1
|
Perrino MR, Das A, Scollon SR, Mitchell SG, Greer MLC, Yohe ME, Hansford JR, Kalish JM, Schultz KAP, MacFarland SP, Kohlmann WK, Lupo PJ, Maxwell KN, Pfister SM, Weksberg R, Michaeli O, Jongmans MCJ, Tomlinson GE, Brzezinski J, Tabori U, Ney GM, Gripp KW, Gross AM, Widemann BC, Stewart DR, Woodward ER, Kratz CP. Update on Pediatric Cancer Surveillance Recommendations for Patients with Neurofibromatosis Type 1, Noonan Syndrome, CBL Syndrome, Costello Syndrome, and Related RASopathies. Clin Cancer Res 2024; 30:4834-4843. [PMID: 39196581 PMCID: PMC11530332 DOI: 10.1158/1078-0432.ccr-24-1611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/24/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024]
Abstract
Neurofibromatosis type 1 (NF1), Noonan syndrome, and related syndromes, grouped as RASopathies, result from dysregulation of the RAS-MAPK pathway and demonstrate varied multisystemic clinical phenotypes. Together, RASopathies are among the more prevalent genetic cancer predisposition syndromes and require nuanced clinical management. When compared with the general population, children with RASopathies are at significantly increased risk of benign and malignant neoplasms. In the past decade, clinical trials have shown that targeted therapies can improve outcomes for low-grade and benign neoplastic lesions but have their own challenges, highlighting the multidisciplinary care needed for such individuals, specifically those with NF1. This perspective, which originated from the 2023 American Association for Cancer Research Childhood Cancer Predisposition Workshop, serves to update pediatric oncologists, neurologists, geneticists, counselors, and other health care professionals on revised diagnostic criteria, review previously published surveillance guidelines, and harmonize updated surveillance recommendations for patients with NF1 or RASopathies.
Collapse
Affiliation(s)
- Melissa R. Perrino
- Department of Oncology, St Jude Children’s Research Hospital, Department of Oncology, Memphis, Tennessee, United States
| | - Anirban Das
- Division of Paediatric Haematology & Oncology, Hospital for Sick Children, University of Toronto, Canada
| | - Sarah R. Scollon
- Department of Pediatrics, Texas Children’s Cancer and Hematology Center, Baylor College of Medicine, Houston, Texas, United States
| | - Sarah G. Mitchell
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Mary-Louise C. Greer
- Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Marielle E. Yohe
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States
| | - Jordan R. Hansford
- Michael Rice Centre for Hematology and Oncology, Women’s and Children’s Hospital; South Australia Health and Medical Research Institute; South Australia ImmunoGENomics Cancer Institute, University of Adelaide, Adelaide, Australia
| | - Jennifer M. Kalish
- Division of Genetics and Center for Childhood Cancer Research Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Kris Ann P. Schultz
- Cancer and Blood Disorders, Children’s Minnesota, Minneapolis, Minnesota, United States
| | - Suzanne P. MacFarland
- Division of Oncology, Children’s Hospital of Philadelphia, Department of Pediatrics, Perelman School of medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Wendy K. Kohlmann
- VA Medical Center, National TeleOncology Clinical Cancer Genetics Service, Durham NC; University of Utah Huntsman Cancer Institute, Salt Lake City, Utah, United States
| | - Philip J. Lupo
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Kara N. Maxwell
- Division of Oncology, Children’s Hospital of Philadelphia, Department of Pediatrics, Perelman School of medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Medicine Service, Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, Pensylvannia, United States
| | - Stefan M. Pfister
- Hopp Childreńs Cancer Center Heidelberg (KiTZ), Division Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg University Hospital and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Rosanna Weksberg
- Division of Clinical and Metabolic Genetics, Dept Pediatrics, Hospital for Sick Children and University of Toronto, Toronto, Canada
| | - Orli Michaeli
- Division of Hematology/ Oncology, Schneider Children’s Medical Center of Israel, Petach Tikva, Israel
| | - Marjolijn C. J. Jongmans
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands; Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gail E. Tomlinson
- University of Texas Health Science Center at San Antonio, Department of Pediatrics, Division of Hematology-Oncology and Greehey Children’s Cancer Research Institute, San Antonio, Texas, United States
| | - Jack Brzezinski
- Division of Paediatric Haematology & Oncology, Hospital for Sick Children, University of Toronto, Canada
| | - Uri Tabori
- Division of Paediatric Haematology & Oncology, Hospital for Sick Children, University of Toronto, Canada
| | - Gina M. Ney
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, United States
| | - Karen W. Gripp
- Division of Medical Genetics, Nemours Children’s Hospital, Wilmington, Delaware, United States
| | - Andrea M. Gross
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States
| | - Brigitte C. Widemann
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States
| | - Douglas R. Stewart
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, United States
| | - Emma R. Woodward
- University of Manchester and Manchester Centre for Genomic Medicine, Manchester, United Kingdom
| | - Christian P. Kratz
- Hannover Medical School, Pediatric Hematology and Oncology, Hannover, Germany
| |
Collapse
|
2
|
李 策, 刘 炳, 王 延, 于 台, 郑 志, 王 国. [Progress in neurosurgical treatment of neurofibromatosis type 1]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2024; 38:1171-1179. [PMID: 39433489 PMCID: PMC11522532 DOI: 10.7507/1002-1892.202407058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 10/23/2024]
Abstract
Objective To summarize the latest developments in neurosurgical treatments for neurofibromatosis type 1 (NF1) and explore therapeutic strategies to provide comprehensive treatment guidelines for clinicians. Methods The recent domestic and international literature and clinical cases in the field of NF1 were reviewed. The main types of neurological complications associated with NF1 and their treatments were thorough summarized and the future research directions in neurosurgery was analyzed. Results NF1 frequently results in complex and diverse lesions in the central and peripheral nervous systems, particularly low-grade gliomas in the brain and spinal canal and paraspinal neurofibromas. Treatment decisions should be made by a multidisciplinary team. Symptomatic plexiform neurofibromas and tumors with malignant imaging evidence require neurosurgical intervention. The goals of surgery include reducing tumor size, alleviating pain, and improving appearance. Postoperative functional rehabilitation exercises, long-term multidisciplinary follow-up, and psychosocial interventions are crucial for improving the quality of life for patients. Advanced imaging guidance systems and artificial intelligence technologies can help increase tumor resection rates and reduce recurrence. Conclusion Neurosurgical intervention is the primary treatment for symptomatic plexiform neurofibromas and malignant peripheral nerve sheath tumors when medical treatment is ineffective and the lesions progress rapidly. Preoperative multidisciplinary assessment, intraoperative electrophysiological monitoring, and advanced surgical assistance devices significantly enhance surgical efficacy and safety. Future research should continue to explore new surgical techniques and improve postoperative management strategies to achieve more precise and personalized treatment for NF1 patients.
Collapse
Affiliation(s)
- 策 李
- 山东第一医科大学附属省立医院神经外科(济南 250021)Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji’nan Shandong, 250021, P. R. China
| | - 炳含 刘
- 山东第一医科大学附属省立医院神经外科(济南 250021)Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji’nan Shandong, 250021, P. R. China
| | - 延俊 王
- 山东第一医科大学附属省立医院神经外科(济南 250021)Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji’nan Shandong, 250021, P. R. China
| | - 台飞 于
- 山东第一医科大学附属省立医院神经外科(济南 250021)Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji’nan Shandong, 250021, P. R. China
| | - 志明 郑
- 山东第一医科大学附属省立医院神经外科(济南 250021)Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji’nan Shandong, 250021, P. R. China
| | - 国栋 王
- 山东第一医科大学附属省立医院神经外科(济南 250021)Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji’nan Shandong, 250021, P. R. China
| |
Collapse
|
3
|
Kotch C, de Blank P, Gutmann DH, Fisher MJ. Low-grade glioma in children with neurofibromatosis type 1: surveillance, treatment indications, management, and future directions. Childs Nerv Syst 2024; 40:3241-3250. [PMID: 38704493 DOI: 10.1007/s00381-024-06430-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant cancer predisposition syndrome characterized by the development of both central and peripheral nervous system tumors. Low-grade glioma (LGG) is the most prevalent central nervous system tumor occurring in children with NF1, arising most frequently within the optic pathway, followed by the brainstem. Historically, treatment of NF1-LGG has been limited to conventional cytotoxic chemotherapy and surgery. Despite treatment with chemotherapy, a subset of children with NF1-LGG fail initial therapy, have a continued decline in function, or recur. The recent development of several preclinical models has allowed for the identification of novel, molecularly targeted therapies. At present, exploration of these novel precision-based therapies is ongoing in the preclinical setting and through larger, collaborative clinical trials. Herein, we review the approach to surveillance and management of NF1-LGG in children and discuss upcoming novel therapies and treatment protocols.
Collapse
Affiliation(s)
- Chelsea Kotch
- Division of Oncology, Children's Hospital of Philadelphia, 3500 Civic Center Blvd, Philadelphia, PA, 19104, USA.
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, 3500 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| | - Peter de Blank
- Division of Oncology, University of Cincinnati Medical Center and Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - David H Gutmann
- Division of Neurology, Washington University of St. Louis, St. Louis, MO, USA
| | - Michael J Fisher
- Division of Oncology, Children's Hospital of Philadelphia, 3500 Civic Center Blvd, Philadelphia, PA, 19104, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, 3500 Civic Center Blvd, Philadelphia, PA, 19104, USA
| |
Collapse
|
4
|
Nussinov R, Yavuz BR, Jang H. Single cell spatial biology over developmental time can decipher pediatric brain pathologies. Neurobiol Dis 2024; 199:106597. [PMID: 38992777 DOI: 10.1016/j.nbd.2024.106597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/18/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024] Open
Abstract
Pediatric low grade brain tumors and neurodevelopmental disorders share proteins, signaling pathways, and networks. They also share germline mutations and an impaired prenatal differentiation origin. They may differ in the timing of the events and proliferation. We suggest that their pivotal distinct, albeit partially overlapping, outcomes relate to the cell states, which depend on their spatial location, and timing of gene expression during brain development. These attributes are crucial as the brain develops sequentially, and single-cell spatial organization influences cell state, thus function. Our underlying premise is that the root cause in neurodevelopmental disorders and pediatric tumors is impaired prenatal differentiation. Data related to pediatric brain tumors, neurodevelopmental disorders, brain cell (sub)types, locations, and timing of expression in the developing brain are scant. However, emerging single cell technologies, including transcriptomic, spatial biology, spatial high-resolution imaging performed over the brain developmental time, could be transformational in deciphering brain pathologies thereby pharmacology.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Bengi Ruken Yavuz
- Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| |
Collapse
|
5
|
Kerashvili N, Gutmann DH. The management of neurofibromatosis type 1 (NF1) in children and adolescents. Expert Rev Neurother 2024; 24:409-420. [PMID: 38406862 DOI: 10.1080/14737175.2024.2324117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/23/2024] [Indexed: 02/27/2024]
Abstract
INTRODUCTION Neurofibromatosis type 1 (NF1) is a rare neurogenetic disorder characterized by multiple organ system involvement and a predisposition to benign and malignant tumor development. With revised NF1 clinical criteria and the availability of germline genetic testing, there is now an opportunity to render an early diagnosis, expedite medical surveillance, and initiate treatment in a prompt and targeted manner. AREAS COVERED The authors review the spectrum of medical problems associated with NF1, focusing specifically on children and young adults. The age-dependent appearance of NF1-associated features is highlighted, and the currently accepted medical treatments are discussed. Additionally, future directions for optimizing the care of this unique population of children are outlined. EXPERT OPINION The appearance of NF1-related medical problems is age dependent, requiring surveillance for those features most likely to occur at any given age during childhood. As such, we advocate a life stage-focused screening approach beginning in infancy and continuing through the transition to adult care. With early detection, it becomes possible to promptly institute therapies and reduce patient morbidity. Importantly, with continued advancement in our understanding of disease pathogenesis, future improvements in the care of children with NF1 might incorporate improved risk assessments and more personalized molecularly targeted treatments.
Collapse
Affiliation(s)
- Nino Kerashvili
- Department of Neurology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
6
|
Na B, Shah S, Nghiemphu PL. Cancer Predisposition Syndromes in Neuro-oncology. Semin Neurol 2024; 44:16-25. [PMID: 38096910 DOI: 10.1055/s-0043-1777702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Although most primary central and peripheral nervous system (NS) tumors occur sporadically, there are a subset that may arise in the context of a cancer predisposition syndrome. These syndromes occur due to a pathogenic mutation in a gene that normally functions as a tumor suppressor. With increased understanding of the molecular pathogenesis of these tumors, more people have been identified with a cancer predisposition syndrome. Identification is crucial, as this informs surveillance, diagnosis, and treatment options. Moreover, relatives can also be identified through genetic testing. Although there are many cancer predisposition syndromes that increase the risk of NS tumors, in this review, we focus on three of the most common cancer predisposition syndromes, neurofibromatosis type 1, neurofibromatosis type 2, and tuberous sclerosis complex type 1 and type 2, emphasizing the clinical manifestations, surveillance guidelines, and treatment options.
