1
|
Deshpande DV, McKinley WI, Benjamin AJ, Schreiber MA, Rowell SE. The Association Between Tranexamic Acid and Seizures in Moderate or Severe Traumatic Brain Injury. J Surg Res 2024; 301:359-364. [PMID: 39024715 DOI: 10.1016/j.jss.2024.06.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/28/2024] [Accepted: 06/23/2024] [Indexed: 07/20/2024]
Abstract
INTRODUCTION Tranexamic acid (TXA) administered within 2 h of injury reduces mortality in traumatic brain injury (TBI) with intracranial hemorrhage. TXA also reduces the seizure threshold in a dose-dependent manner. We examined whether a 2-g bolus of prehospital TXA administered in moderate or severe TBI is associated with seizure activity within 72 h of injury. METHODS Patients from the prehospital TXA for TBI trial with Glasgow Coma Scale < 13, blunt head injury, and time-of-seizure data were included in this analysis. The original trial randomized patients with suspected TBI to placebo, 1-g TXA bolus + 1-g 8-h TXA infusion, or 2-g TXA bolus within 2 h of injury. In this secondary analysis, multivariable logistic regression was performed to examine the association of treatment group with seizure incidence. The model controlled for age, Glasgow Coma Scale, Injury Severity Score, intracranial hemorrhage, Abbreviated Injury Scale-head, and home antiseizure medication use. RESULTS Of the 786 patients who met the inclusion criteria, 19 had seizures within 72 h (five in placebo, two in 1-g bolus/1-g infusion, and 12 in 2-g bolus). The 2-g TXA bolus was not associated with increased seizures compared to placebo (odds ratio 0.41, 95% confidence interval 0.12-1.18, P = 0.12). Home antiseizure medication use was associated with increased seizures (odds ratio 15.95, 95% confidence interval 3.79-60.57, P < 0.001). CONCLUSIONS A prehospital 2-g TXA bolus in moderate or severe TBI was not associated with increased seizure activity during the first 72 h after injury; however, limited power, limited use of continuous electroencephalography, and unavailable seizure prophylaxis data highlight the need for further study.
Collapse
Affiliation(s)
- David V Deshpande
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois.
| | - W Ian McKinley
- Department of Surgery, University of Chicago, Chicago, Illinois
| | - Andrew J Benjamin
- Surgery, Trauma and Acute Care Surgery, University of Chicago, Chicago, Illinois
| | - Martin A Schreiber
- Donald D. Trunkey Center for Civilian and Combat Casualty Care, Oregon Health & Science University, Portland, Oregon
| | - Susan E Rowell
- Surgery, Trauma and Acute Care Surgery, University of Chicago, Chicago, Illinois
| |
Collapse
|
2
|
Hwang J, Akbar AF, Premraj L, Ritzl EK, Cho SM. Epidemiology of Seizures and Association With Mortality in Adult Patients Undergoing ECMO: A Systematic Review and Meta-analysis. Neurology 2024; 103:e209721. [PMID: 39079068 DOI: 10.1212/wnl.0000000000209721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Extracorporeal membrane oxygenation (ECMO) provides lifesaving support to patients with cardiopulmonary failure. Although seizures increase mortality risks among critically ill patients broadly, studies specific to adult ECMO patients have largely been limited to single-center studies. Thus, we aimed to perform a systematic review and meta-analyses of seizure prevalence, mortality, and their associations in adult ECMO patients. METHODS PubMed, EMBASE, Cochrane trial registry, Web of Science, and SCOPUS were searched on August 5, 2023. Following the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines, we included studies of adults undergoing venovenous ECMO (VV-ECMO), venoarterial ECMO (VA-ECMO), or extracorporeal cardiopulmonary