, Lucidi G, Squitieri M, Gavazzi G, Suppa A, Berardelli A, Viggiano MP, Cincotta M. Language-related motor facilitation in Italian Sign Language signers. Cereb Cortex 2023:6988100. [PMID: 36646456 DOI: 10.1093/cercor/bhac536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 01/18/2023] Open
Abstract
Linguistic tasks facilitate corticospinal excitability as revealed by increased motor evoked potential (MEP) induced by transcranial magnetic stimulation (TMS) in the dominant hand. This modulation of the primary motor cortex (M1) excitability may reflect the relationship between speech and gestures. It is conceivable that in healthy individuals who use a sign language this cortical excitability modulation could be rearranged. The aim of this study was to evaluate the effect of spoken language tasks on M1 excitability in a group of hearing signers. Ten hearing Italian Sign Language (LIS) signers and 16 non-signer healthy controls participated. Single-pulse TMS was applied to either M1 hand area at the baseline and during different tasks: (i) reading aloud, (ii) silent reading, (iii) oral movements, (iv) syllabic phonation and (v) looking at meaningless non-letter strings. Overall, M1 excitability during the linguistic and non-linguistic tasks was higher in LIS group compared to the control group. In LIS group, MEPs were significantly larger during reading aloud, silent reading and non-verbal oral movements, regardless the hemisphere. These results suggest that in hearing signers there is a different modulation of the functional connectivity between the speech-related brain network and the motor system.
Collapse
Affiliation(s)
- Fabio Giovannelli
- Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), Section of Psychology, University of Florence, Florence 50135, Italy
| | - Alessandra Borgheresi
- Unit of Neurology of Florence, Central Tuscany Local Health Authority, Florence 50143, Italy
| | - Giulia Lucidi
- Unit of Neurology of Florence, Central Tuscany Local Health Authority, Florence 50143, Italy
| | - Martina Squitieri
- Unit of Neurology of Florence, Central Tuscany Local Health Authority, Florence 50143, Italy
| | - Gioele Gavazzi
- Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), Section of Psychology, University of Florence, Florence 50135, Italy
| | - Antonio Suppa
- Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy.,IRCCS Neuromed, Pozzilli (IS) 86077, Italy
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy.,IRCCS Neuromed, Pozzilli (IS) 86077, Italy
| | - Maria Pia Viggiano
- Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), Section of Psychology, University of Florence, Florence 50135, Italy
| | - Massimo Cincotta
- Unit of Neurology of Florence, Central Tuscany Local Health Authority, Florence 50143, Italy
| |
Collapse
|
2
|
Bessi V, Giacomucci G. Hidden functional derangement of somatosensory cortices in Alzheimer's Disease. EBioMedicine 2021; 74:103708. [PMID: 34801966 PMCID: PMC8605412 DOI: 10.1016/j.ebiom.2021.103708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 12/03/2022] Open
Affiliation(s)
- Valentina Bessi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy.
| | - Giulia Giacomucci
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| |
Collapse
|
3
|
Xie Y, Li Y, Nie L, Zhang W, Ke Z, Ku Y. Cognitive Enhancement of Repetitive Transcranial Magnetic Stimulation in Patients With Mild Cognitive Impairment and Early Alzheimer's Disease: A Systematic Review and Meta-Analysis. Front Cell Dev Biol 2021; 9:734046. [PMID: 34568342 PMCID: PMC8461243 DOI: 10.3389/fcell.2021.734046] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/23/2021] [Indexed: 11/18/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS), a non-invasive brain stimulation technique, has been considered as a potentially effective treatment for the cognitive impairment in patients with mild cognitive impairment (MCI) and Alzheimer’s Disease (AD). However, the effectiveness of this therapy is still under debate due to the variety of rTMS parameters and individual differences including distinctive stages of AD in the previous studies. The current meta-analysis is aiming to assess the cognitive enhancement of rTMS treatment on patients of MCI and early AD. Three datasets (PubMed, Web of Science and CKNI) were searched with relative terms and finally twelve studies with 438 participants (231 in the rTMS group and 207 in the control group) in thirteen randomized, double-blind and controlled trials were included. Random effects analysis revealed that rTMS stimulation significantly introduced cognitive benefits in patients of MCI and early AD compared with the control group (mean effect size, 1.17; 95% CI, 0.76 - 1.57). Most settings of rTMS parameters (frequency, session number, stimulation site number) significantly enhanced global cognitive function, and the results revealed that protocols with 10 Hz repetition frequency and DLPFC as the stimulation site for 20 sessions can already be able to produce cognitive improvement. The cognitive enhancement of rTMS could last for one month after the end of treatment and patients with MCI were likely to benefit more from the rTMS stimulation. Our meta-analysis added important evidence to the cognitive enhancement of rTMS in patients with MCI and early AD and discussed potential underlying mechanisms about the effect induced by rTMS.