Collapse
Affiliation(s)
- Brian Na
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, California
| | - Shilp Shah
- Department of Bioengineering, UCLA Samueli School of Engineering, Los Angeles, California
| | | |
Collapse
|
7
|
Kang SH, Park HJ, Hyun JW, Gwak HS. Spontaneous Regression of Glioma-Mimicking Brainstem Lesion in a Child: A Case Report. Brain Tumor Res Treat 2024; 12:58-62. [PMID: 38317489 PMCID: PMC10864136 DOI: 10.14791/btrt.2023.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/25/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Differential diagnosis of focal brainstem lesions detected on MRI is challenging, especially in young children. Formerly, brainstem gliomas were classified mainly based on MRI features and location. However, since 2016, the World Health Organization's brainstem lesion classification requires tissue biopsy to reveal molecular characteristics. Although modern techniques of stereotactic or navigation-guided biopsy ensure accurate biopsy of the lesion with safety, biopsy of brainstem lesions is still generally not performed. Here, we report a focal brainstem lesion mimicking brainstem glioma in a 9-year-old girl. Initial MRI, MR spectroscopy, and 11C-methionine positron emission tomography (PET) features suggested low-grade glioma or diffuse intrinsic pontine glioma. However, repeated MR spectroscopy, perfusion MRI, and 18fluorodeoxyglucose PET findings suggested that it was more likely a non-tumorous lesion. As the patient presented not with a neurological manifestation but with precocious puberty, the attending oncologist chose to observe with regular follow-up MRI. The pontine lesion with high signal intensity on T2-weighted MRI regressed from the 6-month follow-up and became invisible on the 1.5-year follow-up MRI. We reviewed brainstem glioma-mimicking lesions in the literature and discussed the key points of differential diagnosis.
Collapse
Affiliation(s)
- Sung Hyun Kang
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Hyeon Jin Park
- Center for Pediatric Cancer, National Cancer Center, Goyang, Korea
| | - Jae-Won Hyun
- Department of Neurology, National Cancer Center, Goyang, Korea
| | - Ho-Shin Gwak
- Department of Cancer Control, National Cancer Center, Graduate School of Cancer Science and Policy, Goyang, Korea.
| |
Collapse
|
8
|
Milde T, Fangusaro J, Fisher MJ, Hawkins C, Rodriguez FJ, Tabori U, Witt O, Zhu Y, Gutmann DH. Optimizing preclinical pediatric low-grade glioma models for meaningful clinical translation. Neuro Oncol 2023; 25:1920-1931. [PMID: 37738646 PMCID: PMC10628935 DOI: 10.1093/neuonc/noad125] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023] Open
Abstract
Pediatric low-grade gliomas (pLGGs) are the most common brain tumor in young children. While they are typically associated with good overall survival, children with these central nervous system tumors often experience chronic tumor- and therapy-related morbidities. Moreover, individuals with unresectable tumors frequently have multiple recurrences and persistent neurological symptoms. Deep molecular analyses of pLGGs reveal that they are caused by genetic alterations that converge on a single mitogenic pathway (MEK/ERK), but their growth is heavily influenced by nonneoplastic cells (neurons, T cells, microglia) in their local microenvironment. The interplay between neoplastic cell MEK/ERK pathway activation and stromal cell support necessitates the use of predictive preclinical models to identify the most promising drug candidates for clinical evaluation. As part of a series of white papers focused on pLGGs, we discuss the current status of preclinical pLGG modeling, with the goal of improving clinical translation for children with these common brain tumors.
Collapse
Affiliation(s)
- Till Milde
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- KiTZ Clinical Trial Unit (ZIPO), Department of Pediatric Hematology, Oncology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Jason Fangusaro
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael J Fisher
- Division of Oncology, Children’s Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Cynthia Hawkins
- Department of Laboratory Medicine and Pathobiology, Hospital for Sick Children, Toronto, Canada
| | - Fausto J Rodriguez
- Department of Pathology, University of California Los Angeles, Los Angeles, California, USA
| | - Uri Tabori
- Department of Medical Biophysics, Institute of Medical Science and Paediatrics, University of Toronto, Toronto, Canada
| | - Olaf Witt
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- KiTZ Clinical Trial Unit (ZIPO), Department of Pediatric Hematology, Oncology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Yuan Zhu
- Gilbert Family Neurofibromatosis Institute Center for Cancer and Immunology Research, Children’s National Hospital, Washington, DC, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
9
|
Romo CG, Piotrowski AF, Campian JL, Diarte J, Rodriguez FJ, Bale TA, Dahiya S, Gutmann DH, Lucas CHG, Prichett L, Mellinghoff I, Blakeley JO. Clinical, histological, and molecular features of gliomas in adults with neurofibromatosis type 1. Neuro Oncol 2023; 25:1474-1486. [PMID: 36840626 PMCID: PMC10398805 DOI: 10.1093/neuonc/noad033] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND People with NF1 have an increased prevalence of central nervous system malignancy. However, little is known about the clinical course or pathologic features of NF1-associated gliomas in adults, limiting clinical care and research. METHODS Adults (≥18 years) with NF1 and histologically confirmed non-optic pathway gliomas (non-OPGs) at Johns Hopkins Hospital, Memorial Sloan Kettering Cancer Center, and Washington University presenting between 1990 and 2020 were identified. Retrospective data were collated, and pathology was reviewed centrally. RESULTS Forty-five patients, comprising 23 females (51%), met eligibility criteria, with a median of age 37 (18-68 years) and performance status of 80% (30%-100%). Tissue was available for 35 patients. Diagnoses included infiltrating (low-grade) astrocytoma (9), glioblastoma (7), high-grade astrocytoma with piloid features (4), pilocytic astrocytoma (4), high-grade astrocytoma (3), WHO diagnosis not reached (4) and one each of gliosarcoma, ganglioglioma, embryonal tumor, and diffuse midline glioma. Seventy-one percent of tumors were midline and underwent biopsy only. All 27 tumors evaluated were IDH1-wild-type, independent of histology. In the 10 cases with molecular testing, the most common genetic variants were NF1, EGFR, ATRX, CDKN2A/B, TP53, TERT, and MSH2/3 mutation. While the treatments provided varied, the median overall survival was 24 months [2-267 months] across all ages, and 38.5 [18-109] months in individuals with grade 1-2 gliomas. CONCLUSIONS Non-OPGs in adults with NF1, including low-grade tumors, often have an aggressive clinical course, indicating a need to better understand the pathobiology of these NF1-associated gliomas.
Collapse
Affiliation(s)
- Carlos G Romo
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anna F Piotrowski
- Departments of Neurology and Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jian L Campian
- Departments of Neurology and Pathology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jose Diarte
- Departments of Neurology and Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Fausto J Rodriguez
- Department of Pathology, University of California Los Angeles, Los Angeles, California, USA
| | - Tejus A Bale
- Departments of Neurology and Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sonika Dahiya
- Departments of Neurology and Pathology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David H Gutmann
- Departments of Neurology and Pathology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Calixto-Hope G Lucas
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Laura Prichett
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ingo Mellinghoff
- Departments of Neurology and Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jaishri O Blakeley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Alfurayh MA, Alawad NK, Bin Akrish AM, Alharbi AS, Sharahili A, Bin Saleem AS, Alrifai MT. Phenotype and Genotype of Saudi Pediatric Patients With Neurofibromatosis Type 1: A Seven-Year Multicenter Experience From Saudi Arabia. Cureus 2023; 15:e37385. [PMID: 37181996 PMCID: PMC10171467 DOI: 10.7759/cureus.37385] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
Background Neurofibromatosis type 1 (NF1) is a complex disorder. Genetics and environment might be attributed as the leading cause of NF1, which is characterized by multisystemic involvement. We aim to elaborate on Saudi children's NF1 phenotypes and genotypes. Methods This study was conducted in the Ministry of National Guard Health Affairs (MNGHA), Saudi Arabia including three tertiary hospitals, using a retrospective cohort method. Electronic charts were reviewed to extract the variables. All Saudi pediatric patients aged less than 18 with NF1 were included. Consecutive sampling was used due to the limited number of patients. Results The study included 160 patients (81 males) with an average age of 8.08 years. Also, 33 (20.6%) patients had cutaneous neurofibroma while 31 (19.4%) patients had plexiform neurofibromas. Iris lisch nodules were seen in 33.75%. Optic pathway glioma was seen in 29 (18%) cases while non-optic pathway glioma was seen in 27 (17%) cases. Skeletal abnormalities were seen in 27 (17%) of cases. A first-degree relative with NF1 was seen in 83 (52%) of cases. Epilepsy was the presenting feature of 27 (17%) cases. Cognitive impairment was found in 15 (9.4%) patients. Genetic mutation was seen in 82/100 cases, the rest were negative. The types of mutations were as follows: nonsense 30 (36.6%); missense 20 (24.4%); splicing site mutation 12 (14.6%); frameshift 10 (12.2%); microdeletion 7 (8.5%); and whole gene deletion 3 (3.75%) patients. No phenotype-genotype correlation was seen. Conclusion In this cohort of Saudi pediatric patients with NF1, optic pathway glioma and other brain tumors were prevalent. The most common mutation is the nonsense mutation.
Collapse
Affiliation(s)
- Mohammed A Alfurayh
- Medicine and Surgery, King Saud Bin Abdulaziz University for Health Sciences College of Medicine, Riyadh, SAU
| | - Nawaf K Alawad
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences College of Medicine, Riyadh, SAU
| | | | - Awad S Alharbi
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences College of Medicine, Riyadh, SAU
| | - Ahmed Sharahili
- Medicine and Surgery, King Saud Bin Abdulaziz University for Health Sciences College of Medicine, Riyadh, SAU
| | | | | |
Collapse
|
11
|
Pillay-Smiley N, Leach J, Lane A, Hummel T, Fangusaro J, de Blank P. Evaluating Focal Areas of Signal Intensity (FASI) in Children with Neurofibromatosis Type-1 (NF1) Treated with Selumetinib on Pediatric Brain Tumor Consortium (PBTC)-029B. Cancers (Basel) 2023; 15:cancers15072109. [PMID: 37046770 PMCID: PMC10092996 DOI: 10.3390/cancers15072109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
Background: Understanding the effect of selumetinib on FASI may help elucidate the biology, proliferative potential, and role in neurocognitive changes for these NF1-associated lesions. Methods: Patients with NF1-associated LGG and FASI treated with selumetinib on PBTC-029B were age-matched to untreated patients with NF1-associated FASI at Cincinnati Children’s Hospital Medical Center. Paired bidirectional measurements were compared over time using nonparametric tests. Results: Sixteen age-matched pairs were assessed (age range: 2.8–16.9 years, 60% male). Initial FASI burden was not different between groups (median range 138.7 cm2 [88.4–182.0] for the treated subjects vs. 121.6 cm2 [79.6—181.9] for the untreated subjects; p = 0.98). Over a mean follow-up of 18.9 (±5.9) months, the LGG size consistently decreased with treatment while no consistent change among the treated or untreated FASI size was seen. At the paired time points, the median treated LGG decreased significantly more than the treated FASI (−41.3% (LGG) versus −10.7% (FASI), p = 0.006). However, there was no difference in the median size change in the treated versus untreated FASI (−10.7% (treated FASI) versus −17.9% (untreated FASI), p = 0.08). Among the treated subjects, there was no correlation between the change in LGG and FASI (r = −0.04, p = 0.88). Conclusions: Treatment with selumetinib did not affect the overall FASI size in children with NF1 treated for progressive low-grade glioma.
