1
|
Claytor B, Polston D, Li Y. Multifocal Motor Neuropathy: A Narrative Review. Muscle Nerve 2025; 71:512-534. [PMID: 39936246 PMCID: PMC11887531 DOI: 10.1002/mus.28349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 02/13/2025]
Abstract
Multifocal motor neuropathy (MMN) is an acquired autoimmune polyneuropathy that affects almost exclusively the motor nerve fibers. Typically seen in middle-aged adults, its predominant clinical feature is a chronically progressive asymmetric weakness that affects the distal upper extremities most significantly. Minor sensory symptoms, sensory examination findings or abnormal sensory nerve conduction studies can be seen in the lower extremities in a minority of patients. Electrodiagnostic studies reveal motor conduction blocks at noncompressible sites, and minor findings of other demyelinating features such as conduction slowing or temporal dispersion. Anti-GM1 antibody titers are elevated in less than half of MMN patients, and more recent studies suggest mechanisms including antibody-induced complement attack at the node of Ranvier with resulting ion channel dysfunction. Peripheral nerve magnetic resonance imaging and neuromuscular ultrasound often reveal non-uniform enlargement of the nerve roots, plexuses, or peripheral nerve segments, thus being useful in assisting diagnosis. The differential diagnosis of MMN mainly includes motor neuron disease or demyelinating sensorimotor polyneuropathies. Immunoglobulin therapy is the first-line and mainstay of treatment, being effective in maintaining or restoring muscle strength in the majority of patients. However, motor strength often slowly declines over the long term, even with maintenance immunoglobulin treatment. More effective immunotherapy is needed to halt the slow progression of MMN, and complement inhibition appears to be a promising option in the near future.
Collapse
Affiliation(s)
- Benjamin Claytor
- Neuromuscular Center, Department of NeurologyNeurological Institute, Cleveland ClinicClevelandOhioUSA
| | - David Polston
- Neuromuscular Center, Department of NeurologyNeurological Institute, Cleveland ClinicClevelandOhioUSA
| | - Yuebing Li
- Neuromuscular Center, Department of NeurologyNeurological Institute, Cleveland ClinicClevelandOhioUSA
| |
Collapse
|
2
|
van de Mortel JPM, Budding K, Dijkxhoorn K, Minnema MC, Vrancken AFJE, Notermans NC, van der Pol WL. The Role of Complement Activation in IgM M-Protein-Associated Neuropathies. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2025; 12:e200339. [PMID: 39571136 PMCID: PMC11587989 DOI: 10.1212/nxi.0000000000200339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/30/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND AND OBJECTIVES Polyneuropathy associated with an immunoglobulin M (IgM) monoclonal gammopathy is characterized by slowly progressive, predominantly distal sensorimotor deficits, sensory ataxia, and electrophysiologic features of demyelination. IgM antibodies against myelin-associated glycoprotein (MAG) are present in serum from most patients. Nerve damage most likely results from the concerted action of binding of anti-MAG antibodies to nerves, followed by complement activation. The interaction of anti-MAG antibodies with complement activation and their relation to clinical characteristics have not been studied in detail. We studied the correlation among anti-MAG antibody titers, complement activation, and IgM-associated polyneuropathy disease severity. METHODS We used serum samples from 101 patients with IgM-associated polyneuropathy to assess IgM anti-MAG titers by ELISA and antibody-mediated complement deposition using both an ELISA-based system and a cell-based system of primate peripheral nerve slides. We studied correlations of complement activation with anti-MAG ELISA titers and clinical characteristics. RESULTS IgM anti-MAG titers varied from negative to strongly positive. Complement deposition in the ELISA-based system correlated significantly with anti-MAG antibody titer (Spearman rho 0.80; p < 0.0001) despite large variability between serum samples with comparable anti-MAG titers. This variability was even larger in the cell-based assay, which also showed complement deposition in IgM anti-MAG negative patients, indicating the presence of autoantibodies directed against epitopes other than MAG in a subset of patients with IgM-associated polyneuropathy. Clinical characteristics did not correlate with anti-MAG titers or complement activation. DISCUSSION Anti-MAG antibody titers correlate with the level of complement activation in both ELISA and cell-based systems. However, clinical characteristics of IgM-associated polyneuropathy do not or only weakly correlate with titers or the level of complement deposition. The lack of clear correlations between complement activation and clinical characteristics does, at this stage, not support the use of complement inhibitors in the treatment of IgM-associated polyneuropathy.
Collapse
Affiliation(s)
- Johannes P M van de Mortel
- From the Department of Neurology and Neurosurgery (J.P.M.M., A.F.J.E.V., N.C.N., W.L.v.d.P.), UMC Utrecht Brain Center; Center for Translational Immunology (K.B., K.D.); Department of Hematology (M.C.M.), University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Kevin Budding
- From the Department of Neurology and Neurosurgery (J.P.M.M., A.F.J.E.V., N.C.N., W.L.v.d.P.), UMC Utrecht Brain Center; Center for Translational Immunology (K.B., K.D.); Department of Hematology (M.C.M.), University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Kim Dijkxhoorn
- From the Department of Neurology and Neurosurgery (J.P.M.M., A.F.J.E.V., N.C.N., W.L.v.d.P.), UMC Utrecht Brain Center; Center for Translational Immunology (K.B., K.D.); Department of Hematology (M.C.M.), University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Monique C Minnema
- From the Department of Neurology and Neurosurgery (J.P.M.M., A.F.J.E.V., N.C.N., W.L.v.d.P.), UMC Utrecht Brain Center; Center for Translational Immunology (K.B., K.D.); Department of Hematology (M.C.M.), University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Alexander F J E Vrancken
- From the Department of Neurology and Neurosurgery (J.P.M.M., A.F.J.E.V., N.C.N., W.L.v.d.P.), UMC Utrecht Brain Center; Center for Translational Immunology (K.B., K.D.); Department of Hematology (M.C.M.), University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Nicolette C Notermans
- From the Department of Neurology and Neurosurgery (J.P.M.M., A.F.J.E.V., N.C.N., W.L.v.d.P.), UMC Utrecht Brain Center; Center for Translational Immunology (K.B., K.D.); Department of Hematology (M.C.M.), University Medical Center Utrecht, Utrecht University, The Netherlands
| | - W Ludo van der Pol
- From the Department of Neurology and Neurosurgery (J.P.M.M., A.F.J.E.V., N.C.N., W.L.v.d.P.), UMC Utrecht Brain Center; Center for Translational Immunology (K.B., K.D.); Department of Hematology (M.C.M.), University Medical Center Utrecht, Utrecht University, The Netherlands
| |
Collapse
|
3
|
Bos JW, Groen EJN, Otten HG, Budding K, van Eijk RPA, Curial C, Kardol-Hoefnagel T, Goedee HS, van den Berg LH, van der Pol WL. A 21-bp deletion in the complement regulator CD55 promotor region is associated with multifocal motor neuropathy and its disease course. J Peripher Nerv Syst 2024; 29:193-201. [PMID: 38528725 DOI: 10.1111/jns.12620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND AND AIMS To further substantiate the role of antibody-mediated complement activation in multifocal motor neuropathy (MMN) immunopathology, we investigated the distribution of promotor polymorphisms of genes encoding the membrane-bound complement regulators CD46, CD55, and CD59 in patients with MMN and controls, and evaluated their association with disease course. METHODS We used Sanger sequencing to genotype five common polymorphisms in the promotor regions of CD46, CD55, and CD59 in 133 patients with MMN and 380 controls. We correlated each polymorphism to clinical parameters. RESULTS The genotype frequencies of rs28371582, a 21-bp deletion in the CD55 promotor region, were altered in patients with MMN as compared to controls (p .009; Del/Del genotype 16.8% vs. 7.7%, p .005, odds ratio: 2.43 [1.27-4.58]), and patients carrying this deletion had a more favorable disease course (mean difference 0.26 Medical Research Council [MRC] points/year; 95% confidence interval [CI]: 0.040-0.490, p .019). The presence of CD59 rs141385724 was associated with less severe pre-diagnostic disease course (mean difference 0.940 MRC point/year; 95% CI: 0.083-1.80, p .032). INTERPRETATION MMN susceptibility is associated with a 21-bp deletion in the CD55 promotor region (rs2871582), which is associated with lower CD55 expression. Patients carrying this deletion may have a more favorable long-term disease outcome. Taken together, these results point out the relevance of the pre-C5 level of the complement cascade in the inflammatory processes underlying MMN.