Collapse
Affiliation(s)
- Ye Xie
- Center for Brain and Mental Well-Being, Department of Psychology, Sun Yat-sen University, Guangzhou, China
| | - Yunxia Li
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lu Nie
- Center for Brain and Mental Well-Being, Department of Psychology, Sun Yat-sen University, Guangzhou, China
| | - Wanting Zhang
- Center for Brain and Mental Well-Being, Department of Psychology, Sun Yat-sen University, Guangzhou, China
| | - Zijun Ke
- Center for Brain and Mental Well-Being, Department of Psychology, Sun Yat-sen University, Guangzhou, China
| | - Yixuan Ku
- Center for Brain and Mental Well-Being, Department of Psychology, Sun Yat-sen University, Guangzhou, China.,Peng Cheng Laboratory, Shenzhen, China
| |
Collapse
|
4
|
Sergeev K, Runnova A, Zhuravlev M, Kolokolov O, Akimova N, Kiselev A, Titova A, Slepnev A, Semenova N, Penzel T. Wavelet skeletons in sleep EEG-monitoring as biomarkers of early diagnostics of mild cognitive impairment. CHAOS (WOODBURY, N.Y.) 2021; 31:073110. [PMID: 34340349 DOI: 10.1063/5.0055441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Many neuro-degenerative diseases are difficult to diagnose in their early stages. For example, early diagnosis of Mild Cognitive Impairment (MCI) requires a wide variety of tests to distinguish MCI symptoms and normal consequences of aging. In this article, we use the wavelet-skeleton approach to find some characteristic patterns in the electroencephalograms (EEGs) of healthy adult patients and patients with cognitive dysfunctions. We analyze the EEG activity recorded during natural sleep of 11 elderly patients aged between 60 and 75, six of whom have mild cognitive impairment, and apply a nonlinear analysis method based on continuous wavelet transformskeletons. Our studies show that a comprehensive analysis of EEG signals of the entire sleep state allows us to identify a significant decrease in the average duration of oscillatory patterns in the frequency band [12; 14] Hz in the presence of mild cognitive impairment. Thus, the changes in this frequency range can be interpreted as related to the activity in the motor cortex, as a candidate for developing the criteria for early objective MCI.
Collapse
Affiliation(s)
- Konstantin Sergeev
- Saratov State University, Astrakhanskaya Str., 83, Saratov 410012, Russia
| | - Anastasiya Runnova
- Saratov State University, Astrakhanskaya Str., 83, Saratov 410012, Russia
| | - Maksim Zhuravlev
- Saratov State University, Astrakhanskaya Str., 83, Saratov 410012, Russia
| | - Oleg Kolokolov
- Saratov State Medical University, B. Kazachaya Str., 112, Saratov 410012, Russia
| | - Nataliya Akimova
- Saratov State Medical University, B. Kazachaya Str., 112, Saratov 410012, Russia
| | - Anton Kiselev
- Saratov State Medical University, B. Kazachaya Str., 112, Saratov 410012, Russia
| | - Anastasiya Titova
- Saratov State Medical University, B. Kazachaya Str., 112, Saratov 410012, Russia
| | - Andrei Slepnev
- Saratov State University, Astrakhanskaya Str., 83, Saratov 410012, Russia
| | - Nadezhda Semenova
- Saratov State University, Astrakhanskaya Str., 83, Saratov 410012, Russia
| | - Thomas Penzel
- Saratov State University, Astrakhanskaya Str., 83, Saratov 410012, Russia
| |
Collapse
|
5
|
Li W, Kutas M, Gray JA, Hagerman RH, Olichney JM. The Role of Glutamate in Language and Language Disorders - Evidence from ERP and Pharmacologic Studies. Neurosci Biobehav Rev 2020; 119:217-241. [PMID: 33039453 DOI: 10.1016/j.neubiorev.2020.09.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 08/10/2020] [Accepted: 09/21/2020] [Indexed: 12/31/2022]
Abstract
Current models of language processing do not address mechanisms at the neurotransmitter level, nor how pharmacologic agents may improve language function(s) in seemingly disparate disorders. L-Glutamate, the primary excitatory neurotransmitter in the human brain, is extensively involved in various higher cortical functions. We postulate that the physiologic role of L-Glutamate neurotransmission extends to the regulation of language access, comprehension, and production, and that disorders in glutamatergic transmission and circuitry contribute to the pathogenesis of neurodegenerative diseases and sporadic-onset language disorders such as the aphasic stroke syndromes. We start with a review of basic science data pertaining to various glutamate receptors in the CNS and ways that they may influence the physiological processes of language access and comprehension. We then focus on the dysregulation of glutamate neurotransmission in three conditions in which language dysfunction is prominent: Alzheimer's Disease, Fragile X-associated Tremor/Ataxia Syndrome, and Aphasic Stroke Syndromes. Finally, we review the pharmacologic and electrophysiologic (event related brain potential or ERP) data pertaining to the role glutamate neurotransmission plays in language processing and disorders.
Collapse
Affiliation(s)
- Wentao Li
- Department of Neurology, University of California, Davis, 4860 Y Street, Suite 3700, Sacramento, CA, 95817, USA.
| | - Marta Kutas
- Department of Cognitive Science, University of California, San Diego, 9500 Gilman Drive #0515, La Jolla, CA, 92093, USA; Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| | - John A Gray
- Department of Neurology, University of California, Davis, 4860 Y Street, Suite 3700, Sacramento, CA, 95817, USA; Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, CA, 95618, USA.
| | - Randi H Hagerman
- MIND Institute, University of California, Davis, 2825 50th Street, Sacramento, CA, 95817, USA.
| | - John M Olichney
- Department of Neurology, University of California, Davis, 4860 Y Street, Suite 3700, Sacramento, CA, 95817, USA; Center for Mind and Brain, University of California, Davis, 267 Cousteau Place, Davis, CA, 95618, USA.
| |
Collapse
|
6
|
Giovannelli F, Rossi S, Borgheresi A, Gavazzi G, Zaccara G, Viggiano MP, Cincotta M. Effects of Music Reading on Motor Cortex Excitability in Pianists: A Transcranial Magnetic Stimulation Study. Neuroscience 2020; 437:45-53. [PMID: 32335216 DOI: 10.1016/j.neuroscience.2020.04.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/13/2020] [Accepted: 04/16/2020] [Indexed: 11/29/2022]
Abstract
Neurophysiological studies suggest that music reading facilitates sensorimotor cortex. The aim of this study was to evaluate (1) whether in pianists, reading notes in bass and treble clef selectively enhances right and left primary motor cortex (M1) excitability; and (2) whether reading notes played with the thumb or little finger selectively modulates the excitability of specific muscles. Twenty musicians (11 pianists, 9 non-pianists) participated. Transcranial magnetic stimulation (TMS) was applied while subjects read the bass or the treble clef of sheets music and during the observation of a blank staff (baseline). When pianists read the treble clef, the excitability of the left M1 was higher compared to that recorded in the right M1. Moreover, in the treble clef condition motor evoked potentials (MEPs) induced by TMS of the left M1 were higher when pianists read notes to be played with the 5° finger (little finger) with respect to 1° finger (thumb) notes, whereas in the bass clef condition TMS of the right M1 induced higher MEPs for 1° finger note compared to 5° finger notes. No significant modulation was observed in non-pianists. These data support the view that music reading may induce specific inter- and intra-hemispheric modulation of the motor cortex excitability.