Collapse
Affiliation(s)
- Natasha Pillay-Smiley
- Cancer and Blood Diseases Institute, The Cure Starts Now Foundation Brain Tumor Center, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - James Leach
- Cancer and Blood Diseases Institute, The Cure Starts Now Foundation Brain Tumor Center, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Department of Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Adam Lane
- Cancer and Blood Diseases Institute, The Cure Starts Now Foundation Brain Tumor Center, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Trent Hummel
- Cancer and Blood Diseases Institute, The Cure Starts Now Foundation Brain Tumor Center, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Jason Fangusaro
- Children’s Healthcare of Atlanta and Aflac Cancer Center, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta and Emory, University School of Medicine, Atlanta GA 30322, USA
| | - Peter de Blank
- Cancer and Blood Diseases Institute, The Cure Starts Now Foundation Brain Tumor Center, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
12
|
Angelova-Toshkina D, Decker JA, Traunwieser T, Holzapfel J, Bette S, Huber S, Schimmel M, Vollert K, Bison B, Kröncke T, Bramswig NC, Wieczorek D, Gnekow AK, Frühwald MC, Kuhlen M. Comprehensive neurological evaluation of a cohort of patients with neurofibromatosis type 1 from a single institution. Eur J Paediatr Neurol 2023; 43:52-61. [PMID: 36905830 DOI: 10.1016/j.ejpn.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/05/2023] [Accepted: 02/26/2023] [Indexed: 03/13/2023]
Abstract
Neurofibromatosis type 1 (NF1) is a phenotypically heterogenous multisystem cancer predisposition syndrome manifesting in childhood and adolescents. Central nervous system (CNS) manifestations include structural, neurodevelopmental, and neoplastic disease. We aimed to (1) characterize the spectrum of CNS manifestations of NF1 in a paediatric population, (2) explore radiological features in the CNS by image analyses, and (3) correlate genotype with phenotypic expression for those with a genetic diagnosis. We performed a database search in the hospital information system covering the period between January 2017 and December 2020. We evaluated the phenotype by retrospective chart review and imaging analysis. 59 patients were diagnosed with NF1 [median age 10.6 years (range, 1.1-22.6); 31 female] at last follow-up, pathogenic NF1 variants were identified in 26/29. 49/59 patients presented with neurological manifestations including 28 with structural and neurodevelopmental findings, 16 with neurodevelopmental, and 5 with structural findings only. Focal areas of signal intensity (FASI) were identified in 29/39, cerebrovascular anomalies in 4/39. Neurodevelopmental delay was reported in 27/59 patients, learning difficulties in 19/59. Optic pathway gliomas (OPG) were diagnosed in 18/59 patients, 13/59 had low-grade gliomas outside the visual pathways. 12 patients received chemotherapy. Beside the established NF1 microdeletion, neither genotype nor FASI were associated with the neurological phenotype. NF1 was associated with a spectrum of CNS manifestations in at least 83.0% of patients. Regular neuropsychological assessment complementing frequent clinical and ophthalmologic testing for OPG is necessary in the care of each child with NF1.
Collapse
Affiliation(s)
- Daniela Angelova-Toshkina
- Paediatric and Adolescent Medicine, University Medical Centre, Stenglinstr. 2, 86156, Augsburg, Germany.
| | - Josua A Decker
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Medical Centre, Stenglinstraße 2, 86156, Augsburg, Germany.
| | - Thomas Traunwieser
- Paediatric and Adolescent Medicine, University Medical Centre, Stenglinstr. 2, 86156, Augsburg, Germany.
| | - Johannes Holzapfel
- Paediatric and Adolescent Medicine, University Medical Centre, Stenglinstr. 2, 86156, Augsburg, Germany.
| | - Stefanie Bette
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Medical Centre, Stenglinstraße 2, 86156, Augsburg, Germany.
| | - Simon Huber
- Paediatric and Adolescent Medicine, University Medical Centre, Stenglinstr. 2, 86156, Augsburg, Germany.
| | - Mareike Schimmel
- Paediatric and Adolescent Medicine, University Medical Centre, Stenglinstr. 2, 86156, Augsburg, Germany.
| | - Kurt Vollert
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Medical Centre, Stenglinstraße 2, 86156, Augsburg, Germany.
| | - Brigitte Bison
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany.
| | - Thomas Kröncke
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Medical Centre, Stenglinstraße 2, 86156, Augsburg, Germany.
| | - Nuria C Bramswig
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40255, Düsseldorf, Germany.
| | - Dagmar Wieczorek
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40255, Düsseldorf, Germany.
| | - Astrid K Gnekow
- Paediatric and Adolescent Medicine, University Medical Centre, Stenglinstr. 2, 86156, Augsburg, Germany.
| | - Michael C Frühwald
- Paediatric and Adolescent Medicine, University Medical Centre, Stenglinstr. 2, 86156, Augsburg, Germany.
| | - Michaela Kuhlen
- Paediatric and Adolescent Medicine, University Medical Centre, Stenglinstr. 2, 86156, Augsburg, Germany.
| |
Collapse
|
13
|
Cross KA, Salehi A, Abdelbaki MS, Gutmann DH, Limbrick DD. MRI-guided laser interstitial thermal therapy for deep-seated gliomas in children with neurofibromatosis type 1: report of two cases. Childs Nerv Syst 2023; 39:787-791. [PMID: 36107223 DOI: 10.1007/s00381-022-05660-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/03/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Nearly a quarter of neurofibromatosis type 1 (NF 1)- associated diencephalic low-grade tumors are refractory to chemotherapy. Addition of alternative treatment options with laser interstitial thermal therapy will have a positive impact on the outcome of these patients. METHODS We report on two illustrated cases of pediatric NF1- associated, chemoresistant, WHO grade 1 pilocytic astrocytomas treated with laser interstitial thermal therapy (LITT). RESULTS Both tumors responded favorably to LITT. CONCLUSION LITT should be considered as a treatment option for chemoresistant deep-seated NF1-associated low-grade gliomas.
Collapse
Affiliation(s)
- Kevin A Cross
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Afshin Salehi
- Division of Pediatric Neurosurgery, Department of Neurological Surgery, University of Nebraska Medical Center, Omaha Children's Hospital Medical Center, Omaha, NE, USA
| | - Mohamed S Abdelbaki
- Division of Hematology and Oncology, Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - David D Limbrick
- Division of Pediatric Neurosurgery, Department of Neurological Surgery, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
14
|
Carton C, Evans DG, Blanco I, Friedrich RE, Ferner RE, Farschtschi S, Salvador H, Azizi AA, Mautner V, Röhl C, Peltonen S, Stivaros S, Legius E, Oostenbrink R. ERN GENTURIS tumour surveillance guidelines for individuals with neurofibromatosis type 1. EClinicalMedicine 2023; 56:101818. [PMID: 36684394 PMCID: PMC9845795 DOI: 10.1016/j.eclinm.2022.101818] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Neurofibromatosis type 1 (NF1) is a multisystem genetic disorder, predisposing development of benign and malignant tumours. Given the oncogenic potential, long-term surveillance is important in patients with NF1. Proposals for NF1 care and its specific manifestations have been developed, but lack integration within routine care. This guideline aims to assimilate available information on NF1 associated tumours (based on evidence and/or expert opinion) to assist healthcare professionals in undertaking tumour surveillance of NF1 individuals. METHODS By comprehensive literature review, performed March 18th 2020, guidelines were developed by a NF1 expert group and patient representatives, conversant with clinical care of the wide NF1 disease spectrum. We used a modified Delphi procedure to overcome issues of variability in recommendations for specific (national) health care settings, and to deal with recommendations based on indirect (scarce) evidence. FINDINGS We defined proposals for personalised and targeted tumour management in NF1, ensuring appropriate care for those in need, whilst reducing unnecessary intervention. We also incorporated the tumour-related psychosocial and quality of life impact of NF1. INTERPRETATION The guideline reflects the current care for NF1 in Europe. They are not meant to be prescriptive and may be adjusted to local available resources at the treating centre, both within and outside EU countries. FUNDING This guideline has been supported by the European Reference Network on Genetic Tumour Risk Syndromes (ERN GENTURIS). ERN GENTURIS is funded by the European Union. DGE is supported by the Manchester NIHRBiomedical Research Centre (IS-BRC-1215-20007).
Collapse
Affiliation(s)
- Charlotte Carton
- Laboratory for Neurofibromatosis Research, Department of Human Genetics, University of Leuven, KU Leuven, Belgium
| | - D. Gareth Evans
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, University of Manchester, MAHSC, St Mary's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Ignacio Blanco
- Clinical Genetics Department, Hospital Germans Trias I Pujol, Barcelona, Spain
| | | | - Rosalie E. Ferner
- Neurofibromatosis Centre, Department of Neurology, Guy's & St Thomas' NHS Foundation Trust, London, UK
| | | | - Hector Salvador
- Sant Joan de Déu, Barcelona Children's Hospital, Barcelona, Spain
| | - Amedeo A. Azizi
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria
| | - Victor Mautner
- Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | | | - Sirkku Peltonen
- University of Turku and Turku University Hospital, Turku, Finland
- Sahlgrenska University Hospital and Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Stavros Stivaros
- Academic Unit of Paediatric Radiology, Royal Manchester Children's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Eric Legius
- University Hospital Leuven, Department of Human Genetics, University of Leuven, KU Leuven, Belgium
| | - Rianne Oostenbrink
- ENCORE-NF1 Expertise Center, ErasmusMC-Sophia, Rotterdam, the Netherlands
- Corresponding author. Department General Pediatrics, ErasmusMC-Sophia, Room Sp 1549, Dr Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands.
| | | |
Collapse
|
15
|
Lucas CHG, Sloan EA, Gupta R, Wu J, Pratt D, Vasudevan HN, Ravindranathan A, Barreto J, Williams EA, Shai A, Whipple NS, Bruggers CS, Maher O, Nabors B, Rodriguez M, Samuel D, Brown M, Carmichael J, Lu R, Mirchia K, Sullivan DV, Pekmezci M, Tihan T, Bollen AW, Perry A, Banerjee A, Mueller S, Gupta N, Hervey-Jumper SL, Oberheim Bush NA, Daras M, Taylor JW, Butowski NA, de Groot J, Clarke JL, Raleigh DR, Costello JF, Phillips JJ, Reddy AT, Chang SM, Berger MS, Solomon DA. Multiplatform molecular analyses refine classification of gliomas arising in patients with neurofibromatosis type 1. Acta Neuropathol 2022; 144:747-765. [PMID: 35945463 PMCID: PMC9468105 DOI: 10.1007/s00401-022-02478-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 01/28/2023]
Abstract
Gliomas arising in the setting of neurofibromatosis type 1 (NF1) are heterogeneous, occurring from childhood through adulthood, can be histologically low-grade or high-grade, and follow an indolent or aggressive clinical course. Comprehensive profiling of genetic alterations beyond NF1 inactivation and epigenetic classification of these tumors remain limited. Through next-generation sequencing, copy number analysis, and DNA methylation profiling of gliomas from 47 NF1 patients, we identified 2 molecular subgroups of NF1-associated gliomas. The first harbored biallelic NF1 inactivation only, occurred primarily during childhood, followed a more indolent clinical course, and had a unique epigenetic signature for which we propose the terminology "pilocytic astrocytoma, arising in the setting of NF1". The second subgroup harbored additional oncogenic alterations including CDKN2A homozygous deletion and ATRX mutation, occurred primarily during adulthood, followed a more aggressive clinical course, and was epigenetically diverse, with most tumors aligning with either high-grade astrocytoma with piloid features or various subclasses of IDH-wildtype glioblastoma. Several patients were treated with small molecule MEK inhibitors that resulted in stable disease or tumor regression when used as a single agent, but only in the context of those tumors with NF1 inactivation lacking additional oncogenic alterations. Together, these findings highlight recurrently altered pathways in NF1-associated gliomas and help inform targeted therapeutic strategies for this patient population.
Collapse
Affiliation(s)
- Calixto-Hope G Lucas
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emily A Sloan
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA
- Department of Pathology, Medstar Georgetown University Hospital, Washington, DC, USA
| | - Rohit Gupta
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA
| | - Jasper Wu
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA
| | - Drew Pratt
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Harish N Vasudevan
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Ajay Ravindranathan
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA
| | - Jairo Barreto
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA
| | - Erik A Williams
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA
| | - Anny Shai
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Nicholas S Whipple
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Carol S Bruggers
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Ossama Maher
- Department of Oncology, Nicklaus Children's Hospital, Miami, FL, USA
| | - Burt Nabors
- Division of Neuro-Oncology, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - David Samuel
- Department of Hematology/Oncology, Valley Children's Hospital, Madera, CA, USA
| | - Melandee Brown
- Department of Neurosurgery, Valley Children's Hospital, Madera, CA, USA
| | - Jason Carmichael
- Department of Medical Genetics and Metabolism, Valley Children's Hospital, Madera, CA, USA
| | - Rufei Lu
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA
| | - Kanish Mirchia
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA
| | - Daniel V Sullivan
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA
| | - Melike Pekmezci
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA
| | - Tarik Tihan
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA
| | - Andrew W Bollen
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA
| | - Arie Perry
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Anuradha Banerjee
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Sabine Mueller
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Nalin Gupta
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Nancy Ann Oberheim Bush
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Mariza Daras
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Jennie W Taylor
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Nicholas A Butowski
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - John de Groot
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Jennifer L Clarke
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - David R Raleigh
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Joseph F Costello
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Joanna J Phillips
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Alyssa T Reddy
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Susan M Chang
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - David A Solomon
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA.
| |
Collapse
|
16
|
Anastasaki C, Chatterjee J, Cobb O, Sanapala S, Scheaffer SM, De Andrade Costa A, Wilson AF, Kernan CM, Zafar AH, Ge X, Garbow JR, Rodriguez FJ, Gutmann DH. Human induced pluripotent stem cell engineering establishes a humanized mouse platform for pediatric low-grade glioma modeling. Acta Neuropathol Commun 2022; 10:120. [PMID: 35986378 PMCID: PMC9392324 DOI: 10.1186/s40478-022-01428-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/11/2022] [Indexed: 11/25/2022] Open
Abstract
A major obstacle to identifying improved treatments for pediatric low-grade brain tumors (gliomas) is the inability to reproducibly generate human xenografts. To surmount this barrier, we leveraged human induced pluripotent stem cell (hiPSC) engineering to generate low-grade gliomas (LGGs) harboring the two most common pediatric pilocytic astrocytoma-associated molecular alterations, NF1 loss and KIAA1549:BRAF fusion. Herein, we identified that hiPSC-derived neuroglial progenitor populations (neural progenitors, glial restricted progenitors and oligodendrocyte progenitors), but not terminally differentiated astrocytes, give rise to tumors retaining LGG histologic features for at least 6 months in vivo. Additionally, we demonstrated that hiPSC-LGG xenograft formation requires the absence of CD4 T cell-mediated induction of astrocytic Cxcl10 expression. Genetic Cxcl10 ablation is both necessary and sufficient for human LGG xenograft development, which additionally enables the successful long-term growth of patient-derived pediatric LGGs in vivo. Lastly, MEK inhibitor (PD0325901) treatment increased hiPSC-LGG cell apoptosis and reduced proliferation both in vitro and in vivo. Collectively, this study establishes a tractable experimental humanized platform to elucidate the pathogenesis of and potential therapeutic opportunities for childhood brain tumors.