Collapse
Affiliation(s)
- Jeroen W Bos
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Ewout J N Groen
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Henny G Otten
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kevin Budding
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Ruben P A van Eijk
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
- Biostatistics & Research Support, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Chantall Curial
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Tineke Kardol-Hoefnagel
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - H Stephan Goedee
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Leonard H van den Berg
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - W Ludo van der Pol
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
4
|
Adreana Kleinveld VE, Wanschitz J, Löscher WN, Hotter A, Cornelia Horlings CG. Deterioration in multifocal motor neuropathy upon treatment of immune-related adverse events of checkpoint inhibition. Immunotherapy 2024; 16:597-601. [PMID: 39052281 PMCID: PMC11287915 DOI: 10.1080/1750743x.2024.2342238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/09/2024] [Indexed: 07/27/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have significantly improved the clinical outcome in multiple types of advanced or metastatic malignancies and are prescribed increasingly. However, immune-related adverse events (irAEs) occur frequently. Here, we present a patient with multifocal motor neuropathy and melanoma, with worsening of muscle weakness upon ICI therapy and concomitant use of steroids for the treatment of hepatitis, which was considered an irAE. Upon treatment with highly dosed immunoglobulins and steroid tapering, the patients' muscular symptoms improved while hepatitis resolved. This case highlights the importance of careful evaluation of patients with multifocal motor neuropathy treated with ICIs, highlights the risks of treatment with steroids in multifocal motor neuropathy patients and suggests an alternative treatment of irAEs with intravenous immunoglobulins.
Collapse
Affiliation(s)
| | - Julia Wanschitz
- University Hospital of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Wolfgang N Löscher
- University Hospital of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Anna Hotter
- University Hospital of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | | |
Collapse
|
5
|
Budding K, Bos JW, Dijkxhoorn K, de Zeeuw E, Bloemenkamp LM, Zekveld EM, Groen EJN, Jacobs BC, Huizinga R, Goedee HS, Cats EA, Leusen JHW, van den Berg LH, Hack CE, van der Pol WL. IgM anti-GM2 antibodies in patients with multifocal motor neuropathy target Schwann cells and are associated with early onset. J Neuroinflammation 2024; 21:100. [PMID: 38632654 PMCID: PMC11025174 DOI: 10.1186/s12974-024-03090-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Multifocal motor neuropathy (MMN) is a rare, chronic immune-mediated polyneuropathy characterized by asymmetric distal limb weakness. An important feature of MMN is the presence of IgM antibodies against gangliosides, in particular GM1 and less often GM2. Antibodies against GM1 bind to motor neurons (MNs) and cause damage through complement activation. The involvement of Schwann cells (SCs), expressing GM1 and GM2, in the pathogenesis of MMN is unknown. METHODS Combining the data of our 2007 and 2015 combined cross-sectional and follow-up studies in Dutch patients with MMN, we evaluated the presence of IgM antibodies against GM1 and GM2 in serum from 124 patients with MMN and investigated their binding to SCs and complement-activating properties. We also assessed the relation of IgM binding and complement deposition with clinical characteristics. RESULTS Thirteen out of 124 patients (10%) had a positive ELISA titer for IgM anti-GM2. Age at onset of symptoms was significantly lower in MMN patients with anti-GM2 IgM. IgM binding to SCs correlated with IgM anti-GM2 titers. We found no correlation between IgM anti-GM2 titers and MN binding or with IgM anti-GM1 titers. IgM binding to SCs decreased upon pre-incubation of serum with soluble GM2, but not with soluble GM1. IgM anti-GM2 binding to SCs correlated with complement activation, as reflected by increased C3 fixation on SCs and C5a formation in the supernatant. CONCLUSION Circulating IgM anti-GM2 antibodies define a subgroup of patients with MMN that has an earlier onset of disease. These antibodies probably target SCs specifically and activate complement, similarly as IgM anti-GM1 on MNs. Our data indicate that complement activation by IgM antibodies bound to SCs and MNs underlies MMN pathology.
Collapse
Affiliation(s)
- Kevin Budding
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeroen W Bos
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht, The Netherlands
| | - Kim Dijkxhoorn
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Elisabeth de Zeeuw
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lauri M Bloemenkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht, The Netherlands
| | - Eva M Zekveld
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ewout J N Groen
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht, The Netherlands
| | - Bart C Jacobs
- Department of Neurology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Ruth Huizinga
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - H Stephan Goedee
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht, The Netherlands
| | - Elisabeth A Cats
- Department of Neurology, Gelre Hospital, Apeldoorn, The Netherlands
| | - Jeanette H W Leusen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Leonard H van den Berg
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht, The Netherlands
| | - C Erik Hack
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - W Ludo van der Pol
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht, The Netherlands.
| |
Collapse
|
6
|
Kuwahara M. [Prospect of novel therapies in immune-mediated neuropathies]. Rinsho Shinkeigaku 2024; 64:1-7. [PMID: 38072443 DOI: 10.5692/clinicalneurol.cn-001888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
The efficacy of immunotherapies such as steroids, plasmapheresis, and intravenous immunoglobulin have been proven in various immune-mediated neuropathies. However, these treatments sometimes lack the efficacy in a part of patients with the immune-mediated neuropathies. In addition, anti-myelin associated glycoprotein (MAG) neuropathy is usually refractory to the treatments. Recently, novel therapies targeting a molecule which are associated with pathogenesis of immune-mediated diseases, have been developed. These molecularly targeted therapies are notable in immune-mediated neuropathies as novel drug candidates. In the present article, current treatments and future prospect of novel therapies in immune-mediated neuropathies will be reviewed.
