1
|
Li C, Liu H, Yang L, Liu R, Yin G, Xie Q. Immune-mediated necrotizing myopathy: A comprehensive review of the pathogenesis, clinical features, and treatments. J Autoimmun 2024; 148:103286. [PMID: 39033686 DOI: 10.1016/j.jaut.2024.103286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Immune-mediated necrotizing myopathy (IMNM) is a rare and newly recognized autoimmune disease within the spectrum of idiopathic inflammatory myopathies. It is characterized by myositis-specific autoantibodies, elevated serum creatine kinase levels, inflammatory infiltrate, and weakness. IMNM can be classified into three subtypes based on the presence or absence of specific autoantibodies: anti-signal recognition particle myositis, anti-3-hydroxy-3-methylglutaryl-coenzyme A reductase myositis, and seronegative IMNM. In recent years, IMNM has gained increasing attention and emerged as a research hotspot. Recent studies have suggested that the pathogenesis of IMNM is linked to aberrant activation of immune system, including immune responses mediated by antibodies, complement, and immune cells, particularly macrophages, as well as abnormal release of inflammatory factors. Non-immune mechanisms such as autophagy and endoplasmic reticulum stress also participate in this process. Additionally, genetic variations associated with IMNM have been identified, providing new insights into the genetic mechanisms of the disease. Progress has also been made in IMNM treatment research, including the use of immunosuppressants and the development of biologics. Despite the challenges in understanding the etiology and treatment of IMNM, the latest research findings offer important guidance and insights for delving deeper into the disease's pathogenic mechanisms and identifying new therapeutic strategies.
Collapse
Affiliation(s)
- Changpei Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongjiang Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Leiyi Yang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Ruiting Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Geng Yin
- Health Management Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Qibing Xie
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Holzer MT, Uruha A, Roos A, Hentschel A, Schänzer A, Weis J, Claeys KG, Schoser B, Montagnese F, Goebel HH, Huber M, Léonard-Louis S, Kötter I, Streichenberger N, Gallay L, Benveniste O, Schneider U, Preusse C, Krusche M, Stenzel W. Anti-Ku + myositis: an acquired inflammatory protein-aggregate myopathy. Acta Neuropathol 2024; 148:6. [PMID: 39012547 PMCID: PMC11252205 DOI: 10.1007/s00401-024-02765-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/07/2024] [Accepted: 07/07/2024] [Indexed: 07/17/2024]
Abstract
Myositis with anti-Ku-autoantibodies is a rare inflammatory myopathy associated with various connective tissue diseases. Histopathological studies have identified inflammatory and necrotizing aspects, but a precise morphological analysis and pathomechanistic disease model are lacking. We therefore aimed to carry out an in-depth morpho-molecular analysis to uncover possible pathomechanisms. Muscle biopsy specimens from 26 patients with anti-Ku-antibodies and unequivocal myositis were analyzed by immunohistochemistry, immunofluorescence, transcriptomics, and proteomics and compared to biopsy specimens of non-disease controls, immune-mediated necrotizing myopathy (IMNM), and inclusion body myositis (IBM). Clinical findings and laboratory parameters were evaluated retrospectively and correlated with morphological and molecular features. Patients were mainly female (92%) with a median age of 56.5 years. Isolated myositis and overlap with systemic sclerosis were reported in 31%, respectively. Isolated myositis presented with higher creatine kinase levels and cardiac involvement (83%), whereas systemic sclerosis-overlap patients often had interstitial lung disease (57%). Histopathology showed a wide spectrum from mild to pronounced myositis with diffuse sarcolemmal MHC-class I (100%) and -II (69%) immunoreactivity, myofiber necrosis (88%), endomysial inflammation (85%), thickened capillaries (84%), and vacuoles (60%). Conspicuous sarcoplasmic protein aggregates were p62, BAG3, myotilin, or immunoproteasomal beta5i-positive. Proteomic and transcriptomic analysis identified prominent up-regulation of autophagy, proteasome, and hnRNP-related cell stress. To conclude, Ku + myositis is morphologically characterized by myofiber necrosis, MHC-class I and II positivity, variable endomysial inflammation, and distinct protein aggregation varying from IBM and IMNM, and it can be placed in the spectrum of scleromyositis and overlap myositis. It features characteristic sarcoplasmic protein aggregation on an acquired basis being functionally associated with altered chaperone, proteasome, and autophagy function indicating that Ku + myositis exhibit aspects of an acquired inflammatory protein-aggregate myopathy.
Collapse
Affiliation(s)
- Marie-Therese Holzer
- Division of Rheumatology and Systemic Inflammatory Diseases, III, Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
- Department of Neuropathology, Charité. Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Akinori Uruha
- Department of Neuropathology, Charité. Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Rheumatology, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Andreas Roos
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, Centre for Neuromuscular Disorders in Children, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Neurology, Medical Faculty, Heinrich Heine University Dusseldorf, 40225, Dusseldorf, Germany
- Brain and Mind Research Institute, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, K1H 8L1, Canada
| | - Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften -ISAS- E.V., Dortmund, Germany
| | - Anne Schänzer
- Institute of Neuropathology, Justus-Liebig-University, Gießen, Germany
| | - Joachim Weis
- Medical Faculty, Institute of Neuropathology, RWTH Aachen University, Aachen, Germany
| | - Kristl G Claeys
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
- Department of Neurosciences, Laboratory for Muscle Diseases and Neuropathies, KU Leuven, and Leuven Brain Institute (LBI), Leuven, Belgium
| | - Benedikt Schoser
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University, Munich, Germany
| | - Federica Montagnese
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University, Munich, Germany
| | - Hans-Hilmar Goebel
- Department of Neuropathology, Charité. Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Melanie Huber
- Department for Rheumatology, Campus Kerckhoff of Justus-Liebig University Gießen, Bad Nauheim, Germany
| | - Sarah Léonard-Louis
- Reference Center of Neuromuscular Pathology Paris-Est, Pitié-Salpêtrière University Hospital, Paris, France
| | - Ina Kötter
- Division of Rheumatology and Systemic Inflammatory Diseases, III, Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Nathalie Streichenberger
- Neuropathologie, Groupement Hospitalier Est, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyogène CNRS UMR 5261- INSERM U1315, Lyon, France
| | - Laure Gallay
- Department of Internal Medicine, Edouard Herriot University Hospital, Hospices Civils de Lyon, Lyon, France
| | - Olivier Benveniste
- Department of Internal Medicine and Clinical Immunology, Assistance Publique Hôpitaux de Paris, Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France
| | - Udo Schneider
- Department of Rheumatology, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Corinna Preusse
- Department of Neuropathology, Charité. Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin Krusche
- Division of Rheumatology and Systemic Inflammatory Diseases, III, Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité. Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
3
|
Cunha A, Perazzio S. Effects of immune exhaustion and senescence of innate immunity in autoimmune disorders. Braz J Med Biol Res 2024; 57:e13225. [PMID: 38896644 PMCID: PMC11186593 DOI: 10.1590/1414-431x2024e13225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/22/2024] [Indexed: 06/21/2024] Open
Abstract
Innate immune system activation is crucial in the inflammatory response, but uncontrolled activation can lead to autoimmune diseases. Cellular exhaustion and senescence are two processes that contribute to innate immune tolerance breakdown. Exhausted immune cells are unable to respond adequately to specific antigens or stimuli, while senescent cells have impaired DNA replication and metabolic changes. These processes can impair immune system function and disrupt homeostasis, leading to the emergence of autoimmunity. However, the influence of innate immune exhaustion and senescence on autoimmune disorders is not well understood. This review aims to describe the current findings on the role of innate immune exhaustion and senescence in autoimmunity, focusing on the cellular and molecular changes involved in each process. Specifically, the article explores the markers and pathways associated with immune exhaustion, such as PD-1 and TIM-3, and senescence, including Β-galactosidase (β-GAL), lamin B1, and p16ink4a, and their impact on autoimmune diseases, namely type 1 diabetes, rheumatoid arthritis, systemic lupus erythematosus, and immune-mediated myopathies. Understanding the mechanisms underlying innate immune exhaustion and senescence in autoimmunity may provide insights for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- A.L.S. Cunha
- Divisão de Reumatologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - S.F. Perazzio
- Divisão de Reumatologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil
- Divisão de Imunologia, Laboratório Fleury, São Paulo, SP, Brasil
- Laboratório Central, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
4
|
Koumas C, Michelassi F. Immune-Mediated Necrotizing Myopathies: Current Landscape. Curr Neurol Neurosci Rep 2024; 24:141-150. [PMID: 38589696 DOI: 10.1007/s11910-024-01337-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2024] [Indexed: 04/10/2024]
Abstract
PURPOSE OF REVIEW Immune-mediated necrotizing myopathy (IMNM), characterized by acute or subacute onset, severe weakness, and elevated creatine kinase levels, poses diagnostic and therapeutic challenges. This article provides a succinct overview of IMNM, including clinical features, diagnostic strategies, and treatment approaches. RECENT FINDINGS Recent insights highlight the different clinical presentations and therapeutic options of IMNM stratified by autoantibody positivity and type. Additionally, recent findings call into question the reported link between statin use and IMNM. This review synthesizes current knowledge on IMNM, emphasizing its distinct clinical features and challenging management. The evolving understanding of IMNM underscores the need for a comprehensive diagnostic approach that utilizes a growing range of modalities. Early and aggressive immunomodulatory therapy remains pivotal. Ongoing research aims to refine diagnostic tools and therapeutic interventions for this challenging muscle disorder, underscoring the importance of advancing our understanding to enhance patient outcomes.
Collapse
Affiliation(s)
- Christoforos Koumas
- Department of Neurology, Columbia University Medical Center, New York, NY, USA.
| | | |
Collapse
|
5
|
Guglielmi V, Cheli M, Tonin P, Vattemi G. Sporadic Inclusion Body Myositis at the Crossroads between Muscle Degeneration, Inflammation, and Aging. Int J Mol Sci 2024; 25:2742. [PMID: 38473988 PMCID: PMC10932328 DOI: 10.3390/ijms25052742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Sporadic inclusion body myositis (sIBM) is the most common muscle disease of older people and is clinically characterized by slowly progressive asymmetrical muscle weakness, predominantly affecting the quadriceps, deep finger flexors, and foot extensors. At present, there are no enduring treatments for this relentless disease that eventually leads to severe disability and wheelchair dependency. Although sIBM is considered a rare muscle disorder, its prevalence is certainly higher as the disease is often undiagnosed or misdiagnosed. The histopathological phenotype of sIBM muscle biopsy includes muscle fiber degeneration and endomysial lymphocytic infiltrates that mainly consist of cytotoxic CD8+ T cells surrounding nonnecrotic muscle fibers expressing MHCI. Muscle fiber degeneration is characterized by vacuolization and the accumulation of congophilic misfolded multi-protein aggregates, mainly in their non-vacuolated cytoplasm. Many players have been identified in sIBM pathogenesis, including environmental factors, autoimmunity, abnormalities of protein transcription and processing, the accumulation of several toxic proteins, the impairment of autophagy and the ubiquitin-proteasome system, oxidative and nitrative stress, endoplasmic reticulum stress, myonuclear degeneration, and mitochondrial dysfunction. Aging has also been proposed as a contributor to the disease. However, the interplay between these processes and the primary event that leads to the coexistence of autoimmune and degenerative changes is still under debate. Here, we outline our current understanding of disease pathogenesis, focusing on degenerative mechanisms, and discuss the possible involvement of aging.
Collapse
Affiliation(s)
- Valeria Guglielmi
- Cellular and Molecular Biology of Cancer Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA;
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Marta Cheli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (M.C.); (P.T.)
| | - Paola Tonin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (M.C.); (P.T.)
| | - Gaetano Vattemi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (M.C.); (P.T.)
| |
Collapse
|
6
|
Essouma M. Autoimmune inflammatory myopathy biomarkers. Clin Chim Acta 2024; 553:117742. [PMID: 38176522 DOI: 10.1016/j.cca.2023.117742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
The autoimmune inflammatory myopathy disease spectrum, commonly known as myositis, is a group of systemic diseases that mainly affect the muscles, skin and lungs. Biomarker assessment helps in understanding disease mechanisms, allowing for the implementation of precise strategies in the classification, diagnosis, and management of these diseases. This review examines the pathogenic mechanisms and highlights current data on blood and tissue biomarkers of autoimmune inflammatory myopathies.