Collapse
Affiliation(s)
- Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Jit Chatterjee
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Olivia Cobb
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Shilpa Sanapala
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Suzanne M Scheaffer
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Amanda De Andrade Costa
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Anna F Wilson
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Chloe M Kernan
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Ameera H Zafar
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Xia Ge
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Joel R Garbow
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Fausto J Rodriguez
- Department of Pathology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA.
| |
Collapse
|
17
|
The Current State of Radiotherapy for Pediatric Brain Tumors: An Overview of Post-Radiotherapy Neurocognitive Decline and Outcomes. J Pers Med 2022; 12:jpm12071050. [PMID: 35887547 PMCID: PMC9315742 DOI: 10.3390/jpm12071050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Tumors of the central nervous system are the most common solid malignancies diagnosed in children. While common, they are also found to have some of the lowest survival rates of all malignancies. Treatment of childhood brain tumors often consists of operative gross total resection with adjuvant chemotherapy or radiotherapy. The current body of literature is largely inconclusive regarding the overall benefit of adjuvant chemo- or radiotherapy. However, it is known that both are associated with conditions that lower the quality of life in children who undergo those treatments. Chemotherapy is often associated with nausea, emesis, significant fatigue, immunosuppression, and alopecia. While radiotherapy can be effective for achieving local control, it is associated with late effects such as endocrine dysfunction, secondary malignancy, and neurocognitive decline. Advancements in radiotherapy grant both an increase in lifetime survival and an increased lifetime for survivors to contend with these late effects. In this review, the authors examined all the published literature, analyzing the results of clinical trials, case series, and technical notes on patients undergoing radiotherapy for the treatment of tumors of the central nervous system with a focus on neurocognitive decline and survival outcomes.
Collapse
|
18
|
Familial Neoplastic Syndromes. Neurol Clin 2022; 40:405-420. [DOI: 10.1016/j.ncl.2021.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Basindwah S, Alkhalidi H, Abdelwarith A, Elwatidy S. Ten-year survival in glioblastoma patient with neurofibromatosis type 1: illustrative case. JOURNAL OF NEUROSURGERY: CASE LESSONS 2022; 3:CASE21630. [PMID: 36130570 PMCID: PMC9379713 DOI: 10.3171/case21630] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Gliomas are commonly detected in patients with neurofibromatosis type 1 (NF1) at an early age. Few patients with NF1 are diagnosed with glioblastoma. The course of management, response to therapy, and prognosis of such patients are unknown. Few reports have shown longer-than-average survival rates for patients with NF1 with glioblastoma. OBSERVATIONS A 27-year-old man with NF1 presented with symptoms of high intracranial pressure. Imaging and pathology showed left frontotemporal glioblastoma. Gross total resection was achieved, and concurrent chemoradiotherapy was administered. Recurrence of tumor was detected 48 months later, and the patient underwent tumor debulking and concurrent chemoradiotherapy. The patient received first-, second-, and third-line chemotherapy (temozolomide, bevacizumab, bevacizumab/irinotecan) with good tolerance and has survived >10 years since then with good functional status. LESSONS This case demonstrates >10 years overall survival of glioblastoma in a patient with NF1. Reports of patients with NF1 with longer survival may be attributed to the young age at diagnosis and relatively better tolerance for therapy. It might also support the growing evidence of a unique subset of glioblastoma associated with NF1 and opens the door for a more molecular targeted therapy in the future.
Collapse
Affiliation(s)
| | | | - Ahmed Abdelwarith
- Department of Oncology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
20
|
Cantor E, Meyer A, Morris SM, Weisenberg JLZ, Brossier NM. Dose-dependent seizure control with MEK inhibitor therapy for progressive glioma in a child with neurofibromatosis type 1. Childs Nerv Syst 2022; 38:2245-2249. [PMID: 35648241 PMCID: PMC9617819 DOI: 10.1007/s00381-022-05571-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/20/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Low-grade gliomas (LGGs) occurring in children can result in many different neurologic complications, including seizures. MEK inhibitors are increasingly being used to treat LGG, but their effect on associated neurologic symptoms has not been established. RESULTS Here, we report a patient with neurofibromatosis type 1 (NF1), medically refractory epilepsy (MRE), and an extensive optic pathway glioma (OPG) who developed dose-dependent seizure control while being treated with selumetinib. Seizure frequency rebounded after dose reduction for cardiac toxicity, then improved, and finally ceased after restarting full dosing, allowing confidence in the cause of improvement. CONCLUSION Selumetinib may have promise in epilepsy management in other children with NF1 or LGG.
Collapse
Affiliation(s)
- Evan Cantor
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, Box 8208, St. Louis, MO, 63110, USA
| | - Ashley Meyer
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, Box 8208, St. Louis, MO, 63110, USA
| | - Stephanie M Morris
- Department of Neurology, Washington University School of Medicine, St. Louis MO, USA
| | - Judith L Z Weisenberg
- Department of Neurology, Washington University School of Medicine, St. Louis MO, USA
| | - Nicole M Brossier
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, Box 8208, St. Louis, MO, 63110, USA.
| |
Collapse
|
21
|
Ullrich NJ, Prabhu SP, Reddy AT, Fisher MJ, Packer R, Goldman S, Robison NJ, Gutmann DH, Viskochil DH, Allen JC, Korf B, Cantor A, Cutter G, Thomas C, Perentesis JP, Mizuno T, Vinks AA, Manley PE, Chi SN, Kieran MW. A phase II study of continuous oral mTOR inhibitor everolimus for recurrent, radiographic-progressive neurofibromatosis type 1-associated pediatric low-grade glioma: a Neurofibromatosis Clinical Trials Consortium study. Neuro Oncol 2021; 22:1527-1535. [PMID: 32236425 DOI: 10.1093/neuonc/noaa071] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Activation of the mammalian target of rapamycin (mTOR) pathway is observed in neurofibromatosis type 1 (NF1) associated low-grade gliomas (LGGs), but agents that inhibit this pathway, including mTOR inhibitors, have not been studied in this population. We evaluate the efficacy of the orally administered mTOR inhibitor everolimus for radiographically progressive NF1-associated pediatric LGGs. METHODS Children with radiologic-progressive, NF1-associated LGG and prior treatment with a carboplatin-containing chemotherapy were prospectively enrolled on this phase II clinical trial to receive daily everolimus. Whole blood was analyzed for everolimus and markers of phosphatidylinositol-3 kinase (PI3K)/mTOR pathway inhibition. Serial MRIs were obtained during treatment. The primary endpoint was progression-free survival at 48 weeks. RESULTS Twenty-three participants (median age, 9.4 y; range, 3.2-21.6 y) were enrolled. All participants were initially evaluable for response; 1 patient was removed from study after development of a malignant peripheral nerve sheath tumor. Fifteen of 22 participants (68%) demonstrated a response, defined as either shrinkage (1 complete response, 2 partial response) or arrest of tumor growth (12 stable disease). Of these, 10/15 remained free of progression (median follow-up, 33 mo). All remaining 22 participants were alive at completion of therapy. Treatment was well tolerated; no patient discontinued therapy due to toxicity. Pharmacokinetic parameters and pre-dose concentrations showed substantial between-subject variability. PI3K/mTOR pathway inhibition markers demonstrating blood mononuclear cell mTOR pathway inactivation was achieved in most participants. CONCLUSION Individuals with recurrent/progressive NF1-associated LGG demonstrate significant disease stability/shrinkage during treatment with oral everolimus with a well-tolerated toxicity profile. Everolimus is well suited for future consideration as upfront or combination therapy in this patient population.
Collapse
Affiliation(s)
- Nicole J Ullrich
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts.,Dana-Farber/Boston Children's Cancer and Blood Disorders, Dana-Farber Cancer Institution, Boston, Massachusetts
| | - Sanjay P Prabhu
- Departments of Radiology, Boston Children's Hospital, Boston, Massachusetts
| | - Alyssa T Reddy
- Department of Neurology, School of Medicine, University of California San Francisco, San Francisco, California
| | - Michael J Fisher
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Roger Packer
- Center for Neuroscience and Behavioral Medicine, Children's National Health System, Washington, DC
| | | | - Nathan J Robison
- Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | | | - Jeffrey C Allen
- Departments of Pediatrics and Neurology, NYU Cancer Institute, NYU Langone Medical Center, New York, New York
| | - Bruce Korf
- Department of Genetics, University of Utah, Salt Lake City, Utah.,Department of Medical Genetics, University of Alabama, Birmingham, Alabama
| | - Alan Cantor
- Department of Preventative Medicine, University of Alabama, Birmingham, Alabama.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Gary Cutter
- School of Public Health, University of Alabama, Birmingham, Alabama.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Coretta Thomas
- School of Public Health, University of Alabama, Birmingham, Alabama.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - John P Perentesis
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Tomoyuki Mizuno
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Alexander A Vinks
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Peter E Manley
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts.,Dana-Farber/Boston Children's Cancer and Blood Disorders, Dana-Farber Cancer Institution, Boston, Massachusetts
| | - Susan N Chi
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts.,Dana-Farber/Boston Children's Cancer and Blood Disorders, Dana-Farber Cancer Institution, Boston, Massachusetts
| | - Mark W Kieran
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts.,Dana-Farber/Boston Children's Cancer and Blood Disorders, Dana-Farber Cancer Institution, Boston, Massachusetts
| |
Collapse
|
22
|
Bashiri FA, AlZamil LR, Aldhuwayhi RA. Clinical spectrum of neurofibromatosis type 1 among children in a tertiary care center. ACTA ACUST UNITED AC 2021; 25:375-379. [PMID: 33459286 PMCID: PMC8015600 DOI: 10.17712/nsj.2020.5.20200081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Objectives: To identify the clinical and neuroradiological features of neurofibromatosis type 1 and the risk of malignancy in a pediatric age group. Methods: This observational retrospective cohort study was conducted at King Saud University Medical City, Riyadh, Kingdom of Saudi Arabia, for the patients with neurofibromatosis type 1 who were seen and had follow up from January 2000 to January 2019. Results: A total of 50 children were included. Approximately 90% of patients presented with café-au-lait macules, and 34% had skin-fold freckling. Moreover, 42% of the participants had a first-degree relative with neurofibromatosis type 1, and about a quarter presented with associated epilepsy. About 90% of the neuroradiological features were consistent with those of neurofibromatosis type 1. About 52% of the patients had one or multiple types of tumors, and 34% presented with optic pathway glioma. Conclusion: This study described clinical spectrum of neurofibromatosis type 1 among children. It showed also a higher percentage of tumors than previous studies.
Collapse
Affiliation(s)
- Fahad A Bashiri
- Division of Pediatric Neurology, Department of Pediatrics, College of Medicine, King Saud University. Riyadh, Kingdom of Saudi Arabia. E-mail address:
| | | | | |
Collapse
|
23
|
Ranalli M, Boni A, Caroleo AM, Del Baldo G, Rinelli M, Agolini E, Rossi S, Miele E, Colafati GS, Boccuto L, Alessi I, De Ioris MA, Cacchione A, Capolino R, Carai A, Vennarini S, Mastronuzzi A. Molecular Characterization of Medulloblastoma in a Patient with Neurofibromatosis Type 1: Case Report and Literature Review. Diagnostics (Basel) 2021; 11:diagnostics11040647. [PMID: 33918520 PMCID: PMC8067061 DOI: 10.3390/diagnostics11040647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/27/2021] [Accepted: 03/28/2021] [Indexed: 12/31/2022] Open
Abstract
Brain tumors are the most common solid neoplasms of childhood. They are frequently reported in children with Neurofibromatosis type 1 (NF1). The most frequent central nervous system malignancies described in NF1 are optic pathway gliomas and brainstem gliomas. Medulloblastoma (MB) in NF1 patients is extremely rare, and to our knowledge, only 10 cases without molecular characterization are described in the literature to date. We report the case of a 14-year-old girl with NF1 that came to our attention for an incidental finding of a lesion arising from cerebellar vermis. The mass was completely resected, revealing a localized classic medulloblastoma (MB), subgroup 4. She was treated as a standard-risk MB with a dose-adapted personalized protocol. The treatment proved to be effective, with minor toxicity. Brain and spine MRI one year after diagnosis confirmed the complete remission of the disease. To our knowledge, this is the only case of MB reported in a patient with NF1 with molecular characterization by the methylation profile. The association between NF1 and MB, although uncommon, may not be an accidental occurrence.