Collapse
Affiliation(s)
- Motoi Kuwahara
- Department of Neurology, Kindai University Faculty of Medicine
| |
Collapse
|
7
|
Bos JW, Groen EJN, Budding K, Delemarre EM, Goedee HS, Knol EF, van den Berg LH, van der Pol WL. Multifocal motor neuropathy is not associated with altered innate immune responses to endotoxin. J Neurol Sci 2023; 451:120692. [PMID: 37422959 DOI: 10.1016/j.jns.2023.120692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/19/2023] [Accepted: 05/22/2023] [Indexed: 07/11/2023]
Abstract
OBJECTIVE Antibody- and complement-mediated peripheral nerve inflammation are central in the pathogenesis of MMN. Here, we studied innate immune responses to endotoxin in patients with MMN and controls to further our understanding of MMN risk factors and disease modifiers. METHODS We stimulated whole blood of 52 patients with MMN and 24 controls with endotoxin and collected plasma. With a multiplex assay, we determined levels of the immunoregulating proteins IL-1RA, IL-1β, IL-6, IL-10, IL-21, TNF-α, IL-8 and CD40L in unstimulated and LPS-stimulated plasma. We compared baseline and stimulated protein levels between patients and controls and correlated concentrations to clinical parameters. RESULTS Protein level changes after stimulation were comparable between groups (p > 0.05). IL-1RA, IL-1β, IL-6 and IL-21 baseline concentrations showed a positive correlation with monthly IVIg dosage (all corrected p-values < 0.016). Patients with anti-GM1 IgM antibodies showed a more pronounced IL-21 increase after stimulation (p 0.048). CONCLUSIONS Altered endotoxin-induced innate immune responses are unlikely to be a susceptibility factor for MMN.
Collapse
Affiliation(s)
- Jeroen W Bos
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands.
| | - Ewout J N Groen
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands.
| | - Kevin Budding
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Eveline M Delemarre
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - H Stephan Goedee
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands.
| | - Edward F Knol
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Dermatology and Allergology, National Expertise Center for Atopic Dermatitis, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Leonard H van den Berg
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands.
| | - W Ludo van der Pol
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
8
|
Shastri A, Al Aiyan A, Kishore U, Farrugia ME. Immune-Mediated Neuropathies: Pathophysiology and Management. Int J Mol Sci 2023; 24:7288. [PMID: 37108447 PMCID: PMC10139406 DOI: 10.3390/ijms24087288] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Dysfunction of the immune system can result in damage of the peripheral nervous system. The immunological mechanisms, which include macrophage infiltration, inflammation and proliferation of Schwann cells, result in variable degrees of demyelination and axonal degeneration. Aetiology is diverse and, in some cases, may be precipitated by infection. Various animal models have contributed and helped to elucidate the pathophysiological mechanisms in acute and chronic inflammatory polyradiculoneuropathies (Guillain-Barre Syndrome and chronic inflammatory demyelinating polyradiculoneuropathy, respectively). The presence of specific anti-glycoconjugate antibodies indicates an underlying process of molecular mimicry and sometimes assists in the classification of these disorders, which often merely supports the clinical diagnosis. Now, the electrophysiological presence of conduction blocks is another important factor in characterizing another subgroup of treatable motor neuropathies (multifocal motor neuropathy with conduction block), which is distinct from Lewis-Sumner syndrome (multifocal acquired demyelinating sensory and motor neuropathy) in its response to treatment modalities as well as electrophysiological features. Furthermore, paraneoplastic neuropathies are also immune-mediated and are the result of an immune reaction to tumour cells that express onconeural antigens and mimic molecules expressed on the surface of neurons. The detection of specific paraneoplastic antibodies often assists the clinician in the investigation of an underlying, sometimes specific, malignancy. This review aims to discuss the immunological and pathophysiological mechanisms that are thought to be crucial in the aetiology of dysimmune neuropathies as well as their individual electrophysiological characteristics, their laboratory features and existing treatment options. Here, we aim to present a balance of discussion from these diverse angles that may be helpful in categorizing disease and establishing prognosis.
Collapse
Affiliation(s)
- Abhishek Shastri
- Central and North West London NHS Foundation Trust, London NW1 3AX, UK
| | - Ahmad Al Aiyan
- Department of Veterinary Medicine, UAE University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Uday Kishore
- Department of Veterinary Medicine, UAE University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Maria Elena Farrugia
- Department of Neurology, Institute of Neurological Sciences, Southern General Hospital, Glasgow G51 4TF, UK
| |
Collapse
|
9
|
Serum C3 complement levels predict prognosis and monitor disease activity in Guillain-Barré syndrome. J Neurol Sci 2023; 444:120512. [PMID: 36462224 DOI: 10.1016/j.jns.2022.120512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/27/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Biomarkers are needed to predict prognosis and disease activity in patients with Guillain-Barré syndrome (GBS). The complement system is a key player in the pathogenesis of GBS. This study aimed to assess the potential utility of serum complement proteins as novel biomarkers in GBS. METHODS We reviewed the medical records of 76 GBS patients with C3 and C4 measurements during hospitalization between 2010 and 2021. Clinical outcomes were correlated with baseline serum C3, C4, and seven additional predictors: four existing biomarkers (GM1, albumin, immunoglobulin G, neutrophil-lymphocyte ratio) and three clinical factors from the modified Erasmus GBS outcome score model. Five complement activation products (C3a, C4a, C5a, soluble C5b-9, factor Bb) were measured in 35 patients and were compared with C3 and C4 levels. Longitudinal changes in C3 and C4 levels were compared with the disease course in 12 patients. RESULTS Higher C3, but not C4, was associated with poorer outcomes: lower Medical Research Council sum scores (MRCSS), higher GBS disability score (GBSDS), longer hospitalization, and more frequent treatment-related fluctuations. Age, MRCSS at admission, and baseline serum C3 were significant independent indicators of 1- and 3-month GBSDS. We found that C3 was positively correlated with C3a (r = 0.32) and C5a (r = 0.37), which indicates an activated complement cascade with high C3. Longitudinal change of C3 coincided with clinical severity of the disease course. INTERPRETATION This study highlights the use of serum C3 as a novel mechanistic biomarker in GBS. Larger prospective studies are needed to validate our findings.
Collapse
|
10
|
Polyneuropathy Associated with IgM Monoclonal Gammopathy; Advances in Genetics and Treatment, Focusing on Anti-MAG Antibodies. HEMATO 2022. [DOI: 10.3390/hemato3040045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
With increasing age, the chances of developing either MGUS or polyneuropathy increase as well. In some cases, there is a causative relationship between the IgM M-protein and polyneuropathy. In approximately half of these cases, IgM targets the myelin-associated glycoprotein (MAG). This results in chronic polyneuropathy with slowly progressive, predominantly sensory neurological deficits and distally demyelinating features in nerve conduction studies. Despite the disease being chronic and developing slowly, it can cause considerable impairment. We reviewed English medical publications between 1980 and May 2022 on IgM gammopathy-associated polyneuropathy, with special attention to studies addressing the pathophysiology or treatment of anti-MAG polyneuropathy. Treatment options have been limited to a temporizing effect of intravenous immunoglobulins in some patients and a more sustained effect of rituximab but in only 30 to 55 percent of patients. An increase in our knowledge concerning genetic mutations, particularly the MYD88L265P mutation, led to the development of novel targeted treatment options such as BTK inhibitors. Similarly, due to the increasing knowledge of the pathophysiology of anti-MAG polyneuropathy, new treatment options are emerging. Since anti-MAG polyneuropathy is a rare disease with diverse symptomatology, large trials with good outcome measures are a challenge.
