1
|
Zhang Y, Xu H, Liu Y, Kang J, Chen H, Wang Z, Cai D. Case Report: Fascioliasis Hepatica Precisely Diagnosed by Metagenomic Next-Generation Sequencing and Treated With Albendazole. Front Med (Lausanne) 2021; 8:773145. [PMID: 34901089 PMCID: PMC8651557 DOI: 10.3389/fmed.2021.773145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/26/2021] [Indexed: 11/13/2022] Open
Abstract
The clinical manifestations of fascioliasis hepatica in humans are unspecific. Traditional diagnosis relies on evidence of live parasites or eggs in the bile or feces. However, due to similar imaging manifestations, they are often misdiagnosed as malignant tumors. Here, we report a case of a 43-year-old woman with fever and space-occupying liver disease. Liver biopsy, parasite-specific antibody screening, and stool testing did not find any pathogens. Therefore, metagenomic next-generation sequencing (mNGS) and routine microbiological examinations were performed. Finally, Fasciola hepatica was only identified by mNGS. The body temperature of the patient and the eosinophil count remained normal, and the space-occupying liver lesions were significantly absorbed after more than 7 months of treatment with albendazole. The details of this case highlight the timely use of mNGS to identify parasites and judge therapeutic effects after treatment, providing important help for clinical decision-making.
Collapse
Affiliation(s)
- Yaling Zhang
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huan Xu
- Vision Medicals Center for Infection Diseases, Guangzhou, China
| | - Yi Liu
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juan Kang
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hairu Chen
- Vision Medicals Center for Infection Diseases, Guangzhou, China
| | - Zhiyi Wang
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dachuan Cai
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
The application of shotgun metagenomics to the diagnosis of granulomatous amoebic encephalitis due to Balamuthia mandrillaris: a case report. BMC Neurol 2021; 21:392. [PMID: 34627183 PMCID: PMC8501540 DOI: 10.1186/s12883-021-02418-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/29/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Granulomatous amoebic encephalitis (GAE) is an infrequent and fatal infectious disease worldwide. Antemortem diagnosis in this condition is very difficult because clinical manifestations and neuroimaging are nonspecific. CASE PRESENTATION A 60-year-old Japanese woman was admitted with a chief complaint of left homonymous hemianopsia. Brain-MRI showed extensive necrotizing lesions enhanced by gadolinium, in the right frontal lobe, right occipital lobe, and left parietal lobe. Epithelioid granulomas of unknown etiology were found in the biopsied brain specimens. Shotgun metagenomic sequencing using a next-generation sequencer detected DNA fragments of Balamuthia mandrillaris in the tissue specimens. The diagnosis of granulomatous amoebic encephalitis was confirmed using an amoeba-specific polymerase chain reaction and immunostaining on the biopsied tissues. CONCLUSIONS Shotgun metagenomics is useful for the diagnosis of central nervous system infections such as GAE wherein the pathogens are difficult to identify.
Collapse
|
3
|
Cerqueira F, Christou A, Fatta-Kassinos D, Vila-Costa M, Bayona JM, Piña B. Effects of prescription antibiotics on soil- and root-associated microbiomes and resistomes in an agricultural context. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123208. [PMID: 32593021 DOI: 10.1016/j.jhazmat.2020.123208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/22/2020] [Accepted: 06/11/2020] [Indexed: 05/23/2023]
Abstract
The use of treated wastewater for crop irrigation is rapidly increasing to respond to the ever-growing demands for water and food resources. However, this practice may contribute to the spread of antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs) in agricultural settings. To evaluate this potential risk, we analyzed microbiomes and resistomes of soil and Lactuca sativa L. (lettuce) root samples from pots irrigated with tap water spiked with 0, 20, or 100 μg L-1 of a mixture of three antibiotics (Trimethoprim, Ofloxacin, Sulfamethoxazole). The presence of antibiotics induced changes in bacterial populations, particularly in soil, as revealed by 16S rDNA sequence analysis. Parallel shotgun sequencing identified a total of 56 different ARGs conferring resistance against 14 antibiotic families. Antibiotic -treated samples showed increased loads of ARGs implicated in mutidrug resistance or in both direct and indirect acquired resistance. These changes correlated with the prevalence of Xantomonadales species in the root microbiomes. We interpret these data as indicating different strategies of soil and root microbiomes to cope with the presence of antibiotics, and as a warning that their presence may increase the loads of ARBs and ARGs in edible plant parts, therefore constituting a potential risk for human consumers.