resuscitation (ECPR) that reported seizures during ECMO. The extracted data included study characteristics, patient demographics, ECMO support, EEG monitoring, and seizures, organized by ECMO types. Forest plot and meta-regression analyses were performed. Bias assessment was performed with the Egger test and Newcastle-Ottawa Scale. RESULTS Twenty-three studies (n = 40,420, mean age = 51.8 years, male = 62%) were included. Data were extracted by ECMO type as follows: VV-ECMO (n = 16,633), non-ECPR VA-ECMO (n = 11,082), ECPR (n = 3,369), combination of VA-ECMO and ECPR (n = 240), and combination of all types (n = 9,096). The pooled seizure prevalence for all ECMO types was 3.0%, not significantly different across ECMO types (VV-ECMO = 2.0% [95% CI 0.8-4.5]; VA-ECMO = 3.5% [95% CI 1.7-7.0]; ECPR = 4.9% [95% CI 1.3-17.2]). The pooled mortality was lower for VV-ECMO (46.2% [95% CI 39.3-53.2]) than VA-ECMO (63.4% [95% CI 56.6-69.6]) and ECPR (61.5% [95% CI 57.3-65.6]). Specifically, for VV-ECMO, the pooled mortality of patients with and without seizures was 55.1% and 36.7%, respectively (relative risk = 1.5 [95% CI 1.3-1.7]). Similarly, for VA-ECMO, the pooled mortality of patients with and without seizures was 74.4% and 56.1%, respectively (relative risk = 1.3 [95% CI 1.2-1.5]). Meta-regression analyses demonstrated that seizure prevalence was not associated with prior neurologic comorbidities, adjusted for ECMO type and study year. DISCUSSION Seizures are infrequent during ECMO support. However, they were associated with increased mortality when present. Multi-institutional, larger-scale studies using standardized EEG monitoring are necessary to further understand the risk factors of specific classes of seizures for individual ECMO types, and their effects on mortality. Limitations of our study include missing data for details on seizure types, sedating/antiseizure medications used during ECMO, other ECMO-related complications, and EEG recording protocols.
Collapse
Affiliation(s)
- Jaeho Hwang
- From the Division of Epilepsy (J.H., E.K.R.), Department of Neurology; Division of Cardiac Surgery (A.F.A.), Department of Surgery, The Johns Hopkins Hospital, Baltimore, MD; Griffith University School of Medicine (L.P.), Gold Coast, Queensland, Australia; Division of Neurosciences Critical Care (E.K.R., S.-M.C.), Departments of Neurology, Neurosurgery, Anesthesiology, Critical Care Medicine, The Johns Hopkins Hospital, Baltimore, MD; and Division of Intraoperative Neuromonitoring (E.K.R.), Department of Neurology, Massachusetts General Brigham, Boston
| | - Armaan F Akbar
- From the Division of Epilepsy (J.H., E.K.R.), Department of Neurology; Division of Cardiac Surgery (A.F.A.), Department of Surgery, The Johns Hopkins Hospital, Baltimore, MD; Griffith University School of Medicine (L.P.), Gold Coast, Queensland, Australia; Division of Neurosciences Critical Care (E.K.R., S.-M.C.), Departments of Neurology, Neurosurgery, Anesthesiology, Critical Care Medicine, The Johns Hopkins Hospital, Baltimore, MD; and Division of Intraoperative Neuromonitoring (E.K.R.), Department of Neurology, Massachusetts General Brigham, Boston
| | - Lavienraj Premraj
- From the Division of Epilepsy (J.H., E.K.R.), Department of Neurology; Division of Cardiac Surgery (A.F.A.), Department of Surgery, The Johns Hopkins Hospital, Baltimore, MD; Griffith University School of Medicine (L.P.), Gold Coast, Queensland, Australia; Division of Neurosciences Critical Care (E.K.R., S.-M.C.), Departments of Neurology, Neurosurgery, Anesthesiology, Critical Care Medicine, The Johns Hopkins Hospital, Baltimore, MD; and Division of Intraoperative Neuromonitoring (E.K.R.), Department of Neurology, Massachusetts General Brigham, Boston