Collapse
|
11
|
Briani C, Visentin A. Therapeutic Monoclonal Antibody Therapies in Chronic Autoimmune Demyelinating Neuropathies. Neurotherapeutics 2022; 19:874-884. [PMID: 35349079 PMCID: PMC9294114 DOI: 10.1007/s13311-022-01222-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2022] [Indexed: 02/07/2023] Open
Abstract
Autoimmune diseases of the peripheral nervous system have so far been treated mainly with exogenous high-dose intravenous immunoglobulins (IVIg), that act through several mechanisms, including neutralization of pathogenic autoantibodies, modulation of lymphocyte activity, interference with antigen presentation, and interaction with Fc receptors, cytokines, and the complement system. Other therapeutic strategies have recently been developed, in part to address the increasing shortage of IVIg, prime among which is the use of B cell depleting monoclonal antibodies, or small molecule inhibitors targeting the B-cell specific kinases. Rituximab, a chimeric monoclonal antibody against CD20 + B lymphocytes, is currently the most used, especially in anti-MAG antibody neuropathy and autoimmune neuropathies with antibodies to nodal/paranodal antigens that are unresponsive to IVIg. After several reports of its efficacy in chronic inflammatory demyelinating polyradiculoneuropathy (CIDP), rituximab is currently under investigation in three Phase 2 trials in CIDP. In addition, the possible role of complement activation in the pathogenesis of chronic autoimmune neuropathies has brought into consideration drugs that can block the complement cascade, such as eculizumab, a monoclonal antibody already assessed in acute polyradiculoneuropathies, and approved for myasthenia gravis. Preliminary data on eculizumab in multifocal motor neuropathy have been published, but randomized controlled studies are pending. Moreover, the neonatal Fc receptor, that recycles IgGs by preventing their lysosome degradation, is an important and attractive pharmacological target. Antibodies against FcRn, which reduce circulating IgG (both pathogenic and non-pathogenic) have been developed. The FcRn blocker efgartigimod, a humanized IgG1-derived Fc fragment, which competitively inhibits the FcRn, has recently been approved for the treatment of myasthenia gravis and is currently under investigation in CIDP. In addition, the anti-human FcRn monoclonal antibody rozanolixizumab is currently being assessed in phase 2 trials in CIDP. However, none of the abovementioned monoclonal antibodies is currently approved for treatment of any immune-mediated neuropathies. While more specific and individualized therapies are being developed, the possibility of combined treatments targeting different pathogenic mechanisms deserves consideration as well.
Collapse
Affiliation(s)
- Chiara Briani
- Department of Neurosciences, Neurology Unit, University of Padova, Padova, Italy.
| | - Andrea Visentin
- Department of Medicine, Hematology Unit, University of Padova, Padova, Italy
| |
Collapse
|
12
|
Budding K, Johansen LE, Van de Walle I, Dijkxhoorn K, de Zeeuw E, Bloemenkamp LM, Bos JW, Jansen MD, Curial CAD, Silence K, de Haard H, Blanchetot C, Van de Ven L, Leusen JHW, Pasterkamp RJ, van den Berg LH, Hack CE, Boross P, van der Pol WL. Anti-C2 Antibody ARGX-117 Inhibits Complement in a Disease Model for Multifocal Motor Neuropathy. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 9:9/1/e1107. [PMID: 34759020 PMCID: PMC8587732 DOI: 10.1212/nxi.0000000000001107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 09/10/2021] [Indexed: 11/22/2022]
Abstract
Background and Objectives To determine the role of complement in the disease pathology of multifocal motor neuropathy (MMN), we investigated complement activation, and inhibition, on binding of MMN patient-derived immunoglobulin M (IgM) antibodies in an induced pluripotent stem cell (iPSC)-derived motor neuron (MN) model for MMN. Methods iPSC-derived MNs were characterized for the expression of complement receptors and membrane-bound regulators, for the binding of circulating IgM anti-GM1 from patients with MMN, and for subsequent fixation of C4 and C3 on incubation with fresh serum. The potency of ARGX-117, a novel inhibitory monoclonal antibody targeting C2, to inhibit fixation of complement was assessed. Results iPSC-derived MNs moderately express the complement regulatory proteins CD46 and CD55 and strongly expressed CD59. Furthermore, MNs express C3aR, C5aR, and complement receptor 1. IgM anti-GM1 antibodies in serum from patients with MMN bind to MNs and induce C3 and C4 fixation on incubation with fresh serum. ARGX-117 inhibits complement activation downstream of C4 induced by patient-derived anti-GM1 antibodies bound to MNs. Discussion Binding of IgM antibodies from patients with MMN to iPSC-derived MNs induces complement activation. By expressing complement regulatory proteins, particularly CD59, MNs are protected against complement-mediated lysis. Yet, because of expressing C3aR, the function of these cells may be affected by complement activation upstream of membrane attack complex formation. ARGX-117 inhibits complement activation upstream of C3 in this disease model for MMN and therefore represents an intervention strategy to prevent harmful effects of complement in MMN.
Collapse
Affiliation(s)
- Kevin Budding
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Lill Eva Johansen
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Inge Van de Walle
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Kim Dijkxhoorn
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Elisabeth de Zeeuw
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Lauri M Bloemenkamp
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Jeroen W Bos
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Marc D Jansen
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Chantall A D Curial
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Karen Silence
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Hans de Haard
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Christophe Blanchetot
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Liesbeth Van de Ven
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Jeanette H W Leusen
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - R Jeroen Pasterkamp
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Leonard H van den Berg
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - C Erik Hack
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Peter Boross
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - W Ludo van der Pol
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands.
| |
Collapse
|
13
|
High-resolution mapping identifies HLA class II associations with multifocal motor neuropathy. Neurobiol Aging 2021; 101:79-84. [PMID: 33582569 DOI: 10.1016/j.neurobiolaging.2021.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/10/2020] [Accepted: 01/16/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To gain further insight in the immunopathology underlying multifocal motor neuropathy (MMN) by exploring the association between MMN and the human leukocyte antigen (HLA) class II DRB1, DQB1, and DQA loci in depth and by correlating associated haplotypes to detailed clinical and anti-ganglioside antibody data. METHODS We performed high-resolution HLA-class II typing for the DRB1, DQB1, and DQA1 loci in 126 well-characterized MMN patients and assessed disease associations with haplotypes. We used a cohort of 1305 random individuals as a reference for haplotype distribution in the Dutch population. RESULTS The DRB1*15:01-DQB1*06:02 haplotype (OR 1.6 [95% CI 1.1-2.2], p < 0.05) and the DRB1*12:01-DQB1*03:01 haplotype (OR 2.7 [95% CI 1.2-5.5], p < 0.05) were more frequent in patients with MMN than in controls. These haplotypes were not associated with disease course, response to treatment or anti-ganglioside antibodies. CONCLUSIONS MMN is associated with the DRB1*15:01-DQB1*06:02 and DRB1*12:01-DQB1*03:01 haplotypes. These HLA molecules or gene variants in their immediate vicinity may promote the specific inflammatory processes underlying MMN.