Collapse
Affiliation(s)
- Fabio Giovannelli
- Section of Psychology - Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), University of Florence, Firenze, Italy; Unit of Neurology of Florence, Central Tuscany Local Health Authority, Firenze, Italy
| | - Simone Rossi
- Department of Medicine, Surgery and Neuroscience, Unit of Neurology and Clinical Neurophysiology, Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), University of Siena, Italy
| | - Alessandra Borgheresi
- Unit of Neurology of Florence, Central Tuscany Local Health Authority, Firenze, Italy
| | | | - Gaetano Zaccara
- Unit of Neurology of Florence, Central Tuscany Local Health Authority, Firenze, Italy; Regional Health Agency of Tuscany, Firenze, Italy
| | - Maria Pia Viggiano
- Section of Psychology - Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), University of Florence, Firenze, Italy
| | - Massimo Cincotta
- Unit of Neurology of Florence, Central Tuscany Local Health Authority, Firenze, Italy.
| |
Collapse
|
7
|
Suppa A, Fabbrini A, Guerra A, Petsas N, Asci F, Di Stasio F, Trebbastoni A, Vasselli F, De Lena C, Pantano P, Berardelli A. Altered speech-related cortical network in frontotemporal dementia. Brain Stimul 2020; 13:765-773. [PMID: 32289706 DOI: 10.1016/j.brs.2020.02.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/08/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND In healthy subjects (HS), transcranial magnetic stimulation (TMS) demonstrated an increase in motor-evoked potential (MEP) amplitudes during specific linguistic tasks. This finding indicates functional connections between speech-related cortical areas and the dominant primary motor cortex (M1). OBJECTIVE To investigate M1 function with TMS and the speech-related cortical network with neuroimaging measures in frontotemporal dementia (FTD), including the non-fluent variant of primary progressive aphasia (nfv-PPA) and the behavioral variant of FTD (bv-FTD). METHODS M1 excitability changes during specific linguistc tasks were examined using TMS in 24 patients (15 with nfv-PPA and 9 with bv-FTD) and in 18 age-matched HS. In the same patients neuroimaging was used to assess changes in specific white matter (WM) bundles and grey matter (GM) regions involved in language processing, with diffusion tensor imaging (DTI) and voxel-based morphometry (VBM). RESULTS During the linguistic task, M1 excitability increased in HS, whereas in FTD patients it did not. M1 excitability changes were comparable in nfv-PPA and bv-FTD. DTI revealed decreased fractional anisotropy in the superior and inferior longitudinal and uncinate fasciculi. Moreover, VBM disclosed GM volume loss in the left frontal operculum though not in the parietal operculum or precentral gyrus. Furthermore, WM and GM changes were comparable in nfv-PPA and bv-FTD. There was no correlation between neurophysiological and neuroimaging changes in FTD. Atrophy in the left frontal operculum correlated with linguistic dysfunction, assessed by semantic and phonemic fluency tests. CONCLUSION We provide converging neurophysiological and neuroimaging evidence of abnormal speech-related cortical network activation in FTD.
Collapse
Affiliation(s)
- Antonio Suppa
- Department of Human Neurosciences, Sapienza University of Rome, Viale Dell'Università 30, 00185, Rome, Italy; IRCCS Neuromed, Via Atinense 18, 86077, Pozzilli, IS, Italy
| | | | - Andrea Guerra
- IRCCS Neuromed, Via Atinense 18, 86077, Pozzilli, IS, Italy
| | | | - Francesco Asci
- Department of Human Neurosciences, Sapienza University of Rome, Viale Dell'Università 30, 00185, Rome, Italy
| | - Flavio Di Stasio
- Department of Neurology, St John the Baptist Hospital, ACISMOM, 00148, Rome, Italy
| | - Alessandro Trebbastoni
- Department of Human Neurosciences, Sapienza University of Rome, Viale Dell'Università 30, 00185, Rome, Italy
| | - Federica Vasselli
- Department of Human Neurosciences, Sapienza University of Rome, Viale Dell'Università 30, 00185, Rome, Italy
| | - Carlo De Lena
- Department of Human Neurosciences, Sapienza University of Rome, Viale Dell'Università 30, 00185, Rome, Italy
| | - Patrizia Pantano
- Department of Human Neurosciences, Sapienza University of Rome, Viale Dell'Università 30, 00185, Rome, Italy; IRCCS Neuromed, Via Atinense 18, 86077, Pozzilli, IS, Italy
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Viale Dell'Università 30, 00185, Rome, Italy; IRCCS Neuromed, Via Atinense 18, 86077, Pozzilli, IS, Italy.