| | - Eva K Ritzl
- From the Division of Epilepsy (J.H., E.K.R.), Department of Neurology; Division of Cardiac Surgery (A.F.A.), Department of Surgery, The Johns Hopkins Hospital, Baltimore, MD; Griffith University School of Medicine (L.P.), Gold Coast, Queensland, Australia; Division of Neurosciences Critical Care (E.K.R., S.-M.C.), Departments of Neurology, Neurosurgery, Anesthesiology, Critical Care Medicine, The Johns Hopkins Hospital, Baltimore, MD; and Division of Intraoperative Neuromonitoring (E.K.R.), Department of Neurology, Massachusetts General Brigham, Boston
| | - Sung-Min Cho
- From the Division of Epilepsy (J.H., E.K.R.), Department of Neurology; Division of Cardiac Surgery (A.F.A.), Department of Surgery, The Johns Hopkins Hospital, Baltimore, MD; Griffith University School of Medicine (L.P.), Gold Coast, Queensland, Australia; Division of Neurosciences Critical Care (E.K.R., S.-M.C.), Departments of Neurology, Neurosurgery, Anesthesiology, Critical Care Medicine, The Johns Hopkins Hospital, Baltimore, MD; and Division of Intraoperative Neuromonitoring (E.K.R.), Department of Neurology, Massachusetts General Brigham, Boston
| |
Collapse
|
3
|
Bitar R, Khan UM, Rosenthal ES. Utility and rationale for continuous EEG monitoring: a primer for the general intensivist. Crit Care 2024; 28:244. [PMID: 39014421 PMCID: PMC11251356 DOI: 10.1186/s13054-024-04986-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/09/2024] [Indexed: 07/18/2024] Open
Abstract
This review offers a comprehensive guide for general intensivists on the utility of continuous EEG (cEEG) monitoring for critically ill patients. Beyond the primary role of EEG in detecting seizures, this review explores its utility in neuroprognostication, monitoring neurological deterioration, assessing treatment responses, and aiding rehabilitation in patients with encephalopathy, coma, or other consciousness disorders. Most seizures and status epilepticus (SE) events in the intensive care unit (ICU) setting are nonconvulsive or subtle, making cEEG essential for identifying these otherwise silent events. Imaging and invasive approaches can add to the diagnosis of seizures for specific populations, given that scalp electrodes may fail to identify seizures that may be detected by depth electrodes or electroradiologic findings. When cEEG identifies SE, the risk of secondary neuronal injury related to the time-intensity "burden" often prompts treatment with anti-seizure medications. Similarly, treatment may be administered for seizure-spectrum activity, such as periodic discharges or lateralized rhythmic delta slowing on the ictal-interictal continuum (IIC), even when frank seizures are not evident on the scalp. In this setting, cEEG is utilized empirically to monitor treatment response. Separately, cEEG has other versatile uses for neurotelemetry, including identifying the level of sedation or consciousness. Specific conditions such as sepsis, traumatic brain injury, subarachnoid hemorrhage, and cardiac arrest may each be associated with a unique application of cEEG; for example, predicting impending events of delayed cerebral ischemia, a feared complication in the first two weeks after subarachnoid hemorrhage. After brief training, non-neurophysiologists can learn to interpret quantitative EEG trends that summarize elements of EEG activity, enhancing clinical responsiveness in collaboration with clinical neurophysiologists. Intensivists and other healthcare professionals also play crucial roles in facilitating timely cEEG setup, preventing electrode-related skin injuries, and maintaining patient mobility during monitoring.