Collapse
|
14
|
Dalakas MC, Alexopoulos H, Spaeth PJ. Complement in neurological disorders and emerging complement-targeted therapeutics. Nat Rev Neurol 2020; 16:601-617. [PMID: 33005040 PMCID: PMC7528717 DOI: 10.1038/s41582-020-0400-0] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2020] [Indexed: 12/30/2022]
Abstract
The complement system consists of a network of plasma and membrane proteins that modulate tissue homeostasis and contribute to immune surveillance by interacting with the innate and adaptive immune systems. Dysregulation, impairment or inadvertent activation of complement components contribute to the pathogenesis of some autoimmune neurological disorders and could even contribute to neurodegenerative diseases. In this Review, we summarize current knowledge about the main functions of the complement pathways and the involvement of complement in neurological disorders. We describe the complex network of complement proteins that target muscle, the neuromuscular junction, peripheral nerves, the spinal cord or the brain and discuss the autoimmune mechanisms of complement-mediated myopathies, myasthenia, peripheral neuropathies, neuromyelitis and other CNS disorders. We also consider the emerging role of complement in some neurodegenerative diseases, such as Alzheimer disease, amyotrophic lateral sclerosis and even schizophrenia. Finally, we provide an overview of the latest complement-targeted immunotherapies including monoclonal antibodies, fusion proteins and peptidomimetics that have been approved, that are undergoing phase I–III clinical trials or that show promise for the treatment of neurological conditions that respond poorly to existing immunotherapies. In this Review, Dalakas et al. discuss the complement system, the role it plays in autoimmune neurological disease and neurodegenerative disease, and provide an overview of the latest therapeutics that target complement and that can be used for or have potential in neurological disorders. Complement has an important physiological role in host immune defences and tissue remodelling. The physiological role of complement extends to the regulation of synaptic development. Complement has a key pathophysiological role in autoimmune neurological diseases and mediates the actions of pathogenic autoantibodies, such as acetylcholine receptor antibodies and aquaporin 4 antibodies. For some autoimmune neurological diseases, such as myasthenia gravis and neuromyelitis optica spectrum disorders, approved complement-targeted treatments are now available. Complement also seems to be of pathogenic relevance in neurodegenerative diseases such as Alzheimer disease, in which innate immune-driven inflammation is receiving increasing attention. The field of complement-targeted therapeutics is rapidly expanding, with several FDA-approved agents and others currently in phase II and phase III clinical trials.
Collapse
Affiliation(s)
- Marinos C Dalakas
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA. .,Neuroimmunology Unit, Department of Pathophysiology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| | - Harry Alexopoulos
- Neuroimmunology Unit, Department of Pathophysiology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Peter J Spaeth
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| |
Collapse
|
15
|
Herraets I, van Rosmalen M, Bos J, van Eijk R, Cats E, Jongbloed B, Vlam L, Piepers S, van Asseldonk JT, Goedee HS, van den Berg L, van der Pol WL. Clinical outcomes in multifocal motor neuropathy: A combined cross-sectional and follow-up study. Neurology 2020; 95:e1979-e1987. [PMID: 32732293 DOI: 10.1212/wnl.0000000000010538] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/17/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To assess the clinical course of multifocal motor neuropathy (MMN) in a large cohort of patients and to identify predictive factors of a progressive disease course. METHODS Between May 2015 and February 2016, we collected clinical data from 100 patients with MMN, of whom 60 had participated in a nationwide cross-sectional cohort study in 2007. We documented clinical characteristics using standardized questionnaires and performed a standardized neurologic examination. We used multiple linear regression analysis to identify factors that correlated with worse outcome. RESULTS We found that age at diagnosis (45.2 vs 48.6 years, p < 0.02) was significantly increased between 2007 and 2015-2016, whereas diagnostic delay decreased by 15 months. Seven out of 10 outcome measures deteriorated over time (all p < 0.01). Patients who had a lower Medical Research Council (MRC) sumscore and absence of 1 or more reflexes at the baseline visit showed a greater functional loss at follow-up (p = 0.007 and p = 0.016). CONCLUSIONS Our study shows that MMN is a progressive disease. Although 87% of patients received maintenance treatment, muscle strength, reflexes, vibration sense, and the Self-Evaluation Scale score significantly deteriorated over time. Lower MRC sumscore and absence of reflexes predicted a more progressive disease course. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that lower MRC sumscore and the absence of reflexes predict a more progressive disease course in patients with MMN.