Collapse
Affiliation(s)
- Francisco Cerqueira
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish National Research Council, Barcelona, Spain
| | - Anastasis Christou
- Agricultural Research Institute, Ministry of Agriculture, Rural Development and Environment, P.O. Box 22016, 1516, Nicosia, Cyprus
| | - Despo Fatta-Kassinos
- Civil and Environmental Engineering Department and Nireas, International Water Research Center, University of Cyprus, P.O. Box 20538, 1678, Nicosia, Cyprus
| | - Maria Vila-Costa
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish National Research Council, Barcelona, Spain
| | - Josep Maria Bayona
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish National Research Council, Barcelona, Spain
| | - Benjamin Piña
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish National Research Council, Barcelona, Spain.
| |
Collapse
|
4
|
Hara T, Yagita K, Sugita Y. Pathogenic free-living amoebic encephalitis in Japan. Neuropathology 2019; 39:251-258. [PMID: 31243796 DOI: 10.1111/neup.12582] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 11/29/2022]
Abstract
Over 600 cases of amoebic encephalitis caused by pathogenic free-living amoebas (Balamuthia mandrillaris, Acanthamoeba spp., and Naegleria fowleri) have been reported worldwide, and in Japan, 24 cases have been reported from the first case in 1976 up to 2018. Among these cases, 18 were caused by B. mandrillaris, four by Acanthamoeba spp., one by N. fowleri, and one was of unknown etiology. Additionally, eight cases were diagnosed with encephalitis due to pathogenic free-living amoebas before death, but only three cases were successfully treated. Unfortunately, all other cases were diagnosed by autopsy. These facts indicate that an adequate diagnosis is difficult, because encephalitis due to pathogenic free-living amoebas does not show typical symptoms or laboratory findings. Moreover, because the number of cases is limited, other cases might have been missed outside of those diagnosed by autopsy. Cases of encephalitis caused by B. mandrillaris have been reported from all over Japan, with B. mandrillaris recently isolated from soil in Aomori prefecture. Therefore, encephalitis caused by pathogenic free-living amoebas should be added to the differential diagnosis of encephalitis patients.
Collapse
Affiliation(s)
- Tatsuru Hara
- Department of Parasitology, Kurume University School of Medicine, Kurume, Japan
| | - Kenji Yagita
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-ku, Japan
| | - Yasuo Sugita
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
5
|
Park AM, Omura S, Fujita M, Sato F, Tsunoda I. Helicobacter pylori and gut microbiota in multiple sclerosis versus Alzheimer's disease: 10 pitfalls of microbiome studies. CLINICAL & EXPERIMENTAL NEUROIMMUNOLOGY 2017; 8:215-232. [PMID: 29158778 DOI: 10.1111/cen3.12401] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Alteration of microbiota has been associated with intestinal, inflammatory, and neurological diseases. Abundance of "good bacteria" such as Bifidobacterium, or their products have been generally believed to be beneficial for any diseases, while "bad bacteria" such as pathogenic Helicobacter pylori are assumed to be always detrimental for hosts. However, this is not the case when we compare and contrast the association of the gut microbiota with two neurological diseases, multiple sclerosis (MS) and Alzheimer's disease (AD). Following H. pylori infection, pro-inflammatory T helper (Th)1 and Th17 immune response are initially induced to eradicate bacteria. However, H. pylori evades the host immune response by inducing Th2 cells and regulatory T cells (Tregs) that produce anti-inflammatory interleukin (IL)-10. Suppression of anti-bacterial Th1/Th17 cells by Tregs may enhance gastric H. pylori propagation, followed by a cascade reaction involving vitamin B12 and folic acid malabsorption, plasma homocysteine elevation, and reactive oxygen species induction. This can damage the blood-brain barrier (BBB), leading to accumulation of amyloid-β in the brain, a hallmark of AD. On the other hand, this suppression of pro-inflammatory Th1/Th17 responses to H. pylori has protective effects on the hosts, since it prevents uncontrolled gastritis as well as suppresses the induction of encephalitogenic Th1/Th17 cells, which can mediate neuroinflammation in MS. The above scenario may explain why chronic H. pylori infection is positively associated with AD, while it is negatively associated with MS. Lastly, we list "10 pitfalls of microbiota studies", which will be useful for evaluating and designing clinical and experimental microbiota studies.
Collapse
Affiliation(s)
- Ah-Mee Park
- Department of Microbiology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan
| | - Seiichi Omura
- Department of Microbiology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan
| | - Mitsugu Fujita
- Department of Microbiology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan
| | - Fumitaka Sato
- Department of Microbiology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan
| | - Ikuo Tsunoda
- Department of Microbiology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan
| |
Collapse
|
6
|
Koba O, Golovko O, Kodešová R, Fér M, Grabic R. Antibiotics degradation in soil: A case of clindamycin, trimethoprim, sulfamethoxazole and their transformation products. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:1251-1263. [PMID: 27838062 DOI: 10.1016/j.envpol.2016.11.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/27/2016] [Accepted: 11/01/2016] [Indexed: 06/06/2023]
Abstract
Twelve different soil types that represent the soil compartments of the Czech Republic were fortified with three antibiotics (clindamycin (CLI), sulfamethoxazole (SUL), and trimethoprim (TRI)) to investigate their fate. Five metabolites (clindamycin sulfoxide (CSO), hydroxy clindamycin sulfoxide (HCSO), S-(SDC) and N-demethyl clindamycin (NDC), N4-acetyl sulfamethoxazole (N4AS), and hydroxy trimethoprim (HTR)) were detected and identified using HPLC/HRMS and HRPS in the soil matrix in this study. The identities of CSO and N4AS were confirmed using commercially available reference standards. The parent compounds degraded in all soils. Almost all of the metabolites have been shown to be persistent in soils, with the exception of N4AS, which was formed and degraded completely within 23 days of exposure. The rate of degradation mainly depended on the soil properties. The PCA results showed a high dependence between the soil type and behaviour of the pharmaceutical metabolites. The mentioned metabolites can be formed in soils, and the most persistent ones may be transported to the ground water and environmental water bodies. Because no information on the effects of those metabolites on living organism are available, more studies should be performed in the future to predict the risk to the environment.