Collapse
Affiliation(s)
- Mickael Essouma
- Network of Immunity in Infections, Malignancy and Autoimmunity, Universal Scientific Education and Research Network, Cameroon
| |
Collapse
|
7
|
Sasaki H, Umezawa N, Itakura T, Iwai H, Yasuda S. Pathogenicity of functionally activated PD-1 +CD8 + cells and counterattacks by muscular PD-L1 through IFNγ in myositis. J Autoimmun 2024; 142:103131. [PMID: 37931332 DOI: 10.1016/j.jaut.2023.103131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/30/2023] [Accepted: 10/12/2023] [Indexed: 11/08/2023]
Abstract
Programmed-cell-death 1 (PD-1) expression is associated not only with T-cell activation but with exhaustion. Specifically, PD-1+ T cells present an exhausted phenotype in conditions of chronic antigen exposure, such as tumor microenvironments and chronic viral infection. However, the immune status regarding exhaustion of PD-1+CD8+ T cells in chronic autoimmune diseases including idiopathic inflammatory myopathies (IIMs) remains unclear. We aimed to clarify the role of PD-1+CD8+ T cells and PD-1 ligand (PD-L1) in IIMs. We showed that PD-1+ cells infiltrated into PD-L1-expressing muscles in patients with IIMs and immune checkpoint inhibitor-related myopathy. According to the peripheral blood immunophenotyping, the PD-1+CD8+ cell proportions were comparable between the active and inactive patients. Of note, PD-1+CD8+ cells in the active patients highly expressed cytolytic molecules, indicating their activation, while PD-1-CD8+ cells expressed low levels of cytolytic molecules in the active and inactive patients. A part of PD-1+CD8+ cells expressed the HMG-box transcription factor TOX highly and presented the exhausted phenotype in the active patients. Among PD-1+CD4+ T cells, PD-1highCXCR5-CD45RO+CD4+ peripheral helper T cells were increased in the active patients. PD-L1-deficient mice developed severer C-protein-induced myositis (CIM), a model of polymyositis, with abundant infiltration of PD-1+CD8+ cells expressing cytolytic molecules than wild-type mice, indicating pathogenicity of the PD-1+CD8+ cells and the protective role of PD-L1. The deficiency of IFNγ, a general PD-L1-inducer, impaired muscular PD-L1 expression and exacerbated CIM, indicating IFNγ-dependent muscular PD-L1 regulation. IFNγ-induced PD-L1 on myotubes was protective in an established muscle injury model. In conclusion, PD-1+CD8+ T cells rather than PD-1-CD8+ T cells were a pathogenic subset of IIMs. Muscular PD-L1 was regulated by IFNγ and exerted protective properties in IIMs.
Collapse
Affiliation(s)
- Hirokazu Sasaki
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Natsuka Umezawa
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takuji Itakura
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hideyuki Iwai
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shinsuke Yasuda
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| |
Collapse
|
8
|
Yang M, Ge H, Ji S, Li Y, Xu L, Bi Z, Bu B. TWEAK and Fn14 are overexpressed in immune-mediated necrotizing myopathy: implications for muscle damage and repair. Rheumatology (Oxford) 2023; 62:3732-3741. [PMID: 36916753 DOI: 10.1093/rheumatology/kead108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/12/2023] [Accepted: 02/27/2023] [Indexed: 03/15/2023] Open
Abstract
OBJECTIVES TNF-like weak inducer of apoptosis (TWEAK) and its sole receptor fibroblast growth factor-inducible 14 (Fn14) are involved in various inflammatory conditions. This study was performed to investigate the potential role of TWEAK/Fn14 in immune-mediated necrotizing myopathy (IMNM). METHODS Muscle biopsies from patients with IMNM (n = 37) and controls (n = 11) were collected. Human muscle cells were treated with TWEAK in vitro. Muscle biopsies and cultured muscle cells were analysed by immunostaining and quantitative PCR. Serum levels of TWEAK and Fn14 were detected by ELISA. RESULTS TWEAK and Fn14 were overexpressed in IMNM muscle biopsies. The percentage of Fn14-positive myofibers correlated with disease severity, myonecrosis, regeneration and inflammation infiltrates. Fn14-positive myofibers tended to be surrounded or invaded by CD68+ macrophages. TWEAK treatment had a harmful effect on cultured muscle cells by inducing the production of multiple chemokines and pro-inflammatory cytokines. Serum Fn14 levels were increased in patients with IMNM and correlated with muscle weakness. CONCLUSIONS TWEAK/Fn14 signalling was activated in IMNM, most likely aggravating muscle damage via amplifying inflammatory response and macrophages chemotaxis. Fn14 seems to be a biomarker for assessing disease severity in IMNM. In addition, Fn14 may also contribute to muscle injury repair.
Collapse
Affiliation(s)
- Mengge Yang
- Department of Neurology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huizhen Ge
- Department of Neurology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Suqiong Ji
- Department of Neurology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yue Li
- Department of Neurology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Xu
- Department of Neurology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhuajin Bi
- Department of Neurology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bitao Bu
- Department of Neurology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
9
|
Quinn C, Moulton K, Farwell M, Le W, Wilson I, Goel N, McConathy J, Greenberg SA. Imaging With PET/CT of Diffuse CD8 T-Cell Infiltration of Skeletal Muscle in Patients With Inclusion Body Myositis. Neurology 2023; 101:e1158-e1166. [PMID: 37487752 PMCID: PMC10513879 DOI: 10.1212/wnl.0000000000207596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/12/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Inclusion body myositis (IBM) is a progressive autoimmune skeletal muscle disease in which cytotoxic CD8+ T cells infiltrate muscle and destroy myofibers. IBM has required a muscle biopsy for diagnosis. Here, we administered to patients with IBM a novel investigational PET tracer 89Zr-Df-crefmirlimab for in vivo imaging of whole body skeletal muscle CD8 T cells. This technology has not previously been applied to patients with autoimmune disease. METHODS Four patients with IBM received 89Zr-Df-crefmirlimab followed by PET/CT imaging 24 hours later, and the results were compared with similar imaging of age-matched patients with cancer. Mean standardized uptake value (SUVmean) was measured for reference tissues using spherical regions of interest (ROIs). RESULTS 89Zr-Df-crefmirlimab was safe and well-tolerated. PET imaging demonstrated diffusely increased uptake qualitatively and quantitatively in IBM limb musculature. Quantitation of 89Zr-Df-crefmirlimab intensity in ROIs demonstrated particularly increased CD8 T-cell infiltration in patients with IBM compared with patients with cancer in quadriceps (SUVmean 0.55 vs 0.20, p < 0.0001), biceps brachii (0.62 vs 0.26, p < 0.0001), triceps (0.61 vs 0.25, p = 0.0005), and forearm finger flexors (0.71 vs 0.23, p = 0.008). DISCUSSION 89Zr-Df-crefmirlimab uptake in muscles of patients with IBM was present at an intensity greater than the comparator population. The ability to visualize whole body in vivo cytotoxic T-cell tissue infiltration in the autoimmune disease IBM may hold utility as a biomarker for diagnosis, disease activity, and therapeutic development and potentially be applicable to other diseases with cytotoxic T-cell autoimmunity.
Collapse
Affiliation(s)
- Colin Quinn
- From the Departments of Neurology (C.Q., K.M.), and Radiology (M.F.), University of Pennsylvania, Perelman School of Medicine, Philadelphia; ImaginAb (W.L., I.W.), Inc., Inglewood, CA; Department of Medicine (N.G.), Duke University School of Medicine, Durham, NC; Abcuro, Inc., Newton, MA; Department of Radiology (J.M.), University of Alabama at Birmingham, Heersink School of Medicine; and Department of Neurology (S.A.G.), Brigham and Women's Hospital and Boston Childrens Hospital, Harvard Medical School, MA.
| | - Kelsey Moulton
- From the Departments of Neurology (C.Q., K.M.), and Radiology (M.F.), University of Pennsylvania, Perelman School of Medicine, Philadelphia; ImaginAb (W.L., I.W.), Inc., Inglewood, CA; Department of Medicine (N.G.), Duke University School of Medicine, Durham, NC; Abcuro, Inc., Newton, MA; Department of Radiology (J.M.), University of Alabama at Birmingham, Heersink School of Medicine; and Department of Neurology (S.A.G.), Brigham and Women's Hospital and Boston Childrens Hospital, Harvard Medical School, MA
| | - Michael Farwell
- From the Departments of Neurology (C.Q., K.M.), and Radiology (M.F.), University of Pennsylvania, Perelman School of Medicine, Philadelphia; ImaginAb (W.L., I.W.), Inc., Inglewood, CA; Department of Medicine (N.G.), Duke University School of Medicine, Durham, NC; Abcuro, Inc., Newton, MA; Department of Radiology (J.M.), University of Alabama at Birmingham, Heersink School of Medicine; and Department of Neurology (S.A.G.), Brigham and Women's Hospital and Boston Childrens Hospital, Harvard Medical School, MA
| | - William Le
- From the Departments of Neurology (C.Q., K.M.), and Radiology (M.F.), University of Pennsylvania, Perelman School of Medicine, Philadelphia; ImaginAb (W.L., I.W.), Inc., Inglewood, CA; Department of Medicine (N.G.), Duke University School of Medicine, Durham, NC; Abcuro, Inc., Newton, MA; Department of Radiology (J.M.), University of Alabama at Birmingham, Heersink School of Medicine; and Department of Neurology (S.A.G.), Brigham and Women's Hospital and Boston Childrens Hospital, Harvard Medical School, MA
| | - Ian Wilson
- From the Departments of Neurology (C.Q., K.M.), and Radiology (M.F.), University of Pennsylvania, Perelman School of Medicine, Philadelphia; ImaginAb (W.L., I.W.), Inc., Inglewood, CA; Department of Medicine (N.G.), Duke University School of Medicine, Durham, NC; Abcuro, Inc., Newton, MA; Department of Radiology (J.M.), University of Alabama at Birmingham, Heersink School of Medicine; and Department of Neurology (S.A.G.), Brigham and Women's Hospital and Boston Childrens Hospital, Harvard Medical School, MA
| | - Niti Goel
- From the Departments of Neurology (C.Q., K.M.), and Radiology (M.F.), University of Pennsylvania, Perelman School of Medicine, Philadelphia; ImaginAb (W.L., I.W.), Inc., Inglewood, CA; Department of Medicine (N.G.), Duke University School of Medicine, Durham, NC; Abcuro, Inc., Newton, MA; Department of Radiology (J.M.), University of Alabama at Birmingham, Heersink School of Medicine; and Department of Neurology (S.A.G.), Brigham and Women's Hospital and Boston Childrens Hospital, Harvard Medical School, MA
| | - Jonathan McConathy
- From the Departments of Neurology (C.Q., K.M.), and Radiology (M.F.), University of Pennsylvania, Perelman School of Medicine, Philadelphia; ImaginAb (W.L., I.W.), Inc., Inglewood, CA; Department of Medicine (N.G.), Duke University School of Medicine, Durham, NC; Abcuro, Inc., Newton, MA; Department of Radiology (J.M.), University of Alabama at Birmingham, Heersink School of Medicine; and Department of Neurology (S.A.G.), Brigham and Women's Hospital and Boston Childrens Hospital, Harvard Medical School, MA
| | - Steven A Greenberg
- From the Departments of Neurology (C.Q., K.M.), and Radiology (M.F.), University of Pennsylvania, Perelman School of Medicine, Philadelphia; ImaginAb (W.L., I.W.), Inc., Inglewood, CA; Department of Medicine (N.G.), Duke University School of Medicine, Durham, NC; Abcuro, Inc., Newton, MA; Department of Radiology (J.M.), University of Alabama at Birmingham, Heersink School of Medicine; and Department of Neurology (S.A.G.), Brigham and Women's Hospital and Boston Childrens Hospital, Harvard Medical School, MA
| |
Collapse
|
10
|
Li W, Deng C, Yang H, Tian X, Chen L, Liu Q, Gao C, Lu X, Wang G, Peng Q. Upregulation of the CD155-CD226 Axis Is Associated With Muscle Inflammation and Disease Severity in Idiopathic Inflammatory Myopathies. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:e200143. [PMID: 37491355 PMCID: PMC10368451 DOI: 10.1212/nxi.0000000000200143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/01/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND AND OBJECTIVES The CD155-CD226/T-cell Ig and immunoreceptor tyrosine-based inhibitory motif (ITIM) domain (TIGIT) pathway plays a critical role in regulating T-cell responses and is being targeted clinically. However, research on the role of this pathway in autoimmune diseases is limited. This study aimed to investigate the expression and tissue-specific roles of CD155-CD226/TIGIT pathway molecules in the inflamed muscles of patients with idiopathic inflammatory myopathies (IIMs). METHODS Immunohistochemistry, Western blot analysis, and polychromatic immunofluorescence staining were performed to examine the expression of CD155, CD226, and TIGIT in skeletal muscle biopsies from 30 patients with dermatomyositis (DM), 10 patients with amyopathic DM (ADM), 20 patients with immune-mediated necrotizing myopathy (IMNM), 5 patients with dysferlinopathy, and 4 healthy controls. Flow cytometry analysis was used to analyze the functions of T cells with different phenotypes. RESULTS Strong expression of CD155 was observed in patients with DM and IMNM, while its expression was largely negative in those with ADM and dysferlinopathy and healthy controls. The costimulatory receptor CD226 was highly expressed on muscle-infiltrating cells, while the coinhibitory receptor TIGIT was expressed at low levels. These infiltrating CD226+ cells were mainly activated effector T cells that localized adjacent to CD155-expressing myofibers, but were faintly detectable within the muscle fascicles lacking CD155. A strong positive correlation between CD155 and CD226 expression scores was also observed. Polychromatic immunofluorescence staining revealed that CD155+ muscle cells coexpressed major histocompatibility complex classes I and II, and tumor necrosis factor alpha expression was detected in CD226+ T cells at their close sites with the myofibers. Furthermore, the expression levels of CD155 and CD226 showed a positive correlation with creatine kinase, lactate dehydrogenase, and the muscle histopathology damage scores and an inverse correlation with the Manual Muscle Testing-8 scores. In addition, CD155 and CD226 expressions were significantly decreased in representative patients who achieved remission posttreatment. DISCUSSION These findings demonstrate that the CD155-CD226 axis is highly activated in inflamed muscle tissues of patients with IIM and is associated with muscle disease severity. Our data uncover the immunopathogenic role of the axis in the pathology of IIMs.