Collapse
Affiliation(s)
- Ingrid Herraets
- From the Department of Neurology and Neurosurgery (I.H., M.v.R., J.B., R.v.E., H.S.G., L.v.d.B., W.L.v.d.P.), UMC Utrecht Brain Center Rudolf Magnus; Biostatistics & Research Support, Julius Center for Health Sciences and Primary Care (R.v.E.), University Medical Center Utrecht; Department of Neurology (E.C.), Gelre Hospital, Apeldoorn; Department of Neurology (B.J.), Admiraal de Ruyter Hospital, Goes; Department of Neurology (L.V.), Erasmus Medical Center, Rotterdam; Department of Neurology (S.P.), Meander Medical Center, Amersfoort; and Department of Neurology and Clinical Neurophysiology (J.-T.v.A.), Elisabeth-Tweesteden Hospital Tilburg, the Netherlands
| | - Marieke van Rosmalen
- From the Department of Neurology and Neurosurgery (I.H., M.v.R., J.B., R.v.E., H.S.G., L.v.d.B., W.L.v.d.P.), UMC Utrecht Brain Center Rudolf Magnus; Biostatistics & Research Support, Julius Center for Health Sciences and Primary Care (R.v.E.), University Medical Center Utrecht; Department of Neurology (E.C.), Gelre Hospital, Apeldoorn; Department of Neurology (B.J.), Admiraal de Ruyter Hospital, Goes; Department of Neurology (L.V.), Erasmus Medical Center, Rotterdam; Department of Neurology (S.P.), Meander Medical Center, Amersfoort; and Department of Neurology and Clinical Neurophysiology (J.-T.v.A.), Elisabeth-Tweesteden Hospital Tilburg, the Netherlands
| | - Jeroen Bos
- From the Department of Neurology and Neurosurgery (I.H., M.v.R., J.B., R.v.E., H.S.G., L.v.d.B., W.L.v.d.P.), UMC Utrecht Brain Center Rudolf Magnus; Biostatistics & Research Support, Julius Center for Health Sciences and Primary Care (R.v.E.), University Medical Center Utrecht; Department of Neurology (E.C.), Gelre Hospital, Apeldoorn; Department of Neurology (B.J.), Admiraal de Ruyter Hospital, Goes; Department of Neurology (L.V.), Erasmus Medical Center, Rotterdam; Department of Neurology (S.P.), Meander Medical Center, Amersfoort; and Department of Neurology and Clinical Neurophysiology (J.-T.v.A.), Elisabeth-Tweesteden Hospital Tilburg, the Netherlands
| | - Ruben van Eijk
- From the Department of Neurology and Neurosurgery (I.H., M.v.R., J.B., R.v.E., H.S.G., L.v.d.B., W.L.v.d.P.), UMC Utrecht Brain Center Rudolf Magnus; Biostatistics & Research Support, Julius Center for Health Sciences and Primary Care (R.v.E.), University Medical Center Utrecht; Department of Neurology (E.C.), Gelre Hospital, Apeldoorn; Department of Neurology (B.J.), Admiraal de Ruyter Hospital, Goes; Department of Neurology (L.V.), Erasmus Medical Center, Rotterdam; Department of Neurology (S.P.), Meander Medical Center, Amersfoort; and Department of Neurology and Clinical Neurophysiology (J.-T.v.A.), Elisabeth-Tweesteden Hospital Tilburg, the Netherlands
| | - Elies Cats
- From the Department of Neurology and Neurosurgery (I.H., M.v.R., J.B., R.v.E., H.S.G., L.v.d.B., W.L.v.d.P.), UMC Utrecht Brain Center Rudolf Magnus; Biostatistics & Research Support, Julius Center for Health Sciences and Primary Care (R.v.E.), University Medical Center Utrecht; Department of Neurology (E.C.), Gelre Hospital, Apeldoorn; Department of Neurology (B.J.), Admiraal de Ruyter Hospital, Goes; Department of Neurology (L.V.), Erasmus Medical Center, Rotterdam; Department of Neurology (S.P.), Meander Medical Center, Amersfoort; and Department of Neurology and Clinical Neurophysiology (J.-T.v.A.), Elisabeth-Tweesteden Hospital Tilburg, the Netherlands
| | - Bas Jongbloed
- From the Department of Neurology and Neurosurgery (I.H., M.v.R., J.B., R.v.E., H.S.G., L.v.d.B., W.L.v.d.P.), UMC Utrecht Brain Center Rudolf Magnus; Biostatistics & Research Support, Julius Center for Health Sciences and Primary Care (R.v.E.), University Medical Center Utrecht; Department of Neurology (E.C.), Gelre Hospital, Apeldoorn; Department of Neurology (B.J.), Admiraal de Ruyter Hospital, Goes; Department of Neurology (L.V.), Erasmus Medical Center, Rotterdam; Department of Neurology (S.P.), Meander Medical Center, Amersfoort; and Department of Neurology and Clinical Neurophysiology (J.-T.v.A.), Elisabeth-Tweesteden Hospital Tilburg, the Netherlands
| | - Lotte Vlam
- From the Department of Neurology and Neurosurgery (I.H., M.v.R., J.B., R.v.E., H.S.G., L.v.d.B., W.L.v.d.P.), UMC Utrecht Brain Center Rudolf Magnus; Biostatistics & Research Support, Julius Center for Health Sciences and Primary Care (R.v.E.), University Medical Center Utrecht; Department of Neurology (E.C.), Gelre Hospital, Apeldoorn; Department of Neurology (B.J.), Admiraal de Ruyter Hospital, Goes; Department of Neurology (L.V.), Erasmus Medical Center, Rotterdam; Department of Neurology (S.P.), Meander Medical Center, Amersfoort; and Department of Neurology and Clinical Neurophysiology (J.-T.v.A.), Elisabeth-Tweesteden Hospital Tilburg, the Netherlands
| | - Sanne Piepers
- From the Department of Neurology and Neurosurgery (I.H., M.v.R., J.B., R.v.E., H.S.G., L.v.d.B., W.L.v.d.P.), UMC Utrecht Brain Center Rudolf Magnus; Biostatistics & Research Support, Julius Center for Health Sciences and Primary Care (R.v.E.), University Medical Center Utrecht; Department of Neurology (E.C.), Gelre Hospital, Apeldoorn; Department of Neurology (B.J.), Admiraal de Ruyter Hospital, Goes; Department of Neurology (L.V.), Erasmus Medical Center, Rotterdam; Department of Neurology (S.P.), Meander Medical Center, Amersfoort; and Department of Neurology and Clinical Neurophysiology (J.-T.v.A.), Elisabeth-Tweesteden Hospital Tilburg, the Netherlands
| | - Jan-Thies van Asseldonk
- From the Department of Neurology and Neurosurgery (I.H., M.v.R., J.B., R.v.E., H.S.G., L.v.d.B., W.L.v.d.P.), UMC Utrecht Brain Center Rudolf Magnus; Biostatistics & Research Support, Julius Center for Health Sciences and Primary Care (R.v.E.), University Medical Center Utrecht; Department of Neurology (E.C.), Gelre Hospital, Apeldoorn; Department of Neurology (B.J.), Admiraal de Ruyter Hospital, Goes; Department of Neurology (L.V.), Erasmus Medical Center, Rotterdam; Department of Neurology (S.P.), Meander Medical Center, Amersfoort; and Department of Neurology and Clinical Neurophysiology (J.-T.v.A.), Elisabeth-Tweesteden Hospital Tilburg, the Netherlands
| | - H Stephan Goedee
- From the Department of Neurology and Neurosurgery (I.H., M.v.R., J.B., R.v.E., H.S.G., L.v.d.B., W.L.v.d.P.), UMC Utrecht Brain Center Rudolf Magnus; Biostatistics & Research Support, Julius Center for Health Sciences and Primary Care (R.v.E.), University Medical Center Utrecht; Department of Neurology (E.C.), Gelre Hospital, Apeldoorn; Department of Neurology (B.J.), Admiraal de Ruyter Hospital, Goes; Department of Neurology (L.V.), Erasmus Medical Center, Rotterdam; Department of Neurology (S.P.), Meander Medical Center, Amersfoort; and Department of Neurology and Clinical Neurophysiology (J.-T.v.A.), Elisabeth-Tweesteden Hospital Tilburg, the Netherlands
| | - Leonard van den Berg
- From the Department of Neurology and Neurosurgery (I.H., M.v.R., J.B., R.v.E., H.S.G., L.v.d.B., W.L.v.d.P.), UMC Utrecht Brain Center Rudolf Magnus; Biostatistics & Research Support, Julius Center for Health Sciences and Primary Care (R.v.E.), University Medical Center Utrecht; Department of Neurology (E.C.), Gelre Hospital, Apeldoorn; Department of Neurology (B.J.), Admiraal de Ruyter Hospital, Goes; Department of Neurology (L.V.), Erasmus Medical Center, Rotterdam; Department of Neurology (S.P.), Meander Medical Center, Amersfoort; and Department of Neurology and Clinical Neurophysiology (J.-T.v.A.), Elisabeth-Tweesteden Hospital Tilburg, the Netherlands
| | - W Ludo van der Pol
- From the Department of Neurology and Neurosurgery (I.H., M.v.R., J.B., R.v.E., H.S.G., L.v.d.B., W.L.v.d.P.), UMC Utrecht Brain Center Rudolf Magnus; Biostatistics & Research Support, Julius Center for Health Sciences and Primary Care (R.v.E.), University Medical Center Utrecht; Department of Neurology (E.C.), Gelre Hospital, Apeldoorn; Department of Neurology (B.J.), Admiraal de Ruyter Hospital, Goes; Department of Neurology (L.V.), Erasmus Medical Center, Rotterdam; Department of Neurology (S.P.), Meander Medical Center, Amersfoort; and Department of Neurology and Clinical Neurophysiology (J.-T.v.A.), Elisabeth-Tweesteden Hospital Tilburg, the Netherlands.