| |
Collapse
|
8
|
Cespón J, Rodella C, Miniussi C, Pellicciari MC. Behavioural and electrophysiological modulations induced by transcranial direct current stimulation in healthy elderly and Alzheimer's disease patients: A pilot study. Clin Neurophysiol 2019; 130:2038-2052. [PMID: 31541981 DOI: 10.1016/j.clinph.2019.08.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 06/28/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To investigate whether anodal and cathodal transcranial direct current stimulation (tDCS) can modify cognitive performance and neural activity in healthy elderly and Alzheimer's disease (AD) patients. METHODS Fourteen healthy elderly and twelve AD patients performed a working memory task during an electroencephalogram recording before and after receiving anodal, cathodal, and sham tDCS over the left dorsolateral prefrontal cortex. Behavioural performance, event-related potentials (P200, P300) and evoked cortical oscillations were studied as correlates of working memory. RESULTS Anodal tDCS increased P200 and P300 amplitudes in healthy elderly. Cathodal tDCS increased P200 amplitude and frontal theta activity between 150 and 300 ms in AD patients. Improved working memory after anodal tDCS correlated with increased P300 in healthy elderly. In AD patients, slight tendencies between enhanced working memory and increased P200 after cathodal tDCS were observed. CONCLUSIONS Functional neural modulations were promoted by anodal tDCS in healthy elderly and by cathodal tDCS in AD patients. SIGNIFICANCE Interaction between tDCS polarity and the neural state (e.g., hyper-excitability exhibited by AD patients) suggests that appropriate tDCS parameters (in terms of tDCS polarity) to induce behavioural improvements should be chosen based on the participant's characteristics. Future studies using higher sample sizes should confirm and extend the present findings.
Collapse
Affiliation(s)
- J Cespón
- Cognitive Neuroscience Section, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; BCBL, Basque Center on Cognition, Brain, and Language, Donostia/San Sebastián, Spain.
| | - C Rodella
- Cognitive Neuroscience Section, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - C Miniussi
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, TN, Italy; Cognitive Neuroscience Section, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - M C Pellicciari
- Cognitive Neuroscience Section, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
9
|
Cross-Modal Audiovisual Modulation of Corticospinal Motor Synergies in Professional Piano Players: A TMS Study during Motor Imagery. Neural Plast 2019; 2019:1328453. [PMID: 31093269 PMCID: PMC6476037 DOI: 10.1155/2019/1328453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/25/2019] [Accepted: 03/12/2019] [Indexed: 11/18/2022] Open
Abstract
Transcranial magnetic stimulation was used to investigate corticospinal output changes in 10 professional piano players during motor imagery of triad chords in C major to be “mentally” performed with three fingers of the right hand (thumb, index, and little finger). Five triads were employed in the task; each composed by a stable 3rd interval (C4-E4) and a varying third note that could generate a 5th (G4), a 6th (A4), a 7th (B4), a 9th (D5), or a 10th (E5) interval. The 10th interval chord was thought to be impossible in actual execution for biomechanical reasons, as long as the thumb and the index finger remained fixed on the 3rd interval. Chords could be listened from loudspeakers, read on a staff, or listened and read at the same time while performing the imagery task. The corticospinal output progressively increased along with task demands in terms of mental representation of hand extension. The effects of audio, visual, or audiovisual musical stimuli were generally similar, unless motor imagery of kinetically impossible triads was required. A specific three-effector motor synergy was detected, governing the representation of the progressive mental extension of the hand. Results demonstrate that corticospinal facilitation in professional piano players can be modulated according to the motor plan, even if simply “dispatched” without actual execution. Moreover, specific muscle synergies, usually encoded in the motor cortex, emerge along the cross-modal elaboration of musical stimuli and in motor imagery of musical performances.
Collapse
|
10
|
Fiori F, Chiappini E, Candidi M, Romei V, Borgomaneri S, Avenanti A. Long-latency interhemispheric interactions between motor-related areas and the primary motor cortex: a dual site TMS study. Sci Rep 2017; 7:14936. [PMID: 29097700 PMCID: PMC5668244 DOI: 10.1038/s41598-017-13708-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/27/2017] [Indexed: 12/19/2022] Open
Abstract
The primary motor cortex (M1) is highly influenced by premotor/motor areas both within and across hemispheres. Dual site transcranial magnetic stimulation (dsTMS) has revealed interhemispheric interactions mainly at early latencies. Here, we used dsTMS to systematically investigate long-latency causal interactions between right-hemisphere motor areas and the left M1 (lM1). We stimulated lM1 using a suprathreshold test stimulus (TS) to elicit motor-evoked potentials (MEPs) in the right hand. Either a suprathreshold or a subthreshold conditioning stimulus (CS) was applied over the right M1 (rM1), the right ventral premotor cortex (rPMv), the right dorsal premotor cortex (rPMd) or the supplementary motor area (SMA) prior to the TS at various CS-TS inter-stimulus intervals (ISIs: 40–150 ms). The CS strongly affected lM1 excitability depending on ISI, CS site and intensity. Inhibitory effects were observed independently of CS intensity when conditioning PMv, rM1 and SMA at a 40-ms ISI, with larger effects after PMv conditioning. Inhibition was observed with suprathreshold PMv and rM1 conditioning at a 150-ms ISI, while site-specific, intensity-dependent facilitation was detected at an 80-ms ISI. Thus, long-latency interhemispheric interactions, likely reflecting indirect cortico-cortical/cortico-subcortical pathways, cannot be reduced to nonspecific activation across motor structures. Instead, they reflect intensity-dependent, connection- and time-specific mechanisms.