Collapse
Affiliation(s)
- Wenli Li
- From the Department of Rheumatology (W.L., H.Y., X.T., Q.L., C.G., X.L., G.W., Q.P.), Key Myositis Laboratories, China-Japan Friendship Hospital; Department of Rheumatology and Clinical Immunology (C.D.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College; and Department of Blood Transfusion (L.C.), China-Japan Friendship Hospital, Beijing.
| | - Chuiwen Deng
- From the Department of Rheumatology (W.L., H.Y., X.T., Q.L., C.G., X.L., G.W., Q.P.), Key Myositis Laboratories, China-Japan Friendship Hospital; Department of Rheumatology and Clinical Immunology (C.D.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College; and Department of Blood Transfusion (L.C.), China-Japan Friendship Hospital, Beijing
| | - Hanbo Yang
- From the Department of Rheumatology (W.L., H.Y., X.T., Q.L., C.G., X.L., G.W., Q.P.), Key Myositis Laboratories, China-Japan Friendship Hospital; Department of Rheumatology and Clinical Immunology (C.D.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College; and Department of Blood Transfusion (L.C.), China-Japan Friendship Hospital, Beijing
| | - Xiaolan Tian
- From the Department of Rheumatology (W.L., H.Y., X.T., Q.L., C.G., X.L., G.W., Q.P.), Key Myositis Laboratories, China-Japan Friendship Hospital; Department of Rheumatology and Clinical Immunology (C.D.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College; and Department of Blood Transfusion (L.C.), China-Japan Friendship Hospital, Beijing
| | - Lida Chen
- From the Department of Rheumatology (W.L., H.Y., X.T., Q.L., C.G., X.L., G.W., Q.P.), Key Myositis Laboratories, China-Japan Friendship Hospital; Department of Rheumatology and Clinical Immunology (C.D.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College; and Department of Blood Transfusion (L.C.), China-Japan Friendship Hospital, Beijing
| | - Qingyan Liu
- From the Department of Rheumatology (W.L., H.Y., X.T., Q.L., C.G., X.L., G.W., Q.P.), Key Myositis Laboratories, China-Japan Friendship Hospital; Department of Rheumatology and Clinical Immunology (C.D.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College; and Department of Blood Transfusion (L.C.), China-Japan Friendship Hospital, Beijing
| | - Chang Gao
- From the Department of Rheumatology (W.L., H.Y., X.T., Q.L., C.G., X.L., G.W., Q.P.), Key Myositis Laboratories, China-Japan Friendship Hospital; Department of Rheumatology and Clinical Immunology (C.D.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College; and Department of Blood Transfusion (L.C.), China-Japan Friendship Hospital, Beijing
| | - Xin Lu
- From the Department of Rheumatology (W.L., H.Y., X.T., Q.L., C.G., X.L., G.W., Q.P.), Key Myositis Laboratories, China-Japan Friendship Hospital; Department of Rheumatology and Clinical Immunology (C.D.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College; and Department of Blood Transfusion (L.C.), China-Japan Friendship Hospital, Beijing
| | - Guochun Wang
- From the Department of Rheumatology (W.L., H.Y., X.T., Q.L., C.G., X.L., G.W., Q.P.), Key Myositis Laboratories, China-Japan Friendship Hospital; Department of Rheumatology and Clinical Immunology (C.D.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College; and Department of Blood Transfusion (L.C.), China-Japan Friendship Hospital, Beijing
| | - Qinglin Peng
- From the Department of Rheumatology (W.L., H.Y., X.T., Q.L., C.G., X.L., G.W., Q.P.), Key Myositis Laboratories, China-Japan Friendship Hospital; Department of Rheumatology and Clinical Immunology (C.D.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College; and Department of Blood Transfusion (L.C.), China-Japan Friendship Hospital, Beijing.
| |
Collapse
|
11
|
Vogt S, Kleefeld F, Preusse C, Arendt G, Bieneck S, Brunn A, Deckert M, Englert B, Goebel HH, Masuhr A, Neuen-Jacob E, Kornblum C, Reimann J, Montagnese F, Schoser B, Stenzel W, Hahn K. Morphological and molecular comparison of HIV-associated and sporadic inclusion body myositis. J Neurol 2023; 270:4434-4443. [PMID: 37280376 PMCID: PMC10243696 DOI: 10.1007/s00415-023-11779-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/08/2023]
Abstract
OBJECTIVE The molecular characteristics of sporadic inclusion body myositis (sIBM) have been intensively studied, and specific patterns on the cellular, protein and RNA level have emerged. However, these characteristics have not been studied in the context of HIV-associated IBM (HIV-IBM). In this study, we compared clinical, histopathological, and transcriptomic patterns of sIBM and HIV-IBM. METHODS In this cross-sectional study, we compared patients with HIV-IBM and sIBM based on clinical and morphological features as well as gene expression levels of specific T-cell markers in skeletal muscle biopsy samples. Non-disease individuals served as controls (NDC). Cell counts for immunohistochemistry and gene expression profiles for quantitative PCR were used as primary outcomes. RESULTS 14 muscle biopsy samples (7 HIV-IBM, 7 sIBM) of patients and 6 biopsy samples from NDC were included. Clinically, HIV-IBM patients showed a significantly lower age of onset and a shorter period between symptom onset and muscle biopsy. Histomorphologically, HIV-IBM patients showed no KLRG1+ or CD57+ cells, while the number of PD1+ cells did not differ significantly between the two groups. All markers were shown to be significantly upregulated at gene expression level with no significant difference between the IBM subgroups. CONCLUSION Despite HIV-IBM and sIBM sharing important clinical, histopathological, and transcriptomic signatures, the presence of KLRG1+ cells discriminated sIBM from HIV-IBM. This may be explained by longer disease duration and subsequent T-cell stimulation in sIBM. Thus, the presence of TEMRA cells is characteristic for sIBM, but not a prerequisite for the development of IBM in HIV+ patients.
Collapse
Affiliation(s)
- Sinja Vogt
- Department of Neurology, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - Felix Kleefeld
- Department of Neurology, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
- BIH Charité Clinician Scientist Program, BIH Biomedical Innovation Academy, Berlin Institute of Health at Charité, Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Corinna Preusse
- Department of Neuropathology, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | | | - Stefan Bieneck
- Department of Internal Medicine, Rheumatology, Schlosspark-Klinik, 14059, Berlin, Germany
| | - Anna Brunn
- Faculty of Medicine, Institute of Neuropathology, University Hospital Cologne, 50937, Cologne, Germany
| | - Martina Deckert
- Faculty of Medicine, Institute of Neuropathology, University Hospital Cologne, 50937, Cologne, Germany
| | - Benjamin Englert
- Center for Neuropathology and Prion Research, Ludwig-Maximilians University Munich, 81337, Munich, Germany
| | - Hans-Hilmar Goebel
- Department of Neuropathology, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - Anja Masuhr
- Department of Internal Medicine, Infectiology, Auguste-Viktoria-Klinikum, 12157, Berlin, Germany
| | - Eva Neuen-Jacob
- Department of Neuropathology, University Hospital Düsseldorf, 40225, Düsseldorf, Germany
| | - Cornelia Kornblum
- Department of Neurology, University Hospital Bonn, 53127, Bonn, Germany
| | - Jens Reimann
- Department of Neurology, University Hospital Bonn, 53127, Bonn, Germany
| | - Federica Montagnese
- Department of Neurology, Friedrich-Baur-Institute, University Hospital Munich, 80336, Munich, Germany
| | - Benedikt Schoser
- Department of Neurology, Friedrich-Baur-Institute, University Hospital Munich, 80336, Munich, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany.
| | - Katrin Hahn
- Department of Neurology, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany.
| |
Collapse
|
12
|
Giovannini E, Bonasoni MP, D'Aleo M, Tamagnini I, Tudini M, Fais P, Pelotti S. Pembrolizumab-Induced Fatal Myasthenia, Myocarditis, and Myositis in a Patient with Metastatic Melanoma: Autopsy, Histological, and Immunohistochemical Findings-A Case Report and Literature Review. Int J Mol Sci 2023; 24:10919. [PMID: 37446095 DOI: 10.3390/ijms241310919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) represent a major advance in cancer treatment. The lowered immune tolerance induced by ICIs brought to light a series of immune-related adverse events (irAEs). Pembrolizumab belongs to the ICI class and is a humanized IgG4 anti-PD-1 antibody that blocks the interaction between PD-1 and PD-L1. The ICI-related irAEs involving various organ systems and myocarditis are uncommon (incidence of 0.04% to 1.14%), but they are associated with a high reported mortality. Unlike idiopathic inflammatory myositis, ICI-related myositis has been reported to frequently co-occur with myocarditis. The triad of myasthenia, myositis, and myocarditis must not be underestimated as they can rapidly deteriorate, leading to death. Herein we report a case of a patient with metastatic melanoma who fatally developed myasthenia gravis, myocarditis, and myositis, after a single cycle of pembrolizumab. Considering evidence from the literature review, autopsy, histological, and immunohistochemical investigations on heart and skeletal muscle are presented and discussed, also from a medical-legal perspective.
Collapse
Affiliation(s)
- Elena Giovannini
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Via Irnerio 49, 40126 Bologna, Italy
| | - Maria Paola Bonasoni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Michele D'Aleo
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Via Irnerio 49, 40126 Bologna, Italy
| | - Ione Tamagnini
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Matteo Tudini
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Via Irnerio 49, 40126 Bologna, Italy
| | - Paolo Fais
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Via Irnerio 49, 40126 Bologna, Italy
| | - Susi Pelotti
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Via Irnerio 49, 40126 Bologna, Italy
| |
Collapse
|
13
|
Dallevet CA, Benveniste O, Allenbach Y. Pathogenesis and Treatment in IMNM. CURRENT TREATMENT OPTIONS IN RHEUMATOLOGY 2023. [DOI: 10.1007/s40674-023-00201-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
14
|
Lu Y, Ruan Y, Hong P, Rui K, Liu Q, Wang S, Cui D. T-cell senescence: A crucial player in autoimmune diseases. Clin Immunol 2023; 248:109202. [PMID: 36470338 DOI: 10.1016/j.clim.2022.109202] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/24/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Senescent T cells are proliferative disabled lymphocytes that lack antigen-specific responses. The development of T-cell senescence in autoimmune diseases contributes to immunological disorders and disease progression. Senescent T cells lack costimulatory markers with the reduction of T cell receptor repertoire and the uptake of natural killer cell receptors. Senescent T cells exert cytotoxic effects through the expression of perforin, granzymes, tumor necrosis factor, and other molecules without the antigen-presenting process. DNA damage accumulation, telomere damage, and limited DNA repair capacity are important features of senescent T cells. Impaired mitochondrial function and accumulation of reactive oxygen species contribute to T cell senescence. Alleviation of T-cell senescence could provide potential targets for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Yinyun Lu
- Department of Infectious Diseases, Shaoxing People's Hospital, Shaoxing, China
| | - Yongchun Ruan
- Department of Infectious Diseases, Shaoxing People's Hospital, Shaoxing, China
| | - Pan Hong
- Department of Hematology, Shaoxing People's Hospital, Shaoxing, China
| | - Ke Rui
- Department of Transfusion, Shaoxing People's Hospital, Shaoxing, China
| | - Qi Liu
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Shengjun Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China; Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.
| | - Dawei Cui
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
15
|
Torres-Ruiz J, Absalón-Aguilar A, Reyes-Islas JA, Cassiano-Quezada F, Mejía-Domínguez NR, Pérez-Fragoso A, Maravillas-Montero JL, Núñez-Álvarez C, Juárez-Vega G, Culebro-Bermejo A, Gómez-Martín D. Peripheral expansion of myeloid-derived suppressor cells is related to disease activity and damage accrual in inflammatory myopathies. Rheumatology (Oxford) 2023; 62:775-784. [PMID: 35766810 DOI: 10.1093/rheumatology/keac374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/26/2022] [Accepted: 06/18/2022] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE To assess the proportion of myeloid-derived suppressor cells (MDSCs), their expression of arginase-1 and programmed cell death ligand 1 (PD-L1) and their relationship with the clinical phenotype of patients with idiopathic inflammatory myopathies (IIMs). METHODS We recruited 37 IIM adult patients and 10 healthy donors in Mexico City. We evaluated their clinical features, the proportion of MDSCs and their expression of PD-L1 and arginase-1 by flow cytometry. Polymorphonuclear (PMN)-MDSCs were defined as CD33dim, CD11b+ and CD66b+ while monocytic (M)-MDSCs were CD33+, CD11b+, HLA-DR- and CD14+. Serum cytokines were analysed with a multiplex assay. We compared the quantitative variables with the Kruskal-Wallis and Mann-Whitney U tests and assessed correlations with Spearman's ρ. RESULTS Most patients had dermatomyositis [n = 30 (81.0%)]. IIM patients had a peripheral expansion of PMN-MDSCs and M-MDSCs with an enhanced expression of arginase-1 and PD-L1. Patients with active disease had a decreased percentage {median 1.75% [interquartile range (IQR) 0.31-5.50 vs 10.71 [3.16-15.58], P = 0.011} of M-MDSCs and a higher absolute number of PD-L1+ M-MDSCs [median 23.21 cells/mm3 (IQR 11.16-148.9) vs 5.95 (4.66-102.7), P = 0.046] with increased expression of PD-L1 [median 3136 arbitrary units (IQR 2258-4992) vs 1961 (1885-2335), P = 0.038]. PD-L1 expression in PMN-MDSCs correlated with the visual analogue scale of pulmonary disease activity (r = 0.34, P = 0.040) and damage (r = 0.36, P = 0.031), serum IL-5 (r = 0.55, P = 0.003), IL-6 (r = 0.46, P = 0.003), IL-8 (r = 0.53, P = 0.018), IL-10 (r = 0.48, P = 0.005) and GM-CSF (r = 0.48, P = 0.012). M-MDSCs negatively correlated with the skeletal Myositis Intention to Treat Index (r = -0.34, P = 0.038) and positively with IL-6 (r = 0.40, P = 0.045). CONCLUSION MDSCs expressing arginase-1 and PD-L1 are expanded in IIM and correlate with disease activity, damage accrual and serum cytokines.