| |
Collapse
|
16
|
Antiganglioside antibodies in neurological diseases. J Neurol Sci 2020; 408:116576. [DOI: 10.1016/j.jns.2019.116576] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/13/2019] [Accepted: 11/06/2019] [Indexed: 12/14/2022]
|
17
|
Martín-Aguilar L, Pascual-Goñi E, Querol L. Autoantibodies in immune-mediated inflammatory neuropathies. Med Clin (Barc) 2019; 153:360-367. [PMID: 31443948 DOI: 10.1016/j.medcli.2019.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/30/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022]
Abstract
Inflammatory neuropathies are a rare and heterogeneous group of diseases of the nervous system characterized by the dysfunction and damage of different structures of the peripheral nerves. This group includes Guillain-Barré syndrome, chronic demyelinating inflammatory polyradiculoneuropathy, multifocal motor neuropathy or neuropathies associated with monoclonal gammopathy. The aetiology of these diseases is unknown, but B cells and autoantibodies play a key role in their pathogenesis. Autoantibodies against peripheral nerve molecules such as gangliosides, proteins of the Ranvier node or myelin-associated glycoprotein have been described, allowing the identification of subgroups of patients with specific clinical phenotypes. For all these reasons, these antibodies are useful in clinical practice. This review focuses on the diagnostic and therapeutic relevance of autoantibodies in inflammatory neuropathies.
Collapse
Affiliation(s)
- Lorena Martín-Aguilar
- Unidad de Enfermedades Neuromusculares, Hospital de la Santa Creu i Sant Pau, Barcelona, España
| | - Elba Pascual-Goñi
- Unidad de Enfermedades Neuromusculares, Hospital de la Santa Creu i Sant Pau, Barcelona, España
| | - Luis Querol
- Unidad de Enfermedades Neuromusculares, Hospital de la Santa Creu i Sant Pau, Barcelona, España.
| |
Collapse
|
18
|
Doppler K, Stengel H, Appeltshauser L, Grosskreutz J, Man Ng JK, Meinl E, Sommer C. Neurofascin-155 IgM autoantibodies in patients with inflammatory neuropathies. J Neurol Neurosurg Psychiatry 2018; 89:1145-1151. [PMID: 29945879 DOI: 10.1136/jnnp-2018-318170] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/23/2018] [Indexed: 11/03/2022]
Abstract
OBJECTIVES Recently, IgG autoantibodies against different paranodal proteins have been detected and this has led to important advances in the management of inflammatory neuropathies. In contrast, not much is known on IgM autoantibodies against paranodal proteins. METHODS In the present study, we screened a large cohort of patients (n=140) with inflammatory neuropathies for IgM autoantibodies against neurofascin-155, neurofascin-186 or contactin-1. RESULTS IgM autoantibodies against neurofascin-155 were detected by ELISA in five patients, four with inflammatory demyelinating polyradiculoneuropathy (CIDP) and one with Guillain-Barré syndrome (GBS), and were confirmed by ELISA-based preabsorption experiments and Western blot. Titres ranged from 1:100 to 1:400. We did not detect IgM anti-neurofascin-186 or anti-contactin-1 antibodies in this cohort. All patients presented with distally accentuated tetraparesis and hypesthesia. Remarkably, tremor was present in three of the patients with CIDP and occurred in the patients with GBS after the acute phase of disease. Nerve conduction studies revealed prolonged distal motor latencies and F wave latencies. Nerve biopsies showed signs of secondary axonal damage in three of the patients, demyelinating features in one patient. Teased fibre preparations did not demonstrate paranodal damage. CONCLUSION In summary, IgM neurofascin-155 autoantibodies may be worth testing in patients with inflammatory neuropathies. Their pathogenic role needs to be determined in future experiments.
Collapse
Affiliation(s)
- Kathrin Doppler
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Helena Stengel
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Luise Appeltshauser
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | | | - Judy King Man Ng
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians-University, Munich, Germany
| | - Edgar Meinl
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians-University, Munich, Germany
| | - Claudia Sommer
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| |
Collapse
|
19
|
Abstract
Since the discovery of an acute monophasic paralysis, later coined Guillain-Barré syndrome, almost 100 years ago, and the discovery of chronic, steroid-responsive polyneuropathy 50 years ago, the spectrum of immune-mediated polyneuropathies has broadened, with various subtypes continuing to be identified, including chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) and multifocal motor neuropathy (MMN). In general, these disorders are speculated to be caused by autoimmunity to proteins located at the node of Ranvier or components of myelin of peripheral nerves, although disease-associated autoantibodies have not been identified for all disorders. Owing to the numerous subtypes of the immune-mediated neuropathies, making the right diagnosis in daily clinical practice is complicated. Moreover, treating these disorders, particularly their chronic variants, such as CIDP and MMN, poses a challenge. In general, management of these disorders includes immunotherapies, such as corticosteroids, intravenous immunoglobulin or plasma exchange. Improvements in clinical criteria and the emergence of more disease-specific immunotherapies should broaden the therapeutic options for these disabling diseases.
Collapse
|
20
|
|
21
|
Uncini A, Vallat JM. Autoimmune nodo-paranodopathies of peripheral nerve: the concept is gaining ground. J Neurol Neurosurg Psychiatry 2018; 89:627-635. [PMID: 29248893 DOI: 10.1136/jnnp-2017-317192] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/15/2017] [Accepted: 11/13/2017] [Indexed: 12/20/2022]
Abstract
Peripheral neuropathies are classified as primarily demyelinating or axonal. Microstructural alterations of the nodal region are the key to understand the pathophysiology of neuropathies with antibodies to gangliosides and the new category of nodo-paranodopathy has been proposed to better characterise these disorders and overcome some inadequacies of the dichotomous classification. Recently, the research in autoimmune neuropathies has been boosted by reports of patients carrying immunoglobulin G4 antibodies against paranodal axo-glial proteins with distinct phenotypes and showing loss of transverse bands, terminal myelin loop detachment, nodal widening and axonal loss. These patients have been classified up to now as chronic inflammatory demyelinating polyradiculoneuropathy but, in our opinion, better fit into the nodo-paranodopathy category because nerve injury is due to dismantling of the paranode, segmental de-remyelination is absent and the pathogenic mechanism is not inflammatory. Evidence from nerve conductions and electron microscopy studies in patients and mutant animal models can reconcile the apparent contrast between the electrophysiological 'demyelinating' features, explainable just by the paranodal involvement and the axonal pathology. These patients broaden the autoimmune nodo-paranodopathy category and re-emphasise the usage of the term that pointing to the site of nerve injury reminds specific pathophysiological mechanisms, reconciles contrasting electrophysiological and pathological findings, and avoids misdiagnosis and taxonomic confusion. In our opinion, the nodo-paranodopathy term more adequately classifies the peripheral nerve disorders due to an autoimmune attack directed and limited to the nodal region integrating the traditional classification of peripheral neuropathies.