Collapse
Affiliation(s)
- Marco Ranalli
- Department of Pediatrics, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy; (M.R.); (A.B.); (E.M.)
| | - Alessandra Boni
- Department of Pediatrics, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy; (M.R.); (A.B.); (E.M.)
| | - Anna Maria Caroleo
- Department of Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children’s Hospital (IRCCS), 00165 Rome, Italy; (A.M.C.); (G.D.B.); (I.A.); (M.A.D.I.); (A.C.)
| | - Giada Del Baldo
- Department of Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children’s Hospital (IRCCS), 00165 Rome, Italy; (A.M.C.); (G.D.B.); (I.A.); (M.A.D.I.); (A.C.)
| | - Martina Rinelli
- Laboratory of Medical Genetics, Bambino Gesù Children’s Hospital (IRCCS), 00165 Rome, Italy; (M.R.); (E.A.)
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Bambino Gesù Children’s Hospital (IRCCS), 00165 Rome, Italy; (M.R.); (E.A.)
| | - Sabrina Rossi
- Pathology Unit, Department of Laboratories, Bambino Gesù Children’s Hospital (IRCCS), 00165 Rome, Italy;
| | - Evelina Miele
- Department of Pediatrics, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy; (M.R.); (A.B.); (E.M.)
| | - Giovanna Stefania Colafati
- Neuroradiology Unit, Department of Imaging, Bambino Gesù Children’s Hospital (IRCCS), 00165 Rome, Italy;
| | - Luigi Boccuto
- School of Nursing, College of Behavioral, Social and Health Sciences Healthcare Genetics Interdisciplinary Doctoral Program, Clemson University, Clemson, SC 29631, USA;
| | - Iside Alessi
- Department of Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children’s Hospital (IRCCS), 00165 Rome, Italy; (A.M.C.); (G.D.B.); (I.A.); (M.A.D.I.); (A.C.)
| | - Maria Antonietta De Ioris
- Department of Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children’s Hospital (IRCCS), 00165 Rome, Italy; (A.M.C.); (G.D.B.); (I.A.); (M.A.D.I.); (A.C.)
| | - Antonella Cacchione
- Department of Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children’s Hospital (IRCCS), 00165 Rome, Italy; (A.M.C.); (G.D.B.); (I.A.); (M.A.D.I.); (A.C.)
| | - Rossella Capolino
- Medical Genetics Unit, Bambino Gesù Children Hospital, Bambino Gesù Children’s Hospital (IRCCS), 00165 Rome, Italy;
| | - Andrea Carai
- Neurosurgery Unit, Department of Neurosciences, Bambino Gesù Children’s Hospital (IRCCS), 00165 Rome, Italy;
| | - Sabina Vennarini
- Proton Therapy Center, Hospital of Trento, Azienda Provinciale per I Servizi Sanitari (APSS), 38122 Trento, Italy;
| | - Angela Mastronuzzi
- Department of Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children’s Hospital (IRCCS), 00165 Rome, Italy; (A.M.C.); (G.D.B.); (I.A.); (M.A.D.I.); (A.C.)
- Correspondence:
| |
Collapse
|
24
|
Integrated molecular and clinical analysis of low-grade gliomas in children with neurofibromatosis type 1 (NF1). Acta Neuropathol 2021; 141:605-617. [PMID: 33585982 DOI: 10.1007/s00401-021-02276-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023]
Abstract
Low-grade gliomas (LGGs) are the most common childhood brain tumor in the general population and in individuals with the Neurofibromatosis type 1 (NF1) cancer predisposition syndrome. Surgical biopsy is rarely performed prior to treatment in the setting of NF1, resulting in a paucity of tumor genomic information. To define the molecular landscape of NF1-associated LGGs (NF1-LGG), we integrated clinical data, histological diagnoses, and multi-level genetic/genomic analyses on 70 individuals from 25 centers worldwide. Whereas, most tumors harbored bi-allelic NF1 inactivation as the only genetic abnormality, 11% had additional mutations. Moreover, tumors classified as non-pilocytic astrocytoma based on DNA methylation analysis were significantly more likely to harbor these additional mutations. The most common secondary alteration was FGFR1 mutation, which conferred an additional growth advantage in multiple complementary experimental murine Nf1 models. Taken together, this comprehensive characterization has important implications for the management of children with NF1-LGG, distinct from their sporadic counterparts.
Collapse
|
25
|
Osum SH, Coutts AW, Duerre DJ, Tschida BR, Kirstein MN, Fisher J, Bell WR, Delpuech O, Smith PD, Widemann BC, Moertel CL, Largaespada DA, Watson AL. Selumetinib normalizes Ras/MAPK signaling in clinically relevant neurofibromatosis type 1 minipig tissues in vivo. Neurooncol Adv 2021; 3:vdab020. [PMID: 33978635 PMCID: PMC8095338 DOI: 10.1093/noajnl/vdab020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The MEK1/2 inhibitor selumetinib was recently approved for neurofibromatosis type 1 (NF1)-associated plexiform neurofibromas, but outcomes could be improved and its pharmacodynamic evaluation in other relevant tissues is limited. The aim of this study was to assess selumetinib tissue pharmacokinetics (PK) and pharmacodynamics (PD) using a minipig model of NF1. METHODS WT (n = 8) and NF1 (n = 8) minipigs received a single oral dose of 7.3 mg/kg selumetinib. Peripheral blood mononuclear cells (PBMCs), cerebral cortex, optic nerve, sciatic nerve, and skin were collected for PK analysis and PD analysis of extracellular regulated kinase phosphorylation (p-ERK) inhibition and transcript biomarkers (DUSP6 & FOS). RESULTS Key selumetinib PK parameters aligned with those observed in human patients. Selumetinib concentrations were higher in CNS tissues from NF1 compared to WT animals. Inhibition of ERK phosphorylation was achieved in PBMCs (mean 60% reduction), skin (95%), and sciatic nerve (64%) from all minipigs, whereas inhibition of ERK phosphorylation in cerebral cortex was detected only in NF1 animals (71%). Basal p-ERK levels were significantly higher in NF1 minipig optic nerve compared to WT and were reduced to WT levels (60%) with selumetinib. Modulation of transcript biomarkers was observed in all tissues. CONCLUSIONS Selumetinib reduces MAPK signaling in tissues clinically relevant to NF1, effectively normalizing p-ERK to WT levels in optic nerve but resulting in abnormally low levels of p-ERK in the skin. These results suggest that selumetinib exerts activity in NF1-associated CNS tumors by normalizing Ras/MAPK signaling and may explain common MEK inhibitor-associated dermatologic toxicities.
Collapse
Affiliation(s)
- Sara H Osum
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | | - Mark N Kirstein
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - James Fisher
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - W Robert Bell
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Division of Neuropathology, Department of Lab Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Oona Delpuech
- Oncology R&D, AstraZeneca, Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Paul D Smith
- Oncology R&D, AstraZeneca, Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Brigitte C Widemann
- Pediatric Oncology Branch, Rare Tumor Initiative, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | | | - David A Largaespada
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | | |
Collapse
|
26
|
Tabori U, Das A, Hawkins C. Germline predisposition to glial neoplasms in children and young adults: A narrative review. GLIOMA 2021. [DOI: 10.4103/glioma.glioma_12_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
27
|
Attina G, Maurizi P, Triarico S, Capozza MA, Romano A, Mastrangelo S, Ruggiero A. Management of Children with Optic Gliomas and Neurofibromatosis Type 1. BIOMEDICAL AND PHARMACOLOGY JOURNAL 2020; 13:1601-1606. [DOI: 10.13005/bpj/2035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Optic pathway gliomas (OPG) are a common cancer in children with neurofibromatosis type 1. OPGs can cause clinical symptoms such as reduction of visual acuity, alterations of the visual field, pallor of the optical papilla, strabismus, endocrinological alterations up to diencephalic syndrome.The current guidelines provide for wait and see as the main approach if the tumor is not causing visual deterioration and adopting treatment only in the event of significant impairment of the visual function. Therefore, it is essential to early detect the visual deterioration changes as well as the identification of children eligible for treatment.
Collapse
Affiliation(s)
- Giorgio Attina
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A.Gemelli IRCCS, Universita’ Cattolica Sacro Cuore, Rome, Italy
| | - Palma Maurizi
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A.Gemelli IRCCS, Universita’ Cattolica Sacro Cuore, Rome, Italy
| | - Silvia Triarico
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A.Gemelli IRCCS, Universita’ Cattolica Sacro Cuore, Rome, Italy
| | - Michele Antonio Capozza
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A.Gemelli IRCCS, Universita’ Cattolica Sacro Cuore, Rome, Italy
| | - Alberto Romano
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A.Gemelli IRCCS, Universita’ Cattolica Sacro Cuore, Rome, Italy
| | - Stefano Mastrangelo
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A.Gemelli IRCCS, Universita’ Cattolica Sacro Cuore, Rome, Italy
| | - Antonio Ruggiero
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A.Gemelli IRCCS, Universita’ Cattolica Sacro Cuore, Rome, Italy
| |
Collapse
|
28
|
Strowd RE, Plotkin SR. Familial Nervous System Tumor Syndromes. ACTA ACUST UNITED AC 2020; 26:1523-1552. [PMID: 33273171 DOI: 10.1212/con.0000000000000950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE OF REVIEW Although sporadic primary neoplasms account for the majority of nervous system tumors, familial nervous system tumor syndromes are important and clinically relevant conditions for the neurologist to understand. This article reviews common inherited nervous system tumor syndromes including neurofibromatosis type 1, neurofibromatosis type 2, schwannomatosis, tuberous sclerosis complex, and von Hippel-Lindau syndrome. The epidemiology, genetics, approach to diagnosis, neurologic and nonneurologic manifestations, and management options are reviewed. RECENT FINDINGS Awareness of the more common and clinically relevant familial nervous system tumor syndromes is important. These conditions teach us about the underlying biology that drives tumor development in the central and peripheral nervous systems including peripheral nerve sheath tumors (eg, neurofibroma, schwannoma), meningioma, vestibular schwannoma, subependymal giant cell astrocytoma, and hemangioblastoma. Knowledge of the clinical manifestations ensures that the neurologist will be able to diagnose these conditions, recommend appropriate surveillance, refer to specialists, and support optimal management. Important discoveries in the role of the underlying genetics have contributed to the launch of several novel drug trials for these tumors, which are changing therapeutic options for patients. SUMMARY Familial nervous system tumor syndromes are uncommon conditions that require specialized surveillance and management strategies. Coordination across a multidisciplinary team that includes neurologists, neuro-oncologists, radiologists, neurosurgeons, radiation oncologists, otolaryngologists, pathologists, neuropsychologists, physical medicine and rehabilitation specialists, and geneticists is necessary for the optimal treatment of these patients.
Collapse
|
29
|
Touzé R, Bremond-Gignac D, Robert MP. [Chiasmatic syndrome]. J Fr Ophtalmol 2020; 44:84-98. [PMID: 33183775 DOI: 10.1016/j.jfo.2020.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/24/2020] [Accepted: 07/31/2020] [Indexed: 10/23/2022]
Abstract
The optic chiasm is an essential anatomical structure in neuro-ophthalmology. The systematization of the visual pathways results from the arrangement of the retinal ganglion cell fibers. It explains the signs of chiasmal syndrome. A good knowledge of the anatomy permits to correlate visual field defects with imaging results. It is now possible to map the organization of the ganglion cell fibers within the chiasm. Their hemidecussation allows for stereoscopic vision in humans. The causes of chiasmal syndrome are multiple, but tumors and compressive causes predominate. The proximity of the pituitary region to the chiasm accounts for the frequency of chiasmal syndrome, which involves ophthalmologists not only through dysfunction of the visual pathway, which may be the presenting sign, but also through possible complications throughout the course of the disease. This review aims to synthesize the embryology, anatomy and principles of work-up for chiasmal syndrome as well as its many possible causes.