Collapse
Affiliation(s)
- Jiram Torres-Ruiz
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
| | - Abdiel Absalón-Aguilar
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
| | - Juan Alberto Reyes-Islas
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
| | - Fabiola Cassiano-Quezada
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
| | - Nancy R Mejía-Domínguez
- Red de Apoyo a la Investigación, Coordinacion de Investigación Científica, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alfredo Pérez-Fragoso
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
| | - José Luis Maravillas-Montero
- Red de Apoyo a la Investigación, Coordinacion de Investigación Científica, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Núñez-Álvarez
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
| | - Guillermo Juárez-Vega
- Red de Apoyo a la Investigación, Coordinacion de Investigación Científica, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alejandro Culebro-Bermejo
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
| | - Diana Gómez-Martín
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
| |
Collapse
|
16
|
Cuzzubbo S, Carpentier AF. Neurological adverse events of immune checkpoint blockade: from pathophysiology to treatment. Curr Opin Neurol 2022; 35:814-822. [PMID: 36226705 DOI: 10.1097/wco.0000000000001113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW We review the recent advances in neurological toxicities of immune checkpoint inhibitors, with a focus on underlying pathophysiologic mechanisms and the implications on their therapeutical management. RECENT FINDINGS A growing number of cancer patients benefit from immune checkpoint agents and oncologists are increasingly confronted with these novel autoimmune syndromes. During the last years, further progresses have occurred in this field, notably in the identification of specific clinical patterns, such as the association of myasthenic syndrome with myositis and myocarditis, and polyradiculoneuropathies accompanied by cerebrospinal fluid lymphocytic pleocytosis. In addition, recent immune-histological studies improved the understanding of the pathophysiologic mechanisms behind immune-related neurotoxicities. SUMMARY Neurological toxicity is rare compared with other organs and systems, but its potential morbidity and mortality requires a prompt management. If there is a consensus for steroids as a first-line treatment, no exhaustive clinical data exist for other treatments. Recent advances in the knowledge of pathophysiological mechanisms (behind these toxicities) should be taken into account for the management of these patients. Drugs targeting T-cell mediated inflammation should be preferred in patients who are refractory to steroids, whereas therapies targeting humoral mechanisms should be considered in specific cases associated with autoantibodies such as immune-related myasthenic syndrome.
Collapse
Affiliation(s)
- Stefania Cuzzubbo
- Service de Neurologie, AP-HP, Hôpital Saint-Louis, Paris, France
- Université Paris Cité, Paris, France
| | - Antoine F Carpentier
- Service de Neurologie, AP-HP, Hôpital Saint-Louis, Paris, France
- Université Paris Cité, Paris, France
| |
Collapse
|
17
|
Ma X, Bu BT. Anti-SRP immune-mediated necrotizing myopathy: A critical review of current concepts. Front Immunol 2022; 13:1019972. [PMID: 36311711 PMCID: PMC9612835 DOI: 10.3389/fimmu.2022.1019972] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Purpose of review This review aims to describe clinical and histological features, treatment, and prognosis in patients with anti-signal recognition particle (SRP) autoantibodies positive immune-mediated necrotizing myopathy (SRP-IMNM) based on previous findings. Previous findings Anti-SRP autoantibodies are specific in IMNM. Humoral autoimmune and inflammatory responses are the main autoimmune characteristics of SRP-IMNM. SRP-IMNM is clinically characterized by acute or subacute, moderately severe, symmetrical proximal weakness. Younger patients with SRP-IMNM tend to have more severe clinical symptoms. Patients with SRP-IMNM may be vulnerable to cardiac involvement, which ought to be regularly monitored and cardiac magnetic resonance imaging is the recommended detection method. The pathological features of SRP-IMNM are patchy or diffuse myonecrosis and myoregeneration accompanied by a paucity of inflammatory infiltrates. Endoplasmic reticulum stress-induced autophagy pathway and necroptosis are activated in skeletal muscle of SRP-IMNM. Treatment of refractory SRP-IMNM encounters resistance and warrants further investigation. Summary Anti-SRP autoantibodies define a unique population of IMNM patients. The immune and non-immune pathophysiological mechanisms are involved in SRP-IMNM.
Collapse
Affiliation(s)
- Xue Ma
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Bi-Tao Bu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Bi-Tao Bu,
| |
Collapse
|
18
|
Matsubara S, Suzuki S, Komori T. Immunohistochemical Phenotype of T Cells Invading Muscle in Inclusion Body Myositis. J Neuropathol Exp Neurol 2022; 81:825-835. [PMID: 35920309 DOI: 10.1093/jnen/nlac067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Inclusion body myositis (IBM) is an inflammatory myopathy of aged people with poor response to therapy. To characterize muscle-invading inflammatory cells, we performed immunohistochemical and ultrastructural studies on muscle biopsies from 10 patients with IBM with durations of illness from 3 to 84 months. At the surface of muscle fibers, 79% and 48% of CD8+ cells were positive for killer cell lectin-like receptor subfamily G, member 1 (KLRG1) and CD57, respectively. CD8+KLRG1+ cells are highly differentiated cytotoxic cells. On an average, 27% of CD8-CD57+KLRG1+ cells at the surface were CD4+. Proportions of CD28+ cells among KLRG1+ cells showed a negative correlation with duration of illness (r = -0.68). These changes indicated progressive differentiation of CD8+ T cells. Moreover, PD-1 expression on CD57+ and CD8+ cells increased early, then fluctuated, and reincreased in later stages. PD ligand-1 (PD-L1) and PD-L2 were expressed on adjacent cells including muscle fibers. T cell large granular lymphocytes (LGLs) are potent effector cells and cells with ultrastructure indistinguishable from LGLs were seen in the sarcoplasm along with lymphocytes undergoing degeneration. Together, along the course of IBM, some inflammatory cells retained the potential for cytotoxicity whereas others indicated suppression by exhaustion, senescence, or through the PD-1 pathway.
Collapse
Affiliation(s)
- Shiro Matsubara
- From the Department of Neurology, Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo, Japan
| | - Shigeaki Suzuki
- Department of Neurology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Takashi Komori
- Laboratory Medicine, Pathology, Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo, Japan
| |
Collapse
|
19
|
Damian L, Login CC, Solomon C, Belizna C, Encica S, Urian L, Jurcut C, Stancu B, Vulturar R. Inclusion Body Myositis and Neoplasia: A Narrative Review. Int J Mol Sci 2022; 23:ijms23137358. [PMID: 35806366 PMCID: PMC9266341 DOI: 10.3390/ijms23137358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
Inclusion body myositis (IBM) is an acquired, late-onset inflammatory myopathy, with both inflammatory and degenerative pathogenesis. Although idiopathic inflammatory myopathies may be associated with malignancies, IBM is generally not considered paraneoplastic. Many studies of malignancy in inflammatory myopathies did not include IBM patients. Indeed, IBM is often diagnosed only after around 5 years from onset, while paraneoplastic myositis is generally defined as the co-occurrence of malignancy and myopathy within 1 to 3 years of each other. Nevertheless, a significant association with large granular lymphocyte leukemia has been recently described in IBM, and there are reports of cancer-associated IBM. We review the pathogenic mechanisms supposed to be involved in IBM and outline the common mechanisms in IBM and malignancy, as well as the therapeutic perspectives. The terminally differentiated, CD8+ highly cytotoxic T cells expressing NK features are central in the pathogenesis of IBM and, paradoxically, play a role in some cancers as well. Interferon gamma plays a central role, mostly during the early stages of the disease. The secondary mitochondrial dysfunction, the autophagy and cell cycle dysregulation, and the crosstalk between metabolic and mitogenic pathways could be shared by IBM and cancer. There are intermingled subcellular mechanisms in IBM and neoplasia, and probably their co-existence is underestimated. The link between IBM and cancers deserves further interest, in order to search for efficient therapies in IBM and to improve muscle function, life quality, and survival in both diseases.
Collapse
Affiliation(s)
- Laura Damian
- Centre for Rare Autoimmune and Autoinflammatory Diseases (ERN-ReCONNET), Department of Rheumatology, Emergency Clinical County Hospital Cluj, 400347 Cluj-Napoca, Romania;
- CMI Reumatologie Dr. Damian, 6-8 Petru Maior St., 400002 Cluj-Napoca, Romania
| | - Cristian Cezar Login
- Department of Physiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
- Correspondence:
| | - Carolina Solomon
- Radiology Department, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania;
- Radiology Department, Emergency Clinical County Hospital Cluj, 400006 Cluj-Napoca, Romania
| | - Cristina Belizna
- UMR CNRS 6015—INSERM U1083, University of Angers, 49100 Angers, France;
- Internal Medicine Department Clinique de l’Anjou, Angers and Vascular and Coagulation Department, University Hospital Angers, 49100 Angers, France
| | - Svetlana Encica
- Department of Pathology, “Niculae Stancioiu” Heart Institute Cluj-Napoca, 19-21 Calea Moților St., 400001 Cluj-Napoca, Romania;
| | - Laura Urian
- Department of Hematology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400004 Cluj-Napoca, Romania;
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, 400014 Cluj-Napoca, Romania
| | - Ciprian Jurcut
- Department of Internal Medicine, “Carol Davila” Central Military Emergency University Hospital, Calea Plevnei No 134, 010825 Bucharest, Romania;
| | - Bogdan Stancu
- 2nd Surgical Department, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Romana Vulturar
- Department of Molecular Sciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
- Cognitive Neuroscience Laboratory, University “Babes-Bolyai” Cluj-Napoca, 400294 Cluj-Napoca, Romania
| |
Collapse
|
20
|
Damoiseaux J, Mammen AL, Piette Y, Benveniste O, Allenbach Y. 256 th ENMC international workshop: Myositis specific and associated autoantibodies (MSA-ab): Amsterdam, The Netherlands, 8-10 October 2021. Neuromuscul Disord 2022; 32:594-608. [PMID: 35644723 DOI: 10.1016/j.nmd.2022.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
Affiliation(s)
- Jan Damoiseaux
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, the Netherlands.
| | - Andrew L Mammen
- Muscle Disease Unit. Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, United States
| | - Yves Piette
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium; Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Olivier Benveniste
- Department of Internal Medicine and Clinical Immunology, Sorbonne Université, INSERM, UMR974, Pitié-Salpêtrière University Hospital, Paris, France
| | - Yves Allenbach
- Department of Internal Medicine and Clinical Immunology, Sorbonne Université, INSERM, UMR974, Pitié-Salpêtrière University Hospital, Paris, France
| |
Collapse
|
21
|
Preusse C, Marteau T, Fischer N, Hentschel A, Sickmann A, Lang S, Schneider U, Schara-Schmidt U, Meyer N, Ruck T, Dengler NF, Prudlo J, Dudesek A, Görl N, Allenbach Y, Benveniste O, Goebel HH, Dittmayer C, Stenzel W, Roos A. Endoplasmic reticulum-stress and unfolded protein response-activation in immune-mediated necrotizing myopathy. Brain Pathol 2022; 32:e13084. [PMID: 35703068 DOI: 10.1111/bpa.13084] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 05/12/2022] [Indexed: 12/13/2022] Open
Abstract
Patients suffering from immune-mediated necrotizing myopathies (IMNM) harbor, the pathognomonic myositis-specific auto-antibodies anti-SRP54 or -HMGCR, while about one third of them do not. Activation of chaperone-assisted autophagy was described as being part of the molecular etiology of IMNM. Endoplasmic reticulum (ER)/sarcoplasmic reticulum (SR)-stress accompanied by activation of the unfolded protein response (UPR) often precedes activation of the protein clearance machinery and represents a cellular defense mechanism toward restoration of proteostasis. Here, we show that ER/SR-stress may be part of the molecular etiology of IMNM. To address this assumption, ER/SR-stress related key players covering the three known branches (PERK-mediated, IRE1-mediated, and ATF6-mediated) were investigated on both, the transcript and the protein levels utilizing 39 muscle biopsy specimens derived from IMNM-patients. Our results demonstrate an activation of all three UPR-branches in IMNM, which most likely precedes the activation of the protein clearance machinery. In detail, we identified increased phosphorylation of PERK and eIF2a along with increased expression and protein abundance of ATF4, all well-documented characteristics for the activation of the UPR. Further, we identified increased general XBP1-level, and elevated XBP1 protein levels. Additionally, our transcript studies revealed an increased ATF6-expression, which was confirmed by immunostaining studies indicating a myonuclear translocation of the cleaved ATF6-form toward the forced transcription of UPR-related chaperones. In accordance with that, our data demonstrate an increase of downstream factors including ER/SR co-chaperones and chaperones (e.g., SIL1) indicating an UPR-activation on a broader level with no significant differences between seropositive and seronegative patients. Taken together, one might assume that UPR-activation within muscle fibers might not only serve to restore protein homeostasis, but also enhance sarcolemmal presentation of proteins crucial for attracting immune cells. Since modulation of ER-stress and UPR via application of chemical chaperones became a promising therapeutic treatment approach, our findings might represent the starting point for new interventional concepts.