Collapse
Affiliation(s)
- Olga Koba
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25 Vodňany, Czechia.
| | - Oksana Golovko
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25 Vodňany, Czechia
| | - Radka Kodešová
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Kamýcká 129, 16521 Prague 6, Czechia
| | - Miroslav Fér
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Kamýcká 129, 16521 Prague 6, Czechia
| | - Roman Grabic
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25 Vodňany, Czechia
| |
Collapse
|
7
|
Walvoort MTC, Testa C, Eilam R, Aharoni R, Nuti F, Rossi G, Real-Fernandez F, Lanzillo R, Brescia Morra V, Lolli F, Rovero P, Imperiali B, Papini AM. Antibodies from multiple sclerosis patients preferentially recognize hyperglucosylated adhesin of non-typeable Haemophilus influenzae. Sci Rep 2016; 6:39430. [PMID: 28008952 PMCID: PMC5180199 DOI: 10.1038/srep39430] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 11/21/2016] [Indexed: 01/29/2023] Open
Abstract
In autoimmune diseases, there have been proposals that exogenous “molecular triggers”, i.e., specific ‘non-self antigens’ accompanying infectious agents, might disrupt control of the adaptive immune system resulting in serious pathologies. The etiology of multiple sclerosis (MS) remains unclear. However, epidemiologic data suggest that exposure to infectious agents may be associated with increased MS risk and progression may be linked to exogenous, bacterially-derived, antigenic molecules, mimicking mammalian cell surface glycoconjugates triggering autoimmune responses. Previously, antibodies specific to a gluco-asparagine (N-Glc) glycopeptide, CSF114(N-Glc), were identified in sera of an MS patient subpopulation. Since the human glycoproteome repertoire lacks this uniquely modified amino acid, we turned our attention to bacteria, i.e., Haemophilus influenzae, expressing cell-surface adhesins including N-Glc, to establish a connection between H. influenzae infection and MS. We exploited the biosynthetic machinery from the opportunistic pathogen H. influenzae (and the homologous enzymes from A. pleuropneumoniae) to produce a unique set of defined glucosylated adhesin proteins. Interestingly we revealed that a hyperglucosylated protein domain, based on the cell-surface adhesin HMW1A, is preferentially recognized by antibodies from sera of an MS patient subpopulation. In conclusion the hyperglucosylated adhesin is the first example of an N-glucosylated native antigen that can be considered a relevant candidate for triggering pathogenic antibodies in MS.
Collapse
Affiliation(s)
- Marthe T. C. Walvoort
- Departments of Biology and Chemistry Massachusetts Institute of Technology 77 Massachusetts Ave., Cambridge, MA, USA
| | - Chiara Testa
- French-Italian Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, University of Florence, 50019, Sesto Fiorentino, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health - Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Raya Eilam
- Department of Veterinary Resources, The Weizmann Institute of Science, Rehovot, 761001, Israel
| | - Rina Aharoni
- Department of Immunology, The Weizmann Institute of Science, Rehovot, 761001, Israel
| | - Francesca Nuti
- French-Italian Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, University of Florence, 50019, Sesto Fiorentino, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
| | - Giada Rossi
- French-Italian Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, University of Florence, 50019, Sesto Fiorentino, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health - Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Feliciana Real-Fernandez
- French-Italian Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, University of Florence, 50019, Sesto Fiorentino, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health - Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Roberta Lanzillo
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neurosciences, Reproductive Sciences and Odontostomatology, Federico II University, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Vincenzo Brescia Morra
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neurosciences, Reproductive Sciences and Odontostomatology, Federico II University, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Francesco Lolli
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Viale Morgagni 50, 50134 Firenze, Italy
| | - Paolo Rovero
- French-Italian Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, University of Florence, 50019, Sesto Fiorentino, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health - Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Barbara Imperiali
- Departments of Biology and Chemistry Massachusetts Institute of Technology 77 Massachusetts Ave., Cambridge, MA, USA
| | - Anna Maria Papini
- French-Italian Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, University of Florence, 50019, Sesto Fiorentino, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
- PeptLab@UCP and Laboratory of Chemical Biology EA4505, Université Paris-Seine, 5 Mail Gay-Lussac, 95031 Cergy-Pontoise, France
| |
Collapse
|