Collapse
Affiliation(s)
- R Touzé
- Service d'ophtalmologie de l'hôpital Necker-Enfants malades, faculté de médecine, université de Paris, 149, rue de Sèvres, 75015 Paris, France.
| | - D Bremond-Gignac
- Service d'ophtalmologie de l'hôpital Necker-Enfants malades, faculté de médecine, université de Paris, 149, rue de Sèvres, 75015 Paris, France.
| | - M P Robert
- Service d'ophtalmologie de l'hôpital Necker-Enfants malades, faculté de médecine, université de Paris, 149, rue de Sèvres, 75015 Paris, France.
| |
Collapse
|
30
|
Strowd RE. Available Therapies for Patients with Neurofibromatosis-Related Nervous System Tumors. Curr Treat Options Oncol 2020; 21:81. [DOI: 10.1007/s11864-020-00779-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Bhattacharya D, Pomeroy SL, Pomeranz Krummel DA, Sengupta S. Epigenetics and survivorship in pediatric brain tumor patients. J Neurooncol 2020; 150:77-83. [PMID: 32451770 DOI: 10.1007/s11060-020-03535-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/12/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Brain tumors make up over a quarter of pediatric malignancies. Depending on the age of presentation and treatment, pediatric brain tumor survivors experience varying degrees of treatment induced morbidity and sequelae. Epigenetic mechanisms play a critical role in silencing of tumor suppressor genes and activation of driver genes involved in oncogenesis in different types of brain tumors. Epigenetic modifications in pediatric brain tumor patients may influence long-term survival and may refine the molecular response to treatment induced morbidity and sequelae. However, there is a dearth of studies on how epigenetics of pediatric brain tumors is connected with neurocognition and other treatment related sequelae in survivors. METHODS/RESULTS In this review we explore epigenetic factors that may contribute to the survivorship and treatment of pediatric brain tumor patients. We focus on glioblastoma, medulloblastoma, and the neurocutaneous syndrome neurofibromatosis type-1 to highlight epigenetic biomarkers that can potentially serve not only as prognostic indicators of overall patient survival, but hopefully as indicators to the response to treatment neurocognitively and otherwise. CONCLUSIONS Future studies will hopefully soon bridge the gap in our knowledge on how epigenetic modifications are linked to treatment related sequelae in pediatric brain tumor patients.
Collapse
Affiliation(s)
- Debanjan Bhattacharya
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Scott L Pomeroy
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Daniel A Pomeranz Krummel
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Soma Sengupta
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA. .,University of Cincinnati Gardner Neuroscience Institute, Cincinnati, OH, USA. .,Department of Neurology and Rehabilitation Medicine, University of Cincinnati Academic Health Center, PO Box 670525, Cincinnati, OH, 45267-0525, USA.
| |
Collapse
|
32
|
Bayat M, Bayat A. Neurological manifestations of neurofibromatosis: a review. Neurol Sci 2020; 41:2685-2690. [PMID: 32358705 DOI: 10.1007/s10072-020-04400-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 04/06/2020] [Indexed: 12/01/2022]
Abstract
Neurofibromatosis type 1(NF1) is a dominantly inherited genetic disorder caused by a mutation in the NF1 tumor-suppressor gene. Patients are prone to develop benign and malignant tumors not only in the central and peripheral nervous system but also in other parts of the body. Apart from tumors, neurofibromatosis may also be associated with neurological symptoms and disorders such as cerebrovascular disease, epilepsy, neuropathy, and headache. This article seeks to review the different neurological manifestations of neurofibromatosis.
Collapse
Affiliation(s)
- Michael Bayat
- Department of Neurology & Centre for Rare Diseases, Aarhus University Hospital, Aarhus, Denmark.
| | | |
Collapse
|
33
|
Mahdi J, Goyal MS, Griffith J, Morris SM, Gutmann DH. Nonoptic pathway tumors in children with neurofibromatosis type 1. Neurology 2020; 95:e1052-e1059. [PMID: 32300062 DOI: 10.1212/wnl.0000000000009458] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/26/2020] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE To define the radiologic features and natural history of nonoptic pathway tumors (non-OPTs) in children with neurofibromatosis type 1 (NF1). METHODS We performed a retrospective cross-sectional analysis of 64 children with NF1 harboring 100 probable non-OPTs. Age at diagnosis, sex, tumor location, number of tumors, symptomology, concurrent OPT, radiographic progression (defined as qualitative and quantitative increases in size), and treatment were assessed. Tumor volumes were measured from initial presentation until treatment or end of disease progression. RESULTS Sixty-three percent of probable non-OPTs progressed over time, where radiographic progression was concomitantly associated with clinical progression. Fifty-two percent of patients had incidentally identified probable non-OPTs. Twenty-five percent of patients were symptomatic at initial diagnosis, all of whom harbored tumors that grew on subsequent scans and required tumor-directed therapy. There were no clinical differences between probable non-OPTs localized to the brainstem vs other locations with respect to age, sex, concurrent optic pathway glioma, symptomology, and treatment. The average time from diagnosis to stabilization or decrease in tumor size was 2.34 years (SD, 2.15 years). Nineteen biopsied lesions were all histopathologically confirmed as tumor. Six children (9%) had deep extensive tumors, who presented earlier (mean age at diagnosis, 3.88 years), required multiple treatments, and had a shorter mean progression-free survival (48 months). CONCLUSIONS Over half of children with NF1 in this study developed probable non-OPTs, the majority of which were clinically and radiographically progressive. While brainstem and nonbrainstem gliomas share similar clinical features and natural history, deep extensive tumors comprise a distinct aggressive group of tumors that warrant close attention.
Collapse
Affiliation(s)
- Jasia Mahdi
- From the Department of Neurology (J.M., M.S.G., J.G., S.M.M., D.H.G.) and Mallinckrodt Institute of Radiology (M.S.G.), Washington University School of Medicine, St. Louis, MO
| | - Manu S Goyal
- From the Department of Neurology (J.M., M.S.G., J.G., S.M.M., D.H.G.) and Mallinckrodt Institute of Radiology (M.S.G.), Washington University School of Medicine, St. Louis, MO
| | - Jennifer Griffith
- From the Department of Neurology (J.M., M.S.G., J.G., S.M.M., D.H.G.) and Mallinckrodt Institute of Radiology (M.S.G.), Washington University School of Medicine, St. Louis, MO
| | - Stephanie M Morris
- From the Department of Neurology (J.M., M.S.G., J.G., S.M.M., D.H.G.) and Mallinckrodt Institute of Radiology (M.S.G.), Washington University School of Medicine, St. Louis, MO
| | - David H Gutmann
- From the Department of Neurology (J.M., M.S.G., J.G., S.M.M., D.H.G.) and Mallinckrodt Institute of Radiology (M.S.G.), Washington University School of Medicine, St. Louis, MO.
| |
Collapse
|
34
|
Bergqvist C, Servy A, Valeyrie-Allanore L, Ferkal S, Combemale P, Wolkenstein P. Neurofibromatosis 1 French national guidelines based on an extensive literature review since 1966. Orphanet J Rare Dis 2020; 15:37. [PMID: 32014052 PMCID: PMC6998847 DOI: 10.1186/s13023-020-1310-3] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/17/2020] [Indexed: 12/13/2022] Open
Abstract
Neurofibromatosis type 1 is a relatively common genetic disease, with a prevalence ranging between 1/3000 and 1/6000 people worldwide. The disease affects multiple systems with cutaneous, neurologic, and orthopedic as major manifestations which lead to significant morbidity or mortality. Indeed, NF1 patients are at an increased risk of malignancy and have a life expectancy about 10-15 years shorter than the general population. The mainstay of management of NF1 is a patient-centered longitudinal care with age-specific monitoring of clinical manifestations, aiming at the early recognition and symptomatic treatment of complications as they occur. Protocole national de diagnostic et de soins (PNDS) are mandatory French clinical practice guidelines for rare diseases required by the French national plan for rare diseases. Their purpose is to provide health care professionals with guidance regarding the optimal diagnostic and therapeutic management of patients affected with a rare disease; and thus, harmonizing their management nationwide. PNDS are usually developed through a critical literature review and a multidisciplinary expert consensus. The purpose of this article is to present the French guidelines on NF1, making them even more available to the international medical community. We further dwelled on the emerging new evidence that might have therapeutic potential or a strong impact on NF1 management in the coming feature. Given the complexity of the disease, the management of children and adults with NF1 entails the full complement healthcare providers and communication among the various specialties.
Collapse
Affiliation(s)
- Christina Bergqvist
- Faculty of medicine, Université Paris-Est Creteil (UPEC), F-94010 Créteil Cedex, France
- Assistance Publique-Hôpital Paris (AP-HP), Hôpital Henri-Mondor, Service de Dermatologie, F-94010 Créteil, France
| | - Amandine Servy
- Assistance Publique-Hôpital Paris (AP-HP), Hôpital Henri-Mondor, Service de Dermatologie, F-94010 Créteil, France
| | - Laurence Valeyrie-Allanore
- INSERM, Centre d’Investigation Clinique 006, Referral Center of Neurofibromatosis, Assistance Publique-Hôpital Paris (AP-HP), Hôpital Henri-Mondor, F-94010 Créteil, France
| | - Salah Ferkal
- INSERM, Centre d’Investigation Clinique 006, Referral Center of Neurofibromatosis, Assistance Publique-Hôpital Paris (AP-HP), Hôpital Henri-Mondor, F-94010 Créteil, France
| | - Patrick Combemale
- Rhône-Alpes Auvergne Competence Center for the treatment of Neurofibromatosis type 1, Léon Bérard Comprehensive Cancer Center, Hôpitaux Universitaires de Lyon, Université de Lyon, F-69008 Lyon, France
| | - Pierre Wolkenstein
- Faculty of medicine, Université Paris-Est Creteil (UPEC), F-94010 Créteil Cedex, France
- Assistance Publique-Hôpital Paris (AP-HP), Hôpital Henri-Mondor, Service de Dermatologie, F-94010 Créteil, France
- INSERM, Centre d’Investigation Clinique 006, Referral Center of Neurofibromatosis, Assistance Publique-Hôpital Paris (AP-HP), Hôpital Henri-Mondor, F-94010 Créteil, France
| |
Collapse
|
35
|
Lobbous M, Bernstock JD, Coffee E, Friedman GK, Metrock LK, Chagoya G, Elsayed G, Nakano I, Hackney JR, Korf BR, Nabors LB. An Update on Neurofibromatosis Type 1-Associated Gliomas. Cancers (Basel) 2020; 12:E114. [PMID: 31906320 PMCID: PMC7017116 DOI: 10.3390/cancers12010114] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/26/2019] [Accepted: 12/29/2019] [Indexed: 12/22/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant tumor predisposition syndrome that affects children and adults. Individuals with NF1 are at high risk for central nervous system neoplasms including gliomas. The purpose of this review is to discuss the spectrum of intracranial gliomas arising in individuals with NF1 with a focus on recent preclinical and clinical data. In this review, possible mechanisms of gliomagenesis are discussed, including the contribution of different signaling pathways and tumor microenvironment. Furthermore, we discuss the recent notable advances in the developing therapeutic landscape for NF1-associated gliomas including clinical trials and collaborative efforts.
Collapse
Affiliation(s)
- Mina Lobbous
- Division of Neuro Oncology, Department of Neurology, University of Alabama at Birmingham, 510 20th Street South, Faculty Office Tower Suite 1020 Birmingham, Birmingham, AL 35294, USA; (E.C.)
| | - Joshua D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Elizabeth Coffee
- Division of Neuro Oncology, Department of Neurology, University of Alabama at Birmingham, 510 20th Street South, Faculty Office Tower Suite 1020 Birmingham, Birmingham, AL 35294, USA; (E.C.)
| | - Gregory K. Friedman
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (G.K.F.); (L.K.M.)
| | - Laura K. Metrock
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (G.K.F.); (L.K.M.)
| | - Gustavo Chagoya
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (G.C.); (G.E.); (I.N.)
| | - Galal Elsayed
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (G.C.); (G.E.); (I.N.)
| | - Ichiro Nakano
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (G.C.); (G.E.); (I.N.)
| | - James R. Hackney
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Bruce R. Korf
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Louis B. Nabors
- Division of Neuro Oncology, Department of Neurology, University of Alabama at Birmingham, 510 20th Street South, Faculty Office Tower Suite 1020 Birmingham, Birmingham, AL 35294, USA; (E.C.)
| |
Collapse
|
36
|
Perreault S, Larouche V, Tabori U, Hawkin C, Lippé S, Ellezam B, Décarie JC, Théoret Y, Métras MÉ, Sultan S, Cantin É, Routhier MÈ, Caru M, Legault G, Bouffet É, Lafay-Cousin L, Hukin J, Erker C, Jabado N. A phase 2 study of trametinib for patients with pediatric glioma or plexiform neurofibroma with refractory tumor and activation of the MAPK/ERK pathway: TRAM-01. BMC Cancer 2019; 19:1250. [PMID: 31881853 PMCID: PMC6935133 DOI: 10.1186/s12885-019-6442-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/08/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Pediatric low-grade gliomas (PLGG) are the most frequent brain tumors in children. Up to 50% will be refractory to conventional chemotherapy. It is now known that the majority of PLGG have activation of the MAPK/ERK pathway. The same pathway is also activated in plexiform neurofibromas (PNs) which are low-grade tumors involving peripheral nerves in patients with neurofibromatosis type 1 (NF1). These lesions are known to be refractory to chemotherapy. Specific MEK inhibitors such as trametinib are now available and have been approved for other cancers harboring mutations in the MAPK/ERK pathway such as melanoma. We have observed significant responses to trametinib in patients with refractory PLGG in our institutions and results from the phase I study are promising. The treatment appears not only efficacious but is also usually well tolerated. We hypothesize that we will observe responses in the majority of refractory PLGG and PN treated with trametinib in this phase 2 study. METHODS The primary objective is to determine the objective response rate of trametinib as a single agent for treatment of progressing/refractory tumors with MAPK/ERK pathway activation. The TRAM-01 study is a phase II multicentric open-label basket trial including four groups. Group 1 includes NF1 patients with progressing/refractory glioma. Group 2 includes NF1 patients with plexiform neurofibroma. Group 3 includes patients with progressing/refractory glioma with KIAA1549-BRAF fusion. Group 4 includes other patients with progressing/refractory glioma with activation of the MAPK/ERK pathway. Eligible patients for a given study group will receive daily oral trametinib at full dose for a total of 18 cycles of 28 days. A total of 150 patients will be enrolled in seven Canadian centers. Secondary objectives include the assessment of progression-free survival, overall survival, safety and tolerability of trametinib, serum levels of trametinib and evaluation of quality of life during treatment. DISCUSSION Trametinib will allow us to target directly and specifically the MAPK/ERK pathway. We expect to observe a significant response in most patients. Following our study, trametinib could be integrated into standard treatment of PLGG and PN. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT03363217 December 6, 2017.