Collapse
Affiliation(s)
- Corinna Preusse
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Neurology with Institute for Translational Neurology, University Hospital Münster, Münster, Germany
| | - Theodore Marteau
- Pediatric Neurology, University Children's Hospital, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - Norina Fischer
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Sven Lang
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Udo Schneider
- Department of Rheumatology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ulrike Schara-Schmidt
- Pediatric Neurology, University Children's Hospital, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - Nancy Meyer
- Pediatric Neurology, University Children's Hospital, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Nora F Dengler
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johannes Prudlo
- Department of Neurology, Rostock University Medical Center, Rostock, Germany.,German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock, Germany.,Department of Neurology, University of Rostock, Rostock, Germany
| | - Ales Dudesek
- Department of Neurology, Rostock University Medical Center, Rostock, Germany
| | - Norman Görl
- Department of Internal Medicine, Klinikum Südstadt Rostock, Rostock, Germany
| | - Yves Allenbach
- Department of Internal Medicine and Clinical Immunology, Sorbonne Université, APHP, Pitié-Salpêtrière University Hospital, Paris, France
| | - Olivier Benveniste
- Department of Internal Medicine and Clinical Immunology, Sorbonne Université, APHP, Pitié-Salpêtrière University Hospital, Paris, France
| | - Hans-Hilmar Goebel
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Neuropathology, University Hospital Mainz, Mainz, Germany
| | - Carsten Dittmayer
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Roos
- Pediatric Neurology, University Children's Hospital, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany.,Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
22
|
Nelke C, Kleefeld F, Preusse C, Ruck T, Stenzel W. Inclusion body myositis and associated diseases: an argument for shared immune pathologies. Acta Neuropathol Commun 2022; 10:84. [PMID: 35659120 PMCID: PMC9164382 DOI: 10.1186/s40478-022-01389-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
Inclusion body myositis (IBM) is the most prevalent idiopathic inflammatory myopathy (IIM) affecting older adults. The pathogenic hallmark of IBM is chronic inflammation of skeletal muscle. At present, we do not classify IBM into different sub-entities, with the exception perhaps being the presence or absence of the anti-cN-1A-antibody. In contrast to other IIM, IBM is characterized by a chronic and progressive disease course. Here, we discuss the pathophysiological framework of IBM and highlight the seemingly prototypical situations where IBM occurs in the context of other diseases. In this context, understanding common immune pathways might provide insight into the pathogenesis of IBM. Indeed, IBM is associated with a distinct set of conditions, such as human immunodeficiency virus (HIV) or hepatitis C-two conditions associated with premature immune cell exhaustion. Further, the pathomorphology of IBM is reminiscent of other muscle diseases, notably HIV-associated myositis or granulomatous myositis. Distinct immune pathways are likely to drive these commonalities and senescence of the CD8+ T cell compartment is discussed as a possible mechanism of pathogenesis. Future effort directed at understanding the co-occurrence of IBM and associated diseases could prove valuable to better understand the enigmatic IBM pathophysiology.
Collapse
Affiliation(s)
- Christopher Nelke
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Felix Kleefeld
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Corinna Preusse
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology With Institute for Translational Neurology, University Hospital Münster, 48149, Münster, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
23
|
Pathophysiological Mechanisms and Treatment of Dermatomyositis and Immune Mediated Necrotizing Myopathies: A Focused Review. Int J Mol Sci 2022; 23:ijms23084301. [PMID: 35457124 PMCID: PMC9030619 DOI: 10.3390/ijms23084301] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 12/15/2022] Open
Abstract
Idiopathic inflammatory myopathies (IIM), collectively known as myositis, are a composite group of rare autoimmune diseases affecting mostly skeletal muscle, although other organs or tissues may also be involved. The main clinical feature of myositis is subacute, progressive, symmetrical muscle weakness in the proximal arms and legs, whereas subtypes of myositis may also present with extramuscular features, such as skin involvement, arthritis or interstitial lung disease (ILD). Established subgroups of IIM include dermatomyositis (DM), immune-mediated necrotizing myopathy (IMNM), anti-synthetase syndrome (ASyS), overlap myositis (OM) and inclusion body myositis (IBM). Although these subgroups have overlapping clinical features, the widespread variation in the clinical manifestations of IIM suggests different pathophysiological mechanisms. Various components of the immune system are known to be important immunopathogenic pathways in IIM, although the exact pathophysiological mechanisms causing the muscle damage remain unknown. Current treatment, which consists of glucocorticoids and other immunosuppressive or immunomodulating agents, often fails to achieve a sustained beneficial response and is associated with various adverse effects. New therapeutic targets have been identified that may improve outcomes in patients with IIM. A better understanding of the overlapping and diverging pathophysiological mechanisms of the major subgroups of myositis is needed to optimize treatment. The aim of this review is to report on recent advancements regarding DM and IMNM.
Collapse
|
24
|
Goyal NA, Coulis G, Duarte J, Farahat PK, Mannaa AH, Cauchii J, Irani T, Araujo N, Wang L, Wencel M, Li V, Zhang L, Greenberg SA, Mozaffar T, Villalta SA. Immunophenotyping of Inclusion Body Myositis Blood T and NK Cells. Neurology 2022; 98:e1374-e1383. [PMID: 35131904 PMCID: PMC8967422 DOI: 10.1212/wnl.0000000000200013] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/03/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES To evaluate the therapeutic potential of targeting highly differentiated T cells in patients with inclusion body myositis (IBM) by establishing high-resolution mapping of killer cell lectin-like receptor subfamily G member 1 (KLRG1+) within the T and natural killer (NK) cell compartments. METHODS Blood was collected from 51 patients with IBM and 19 healthy age-matched donors. Peripheral blood mononuclear cells were interrogated by flow cytometry using a 12-marker antibody panel. The panel allowed the delineation of naive T cells (Tn), central memory T cells (Tcm), 4 stages of effector memory differentiation T cells (Tem 1-4), and effector memory re-expressing CD45RA T cells (TemRA), as well as total and subpopulations of NK cells based on the differential expression of CD16 and C56. RESULTS We found that a population of KLRG1+ Tem and TemRA were expanded in both the CD4+ and CD8+ T-cell subpopulations in patients with IBM. KLRG1 expression in CD8+ T cells increased with T-cell differentiation with the lowest levels of expression in Tn and highest in highly differentiated TemRA and CD56+CD8+ T cells. The frequency of KLRG1+ total NK cells and subpopulations did not differ between patients with IBM and healthy donors. IBM disease duration correlated with increased CD8+ T-cell differentiation. DISCUSSION Our findings reveal that the selective expansion of blood KLRG1+ T cells in patients with IBM is confined to the TemRA and Tem cellular compartments.
Collapse
Affiliation(s)
- Namita A Goyal
- Department of Neurology (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M., S.A.V.), MDA ALS and Neuromuscular Center (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M.), Department of Pathology and Laboratory Medicine (T.M.), Department of Physiology and Biophysics (G.C., J.D., P.K.F., A.H.M., S.A.V.), Institute for Immunology (G.C., J.D., P.K.F., A.H.M., T.M., S.A.V.), and Biostatistics, Epidemiology, and Research Design (BERD) Unit, Institute for Clinical Translational Sciences (L.Z.), University of California, Irvine; Department of Neurology (J.C.), University of New Mexico, Albuquerque; Department of Neurology (L.W.), University of Washington Medical Center, Seattle; Department of Neurology, Division of Neuromuscular Disease (S.A.G.), Brigham and Women's Hospital and Harvard Medical School; and Computational Health Informatics Program (S.A.G.), Boston Children's Hospital and Harvard Medical School, MA
| | - Gérald Coulis
- Department of Neurology (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M., S.A.V.), MDA ALS and Neuromuscular Center (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M.), Department of Pathology and Laboratory Medicine (T.M.), Department of Physiology and Biophysics (G.C., J.D., P.K.F., A.H.M., S.A.V.), Institute for Immunology (G.C., J.D., P.K.F., A.H.M., T.M., S.A.V.), and Biostatistics, Epidemiology, and Research Design (BERD) Unit, Institute for Clinical Translational Sciences (L.Z.), University of California, Irvine; Department of Neurology (J.C.), University of New Mexico, Albuquerque; Department of Neurology (L.W.), University of Washington Medical Center, Seattle; Department of Neurology, Division of Neuromuscular Disease (S.A.G.), Brigham and Women's Hospital and Harvard Medical School; and Computational Health Informatics Program (S.A.G.), Boston Children's Hospital and Harvard Medical School, MA
| | - Jorge Duarte
- Department of Neurology (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M., S.A.V.), MDA ALS and Neuromuscular Center (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M.), Department of Pathology and Laboratory Medicine (T.M.), Department of Physiology and Biophysics (G.C., J.D., P.K.F., A.H.M., S.A.V.), Institute for Immunology (G.C., J.D., P.K.F., A.H.M., T.M., S.A.V.), and Biostatistics, Epidemiology, and Research Design (BERD) Unit, Institute for Clinical Translational Sciences (L.Z.), University of California, Irvine; Department of Neurology (J.C.), University of New Mexico, Albuquerque; Department of Neurology (L.W.), University of Washington Medical Center, Seattle; Department of Neurology, Division of Neuromuscular Disease (S.A.G.), Brigham and Women's Hospital and Harvard Medical School; and Computational Health Informatics Program (S.A.G.), Boston Children's Hospital and Harvard Medical School, MA
| | - Philip K Farahat
- Department of Neurology (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M., S.A.V.), MDA ALS and Neuromuscular Center (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M.), Department of Pathology and Laboratory Medicine (T.M.), Department of Physiology and Biophysics (G.C., J.D., P.K.F., A.H.M., S.A.V.), Institute for Immunology (G.C., J.D., P.K.F., A.H.M., T.M., S.A.V.), and Biostatistics, Epidemiology, and Research Design (BERD) Unit, Institute for Clinical Translational Sciences (L.Z.), University of California, Irvine; Department of Neurology (J.C.), University of New Mexico, Albuquerque; Department of Neurology (L.W.), University of Washington Medical Center, Seattle; Department of Neurology, Division of Neuromuscular Disease (S.A.G.), Brigham and Women's Hospital and Harvard Medical School; and Computational Health Informatics Program (S.A.G.), Boston Children's Hospital and Harvard Medical School, MA
| | - Ali H Mannaa
- Department of Neurology (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M., S.A.V.), MDA ALS and Neuromuscular Center (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M.), Department of Pathology and Laboratory Medicine (T.M.), Department of Physiology and Biophysics (G.C., J.D., P.K.F., A.H.M., S.A.V.), Institute for Immunology (G.C., J.D., P.K.F., A.H.M., T.M., S.A.V.), and Biostatistics, Epidemiology, and Research Design (BERD) Unit, Institute for Clinical Translational Sciences (L.Z.), University of California, Irvine; Department of Neurology (J.C.), University of New Mexico, Albuquerque; Department of Neurology (L.W.), University of Washington Medical Center, Seattle; Department of Neurology, Division of Neuromuscular Disease (S.A.G.), Brigham and Women's Hospital and Harvard Medical School; and Computational Health Informatics Program (S.A.G.), Boston Children's Hospital and Harvard Medical School, MA
| | - Jonathan Cauchii
- Department of Neurology (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M., S.A.V.), MDA ALS and Neuromuscular Center (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M.), Department of Pathology and Laboratory Medicine (T.M.), Department of Physiology and Biophysics (G.C., J.D., P.K.F., A.H.M., S.A.V.), Institute for Immunology (G.C., J.D., P.K.F., A.H.M., T.M., S.A.V.), and Biostatistics, Epidemiology, and Research Design (BERD) Unit, Institute for Clinical Translational Sciences (L.Z.), University of California, Irvine; Department of Neurology (J.C.), University of New Mexico, Albuquerque; Department of Neurology (L.W.), University of Washington Medical Center, Seattle; Department of Neurology, Division of Neuromuscular Disease (S.A.G.), Brigham and Women's Hospital and Harvard Medical School; and Computational Health Informatics Program (S.A.G.), Boston Children's Hospital and Harvard Medical School, MA