Collapse
Affiliation(s)
- Francesca Fiori
- IRCCS Fondazione Santa Lucia, 00179, Rome, Italy.,Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Università di Bologna, 47521, Cesena, Italy.,Dipartimento di Psicologia, Sapienza Università di Roma, 00185, Roma, Italy
| | - Emilio Chiappini
- IRCCS Fondazione Santa Lucia, 00179, Rome, Italy.,Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Università di Bologna, 47521, Cesena, Italy
| | - Matteo Candidi
- IRCCS Fondazione Santa Lucia, 00179, Rome, Italy.,Dipartimento di Psicologia, Sapienza Università di Roma, 00185, Roma, Italy
| | - Vincenzo Romei
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Università di Bologna, 47521, Cesena, Italy.,Centre for Brain Science, Department of Psychology, University of Essex, CO4 3SQ, Colchester, UK
| | - Sara Borgomaneri
- IRCCS Fondazione Santa Lucia, 00179, Rome, Italy.,Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Università di Bologna, 47521, Cesena, Italy
| | - Alessio Avenanti
- IRCCS Fondazione Santa Lucia, 00179, Rome, Italy. .,Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Università di Bologna, 47521, Cesena, Italy.
| |
Collapse
|
11
|
Papazoglou A, Soos J, Lundt A, Wormuth C, Ginde VR, Müller R, Henseler C, Broich K, Xie K, Haenisch B, Ehninger D, Weiergräber M. Motor Cortex Theta and Gamma Architecture in Young Adult APPswePS1dE9 Alzheimer Mice. PLoS One 2017; 12:e0169654. [PMID: 28072877 PMCID: PMC5224826 DOI: 10.1371/journal.pone.0169654] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/20/2016] [Indexed: 11/18/2022] Open
Abstract
Alzheimer’s disease (AD) is a multifactorial disorder leading to progressive memory loss and eventually death. In this study, an APPswePS1dE9 AD mouse model has been analyzed for motor cortex theta, beta and gamma frequency alterations using computerized 3D stereotaxic electrode positioning and implantable video-EEG radiotelemetry to perform long-term M1 recordings from both genders considering age, circadian rhythm and activity status of experimental animals. We previously demonstrated that APPswePS1dE9 mice exibit complex alterations in hippocampal frequency power and another recent investigation reported a global increase of alpha, beta and gamma power in APPswePS1dE9 in females of 16–17 weeks of age. In this cortical study in APPswePS1dE9 mice we did not observe any changes in theta, beta and particularly gamma power in both genders at the age of 14, 15, 18 and 19 weeks. Importantly, no activity dependence of theta, beta and gamma activity could be detected. These findings clearly point to the fact that EEG activity, particularly gamma power exhibits developmental changes and spatial distinctiveness in the APPswePS1dE9 mouse model of Alzheimer’s disease.
Collapse
Affiliation(s)
- Anna Papazoglou
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Julien Soos
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Bonn, Germany
| | - Andreas Lundt
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Carola Wormuth
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Varun Raj Ginde
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Bonn, Germany
| | - Ralf Müller
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Christina Henseler
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Karl Broich
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Kan Xie
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Bonn, Germany
| | - Britta Haenisch
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Bonn, Germany
| | - Dan Ehninger
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Bonn, Germany
| | - Marco Weiergräber
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
- * E-mail:
| |
Collapse
|
12
|
Suppa A, Marsili L, Giovannelli F, Di Stasio F, Rocchi L, Upadhyay N, Ruoppolo G, Cincotta M, Berardelli A. Abnormal motor cortex excitability during linguistic tasks in adductor-type spasmodic dysphonia. Eur J Neurosci 2015; 42:2051-60. [PMID: 26061279 DOI: 10.1111/ejn.12977] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 04/16/2015] [Accepted: 06/05/2015] [Indexed: 11/28/2022]
Abstract
In healthy subjects (HS), transcranial magnetic stimulation (TMS) applied during 'linguistic' tasks discloses excitability changes in the dominant hemisphere primary motor cortex (M1). We investigated 'linguistic' task-related cortical excitability modulation in patients with adductor-type spasmodic dysphonia (ASD), a speech-related focal dystonia. We studied 10 ASD patients and 10 HS. Speech examination included voice cepstral analysis. We investigated the dominant/non-dominant M1 excitability at baseline, during 'linguistic' (reading aloud/silent reading/producing simple phonation) and 'non-linguistic' tasks (looking at non-letter strings/producing oral movements). Motor evoked potentials (MEPs) were recorded from the contralateral hand muscles. We measured the cortical silent period (CSP) length and tested MEPs in HS and patients performing the 'linguistic' tasks with different voice intensities. We also examined MEPs in HS and ASD during hand-related 'action-verb' observation. Patients were studied under and not-under botulinum neurotoxin-type A (BoNT-A). In HS, TMS over the dominant M1 elicited larger MEPs during 'reading aloud' than during the other 'linguistic'/'non-linguistic' tasks. Conversely, in ASD, TMS over the dominant M1 elicited increased-amplitude MEPs during 'reading aloud' and 'syllabic phonation' tasks. CSP length was shorter in ASD than in HS and remained unchanged in both groups performing 'linguistic'/'non-linguistic' tasks. In HS and ASD, 'linguistic' task-related excitability changes were present regardless of the different voice intensities. During hand-related 'action-verb' observation, MEPs decreased in HS, whereas in ASD they increased. In ASD, BoNT-A improved speech, as demonstrated by cepstral analysis and restored the TMS abnormalities. ASD reflects dominant hemisphere excitability changes related to 'linguistic' tasks; BoNT-A returns these excitability changes to normal.