Collapse
Affiliation(s)
- Sébastien Perreault
- Division of Child Neurology, Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada.
| | - Valérie Larouche
- Division of Hemato-Oncology, Department of Pediatrics, Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, QC, Canada
| | - Uri Tabori
- Division of Hemato-Oncology, Department of Pediatrics, Hospital for Sick Children, Toronto, ON, Canada
| | - Cynthia Hawkin
- Department of Pathology, Hospital for Sick Children, Toronto, ON, Canada
| | - Sarah Lippé
- CHU Sainte-Justine Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
| | - Benjamin Ellezam
- Department of Pathology, CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
| | - Jean-Claude Décarie
- Department of Radiology, CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
| | - Yves Théoret
- Department of Pharmacology, CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
| | - Marie-Élaine Métras
- Department of Pharmacology, CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
| | - Serge Sultan
- CHU Sainte-Justine Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
| | - Édith Cantin
- Division of Neuropsychology, Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, QC, Canada
| | - Marie-Ève Routhier
- Division of Neuropsychology, Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, QC, Canada
| | - Maxime Caru
- CHU Sainte-Justine Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
| | - Geneviève Legault
- Division of Neurology, Department of Pediatrics, McGill University Health Center, Montreal Children's Hospital, Montreal, QC, Canada
| | - Éric Bouffet
- Division of Hemato-Oncology, Department of Pediatrics, Hospital for Sick Children, Toronto, ON, Canada
| | - Lucie Lafay-Cousin
- Departments of Oncology and Pediatrics, Alberta Children's Hospital, University of Calgary, Cumming School of Medicine, Calgary, AB, Canada
| | - Juliette Hukin
- Division of Child Neurology and Oncology, BC Children's Hospital, University of British Columbia, BC, Vancouver, British Columbia, Canada
| | - Craig Erker
- Division of Hemato-Oncology, Department of Pediatrics, IWK Health Centre, Dalhousie University, Halifax, NS, Canada
| | - Nada Jabado
- Division of Hemato-Oncology, Department of Pediatrics, McGill University Health Center, Montreal Children's Hospital, Montreal, QC, Canada
| |
Collapse
|
37
|
Holzapfel J, Kandels D, Schmidt R, Pietsch T, Warmuth‐Metz M, Bison B, Krauss J, Kortmann R, Timmermann B, Thomale U, Albert MH, Hernáiz Driever P, Witt O, Gnekow AK. Favorable prognosis in pediatric brainstem low‐grade glioma: Report from the German SIOP‐LGG 2004 cohort. Int J Cancer 2019; 146:3385-3396. [PMID: 31613986 DOI: 10.1002/ijc.32734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/16/2019] [Accepted: 09/27/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Johannes Holzapfel
- Swabian Children's Cancer Center University Hospital Augsburg Augsburg Germany
| | - Daniela Kandels
- Swabian Children's Cancer Center University Hospital Augsburg Augsburg Germany
| | - René Schmidt
- Institute of Biostatistics and Clinical Research, University of Muenster Münster Germany
| | - Torsten Pietsch
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University Bonn Bonn Germany
| | - Monika Warmuth‐Metz
- Institute of Diagnostic and Interventional Neuroradiology, University Hospital Wuerzburg Wuerzburg Germany
| | - Brigitte Bison
- Institute of Diagnostic and Interventional Neuroradiology, University Hospital Wuerzburg Wuerzburg Germany
| | - Jüergen Krauss
- Section of Pediatric Neurosurgery University Hospital Wuerzburg Wuerzburg Germany
| | | | - Beate Timmermann
- Department of Particle Therapy University Hospital Essen, West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), German Cancer Consortium (DKTK) Essen Germany
| | | | - Michael H. Albert
- Dr. von Hauner Children's Hospital, Ludwig‐Maximilians Universitaet Munich Germany
| | - Pablo Hernáiz Driever
- Department of Pediatric Oncology/Hematology Charité Universitaetsmedizin Berlin, Corporate member of Freie Universitaet Berlin, Humboldt‐Universitaet zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Olaf Witt
- Hopp Children's Cancer Center Heidelberg (KiTZ) German Cancer Research Center (DKFZ) and Heidelberg University Hospital Heidelberg Germany
| | - Astrid K. Gnekow
- Swabian Children's Cancer Center University Hospital Augsburg Augsburg Germany
| |
Collapse
|
38
|
Abstract
Neurofibromatosis type 1 (NF1), NF2, and schwannomatosis are related, but distinct, tumor suppressor syndromes characterized by a predilection for tumors in the central and peripheral nervous systems. NF1 is one of the most common autosomal dominant conditions of the nervous system. NF1 has a high degree of variability in clinical presentation, which may include multiple neoplasms as well as cutaneous, vascular, bony, and cognitive features. Some of these manifestations overlap with other genetic conditions. Accurate diagnosis of NF1 is important for individualizing clinical care and genetic counseling. This article summarizes the clinical features, diagnostic work-up, and management of NF1.
Collapse
Affiliation(s)
- K Ina Ly
- Stephen E. and Catherine Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Yawkey 9 East, 55 Fruit Street, Boston, MA 02114, USA.
| | - Jaishri O Blakeley
- Department of Neurology and Neurosurgery, Johns Hopkins University, 600 North Wolfe Street, Meyer 100, Baltimore, MD 21287, USA; Department of Oncology, Johns Hopkins University, 600 North Wolfe Street, Meyer 100, Baltimore, MD 21287, USA
| |
Collapse
|
39
|
Abstract
As a cancer predisposition syndrome, individuals with neurofibromatosis type 1 (NF1) are at increased risk for the development of both benign and malignant tumors. One of the most common locations for these cancers is the central nervous system, where low-grade gliomas predominate in children. During early childhood, gliomas affecting the optic pathway are most frequently encountered, whereas gliomas of the brainstem and other locations are observed in slightly older children. In contrast, the majority of gliomas arising in adults with NF1 are malignant cancers, typically glioblastoma, involving the cerebral hemispheres. Our understanding of the pathogenesis of NF1-associated gliomas has been significantly advanced through the use of genetically engineered mice, yielding new targets for therapeutic drug design and evaluation. In addition, Nf1 murine glioma models have served as instructive platforms for defining the cell of origin of these tumors, elucidating the critical role of the tumor microenvironment in determining tumor growth and vision loss, and determining how cancer risk factors (sex, germline NF1 mutation) impact on glioma formation and progression. Moreover, these preclinical models have permitted early phase analysis of promising drugs that reduce tumor growth and attenuate vision loss, as an initial step prior to translation to human clinical trials.
Collapse
Affiliation(s)
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
40
|
Eby NS, Griffith JL, Gutmann DH, Morris SM. Adaptive functioning in children with neurofibromatosis type 1: relationship to cognition, behavior, and magnetic resonance imaging. Dev Med Child Neurol 2019; 61:972-978. [PMID: 30659594 DOI: 10.1111/dmcn.14144] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2018] [Indexed: 12/17/2022]
Abstract
AIM To characterize the adaptive behavior profile of children with neurofibromatosis type 1 (NF1) and determine its relationship to neuropsychological functioning and non-neoplastic T2-weighted hyperintense brain lesions on brain magnetic resonance imaging (MRI). METHOD In this cross-sectional study, we retrospectively reviewed neuropsychological reports from 104 children with NF1 (56 males, 48 females; mean age 10y 4mo; standard deviation [SD] 3y 4mo; range 3y 5mo-17y 6mo), and extracted data from a range of cognitive and behavioral measures, including the Adaptive Behavior Assessment System (ABAS). Brain MRI was retrospectively reviewed in 42 individuals. RESULTS Adaptive Behavior Assessment System scores were continuously distributed and pathologically shifted by 0.79 to 1.26SD across Conceptual, Social, and Practical domains, and 46.5% of individuals had a composite score in the borderline or impaired range. Impairment in adaptive functioning was correlated with deficits in executive function (r=-9.543, p<0.001), externalizing problems (r=-0.366, p<0.001), and attention (r=-9.467, p=0.001). Cluster analysis revealed three distinct phenotypic subgroups, one of which exhibited normal cognitive ability, but impaired adaptive functioning, with persistent deficits in executive function, behavioral problems, and attention-deficit/hyperactivity disorder symptomatology. There was no relationship between ABAS scores and the number or location of unidentified bright objects. INTERPRETATION Adaptive functioning deficits are common among children with NF1 and are associated with impairment in other cognitive/behavioral domains, independent of general cognitive ability. WHAT THIS PAPER ADDS Deficits in adaptive behavior are common in children with neurofibromatosis type 1 (NF1). Poor adaptive functioning is associated with impairments in executive function, externalizing behaviors, and attention, regardless of cognitive ability. The presence or location of unidentified bright objects do not predict adaptive behavior skills in children with NF1.
Collapse
Affiliation(s)
- Noah S Eby
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jennifer L Griffith
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Stephanie M Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
41
|
Peltonen S, Kallionpää RA, Rantanen M, Uusitalo E, Lähteenmäki PM, Pöyhönen M, Pitkäniemi J, Peltonen J. Pediatric malignancies in neurofibromatosis type 1: A population-based cohort study. Int J Cancer 2019; 145:2926-2932. [PMID: 30724342 PMCID: PMC6849871 DOI: 10.1002/ijc.32187] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/08/2019] [Accepted: 01/22/2019] [Indexed: 12/18/2022]
Abstract
Neurofibromatosis type 1 (NF1) is a cancer predisposition syndrome with an incidence of 1:2,000. Patients with NF1 have an increased cancer risk and mortality, but there are no population‐based cohort studies specifically investigating the risk of childhood malignancies. We used the Finnish NF1 cohort to analyze the incidence, risk and prognosis of malignancies in NF1 patients <20 years of age. Persons born in 1987–2011 were included, and 524 persons were followed through the files of the Finnish Cancer Registry from birth up to age 20 years. This amounted to 8,376 person years. Fifty‐three patients had cancer <20 years of age, yielding a standardized incidence ratio (SIR) of 35.6. The most frequent location of pediatric cancers was the central nervous system (CNS); there were 45 cases and the SIR was 115.7. Exclusion of 22 optic pathway gliomas (OPGs) gave an SIR of 59.1 for the CNS and 21.6 for all cancers. There were nine malignant peripheral nerve sheath tumors (MPNSTs); their cumulative risk was 2.7% by age 20. No cases of leukemia were observed. NF1 patients showed considerable excess mortality with a standardized mortality ratio (SMR) of 73.1. The survival of NF1 patients with CNS tumors other than OPGs did not differ from that of non‐NF1 controls (HR 0.64, 95% CI 0.23 to 1.76). In conclusion, brain tumors in childhood and MPNSTs in adolescence are malignancies of major concern in patients with NF1. The risk for myeloid malignancies may not be as high as suggested in the literature. What's new? Patients with neurofibromatosis type 1 (NF1) are known to have a high risk of various cancers. What has not been well‐studied, however, are the types of cancers that are most common among children with NF1, and how those cancers impact mortality. In this cohort study, the authors found that malignancies do cause increased mortality in patients under age 20. Brain tumors in childhood and malignant peripheral nerve sheath tumors (MPNSTs) in adolescence are of particular concern. On the other hand, the risk of myeloid malignancies may be lower than previously assumed.