| | - Tyler Irani
- Department of Neurology (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M., S.A.V.), MDA ALS and Neuromuscular Center (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M.), Department of Pathology and Laboratory Medicine (T.M.), Department of Physiology and Biophysics (G.C., J.D., P.K.F., A.H.M., S.A.V.), Institute for Immunology (G.C., J.D., P.K.F., A.H.M., T.M., S.A.V.), and Biostatistics, Epidemiology, and Research Design (BERD) Unit, Institute for Clinical Translational Sciences (L.Z.), University of California, Irvine; Department of Neurology (J.C.), University of New Mexico, Albuquerque; Department of Neurology (L.W.), University of Washington Medical Center, Seattle; Department of Neurology, Division of Neuromuscular Disease (S.A.G.), Brigham and Women's Hospital and Harvard Medical School; and Computational Health Informatics Program (S.A.G.), Boston Children's Hospital and Harvard Medical School, MA
| | - Nadia Araujo
- Department of Neurology (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M., S.A.V.), MDA ALS and Neuromuscular Center (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M.), Department of Pathology and Laboratory Medicine (T.M.), Department of Physiology and Biophysics (G.C., J.D., P.K.F., A.H.M., S.A.V.), Institute for Immunology (G.C., J.D., P.K.F., A.H.M., T.M., S.A.V.), and Biostatistics, Epidemiology, and Research Design (BERD) Unit, Institute for Clinical Translational Sciences (L.Z.), University of California, Irvine; Department of Neurology (J.C.), University of New Mexico, Albuquerque; Department of Neurology (L.W.), University of Washington Medical Center, Seattle; Department of Neurology, Division of Neuromuscular Disease (S.A.G.), Brigham and Women's Hospital and Harvard Medical School; and Computational Health Informatics Program (S.A.G.), Boston Children's Hospital and Harvard Medical School, MA
| | - Leo Wang
- Department of Neurology (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M., S.A.V.), MDA ALS and Neuromuscular Center (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M.), Department of Pathology and Laboratory Medicine (T.M.), Department of Physiology and Biophysics (G.C., J.D., P.K.F., A.H.M., S.A.V.), Institute for Immunology (G.C., J.D., P.K.F., A.H.M., T.M., S.A.V.), and Biostatistics, Epidemiology, and Research Design (BERD) Unit, Institute for Clinical Translational Sciences (L.Z.), University of California, Irvine; Department of Neurology (J.C.), University of New Mexico, Albuquerque; Department of Neurology (L.W.), University of Washington Medical Center, Seattle; Department of Neurology, Division of Neuromuscular Disease (S.A.G.), Brigham and Women's Hospital and Harvard Medical School; and Computational Health Informatics Program (S.A.G.), Boston Children's Hospital and Harvard Medical School, MA
| | - Marie Wencel
- Department of Neurology (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M., S.A.V.), MDA ALS and Neuromuscular Center (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M.), Department of Pathology and Laboratory Medicine (T.M.), Department of Physiology and Biophysics (G.C., J.D., P.K.F., A.H.M., S.A.V.), Institute for Immunology (G.C., J.D., P.K.F., A.H.M., T.M., S.A.V.), and Biostatistics, Epidemiology, and Research Design (BERD) Unit, Institute for Clinical Translational Sciences (L.Z.), University of California, Irvine; Department of Neurology (J.C.), University of New Mexico, Albuquerque; Department of Neurology (L.W.), University of Washington Medical Center, Seattle; Department of Neurology, Division of Neuromuscular Disease (S.A.G.), Brigham and Women's Hospital and Harvard Medical School; and Computational Health Informatics Program (S.A.G.), Boston Children's Hospital and Harvard Medical School, MA
| | - Vivian Li
- Department of Neurology (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M., S.A.V.), MDA ALS and Neuromuscular Center (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M.), Department of Pathology and Laboratory Medicine (T.M.), Department of Physiology and Biophysics (G.C., J.D., P.K.F., A.H.M., S.A.V.), Institute for Immunology (G.C., J.D., P.K.F., A.H.M., T.M., S.A.V.), and Biostatistics, Epidemiology, and Research Design (BERD) Unit, Institute for Clinical Translational Sciences (L.Z.), University of California, Irvine; Department of Neurology (J.C.), University of New Mexico, Albuquerque; Department of Neurology (L.W.), University of Washington Medical Center, Seattle; Department of Neurology, Division of Neuromuscular Disease (S.A.G.), Brigham and Women's Hospital and Harvard Medical School; and Computational Health Informatics Program (S.A.G.), Boston Children's Hospital and Harvard Medical School, MA
| | - Lishi Zhang
- Department of Neurology (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M., S.A.V.), MDA ALS and Neuromuscular Center (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M.), Department of Pathology and Laboratory Medicine (T.M.), Department of Physiology and Biophysics (G.C., J.D., P.K.F., A.H.M., S.A.V.), Institute for Immunology (G.C., J.D., P.K.F., A.H.M., T.M., S.A.V.), and Biostatistics, Epidemiology, and Research Design (BERD) Unit, Institute for Clinical Translational Sciences (L.Z.), University of California, Irvine; Department of Neurology (J.C.), University of New Mexico, Albuquerque; Department of Neurology (L.W.), University of Washington Medical Center, Seattle; Department of Neurology, Division of Neuromuscular Disease (S.A.G.), Brigham and Women's Hospital and Harvard Medical School; and Computational Health Informatics Program (S.A.G.), Boston Children's Hospital and Harvard Medical School, MA
| | - Steven A Greenberg
- Department of Neurology (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M., S.A.V.), MDA ALS and Neuromuscular Center (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M.), Department of Pathology and Laboratory Medicine (T.M.), Department of Physiology and Biophysics (G.C., J.D., P.K.F., A.H.M., S.A.V.), Institute for Immunology (G.C., J.D., P.K.F., A.H.M., T.M., S.A.V.), and Biostatistics, Epidemiology, and Research Design (BERD) Unit, Institute for Clinical Translational Sciences (L.Z.), University of California, Irvine; Department of Neurology (J.C.), University of New Mexico, Albuquerque; Department of Neurology (L.W.), University of Washington Medical Center, Seattle; Department of Neurology, Division of Neuromuscular Disease (S.A.G.), Brigham and Women's Hospital and Harvard Medical School; and Computational Health Informatics Program (S.A.G.), Boston Children's Hospital and Harvard Medical School, MA
| | - Tahseen Mozaffar
- Department of Neurology (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M., S.A.V.), MDA ALS and Neuromuscular Center (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M.), Department of Pathology and Laboratory Medicine (T.M.), Department of Physiology and Biophysics (G.C., J.D., P.K.F., A.H.M., S.A.V.), Institute for Immunology (G.C., J.D., P.K.F., A.H.M., T.M., S.A.V.), and Biostatistics, Epidemiology, and Research Design (BERD) Unit, Institute for Clinical Translational Sciences (L.Z.), University of California, Irvine; Department of Neurology (J.C.), University of New Mexico, Albuquerque; Department of Neurology (L.W.), University of Washington Medical Center, Seattle; Department of Neurology, Division of Neuromuscular Disease (S.A.G.), Brigham and Women's Hospital and Harvard Medical School; and Computational Health Informatics Program (S.A.G.), Boston Children's Hospital and Harvard Medical School, MA
| | - S Armando Villalta
- Department of Neurology (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M., S.A.V.), MDA ALS and Neuromuscular Center (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M.), Department of Pathology and Laboratory Medicine (T.M.), Department of Physiology and Biophysics (G.C., J.D., P.K.F., A.H.M., S.A.V.), Institute for Immunology (G.C., J.D., P.K.F., A.H.M., T.M., S.A.V.), and Biostatistics, Epidemiology, and Research Design (BERD) Unit, Institute for Clinical Translational Sciences (L.Z.), University of California, Irvine; Department of Neurology (J.C.), University of New Mexico, Albuquerque; Department of Neurology (L.W.), University of Washington Medical Center, Seattle; Department of Neurology, Division of Neuromuscular Disease (S.A.G.), Brigham and Women's Hospital and Harvard Medical School; and Computational Health Informatics Program (S.A.G.), Boston Children's Hospital and Harvard Medical School, MA.
| |
Collapse
|
25
|
Albarrán V, Chamorro J, Rosero DI, Saavedra C, Soria A, Carrato A, Gajate P. Neurologic Toxicity of Immune Checkpoint Inhibitors: A Review of Literature. Front Pharmacol 2022; 13:774170. [PMID: 35237154 PMCID: PMC8882914 DOI: 10.3389/fphar.2022.774170] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Immune checkpoint inhibitors have entailed a change of paradigm in the management of multiple malignant diseases and are acquiring a key role in an increasing number of clinical sceneries. However, since their mechanism of action is not limited to the tumor microenvironment, their systemic activity may lead to a wide spectrum of immune-related side effects. Although neurological adverse events are much less frequent than gastrointestinal, hepatic, or lung toxicity, with an incidence of <5%, their potential severity and consequent interruptions to cancer treatment make them of particular importance. Despite them mainly implying peripheral neuropathies, immunotherapy has also been associated with an increased risk of encephalitis and paraneoplastic disorders affecting the central nervous system, often appearing in a clinical context where the appropriate diagnosis and early management of neuropsychiatric symptoms can be challenging. Although the pathogenesis of these complications is not fully understood yet, the blockade of tumoral inhibitory signals, and therefore the elicitation of cytotoxic T-cell-mediated response, seems to play a decisive role. The aim of this review was to summarize the current knowledge about the pathogenic mechanisms, clinical manifestations, and therapeutic recommendations regarding the main forms of neurotoxicity related to checkpoint inhibitors.
Collapse
|
26
|
Ma X, Gao HJ, Zhang Q, Yang MG, Bi ZJ, Ji SQ, Li Y, Xu L, Bu BT. Endoplasmic Reticulum Stress Is Involved in Muscular Pathogenesis in Idiopathic Inflammatory Myopathies. Front Cell Dev Biol 2022; 10:791986. [PMID: 35237595 PMCID: PMC8882762 DOI: 10.3389/fcell.2022.791986] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/10/2022] [Indexed: 01/15/2023] Open
Abstract
Objectives: Endoplasmic reticulum (ER) stress plays pivotal roles in the regulation of skeletal muscle damage and dysfunction in multiple disease conditions. We postulate the activation of ER stress in idiopathic inflammatory myopathies (IIM). Methods: Thirty-seven patients with immune-mediated necrotizing myopathy (IMNM), 21 patients with dermatomyositis (DM), 6 patients with anti-synthetase syndrome (ASS), and 10 controls were enrolled. The expression of ER stress-induced autophagy pathway was detected using histological sections, Western blot, and real-time quantitative Polymerase Chain Reaction. Results: ER stress-induced autophagy pathway was activated in biopsied muscle of patients with IMNM, DM, and ASS. The ER chaperone protein, glucose-regulated protein 78 (GRP78)/BiP expression in skeletal muscle correlated with autophagy, myofiber atrophy, myonecrosis, myoregeneration, and disease activity in IMNM. Conclusion: ER stress was involved in patients with IIM and correlates with disease activity in IMNM. ER stress response may be responsible for skeletal muscle damage and repair in IIM.
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW To summarize information on polymyositis; diagnosis, definitions, published data and opinions. RECENT FINDINGS Polymyositis originally referred to inflammatory muscle diseases presenting with muscle weakness and inflammatory cell infiltrates on muscle tissue visible by microscopy. Over time and with improved technology to immunophenotype infiltrating inflammatory cells and characterize muscle fibres, the meaning of polymyositis changed and became more specific. There is ongoing controversy over the term polymyositis, with proponents for a strict definition based on histopathological and immunohistochemical features on muscle biopsies whereas others advocate for a broader clinical and histopathological phenotype. Over the past decades, the discovery of several myositis-specific autoantibodies together with distinct histopathological features have enabled the identification of new subsets previously labelled as polymyositis notably the antisynthetase syndrome and the immune-mediated necrotizing myopathies thus reducing the number of patients classified as polymyositis. SUMMARY There are still a small number of patients among the idiopathic inflammatory myopathies that can be classified as polymyositis as discussed in this review but the entity is now considered relatively rare.