Collapse
Affiliation(s)
- A Suppa
- Neuromed Institute, Pozzilli, IS, Italy
| | - L Marsili
- Department of Neurology and Psychiatry, Sapienza University of Rome, Viale dell'Università 30, 00185, Rome, Italy
| | - F Giovannelli
- Unit of Neurology, Florence Health Authority, Florence, Italy
| | - F Di Stasio
- Department of Neurology and Psychiatry, Sapienza University of Rome, Viale dell'Università 30, 00185, Rome, Italy
| | - L Rocchi
- Department of Neurology and Psychiatry, Sapienza University of Rome, Viale dell'Università 30, 00185, Rome, Italy
| | - N Upadhyay
- Department of Neurology and Psychiatry, Sapienza University of Rome, Viale dell'Università 30, 00185, Rome, Italy
| | - G Ruoppolo
- Otorhinolaryngology Section, Department of Sensorial Organs, Sapienza University of Rome, Rome, Italy
| | - M Cincotta
- Unit of Neurology, Florence Health Authority, Florence, Italy
| | - A Berardelli
- Neuromed Institute, Pozzilli, IS, Italy.,Department of Neurology and Psychiatry, Sapienza University of Rome, Viale dell'Università 30, 00185, Rome, Italy
| |
Collapse
|
13
|
Guerra A, Curcio G, Pasqualetti P, Bressi F, Petrichella S, Scrascia F, Ponzo D, Ferilli M, Vernieri F, Rossini PM, Ferreri F. Unilateral cortical hyperexcitability in congenital hydrocephalus: a TMS study. Neurocase 2014; 20:456-65. [PMID: 23682715 DOI: 10.1080/13554794.2013.791866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Changes in cortical excitability are considered to play an important role in promoting brain plasticity both in healthy people and in neurological diseases. Hydrocephalus is a brain development disorder related to an excessive accumulation of cerebrospinal fluid (CSF) in the ventricular system. The functional relevance of cortical structural changes described in this disease is largely unexplored in human. We investigated cortical excitability using multimodal transcranial magnetic stimulation (TMS) in a case of congenital hydrocephalus with almost no neurological signs. METHODS A caucasian 40 years old, ambidextrous and multilingual woman affected by occult spina bifida and congenital symmetrical hydrocephalous underwent a TMS study. The intracortical and interhemispheric paired pulse paradigms were used, together with the mapping technique. RESULTS No significant differences were found in the resting motor thresholds between the two hemispheres. Instead, the intracortical excitability curves were statistically different between the two hemispheres (with short intracortical inhibition (SICI) being strongly reduced and intracortical facilitation (ICF) enhanced in the right one), and the interhemispheric curves showed a general hyper-excitability on the right hemisphere (when conditioned by the left one) and a general hypo-excitability in the left hemisphere (when conditioned by the right one). It is noteworthy that an asymmetric right hemisphere (RH) change of excitability was observed by means of mapping technique. CONCLUSION We hypothesize that in this ambidextrous subject, the observed RH hyper-excitability could represent a mechanism of plasticity to preserve functionality of specific brain areas possibly devoted to some special skills, such as multilingualism.
Collapse
Affiliation(s)
- Andrea Guerra
- a Department of Neurology , University Campus Bio-Medico , Rome , Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Nardone R, Tezzon F, Höller Y, Golaszewski S, Trinka E, Brigo F. Transcranial magnetic stimulation (TMS)/repetitive TMS in mild cognitive impairment and Alzheimer's disease. Acta Neurol Scand 2014; 129:351-66. [PMID: 24506061 DOI: 10.1111/ane.12223] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2014] [Indexed: 12/20/2022]
Abstract
Several Transcranial Magnetic Stimulation (TMS) techniques can be applied to noninvasively measure cortical excitability and brain plasticity in humans. TMS has been used to assess neuroplastic changes in Alzheimer's disease (AD), corroborating findings that cortical physiology is altered in AD due to the underlying neurodegenerative process. In fact, many TMS studies have provided physiological evidence of abnormalities in cortical excitability, connectivity, and plasticity in patients with AD. Moreover, the combination of TMS with other neurophysiological techniques, such as high-density electroencephalography (EEG), makes it possible to study local and network cortical plasticity directly. Interestingly, several TMS studies revealed abnormalities in patients with early AD and even with mild cognitive impairment (MCI), thus enabling early identification of subjects in whom the cholinergic degeneration has occurred. Furthermore, TMS can influence brain function if delivered repetitively; repetitive TMS (rTMS) is capable of modulating cortical excitability and inducing long-lasting neuroplastic changes. Preliminary findings have suggested that rTMS can enhance performances on several cognitive functions impaired in AD and MCI. However, further well-controlled studies with appropriate methodology in larger patient cohorts are needed to replicate and extend the initial findings. The purpose of this paper was to provide an updated and comprehensive systematic review of the studies that have employed TMS/rTMS in patients with MCI and AD.
Collapse
Affiliation(s)
- R. Nardone
- Department of Neurology; Christian Doppler Klinik; Paracelsus Medical University; Salzburg Austria
- Department of Neurology; Franz Tappeiner Hospital; Merano Italy
| | - F. Tezzon
- Department of Neurology; Franz Tappeiner Hospital; Merano Italy
| | - Y. Höller
- Department of Neurology; Christian Doppler Klinik; Paracelsus Medical University; Salzburg Austria
| | - S. Golaszewski
- Department of Neurology; Christian Doppler Klinik; Paracelsus Medical University; Salzburg Austria
| | - E. Trinka
- Department of Neurology; Christian Doppler Klinik; Paracelsus Medical University; Salzburg Austria
| | - F. Brigo
- Department of Neurology; Franz Tappeiner Hospital; Merano Italy
- Department of Neurological, Neuropsychological, Morphological and Movement Sciences; Section of Clinical Neurology; University of Verona; Verona Italy
| |
Collapse
|
15
|
Cespón J, Galdo-Álvarez S, Díaz F. Electrophysiological correlates of amnestic mild cognitive impairment in a simon task. PLoS One 2013; 8:e81506. [PMID: 24339941 PMCID: PMC3855269 DOI: 10.1371/journal.pone.0081506] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 10/14/2013] [Indexed: 11/18/2022] Open
Abstract
Amnestic mild cognitive impairment (aMCI) represents a prodromal stage of Alzheimer`s disease (AD), especially when additional cognitive domains are affected (Petersen et al., 2009). Thus, single-domain amnestic MCI (sdaMCI) and multiple-domain-amnestic MCI (mdaMCI) biomarkers are important for enabling early interventions to help slow down progression of the disease. Recording event-related potentials (ERPs) is a non-invasive and inexpensive measure of brain activity associated with cognitive processes, and it is of interest from a clinical point of view. The ERP technique may also be useful for obtaining early sdaMCI and mdaMCI biomarkers because ERPs are sensitive to impairment in processes that are not manifested at behavioral or clinical levels. In the present study, EEG activity was recorded in 25 healthy participants and 30 amnestic MCI patients (17 sdaMCI and 13 mdaMCI) while they performed a Simon task. The ERPs associated with visuospatial (N2 posterior-contralateral - N2pc -) and motor (lateralized readiness potential - LRP -) processes were examined. The N2pc amplitude was smaller in participants with mdaMCI than in healthy participants, which indicated a decline in the correlates of allocation of attentional resources to the target stimulus. In addition, N2pc amplitude proved to be a moderately good biomarker of mdaMCI subtype (0.77 sensitivity, 0.76 specificity). However, the LRP amplitude was smaller in the two MCI groups (sdaMCI and mdaMCI) than in healthy participants, revealing a reduction in the motor resources available to execute the response in sdaMCI and mdaMCI patients. Furthermore, the LRP amplitude proved to be a valid biomarker (0.80 sensitivity, 0.92 specificity) of both amnestic MCI subtypes.