Collapse
Affiliation(s)
- Ribal Bitar
- Department of Neurology, Massachusetts General Hospital, 55 Fruit St., Lunder 644, Boston, MA, 02114, USA
| | - Usaamah M Khan
- Department of Neurology, Massachusetts General Hospital, 55 Fruit St., Lunder 644, Boston, MA, 02114, USA
| | - Eric S Rosenthal
- Department of Neurology, Massachusetts General Hospital, 55 Fruit St., Lunder 644, Boston, MA, 02114, USA.
| |
Collapse
|
4
|
Effect of Algoplaque Hydrocolloid Dressing Combined with Nanosilver Antibacterial Gel under Predictive Nursing in the Treatment of Medical Device-Related Pressure Injury. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9756602. [PMID: 35860183 PMCID: PMC9293497 DOI: 10.1155/2022/9756602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022]
Abstract
It was aimed at the clinical value of predictive nursing and Algoplaque hydrocolloid dressing (AHD) combined with nanosilver antibacterial gel in treating medical device-related pressure injury (MDRPI). 100 patients, who underwent surgery in Chongqing Qijiang District People's Hospital from February 2019 to February 2020, were selected as the research objects and were randomly divided into the experimental group (50 cases) and the control group (50 cases). For the characterization test, a nanosilver antibacterial gel was created first. Patients in both groups received predictive nursing, but those in the experimental group received AHD and nanosilver antibacterial gel, and those in the control group received gauzes. MDRPI incidence, pressed skin injury severity, comfort level, clothing changes, nursing satisfaction, and other factors were all compared. The particle size of the nanosilver gel was 45-85 nm, with a relatively homogeneous distribution with the medium size, according to the findings. The incidence of MDRPI in the experimental group was lower than that in the control group significantly (6% vs. 30%, P < 0.05). The degree of injury of pressured skin in the experimental group was milder than that in the control group (P < 0.05), the degree of comfort and nursing satisfaction was higher in the experimental group than in the control group (P < 0.05), and dressing change count was lower than that in the control group (P < 0.05). In the treatment of MDRPI, predictive nursing and AHD using nanosilver antibacterial gel showed high clinical application value.
Collapse
|
5
|
Pinto LF, Oliveira JPSD, Midon AM. Status epilepticus: review on diagnosis, monitoring and treatment. ARQUIVOS DE NEURO-PSIQUIATRIA 2022; 80:193-203. [PMID: 35976303 PMCID: PMC9491413 DOI: 10.1590/0004-282x-anp-2022-s113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Status epilepticus (SE) is a frequent neurological emergency associated with high morbidity and mortality. According to the new ILAE 2015 definition, SE results either from the failure of the mechanisms responsible for seizure termination or initiation, leading to abnormally prolonged seizures. The definition has different time points for convulsive, focal and absence SE. Time is brain. There are changes in synaptic receptors leading to a more proconvulsant state and increased risk of brain lesion and sequelae with long duration. Management of SE must include three pillars: stop seizures, stabilize patients to avoid secondary lesions and treat underlying causes. Convulsive SE is defined after 5 minutes and is a major emergency. Benzodiazepines are the initial treatment, and should be given fast and an adequate dose. Phenytoin/fosphenytoin, levetiracetam and valproic acid are evidence choices for second line treatment. If SE persists, anesthetic drugs are probably the best option for third line treatment, despite lack of evidence. Midazolam is usually the best initial choice and barbiturates should be considered for refractory cases. Nonconvulsive status epilepticus has a similar initial approach, with benzodiazepines and second line intravenous (IV) agents, but after that, aggressiveness should be balanced considering risk of lesion due to seizures and medical complications caused by aggressive treatment. Usually, the best approach is the use of sequential IV antiepileptic drugs (oral/tube are options if IV options are not available). EEG monitoring is crucial for diagnosis of nonconvulsive SE, after initial control of convulsive SE and treatment control. Institutional protocols are advised to improve care.
Collapse
Affiliation(s)
- Lecio Figueira Pinto
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Neurologia, Grupo de Epilepsia, São Paulo SP, Brazil
| | | | - Aston Marques Midon
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Neurologia, São Paulo SP, Brazil
| |
Collapse
|