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW This review aims to describe clinical and pathological features, prognosis and treatment in patients with anti-HMGCR antibody positive immune-mediated necrotizing myopathy (HMGCR-IMNM) based on recent findings. RECENT FINDINGS Using advances in diagnostic modalities that can confirm the presence of anti-HMGCR antibody, the clinical and pathological manifestations of HMGCR-IMNM were found to be broader than previously reported. Although only a small percentage of HMGCR-IMNM patients present with atypical manifestations, some of these patients show slow disease progression and clinical symptoms, which are similar to those of limb-girdle muscular dystrophies. Other atypical HMGCR-IMNM patients have skin conditions similar to dermatomyositis-like skin rush or dermatological presentations of Jessner-Kanoff disease or cutaneous lymphoma, whose pathological changes including CD8-positive and bcl-2-positive lymphocytic accumulations, similar to Jessner-Kanoff lymphocytic infiltration of skin or low-grade cutaneous lymphoma, which are observed in muscle and skin. SUMMARY Anti-HMGCR autoantibodies define unique populations of IMNM patients. Recent studies have revealed that clinicopathological manifestations of HMGCR-IMNM, especially extramuscular symptoms and pathological manifestations, are more common than previously recognized.
Collapse
|
29
|
Winkler M, von Landenberg C, Kappes-Horn K, Neudecker S, Kornblum C, Reimann J. Diagnosis and Clinical Development of Sporadic Inclusion Body Myositis and Polymyositis With Mitochondrial Pathology: A Single-Center Retrospective Analysis. J Neuropathol Exp Neurol 2021; 80:1060–1067. [PMID: 34643702 DOI: 10.1093/jnen/nlab101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To review our diagnostic and treatment approaches concerning sporadic inclusion body myositis (sIBM) and polymyositis with mitochondrial pathology (PM-Mito), we conducted a retrospective analysis of clinical and histological data of 32 patients diagnosed as sIBM and 7 patients diagnosed as PM-Mito by muscle biopsy. Of 32 patients identified histologically as sIBM, 19 fulfilled the 2011 European Neuromuscular Center (ENMC) diagnostic criteria for "clinico-pathologically defined sIBM" at the time of biopsy. Among these, 2 patients developed sIBM after years of immunosuppressive treatment for organ transplantation. Of 11 patients fulfilling the histological but not the clinical criteria, including 3 cases with duration <12 months, 8 later fulfilled the criteria for clinico-pathologically defined sIBM. Of 7 PM-Mito patients, 4 received immunosuppression with clinical improvement in 3. One of these later developed clinico-pathologically defined sIBM; 1 untreated patient progressed to clinically defined sIBM. Thus, muscle histology remains important for this differential diagnosis to identify sIBM patients not matching the ENMC criteria and the PM-Mito group. In the latter, we report at least 50% positive, if occasionally transient, response to immunosuppressive treatments and progression to sIBM in a minority. The mitochondrial abnormalities defining PM-Mito do not seem to define the threshold to immunosuppression unresponsiveness.
Collapse
Affiliation(s)
- Maren Winkler
- From the Section of Neuromuscular Diseases, Department of Neurology, University Hospital of Bonn, Bonn, Germany (MW, CvL, KK-H, CK, JR); Group Practice for Neurology, Bonn, Germany (SN); Center for Rare Diseases, University Hospital of Bonn, Bonn, Germany (CK)
| | - Christina von Landenberg
- From the Section of Neuromuscular Diseases, Department of Neurology, University Hospital of Bonn, Bonn, Germany (MW, CvL, KK-H, CK, JR); Group Practice for Neurology, Bonn, Germany (SN); Center for Rare Diseases, University Hospital of Bonn, Bonn, Germany (CK)
| | - Karin Kappes-Horn
- From the Section of Neuromuscular Diseases, Department of Neurology, University Hospital of Bonn, Bonn, Germany (MW, CvL, KK-H, CK, JR); Group Practice for Neurology, Bonn, Germany (SN); Center for Rare Diseases, University Hospital of Bonn, Bonn, Germany (CK)
| | - Stephan Neudecker
- From the Section of Neuromuscular Diseases, Department of Neurology, University Hospital of Bonn, Bonn, Germany (MW, CvL, KK-H, CK, JR); Group Practice for Neurology, Bonn, Germany (SN); Center for Rare Diseases, University Hospital of Bonn, Bonn, Germany (CK)
| | - Cornelia Kornblum
- From the Section of Neuromuscular Diseases, Department of Neurology, University Hospital of Bonn, Bonn, Germany (MW, CvL, KK-H, CK, JR); Group Practice for Neurology, Bonn, Germany (SN); Center for Rare Diseases, University Hospital of Bonn, Bonn, Germany (CK)
| | - Jens Reimann
- From the Section of Neuromuscular Diseases, Department of Neurology, University Hospital of Bonn, Bonn, Germany (MW, CvL, KK-H, CK, JR); Group Practice for Neurology, Bonn, Germany (SN); Center for Rare Diseases, University Hospital of Bonn, Bonn, Germany (CK)
| |
Collapse
|
30
|
Xie S, Hou X, Yang W, Shi W, Yang X, Duan S, Mo F, Liu A, Wang W, Lu X. Endoglin-Aptamer-Functionalized Liposome-Equipped PD-1-Silenced T Cells Enhance Antitumoral Immunotherapeutic Effects. Int J Nanomedicine 2021; 16:6017-6034. [PMID: 34511903 PMCID: PMC8418331 DOI: 10.2147/ijn.s317220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/11/2021] [Indexed: 12/25/2022] Open
Abstract
Background The broader application of adoptive cell therapy (ACT) in cancer immunotherapies (particularly for solid tumors) has always been limited by the immunosuppressive tumor microenvironment (TME) and the insufficient targetability of effector T cells, resulting in unsatisfied therapeutic outcome. Here, we designed a new strategy by using aptamer-based immunoliposomes to modify PD-1-silencing T cells, which were activated by dendritic cell (DC)/tumor fusion cells (FCs) to improve the antitumor potency of cytotoxic T lymphocytes (CTLs/CD8+ T cells). Methods PD-1 gene was knocked out from CD8+ T cells using CRISPR/Cas9 system to liberate T cell activity from immunosuppression. The PD-1− T cells were stimulated with DC/tumor FCs, followed by further functional modification of tumor-specific nanoliposomes (hEnd-Apt/CD3-Lipo) to generate FC/PD-1− CTLs. The activation and proliferation and specificity of the modified FC/PD-1− CTLs were measured. The antitumor activity of these CTLs against HepG2-tumors was evaluated in xenograft NOD/SCID mice, and the antitumor mechanism was investigated based on tissue immunohistochemistry and serum ELISA. Results Our results indicated that the modification of hEnd-Apt/CD3-Lipo nanocomposites on the FC/PD-1− CTLs had a more substantial synergetic effect in inhibiting tumor growth and prolonging animal survival, rather than other control liposomes. Furthermore, the hEnd-Apt/CD3-Lipo-modified FC/PD-1− CTLs showed a stronger antitumor outcome in the tumor-bearing mouse model, through the mechanisms of suppressing tumor cell proliferation, promoting tumor apoptosis, reducing angiogenesis but increasing the infiltration of the FC/PD-1− CTLs in the tumor tissue, as well as upregulating the systemic levels of IFN-γ, IL-2, TNF-α and IL-6 cytokines, by comparison of the control settings. Conclusion In sum, our investigation suggests an enhancement of antitumor effect by the surface modification of endoglin-targeting nanoliposomes upon DC/tumor FC-activated PD-1− CTLs, therefore, provides a new tumoral endoglin-targeted approach as a promising strategy to reduce immunosuppression of tumor microenvironment and improve the immunotherapeutic outcome of anticancer ACT.
Collapse
Affiliation(s)
- Shenxia Xie
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, People's Republic of China.,Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Xiaoqiong Hou
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, People's Republic of China.,International Nanobody Research Center of Guangxi, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Wei Yang
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, People's Republic of China.,International Nanobody Research Center of Guangxi, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Wei Shi
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, People's Republic of China.,International Nanobody Research Center of Guangxi, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Xiaomei Yang
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, People's Republic of China.,International Nanobody Research Center of Guangxi, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Siliang Duan
- International Nanobody Research Center of Guangxi, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Fengzhen Mo
- International Nanobody Research Center of Guangxi, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Aiqun Liu
- International Nanobody Research Center of Guangxi, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Wu Wang
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, People's Republic of China.,Laboratory of Tropical Biomedicine and Biotechnology, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan, 571101, People's Republic of China
| | - Xiaoling Lu
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, People's Republic of China.,International Nanobody Research Center of Guangxi, Guangxi Medical University, Nanning, Guangxi, People's Republic of China.,College of Stomatology, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| |
Collapse
|
31
|
Life-threatening polymyositis with spontaneous hematoma induced by nivolumab in a patient with previously resected melanoma. Melanoma Res 2021; 31:85-87. [PMID: 33196530 DOI: 10.1097/cmr.0000000000000706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Single-agent anti-PD1 antibodies are usually very well tolerated, but serious toxicity can still occur. Despite the PD-1 pathway seems to be relevant in the pathogenesis of immune-related myositis, anti-PD1-related myositis is generally a rare side effect of the treatment and usually not serious. However, its frequency is likely to increase as the use of immune checkpoint blockades. We present here a case of life-threatening polymyositis with associated spontaneous muscular hematoma in a patient treated with single-agent nivolumab in the adjuvant setting. Spontaneous hematoma is an extremely rare complication with unclear etiology of idiopathic myositis. Very few cases have been reported in the literature and their outcome has been often fatal. To our knowledge, this is the first case of autoimmune myositis and spontaneous heamatoma associated with the administration of single-agent checkpoint blockade. Anti-PD1 antibodies have changed the treatment landscape for a number of cancer entities in the past few years. When given as single agent they are usually very well tolerated, but serious rare toxicity can still occur. We present here a case of polymyositis with associated spontaneous muscular hematoma in a patient treated with single agent nivolumab.
Collapse
|
32
|
Uruha A, Goebel HH, Stenzel W. Updates on the Immunopathology in Idiopathic Inflammatory Myopathies. Curr Rheumatol Rep 2021; 23:56. [PMID: 34212266 DOI: 10.1007/s11926-021-01017-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE OF REVIEW To review recent advances in immunopathology for idiopathic inflammatory myopathies, focusing on widely available immunohistochemical analyses. RECENT FINDINGS Sarcoplasmic expression of myxovirus resistance protein A (MxA) is specifically observed in all types of dermatomyositis and informs that type I interferons are crucially involved in its pathogenesis. It is a more sensitive diagnostic marker than perifascicular atrophy. Diffuse tiny dots in the sarcoplasm highlighted by p62 immunostaining are characteristically seen in immune-mediated necrotizing myopathy. This feature is linked to a chaperone-assisted selective autophagy pathway. Myofiber invasion by highly differentiated T cells, a marker of which is KLRG1, is specific to inclusion body myositis and has a crucial role in its pathogenesis. The recent advances in immunopathology contribute to increased diagnostic accuracy and a better understanding of the underlying pathophysiology in different types of idiopathic inflammatory myopathies.
Collapse
Affiliation(s)
- Akinori Uruha
- Department of Neuropathology, Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany. .,Department of Neurology, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo, 183-0042, Japan.
| | - Hans-Hilmar Goebel
- Department of Neuropathology, Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.,Department of Neuropathology, Universitätsmedizin Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.,Leibniz Science Campus Chronic Inflammation, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
33
|
Bolko L, Jiang W, Tawara N, Landon‐Cardinal O, Anquetil C, Benveniste O, Allenbach Y. The role of interferons type I, II and III in myositis: A review. Brain Pathol 2021; 31:e12955. [PMID: 34043262 PMCID: PMC8412069 DOI: 10.1111/bpa.12955] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/19/2021] [Indexed: 12/27/2022] Open
Abstract
The classification of idiopathic inflammatory myopathies (IIM) is based on clinical, serological and histological criteria. The identification of myositis-specific antibodies has helped to define more homogeneous groups of myositis into four dominant subsets: dermatomyositis (DM), antisynthetase syndrome (ASyS), sporadic inclusion body myositis (sIBM) and immune-mediated necrotising myopathy (IMNM). sIBM and IMNM patients present predominantly with muscle involvement, whereas DM and ASyS patients present additionally with other extramuscular features, such as skin, lung and joints manifestations. Moreover, the pathophysiological mechanisms are distinct between each myositis subsets. Recently, interferon (IFN) pathways have been identified as key players implicated in the pathophysiology of myositis. In DM, the key role of IFN, especially type I IFN, has been supported by the identification of an IFN signature in muscle, blood and skin of DM patients. In addition, DM-specific antibodies are targeting antigens involved in the IFN signalling pathways. The pathogenicity of type I IFN has been demonstrated by the identification of mutations in the IFN pathways leading to genetic diseases, the monogenic interferonopathies. This constitutive activation of IFN signalling pathways induces systemic manifestations such as interstitial lung disease, myositis and skin rashes. Since DM patients share similar features in the context of an acquired activation of the IFN signalling pathways, we may extend underlying concepts of monogenic diseases to acquired interferonopathy such as DM. Conversely, in ASyS, available data suggest a role of type II IFN in blood, muscle and lung. Indeed, transcriptomic analyses highlighted a type II IFN gene expression in ASyS muscle tissue. In sIBM, type II IFN appears to be an important cytokine involved in muscle inflammation mechanisms and potentially linked to myodegenerative features. For IMNM, currently published data are scarce, suggesting a minor implication of type II IFN. This review highlights the involvement of different IFN subtypes and their specific molecular mechanisms in each myositis subset.