Collapse
Affiliation(s)
- Jesús Cespón
- Department of Clinical Psychology and Biological Psychology, University of Santiago de Compostela, Santiago de Compostela, Galiza, Spain
| | - Santiago Galdo-Álvarez
- Department of Clinical Psychology and Biological Psychology, University of Santiago de Compostela, Santiago de Compostela, Galiza, Spain
| | - Fernando Díaz
- Department of Clinical Psychology and Biological Psychology, University of Santiago de Compostela, Santiago de Compostela, Galiza, Spain
| |
Collapse
|
16
|
Giovannelli F, Banfi C, Borgheresi A, Fiori E, Innocenti I, Rossi S, Zaccara G, Viggiano MP, Cincotta M. The effect of music on corticospinal excitability is related to the perceived emotion: A transcranial magnetic stimulation study. Cortex 2013; 49:702-10. [DOI: 10.1016/j.cortex.2012.01.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 12/31/2011] [Accepted: 01/29/2012] [Indexed: 11/25/2022]
|
17
|
D'Amelio M, Rossini PM. Brain excitability and connectivity of neuronal assemblies in Alzheimer's disease: from animal models to human findings. Prog Neurobiol 2012; 99:42-60. [PMID: 22789698 DOI: 10.1016/j.pneurobio.2012.07.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Revised: 06/08/2012] [Accepted: 07/02/2012] [Indexed: 10/28/2022]
Abstract
The human brain contains about 100 billion neurons forming an intricate network of innumerable connections, which continuously adapt and rewire themselves following inputs from external and internal environments as well as the physiological synaptic, dendritic and axonal sculpture during brain maturation and throughout the life span. Growing evidence supports the idea that Alzheimer's disease (AD) targets selected and functionally connected neuronal networks and, specifically, their synaptic terminals, affecting brain connectivity well before producing neuronal loss and compartmental atrophy. The understanding of the molecular mechanisms underlying the dismantling of neuronal circuits and the implementation of 'clinically oriented' methods to map-out the dynamic interactions amongst neuronal assemblies will enhance early/pre-symptomatic diagnosis and monitoring of disease progression. More important, this will open the avenues to innovative treatments, bridging the gap between molecular mechanisms and the variety of symptoms forming disease phenotype. In the present review a set of evidence supports the idea that altered brain connectivity, exhausted neural plasticity and aberrant neuronal activity are facets of the same coin linked to age-related neurodegenerative dementia of Alzheimer type. Investigating their respective roles in AD pathophysiology will help in translating findings from basic research to clinical applications.
Collapse
Affiliation(s)
- Marcello D'Amelio
- IRCCS S. Lucia Foundation, Via del Fosso di Fiorano 65, 00143 Rome, Italy.
| | | |
Collapse
|
18
|
Cattaneo L, Barchiesi G. Transcranial Magnetic Mapping of the Short-Latency Modulations of Corticospinal Activity from the Ipsilateral Hemisphere during Rest. Front Neural Circuits 2011; 5:14. [PMID: 22022307 PMCID: PMC3196155 DOI: 10.3389/fncir.2011.00014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 10/01/2011] [Indexed: 11/17/2022] Open
Abstract
Skilled hand function relies heavily on the integrity of the primary motor cortex (M1) and on a web of cortico-cortical connections projecting onto it. We used a novel explorative paradigm to map the origin of cortico-M1 pathways assessed by dual transcranial magnetic stimulation (TMS) in three healthy participants. Subthreshold conditioning TMS (cTMS) was delivered over a grid of ≈100 spots. Covering the left hemisphere, and was followed by suprathreshold test (tTMS) delivered over the ipsilateral M1. Grid points were tested eight times, with inter-stimulus intervals between cTMS and tTMS of 4 and 7 ms. Participants were asked to stay relaxed with no particular task. Motor evoked potentials (MEPs) from cTMS + tTMS were normalized to MEPs from tTMS alone and were compared to the value expected from tTMS alone using t-statistics. The t-values from each grid point were then used to plot statistical maps. Several foci of significant cortico-M1 interactions were found in the dorsal–medial frontal cortex, in the ventral frontal cortex, in the superior and inferior parietal lobules and in the parietal operculum. The majority of active foci had inhibitory effects on corticospinal excitability. The spatial location of the network of different subjects overlapped but with some anatomical variation of single foci. TMS statistical mapping during the resting state revealed a complex inhibitory cortical network. The explorative approach to TMS as a brain mapping tool produced results that are self-standing in single subjects overcoming inter-individual variability of cortical active sites.