Collapse
Affiliation(s)
- Sirkku Peltonen
- Department of Dermatology, University of Turku, Turku, Finland.,Department of Dermatology, Turku University Hospital, Turku, Finland
| | | | - Matti Rantanen
- Finnish Cancer Registry - Institute for Statistical and Epidemiological Cancer Research, Helsinki, Finland
| | - Elina Uusitalo
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Päivi M Lähteenmäki
- Department of Pediatric and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Minna Pöyhönen
- Department of Clinical Genetics, HUSLAB, Helsinki University Central Hospital, Helsinki, Finland.,Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| | - Janne Pitkäniemi
- Finnish Cancer Registry - Institute for Statistical and Epidemiological Cancer Research, Helsinki, Finland.,Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Juha Peltonen
- Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
42
|
Identification of Core Biomarkers Associated with Outcome in Glioma: Evidence from Bioinformatics Analysis. DISEASE MARKERS 2018; 2018:3215958. [PMID: 30405856 PMCID: PMC6199874 DOI: 10.1155/2018/3215958] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 08/17/2018] [Indexed: 12/31/2022]
Abstract
Glioma is the most common neoplasm of the central nervous system (CNS); the progression and outcomes of which are affected by a complicated network of genes and pathways. We chose a gene expression profile of GSE66354 from GEO database to search core biomarkers during the occurrence and development of glioma. A total of 149 samples, involving 136 glioma and 13 normal brain tissues, were enrolled in this article. 1980 differentially expressed genes (DEGs) including 697 upregulated genes and 1283 downregulated genes between glioma patients and healthy individuals were selected using GeoDiver and GEO2R tool. Then, gene ontology (GO) analysis as well as Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were carried out using the Database for Annotation, Visualization and Integrated Discovery (DAVID). Moreover, Cytoscape with Search Tool for the Retrieval of Interacting Genes (STRING) and Molecular Complex Detection (MCODE) plug-in was employed to imagine protein-protein interaction (PPI) of these DEGs. The upregulated genes were enriched in cell cycle, ECM-receptor interaction, and p53 signaling pathway, while the downregulated genes were enriched in retrograde endocannabinoid signaling, glutamatergic synapse, morphine addiction, GABAergic synapse, and calcium signaling pathway. Subsequently, 4 typical modules were discovered by the PPI network utilizing MCODE software. Besides, 15 hub genes were chosen according to the degree of connectivity, including TP53, CDK1, CCNB1, and CCNB2, the Kaplan-Meier analysis of which was further identified. In conclusion, this bioinformatics analysis indicated that DEGs and core genes, such as TP53, might influence the development of glioma, especially in tumor proliferation, which were expected to be promising biomarkers for diagnosis and treatment of glioma.
Collapse
|
43
|
Griffith JL, Morris SM, Mahdi J, Goyal MS, Hershey T, Gutmann DH. Increased prevalence of brain tumors classified as T2 hyperintensities in neurofibromatosis 1. Neurol Clin Pract 2018; 8:283-291. [PMID: 30140579 DOI: 10.1212/cpj.0000000000000494] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/18/2018] [Indexed: 12/11/2022]
Abstract
Background We sought to define the radiologic features that differentiate neoplastic from non-neoplastic T2 hyperintensities (T2Hs) in neurofibromatosis type 1 (NF1) and identify those lesions most likely to require oncologic surveillance. Methods We conducted a single-center retrospective review of all available brain MRIs from 68 children with NF1 (n = 190) and 46 healthy pediatric controls (n = 104). All T2Hs identified on MRI were characterized based on location, border, shape, degree of T1 hypointensity, and presence of mass effect or contrast enhancement, and subsequently classified using newly established radiologic criteria as either unidentified bright objects (UBOs) or probable tumors. Lesion classification was pathologically confirmed in 10 NF1 cases. Results T2Hs were a highly sensitive (94.4%; 95% confidence interval [CI] 86.4%-98.5%) and specific (100.0%; 95% CI 92.3%-100.0%) marker for the diagnosis of NF1. UBOs constituted the majority of T2Hs (82%) and were most frequently located in cerebellar white matter, medial temporal lobe, and thalamus, where they were more likely than probable tumors to be bilateral (p < 0.001) and have nondiscrete borders (p < 0.001). Surprisingly, 57% of children with T2Hs harbored lesions classified as probable tumors, and 28% of children with probable tumors received treatment. In contrast to UBOs, probable tumors were most frequently located within the globus pallidus and medulla, and rarely occurred prior to 3 years of age. Conclusions With the implementation of standardized radiologic criteria, a high prevalence of brain tumors was identified in this at-risk population of children, of which nearly one-third required treatment, emphasizing the need for appropriate oncologic surveillance for patients with NF1 harboring nonoptic pathway brain tumors.
Collapse
Affiliation(s)
- Jennifer L Griffith
- Departments of Neurology (JLG, SMM, JM, DHG) and Radiology (MSG, TH), Washington University School of Medicine, St. Louis, MO
| | - Stephanie M Morris
- Departments of Neurology (JLG, SMM, JM, DHG) and Radiology (MSG, TH), Washington University School of Medicine, St. Louis, MO
| | - Jasia Mahdi
- Departments of Neurology (JLG, SMM, JM, DHG) and Radiology (MSG, TH), Washington University School of Medicine, St. Louis, MO
| | - Manu S Goyal
- Departments of Neurology (JLG, SMM, JM, DHG) and Radiology (MSG, TH), Washington University School of Medicine, St. Louis, MO
| | - Tamara Hershey
- Departments of Neurology (JLG, SMM, JM, DHG) and Radiology (MSG, TH), Washington University School of Medicine, St. Louis, MO
| | - David H Gutmann
- Departments of Neurology (JLG, SMM, JM, DHG) and Radiology (MSG, TH), Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
44
|
Pan Y, Xiong M, Chen R, Ma Y, Corman C, Maricos M, Kindler U, Semtner M, Chen YH, Dahiya S, Gutmann DH. Athymic mice reveal a requirement for T-cell-microglia interactions in establishing a microenvironment supportive of Nf1 low-grade glioma growth. Genes Dev 2018; 32:491-496. [PMID: 29632086 PMCID: PMC5959233 DOI: 10.1101/gad.310797.117] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/13/2018] [Indexed: 12/21/2022]
Abstract
Murine Neurofibromatosis-1 (Nf1) optic low-grade glioma (LGG) stem cells (o-GSCs) form glioma-like lesions in wild-type, but not athymic, mice following transplantation. Here, Pan et al. show that the inability of athymic mice to support o-GSC engraftment results from impaired brain microglia/macrophage function, including reduced expression of Ccr2 and Ccl5, both of which are required for o-GSC engraftment and Nf1 optic glioma growth. Pediatric low-grade gliomas (LGGs) frequently do not engraft in immunocompromised mice, limiting their use as an experimental platform. In contrast, murine Neurofibromatosis-1 (Nf1) optic LGG stem cells (o-GSCs) form glioma-like lesions in wild-type, but not athymic, mice following transplantation. Here, we show that the inability of athymic mice to support o-GSC engraftment results from impaired microglia/macrophage function, including reduced expression of Ccr2 and Ccl5, both of which are required for o-GSC engraftment and Nf1 optic glioma growth. Impaired Ccr2 and Ccl5 expression in athymic microglia/macrophages was restored by T-cell exposure, establishing T-cell–microglia/macrophage interactions as critical stromal determinants that support NF1 LGG growth.
Collapse
Affiliation(s)
- Yuan Pan
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Min Xiong
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.,Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ran Chen
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Yu Ma
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Courtney Corman
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Meron Maricos
- Cellular Neuroscience, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 13125, Germany
| | - Urs Kindler
- Cellular Neuroscience, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 13125, Germany
| | - Marcus Semtner
- Cellular Neuroscience, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 13125, Germany
| | - Yi-Hsien Chen
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.,Genome Engineering and iPSC Center (GEIC), Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Sonika Dahiya
- Division of Neuropathology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
45
|
Khatua S, Gutmann DH, Packer RJ. Neurofibromatosis type 1 and optic pathway glioma: Molecular interplay and therapeutic insights. Pediatr Blood Cancer 2018; 65. [PMID: 29049847 DOI: 10.1002/pbc.26838] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/21/2017] [Accepted: 09/02/2017] [Indexed: 12/17/2022]
Abstract
Children with neurofibromatosis type 1 (NF1) are predisposed to develop central nervous system neoplasms, the most common of which are low-grade gliomas (LGGs). The absence of human NF1 associated LGG-derived cell lines, coupled with an inability to generate patient-derived xenograft models, represents barriers to profile molecularly targeted therapies for these tumors. Thus, genetically engineered mouse models have been identified to evaluate the interplay between Nf1-deficient tumor cells and nonneoplastic stromal cells to evaluate potential therapies for these neoplasms. Future treatments might also consider targeting the nonneoplastic cells in NF1-LGGs to reduce tumor growth and neurologic morbidity in affected children.
Collapse
Affiliation(s)
- Soumen Khatua
- Department of Pediatrics, MD Anderson Cancer Center, Houston, Texas
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Roger J Packer
- Center for Neuroscience and Behavioral Medicine, Children's National Medical Center, Washington, District of Columbia
| |
Collapse
|
46
|
|
47
|
Anastasaki C, Morris SM, Gao F, Gutmann DH. Children with 5'-end NF1 gene mutations are more likely to have glioma. NEUROLOGY-GENETICS 2017; 3:e192. [PMID: 28955729 PMCID: PMC5610042 DOI: 10.1212/nxg.0000000000000192] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/15/2017] [Indexed: 12/16/2022]
Abstract
Objective: To ascertain the relationship between the germline NF1 gene mutation and glioma development in patients with neurofibromatosis type 1 (NF1). Methods: The relationship between the type and location of the germline NF1 mutation and the presence of a glioma was analyzed in 37 participants with NF1 from one institution (Washington University School of Medicine [WUSM]) with a clinical diagnosis of NF1. Odds ratios (ORs) were calculated using both unadjusted and weighted analyses of this data set in combination with 4 previously published data sets. Results: While no statistical significance was observed between the location and type of the NF1 mutation and glioma in the WUSM cohort, power calculations revealed that a sample size of 307 participants would be required to determine the predictive value of the position or type of the NF1 gene mutation. Combining our data set with 4 previously published data sets (n = 310), children with glioma were found to be more likely to harbor 5′-end gene mutations (OR = 2; p = 0.006). Moreover, while not clinically predictive due to insufficient sensitivity and specificity, this association with glioma was stronger for participants with 5′-end truncating (OR = 2.32; p = 0.005) or 5′-end nonsense (OR = 3.93; p = 0.005) mutations relative to those without glioma. Conclusions: Individuals with NF1 and glioma are more likely to harbor nonsense mutations in the 5′ end of the NF1 gene, suggesting that the NF1 mutation may be one predictive factor for glioma in this at-risk population.
Collapse
Affiliation(s)
- Corina Anastasaki
- Department of Neurology (C.A., S.M.M., D.H.G.) and Department of Surgery (F.G.), Washington University in St. Louis, MO
| | - Stephanie M Morris
- Department of Neurology (C.A., S.M.M., D.H.G.) and Department of Surgery (F.G.), Washington University in St. Louis, MO
| | - Feng Gao
- Department of Neurology (C.A., S.M.M., D.H.G.) and Department of Surgery (F.G.), Washington University in St. Louis, MO
| | - David H Gutmann
- Department of Neurology (C.A., S.M.M., D.H.G.) and Department of Surgery (F.G.), Washington University in St. Louis, MO
| |
Collapse
|
48
|
Abstract
Neurofibromatosis (NF) encompasses a group of distinct genetic disorders in which affected children and adults are prone to the development of benign and malignant tumors of the nervous system. The purpose of this review is to discuss the spectrum of CNS tumors arising in individuals with NF type 1 (NF1) and NF type 2 (NF2), their pathogenic etiologies, and the rational treatment options for people with these neoplasms. This article is a review of preclinical and clinical data focused on the treatment of the most common CNS tumors encountered in children and adults with NF1 and NF2. Although children with NF1 are at risk for developing low-grade gliomas of the optic pathway and brainstem, individuals with NF2 typically manifest low-grade tumors affecting the cranial nerves (vestibular schwannomas), meninges (meningiomas), and spinal cord (ependymomas). With the identification of the NF1 and NF2 genes, molecularly targeted therapies are beginning to emerge, as a result of a deeper understanding of the mechanisms underlying NF1 and NF2 protein function. As we enter into an era of precision oncology, a more comprehensive awareness of the factors that increase the risk of developing CNS cancers in affected individuals, coupled with a greater appreciation of the cellular and molecular determinants that maintain tumor growth, will undoubtedly yield more effective therapies for these cancer predisposition syndromes.
Collapse
Affiliation(s)
- Jian Campian
- All authors: Washington University School of Medicine, St. Louis, MO
| | - David H Gutmann
- All authors: Washington University School of Medicine, St. Louis, MO
| |
Collapse
|