Collapse
Affiliation(s)
- Loïs Bolko
- Division of RheumatologyHopital Maison BlancheReimsFrance
| | - Wei Jiang
- Department of Internal Medicine and Clinical ImmunlogySorbonne UniversitéPitié‐Salpêtrière University HospitalParisFrance
- Centre de Recherche en MyologieUMRS974Institut National de la Santé et de la Recherche MédicaleAssociation Institut de MyologieSorbonne UniversitéParisFrance
| | - Nozomu Tawara
- Department of Internal Medicine and Clinical ImmunlogySorbonne UniversitéPitié‐Salpêtrière University HospitalParisFrance
- Centre de Recherche en MyologieUMRS974Institut National de la Santé et de la Recherche MédicaleAssociation Institut de MyologieSorbonne UniversitéParisFrance
| | - Océane Landon‐Cardinal
- Division of RheumatologyCentre hospitalier de l'Université de Montréal (CHUM)CHUM Research CenterMontréalQCCanada
- Department of MedicineUniversité de MontréalMontréalQCCanada
| | - Céline Anquetil
- Department of Internal Medicine and Clinical ImmunlogySorbonne UniversitéPitié‐Salpêtrière University HospitalParisFrance
- Centre de Recherche en MyologieUMRS974Institut National de la Santé et de la Recherche MédicaleAssociation Institut de MyologieSorbonne UniversitéParisFrance
| | - Olivier Benveniste
- Department of Internal Medicine and Clinical ImmunlogySorbonne UniversitéPitié‐Salpêtrière University HospitalParisFrance
- Centre de Recherche en MyologieUMRS974Institut National de la Santé et de la Recherche MédicaleAssociation Institut de MyologieSorbonne UniversitéParisFrance
| | - Yves Allenbach
- Department of Internal Medicine and Clinical ImmunlogySorbonne UniversitéPitié‐Salpêtrière University HospitalParisFrance
- Centre de Recherche en MyologieUMRS974Institut National de la Santé et de la Recherche MédicaleAssociation Institut de MyologieSorbonne UniversitéParisFrance
| |
Collapse
|
34
|
Hsu JL, Liao MF, Chu CC, Kuo HC, Lyu RK, Chang HS, Chen CM, Wu YR, Chang KH, Weng YC, Chang CW, Chiang HI, Cheng CK, Lee PW, Huang CC, Ro LS. Reappraisal of the incidence, various types and risk factors of malignancies in patients with dermatomyositis and polymyositis in Taiwan. Sci Rep 2021; 11:4545. [PMID: 33633147 PMCID: PMC7907377 DOI: 10.1038/s41598-021-83729-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 01/14/2021] [Indexed: 12/13/2022] Open
Abstract
Our study aimed to investigate the incidence, risk factors and time to occurrence of malignancy in patients with dermatomyositis (DM) and polymyositis (PM). The electronic medical records of 1100 patients with DM and 1164 patients with PM were studied between January 2001 and May 2019. Malignancies after myositis were diagnosed in 61 (5.55%) patients with DM and 38 (3.26%) patients with PM. The cumulative incidence of malignancies in patients with DM were significantly higher than patients with PM (hazard ratio = 1.78, log-rank p = 0.004). Patients with DM had a greater risk of developing malignancy than those with PM at 40–59 years old (p = 0.01). Most malignancies occurred within 1 year after the initial diagnosis of DM (n = 35; 57.38%). Nasopharyngeal cancer (NPC) was the most common type of malignancy in patients with DM (22.95%), followed by lung, and breast cancers. In patients with PM, colorectal, lung and hepatic malignancies were the top three types of malignancy. The risk factors for malignancy included old age (≥ 45 years old) and low serum levels of creatine phosphokinase (CPK) for patients with DM and male sex and low serum levels of CPK for patients with PM. Low serum levels of CPK in patients with myositis with malignancy represented a low degree of muscle destruction/inflammation, which might be attributed to activation of the PD-L1 pathway by tumor cells, thus inducing T-cell dysfunction mediating immune responses in myofibers. A treatment and follow-up algorithm should explore the occurrence of malignancy in different tissues and organs and suggested annual follow-ups for at least 5.5 years to cover the 80% cumulative incidence of malignancy in patients with DM and PM.
Collapse
Affiliation(s)
- Jung-Lung Hsu
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital and Chang Gung University, New Taipei City, Taiwan.,Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang-Gung University, Linkou, Taoyuan, Taiwan.,Graduate Institute of Mind Brain and Consciousness, Taipei Medical University, Taipei, Taiwan.,Brain and Consciousness Research Center, Shuang Ho Hospital, New Taipei City, Taiwan
| | - Ming-Feng Liao
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang-Gung University, Linkou, Taoyuan, Taiwan
| | - Chun-Che Chu
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang-Gung University, Linkou, Taoyuan, Taiwan
| | - Hung-Chou Kuo
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang-Gung University, Linkou, Taoyuan, Taiwan
| | - Rong-Kuo Lyu
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang-Gung University, Linkou, Taoyuan, Taiwan
| | - Hong-Shiu Chang
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang-Gung University, Linkou, Taoyuan, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang-Gung University, Linkou, Taoyuan, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang-Gung University, Linkou, Taoyuan, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang-Gung University, Linkou, Taoyuan, Taiwan
| | - Yi-Ching Weng
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital and Chang Gung University, New Taipei City, Taiwan.,Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang-Gung University, Linkou, Taoyuan, Taiwan
| | - Chun-Wei Chang
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital and Chang Gung University, New Taipei City, Taiwan.,Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang-Gung University, Linkou, Taoyuan, Taiwan
| | - Hsing-I Chiang
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital and Chang Gung University, New Taipei City, Taiwan.,Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang-Gung University, Linkou, Taoyuan, Taiwan
| | - Chih-Kuang Cheng
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital and Chang Gung University, New Taipei City, Taiwan.,Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang-Gung University, Linkou, Taoyuan, Taiwan
| | - Pai-Wei Lee
- Center for Big Data Analytics and Statistics, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Chin-Chang Huang
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang-Gung University, Linkou, Taoyuan, Taiwan
| | - Long-Sun Ro
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang-Gung University, Linkou, Taoyuan, Taiwan.
| |
Collapse
|
35
|
Allenbach Y, Benveniste O, Stenzel W, Boyer O. Immune-mediated necrotizing myopathy: clinical features and pathogenesis. Nat Rev Rheumatol 2020; 16:689-701. [PMID: 33093664 DOI: 10.1038/s41584-020-00515-9] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2020] [Indexed: 12/11/2022]
Abstract
Immune-mediated necrotizing myopathy (IMNM) is a group of inflammatory myopathies that was distinguished from polymyositis in 2004. Most IMNMs are associated with anti-signal recognition particle (anti-SRP) or anti-3-hydroxy-3-methylglutaryl-coA reductase (anti-HMGCR) myositis-specific autoantibodies, although ~20% of patients with IMNM remain seronegative. These associations have led to three subclasses of IMNM: anti-SRP-positive IMNM, anti-HMGCR-positive IMNM and seronegative IMNM. IMNMs are frequently rapidly progressive and severe, displaying high serum creatine kinase levels, and failure to treat IMNMs effectively may lead to severe muscle impairment. In patients with seronegative IMNM, disease can be concomitant with cancer. Research into IMNM pathogenesis has shown that anti-SRP and anti-HMGCR autoantibodies cause weakness and myofibre necrosis in mice, suggesting that, as well as being diagnostic biomarkers of IMNM, they may play a key role in disease pathogenesis. Therapeutically, treatments such as rituximab or intravenous immunoglobulins can now be discussed for IMNM, and targeted therapies, such as anticomplement therapeutics, may be a future option for patients with refractory disease.
Collapse
Affiliation(s)
- Yves Allenbach
- Sorbonne Université, Assistance Publique - Hôpitaux de Paris, Inserm U974, Department of Internal Medicine and Clinical Immunology, Pitié-Salpêtrière University Hospital, Paris, France
| | - Olivier Benveniste
- Sorbonne Université, Assistance Publique - Hôpitaux de Paris, Inserm U974, Department of Internal Medicine and Clinical Immunology, Pitié-Salpêtrière University Hospital, Paris, France.
| | - Werner Stenzel
- Department of Neuropathology, Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Olivier Boyer
- Normandie University, UNIROUEN, Inserm U1234, Department of Immunology and Biotherapy, Rouen University Hospital, Rouen, France
| |
Collapse
|
36
|
|
37
|
Benveniste O, Allenbach Y. Inclusion body myositis: accumulation of evidence for its autoimmune origin. Brain 2020; 142:2549-2551. [PMID: 31497859 DOI: 10.1093/brain/awz229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Olivier Benveniste
- Sorbonne Université, Paris, France.,INSERM U974, Paris, France.,Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Yves Allenbach
- Sorbonne Université, Paris, France.,INSERM U974, Paris, France.,Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
38
|
Jiao Q, Ren Y, Ariston Gabrie AN, Wang Q, Wang Y, Du L, Liu X, Wang C, Wang YS. Advances of immune checkpoints in colorectal cancer treatment. Biomed Pharmacother 2020; 123:109745. [DOI: 10.1016/j.biopha.2019.109745] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/30/2022] Open
|
39
|
Möhn N, Beutel G, Gutzmer R, Ivanyi P, Satzger I, Skripuletz T. Neurological Immune Related Adverse Events Associated with Nivolumab, Ipilimumab, and Pembrolizumab Therapy-Review of the Literature and Future Outlook. J Clin Med 2019; 8:jcm8111777. [PMID: 31653079 PMCID: PMC6912719 DOI: 10.3390/jcm8111777] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy has revolutionized the management of various cancers with previously poor prognosis. Despite its great efficacy, the therapy is associated with a wide spectrum of immune-related adverse events (irAE) including neurological symptoms which can affect all parts of the central and peripheral nervous system. Even though these events are rare, they are of high relevance as the rate of residual symptoms or even fatal outcomes is remarkable. To provide a detailed overview of neurological adverse events associated with immune checkpoint-inhibitor therapy we conducted a literature search. While focusing on ipilimumab, nivolumab, and pembrolizumab therapy, all available case reports as well as larger case series and clinical trials have been considered. Eighty-two case reports about checkpoint-inhibitor therapy induced symptoms of the peripheral nervous system have been published, while only 43 case reports addressed central nervous system abnormalities. The frequency of immune checkpoint-inhibitor therapy inducing neurological adverse events is about 1% in larger studies. Especially neuromuscular adverse events exhibit distinct clinical and diagnostic characteristics. Additionally, several affected patients presented with overlap-syndromes, which means that symptoms and diagnostic findings indicating myositis, myasthenia gravis, and neuropathy were present in one individual patient at the same time. Thus, neurological and particularly neuromuscular adverse events of immune checkpoint-inhibitor therapy may constitute a new disease entity.
Collapse
Affiliation(s)
- Nora Möhn
- Department of Neurology, Hannover Medical School, Hannover 30625, Germany;
- Center for Immuno-Oncology (IOZ) Hannover Medical School, Hannover 30625, Germany; (G.B.); (R.G.); (P.I.)
| | - Gernot Beutel
- Center for Immuno-Oncology (IOZ) Hannover Medical School, Hannover 30625, Germany; (G.B.); (R.G.); (P.I.)
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover 30625, Germany
| | - Ralf Gutzmer
- Center for Immuno-Oncology (IOZ) Hannover Medical School, Hannover 30625, Germany; (G.B.); (R.G.); (P.I.)
- Skin Cancer Center Hannover, Department of Dermatology and Allergy, Hannover Medical School, Hannover 30625, German
| | - Philipp Ivanyi
- Center for Immuno-Oncology (IOZ) Hannover Medical School, Hannover 30625, Germany; (G.B.); (R.G.); (P.I.)
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover 30625, Germany
| | - Imke Satzger
- Center for Immuno-Oncology (IOZ) Hannover Medical School, Hannover 30625, Germany; (G.B.); (R.G.); (P.I.)
- Skin Cancer Center Hannover, Department of Dermatology and Allergy, Hannover Medical School, Hannover 30625, German
| | - Thomas Skripuletz
- Department of Neurology, Hannover Medical School, Hannover 30625, Germany;
- Center for Immuno-Oncology (IOZ) Hannover Medical School, Hannover 30625, Germany; (G.B.); (R.G.); (P.I.)
- Correspondence: ; Tel.: +49-511-532-3816; Fax: +49-511-532-3115
| |
Collapse
|