1
|
Frankel E, Podder A, Sharifi M, Pillai R, Belnap N, Ramsey K, Dodson J, Venugopal P, Brzezinski M, Llaci L, Gerald B, Mills G, Sanchez-Castillo M, Balak CD, Szelinger S, Jepsen WM, Siniard AL, Richholt R, Naymik M, Schrauwen I, Craig DW, Piras IS, Huentelman MJ, Schork NJ, Narayanan V, Rangasamy S. Genetic and Protein Network Underlying the Convergence of Rett-Syndrome-like (RTT-L) Phenotype in Neurodevelopmental Disorders. Cells 2023; 12:1437. [PMID: 37408271 DOI: 10.3390/cells12101437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/20/2023] [Accepted: 04/29/2023] [Indexed: 07/07/2023] Open
Abstract
Mutations of the X-linked gene encoding methyl-CpG-binding protein 2 (MECP2) cause classical forms of Rett syndrome (RTT) in girls. A subset of patients who are recognized to have an overlapping neurological phenotype with RTT but are lacking a mutation in a gene that causes classical or atypical RTT can be described as having a 'Rett-syndrome-like phenotype (RTT-L). Here, we report eight patients from our cohort diagnosed as having RTT-L who carry mutations in genes unrelated to RTT. We annotated the list of genes associated with RTT-L from our patient cohort, considered them in the light of peer-reviewed articles on the genetics of RTT-L, and constructed an integrated protein-protein interaction network (PPIN) consisting of 2871 interactions connecting 2192 neighboring proteins among RTT- and RTT-L-associated genes. Functional enrichment analysis of RTT and RTT-L genes identified a number of intuitive biological processes. We also identified transcription factors (TFs) whose binding sites are common across the set of RTT and RTT-L genes and appear as important regulatory motifs for them. Investigation of the most significant over-represented pathway analysis suggests that HDAC1 and CHD4 likely play a central role in the interactome between RTT and RTT-L genes.
Collapse
Affiliation(s)
- Eric Frankel
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Avijit Podder
- Quantitative Medicine Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Megan Sharifi
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Roshan Pillai
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Newell Belnap
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
- Center for Rare Childhood Disorders (C4RCD), Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Keri Ramsey
- Center for Rare Childhood Disorders (C4RCD), Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Julius Dodson
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Pooja Venugopal
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Molly Brzezinski
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Lorida Llaci
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
- Quantitative Medicine Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Brittany Gerald
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Gabrielle Mills
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Meredith Sanchez-Castillo
- Center for Rare Childhood Disorders (C4RCD), Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Chris D Balak
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Szabolcs Szelinger
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Wayne M Jepsen
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Ashley L Siniard
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Ryan Richholt
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Marcus Naymik
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Isabelle Schrauwen
- Center for Statistical Genetics, Department of Neurology, Gertrude H. Sergievsky Center, Columbia University Medical Center, New York, NY 10032, USA
| | - David W Craig
- Department of Translational Genomics, University of Southern California, Los Angeles, CA 90033, USA
| | - Ignazio S Piras
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Matthew J Huentelman
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
- Quantitative Medicine Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Nicholas J Schork
- Quantitative Medicine Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
- City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Vinodh Narayanan
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
- Center for Rare Childhood Disorders (C4RCD), Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Sampathkumar Rangasamy
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
- Center for Rare Childhood Disorders (C4RCD), Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| |
Collapse
|
2
|
Spagnoli C, Fusco C, Pisani F. Rett Syndrome Spectrum in Monogenic Developmental-Epileptic Encephalopathies and Epilepsies: A Review. Genes (Basel) 2021; 12:genes12081157. [PMID: 34440332 PMCID: PMC8394997 DOI: 10.3390/genes12081157] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION Progress in the clinical application of next-generation-sequencing-based techniques has resulted in a dramatic increase in the recognized genetic heterogeneity of the Rett syndrome spectrum (RSS). Our awareness of the considerable overlap with pediatric-onset epilepsies and epileptic/developmental encephalopathies (EE/DE) genes is also growing, and the presence of variable clinical features inside a general frame of commonalities has drawn renewed attention into deep phenotyping. METHODS We decided to review the medical literature on atypical Rett syndrome and "Rett-like" phenotypes, with special emphasis on described cases with pediatric-onset epilepsies and/or EE-DE, evaluating Neul's criteria for Rett syndrome and associated movement disorders and notable stereotypies. RESULTS "Rett-like" features were described in syndromic and non-syndromic monogenic epilepsy- and DE/EE-related genes, in "intellectual disability plus epilepsy"-related genes and in neurodegenerative disorders. Additionally, prominent stereotypies can be observed in monogenic complex neurodevelopmental disorders featuring epilepsy with or without autistic features outside of the RSS. CONCLUSIONS Patients share a complex neurodevelopmental and neurological phenotype (developmental delay, movement disorder) with impaired gait, abnormal tone and hand stereotypies. However, the presence and characteristics of regression and loss of language and functional hand use can differ. Finally, the frequency of additional supportive criteria and their distribution also vary widely.
Collapse
Affiliation(s)
- Carlotta Spagnoli
- Child Neurology Unit, AUSL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
- Correspondence:
| | - Carlo Fusco
- Child Neurology Unit, AUSL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Francesco Pisani
- Child Neuropsychiatry Unit, University-Hospital of Parma, 43123 Parma, Italy;
| |
Collapse
|