Collapse
Affiliation(s)
- Luigi Cattaneo
- Transcranial Magnetic Stimulation Laboratory, Center for Mind/Brain Sciences, University of Trento Trento, Italy
| | | |
Collapse
|
19
|
Boggio PS, Valasek CA, Campanhã C, Giglio ACA, Baptista NI, Lapenta OM, Fregni F. Non-invasive brain stimulation to assess and modulate neuroplasticity in Alzheimer's disease. Neuropsychol Rehabil 2011; 21:703-16. [DOI: 10.1080/09602011.2011.617943] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Pennisi G, Ferri R, Lanza G, Cantone M, Pennisi M, Puglisi V, Malaguarnera G, Bella R. Transcranial magnetic stimulation in Alzheimer's disease: a neurophysiological marker of cortical hyperexcitability. J Neural Transm (Vienna) 2011; 118:587-98. [PMID: 21207079 DOI: 10.1007/s00702-010-0554-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Accepted: 11/29/2010] [Indexed: 02/07/2023]
Abstract
Recently, neuropathological studies have shown an important motor cortex involvement in Alzheimer's disease (AD), even in its early stages, despite the lack of clinically evident motor deficit. Transcranial magnetic stimulation (TMS) studies have demonstrated that cortical excitability is enhanced in AD patients. This cortical hyperexcitability is believed to be a compensatory mechanism to execute voluntary movements, despite the progressive impairment of associative cortical areas. At present, it is not clear if these motor cortex excitability changes might be the expression of an involvement of intracortical excitatory glutamatergic circuits or an impairment of inhibitory cholinergic and, to a lesser extent, gabaergic activity. Although the main hypothesis for the pathogenesis of AD remains the degeneration of the basal forebrain cholinergic neurons, the development of specific TMS protocols, such as the paired-pulse TMS and the study of the short-latency afferent inhibition, points out the role of other neurotransmitters, such as gamma-amino-butyric acid, glutamate and dopamine. The potential therapeutic effect of repetitive TMS in restoring or compensating damaged cognitive functions, might become a possible rehabilitation tool in AD patients. Based on different patterns of cortical excitability, TMS may be useful in discriminating between physiological brain aging, mild cognitive impairment, AD and other dementing disorders. The present review provides a perspective of these TMS techniques by further understanding the role of different neurotransmission pathways and plastic remodelling of neuronal networks in the pathogenesis of AD.
Collapse
Affiliation(s)
- Giovanni Pennisi
- Department of Neuroscience, University of Catania, Catania, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Transcranial magnetic stimulation in Alzheimer's disease: a neurophysiological marker of cortical hyperexcitability. JOURNAL OF NEURAL TRANSMISSION (VIENNA, AUSTRIA : 1996) 2011. [PMID: 21207079 DOI: 10.1007/s00702-010-0554-9.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
Recently, neuropathological studies have shown an important motor cortex involvement in Alzheimer's disease (AD), even in its early stages, despite the lack of clinically evident motor deficit. Transcranial magnetic stimulation (TMS) studies have demonstrated that cortical excitability is enhanced in AD patients. This cortical hyperexcitability is believed to be a compensatory mechanism to execute voluntary movements, despite the progressive impairment of associative cortical areas. At present, it is not clear if these motor cortex excitability changes might be the expression of an involvement of intracortical excitatory glutamatergic circuits or an impairment of inhibitory cholinergic and, to a lesser extent, gabaergic activity. Although the main hypothesis for the pathogenesis of AD remains the degeneration of the basal forebrain cholinergic neurons, the development of specific TMS protocols, such as the paired-pulse TMS and the study of the short-latency afferent inhibition, points out the role of other neurotransmitters, such as gamma-amino-butyric acid, glutamate and dopamine. The potential therapeutic effect of repetitive TMS in restoring or compensating damaged cognitive functions, might become a possible rehabilitation tool in AD patients. Based on different patterns of cortical excitability, TMS may be useful in discriminating between physiological brain aging, mild cognitive impairment, AD and other dementing disorders. The present review provides a perspective of these TMS techniques by further understanding the role of different neurotransmission pathways and plastic remodelling of neuronal networks in the pathogenesis of AD.
Collapse
|
22
|
Hampson M, Hoffman RE. Transcranial magnetic stimulation and connectivity mapping: tools for studying the neural bases of brain disorders. Front Syst Neurosci 2010; 4. [PMID: 20941369 PMCID: PMC2950743 DOI: 10.3389/fnsys.2010.00040] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 07/23/2010] [Indexed: 11/18/2022] Open
Abstract
There has been an increasing emphasis on characterizing pathophysiology underlying psychiatric and neurological disorders in terms of altered neural connectivity and network dynamics. Transcranial magnetic stimulation (TMS) provides a unique opportunity for investigating connectivity in the human brain. TMS allows researchers and clinicians to directly stimulate cortical regions accessible to electromagnetic coils positioned on the scalp. The induced activation can then propagate through long-range connections to other brain areas. Thus, by identifying distal regions activated during TMS, researchers can infer connectivity patterns in the healthy human brain and can examine how those patterns may be disrupted in patients with different brain disorders. Conversely, connectivity maps derived using neuroimaging methods can identify components of a dysfunctional network. Nodes in this dysfunctional network accessible as targets for TMS by virtue of their proximity to the scalp may then permit TMS-induced alterations of components of the network not directly accessible to TMS via propagated effects. Thus TMS can provide a portal for accessing and altering neural dynamics in networks that are widely distributed anatomically. Finally, when long-term modulation of network dynamics is induced by trains of repetitive TMS, changes in functional connectivity patterns can be studied in parallel with changes in patient symptoms. These correlational data can elucidate neural mechanisms underlying illness and recovery. In this review, we focus on the application of these approaches to the study of psychiatric and neurological illnesses.
Collapse
Affiliation(s)
- M Hampson
- Department of Diagnostic Radiology, Yale University School of Medicine New Haven, CT, USA
| | | |
Collapse
|