Collapse
Affiliation(s)
- Antonino Uncini
- Department of Neurosciences, Imaging and Clinical Sciences University G. d'Annunzio, Chieti-Pescara, Italy
| | - Jean-Michel Vallat
- Department of Neurology and 'Centre de Référence des neuropathies rares', CHU Limoges, Limoges, France
| |
Collapse
|
22
|
Décard BF, Pham M, Grimm A. Ultrasound and MRI of nerves for monitoring disease activity and treatment effects in chronic dysimmune neuropathies – Current concepts and future directions. Clin Neurophysiol 2018; 129:155-167. [DOI: 10.1016/j.clinph.2017.10.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 10/03/2017] [Accepted: 10/07/2017] [Indexed: 02/07/2023]
|
23
|
Dubuisson NJ, Pesch V, Bergh PY. Cramp‐fasciculation syndrome associated with monofocal motor neuropathy. Muscle Nerve 2017; 56:828-832. [DOI: 10.1002/mus.25528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 12/08/2016] [Accepted: 12/19/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Nicolas J. Dubuisson
- Neuromuscular Reference CenterCliniques universitaires Saint‐Luc Avenue Hippocrate 10/13.11 1200 Brussels Belgium
- Department of NeurologyUniversity Hospitals St‐Luc, University of LouvainBrussels Belgium
| | - Vincent Pesch
- Department of NeurologyUniversity Hospitals St‐Luc, University of LouvainBrussels Belgium
| | - Peter Y.K. Bergh
- Neuromuscular Reference CenterCliniques universitaires Saint‐Luc Avenue Hippocrate 10/13.11 1200 Brussels Belgium
- Department of NeurologyUniversity Hospitals St‐Luc, University of LouvainBrussels Belgium
| |
Collapse
|
24
|
Autoantibodies in chronic inflammatory neuropathies: diagnostic and therapeutic implications. Nat Rev Neurol 2017; 13:533-547. [PMID: 28708133 DOI: 10.1038/nrneurol.2017.84] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The chronic inflammatory neuropathies (CINs) are rare, very disabling autoimmune disorders that generally respond well to immune therapies such as intravenous immunoglobulin (IVIg). The most common forms of CIN are chronic inflammatory demyelinating polyradiculoneuropathy (CIDP), multifocal motor neuropathy, and polyneuropathy associated with monoclonal gammopathy of unknown significance. The field of CIN has undergone a major advance with the identification of IgG4 autoantibodies directed against paranodal proteins in patients with CIDP. Although these autoantibodies are only found in a small subset of patients with CIDP, they can be used to guide therapeutic decision-making, as these patients have a poor response to IVIg. These observations provide proof of concept that identifying the target antigens in tissue-specific antibody-mediated autoimmune diseases is important, not only to understand their underlying pathogenic mechanisms, but also to correctly diagnose and treat affected patients. This state-of-the-art Review focuses on the role of autoantibodies against nodes of Ranvier in CIDP, a clinically relevant emerging field of research. The role of autoantibodies in other immune-mediated neuropathies, including other forms of CIN, primary autoimmune neuropathies, neoplasms, and systemic diseases that resemble CIN, are also discussed.
Collapse
|
25
|
Appeltshauser L, Weishaupt A, Sommer C, Doppler K. Complement deposition induced by binding of anti-contactin-1 auto-antibodies is modified by immunoglobulins. Exp Neurol 2016; 287:84-90. [PMID: 27746185 DOI: 10.1016/j.expneurol.2016.10.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/07/2016] [Accepted: 10/13/2016] [Indexed: 01/30/2023]
Abstract
Inflammatory neuropathies associated with auto-antibodies against paranodal proteins like contactin-1 are reported to respond poorly to treatment with intravenous immunoglobulins (IVIG). A reason might be that IVIG interacts with the complement pathway and these auto-antibodies often belong to the IgG4 subclass that does not activate complement. However, some patients do show a response to IVIG, especially at the beginning of the disease. This corresponds with the finding of coexisting IgG subclasses IgG1, IgG2 and IgG3. We therefore aimed to investigate complement deposition and activation by samples of three patients with anti-contactin-1 IgG auto-antibodies of different subclasses as a potential predictor for response to IVIG. Complement deposition and activation was measured by cell binding and ELISA based assays, and the effect of IVIG on complement deposition was assessed by addition of different concentrations of IVIG. Binding of anti-contactin-1 auto-antibodies of all three patients induced complement deposition and activation with the strongest effect shown by the serum of a patient with predominance of IgG3 auto-antibodies. IVIG led to a reduction of complement deposition in a dose-dependent manner, but did not reduce binding of auto-antibodies to contactin-1. We conclude that complement deposition may contribute to the pathophysiology of anti-contactin-1 associated neuropathy, particularly in patients with predominance of the IgG3 subclass. The proportion of different auto-antibody subclasses may be a predictor for the response to IVIG in patients with auto-antibodies against paranodal proteins.
Collapse
Affiliation(s)
- Luise Appeltshauser
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Andreas Weishaupt
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Claudia Sommer
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Kathrin Doppler
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany.
| |
Collapse
|
26
|
Jovanovich E, Karam C. Human immune globulin infusion in the management of multifocal motor neuropathy. Degener Neurol Neuromuscul Dis 2015; 6:1-12. [PMID: 30050363 PMCID: PMC6053084 DOI: 10.2147/dnnd.s96258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Multifocal motor neuropathy (MMN) is a debilitating and rare disease causing profound weakness with minimal to no sensory symptoms. Conduction block is frequently seen on electrodiagnostic testing. An immune-mediated pathology is suspected though the exact underlying pathophysiology has yet to be elucidated. The presence of anti-GM1 ganglioside IgM antibodies coupled with favorable response to intravenous and subcutaneous immunoglobulins supports a complement-mediated mechanism which leads to destruction of nerve tissue with probable predilection to the nodes of Ranvier. High-dose immunoglobulin currently is the only treatment with proven efficacy for MMN patients. Unfortunately, many patients experience decreased responsiveness to immunoglobulins over time, requiring higher and more frequent dosing. In this review, we will focus on the pharmacology, efficacy, safety, and tolerability of intravenous and subcutaneous immune globulin infusion for treatment of MMN.
Collapse
Affiliation(s)
| | - Chafic Karam
- Department of Neurology, The University of North Carolina, Chapel Hill, NC, USA,
| |
Collapse
|