1
|
Samanci B, Bayram A, Tan S, Wanders M, Michielse S, Kuijf ML, Temel Y. Exploring habenular structural connectivity in Parkinson's disease: insights from 7 T MRI study. J Neurol 2024; 272:8. [PMID: 39666152 DOI: 10.1007/s00415-024-12773-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND PD is marked by both motor and non-motor symptoms, with its pathophysiology involving many neural pathways and brain regions beyond the dopaminergic system. While mainly gray matter changes have been noted, white matter changes also exist in PD. Habenula, known for its role in reward processing, mood regulation, motor functions, and cognition, is of interest due to its connection to mood disorders in PD. This study aims to explore diffusion metrics and structural connectivity changes in the habenula of newly diagnosed PD patients using 7 T MRI. METHODS 84 PDs and 38 HCs were recruited from Maastricht University Medical Centre. Clinical, demographic, and total Beck Depression Inventory (BDI) scores were recorded. A 7 T brain MRI was conducted. Diffusion metrics and structural connectivity were evaluated. RESULTS The mean diffusion metrics of Hb were not significantly different between the groups. However, in PD patients, there was an increase in mean structural connectivity from the right Hb to the right hippocampus (p = 0.006) and the right fusiform gyrus (p = 0.007). On the left side, enhanced connectivity was observed with the left pallidum (p = 0.040) and left accumbens (p = 0.009). In the PD group, a significant correlation was found between the BDI total score and increased structural connectivity from the right Hb to the left cingulate isthmus (R2 = 0.090, p = 0.003). CONCLUSION This pioneering study examines diffusion metrics and structural connectivity of Hb in PD patients using high-resolution 7 T MRI. Our findings highlight the habenula's potential role in PD pathophysiology, with altered connectivity suggesting early neurodegenerative or compensatory processes. These results underscore the importance of the habenula as a biomarker for PD and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Bedia Samanci
- School for Mental Health and Neurosciences, Maastricht University, Maastricht, The Netherlands.
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| | - Ali Bayram
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Sonny Tan
- School for Mental Health and Neurosciences, Maastricht University, Maastricht, The Netherlands
- Department of Neurosurgery, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Meriek Wanders
- School for Mental Health and Neurosciences, Maastricht University, Maastricht, The Netherlands
| | - Stijn Michielse
- School for Mental Health and Neurosciences, Maastricht University, Maastricht, The Netherlands
| | - Mark L Kuijf
- School for Mental Health and Neurosciences, Maastricht University, Maastricht, The Netherlands
- Department of Neurology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Yasin Temel
- School for Mental Health and Neurosciences, Maastricht University, Maastricht, The Netherlands
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, The Netherlands
- Atlas University, Istanbul, Turkey
| |
Collapse
|
2
|
Samanci B, Tan S, Michielse S, Kuijf ML, Temel Y. Habenula volume change in Parkinson's disease: A 7T MRI study. Brain Res Bull 2024; 215:111002. [PMID: 38871257 DOI: 10.1016/j.brainresbull.2024.111002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/08/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
OBJECTIVE Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by motor and early non-motor symptoms. The habenula is implicated in the pathophysiology of depression. This study investigates habenular volume in PD patients without clinical depression to show the changes in PD unrelated to depression. METHODS The study used high-resolution 7 Tesla MRI data from the TRACK-PD study involving 104 PD patients and 44 healthy controls (HCs). The habenula was manually segmented, and volumes were measured, considering demographic data and depression scores via the Beck Depression Inventory (BDI). RESULTS No significant correlation was found between habenular volume and BDI scores in PD patients or HCs. However, the PD group exhibited a significantly larger mean and right habenular volume than HCs. Although PD patients showed higher BDI scores, indicating more subthreshold depression, these did not correlate with the habenular volume. CONCLUSION The results suggest that while the habenula may be involved in the symptoms of PD, its role in depression within this cohort is unclear. The changes might be related to the role of the habenula in motor symptoms. This study provides a new perspective on the role of the habenula in PD, but future research could lead to a greater understanding of the neuroanatomical features of the habenula in PD.
Collapse
Affiliation(s)
- Bedia Samanci
- School for Mental Health and Neurosciences, Maastricht University, Maastricht, the Netherlands; Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| | - Sonny Tan
- School for Mental Health and Neurosciences, Maastricht University, Maastricht, the Netherlands; Department of Neurosurgery, Antwerp University Hospital, Edegem, Belgium
| | - Stijn Michielse
- School for Mental Health and Neurosciences, Maastricht University, Maastricht, the Netherlands
| | - Mark L Kuijf
- School for Mental Health and Neurosciences, Maastricht University, Maastricht, the Netherlands; Department of Neurology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Yasin Temel
- School for Mental Health and Neurosciences, Maastricht University, Maastricht, the Netherlands; Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, the Netherlands
| |
Collapse
|
3
|
Samanci B, Tan S, Michielse S, Kuijf ML, Temel Y. The habenula in Parkinson's disease: Anatomy, function, and implications for mood disorders - A narrative review. J Chem Neuroanat 2024; 136:102392. [PMID: 38237746 DOI: 10.1016/j.jchemneu.2024.102392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/07/2024] [Accepted: 01/12/2024] [Indexed: 01/31/2024]
Abstract
Parkinson's disease (PD), a widespread neurodegenerative disorder, often coexists with mood disorders. Degeneration of serotonergic neurons in brainstem raphe nuclei have been linked to depression and anxiety. Additionally, the locus coeruleus and its noradrenergic neurons are among the first areas to degenerate in PD and contribute to stress, emotional memory, motor, sensory, and autonomic symptoms. Another brain region of interest is habenula, which is especially related to anti-reward processing, and its function has recently been linked to PD and to mood-related symptoms. There are several neuroimaging studies that investigated role of the habenula in mood disorders. Differences in habenular size and hemispheric symmetry were found in healthy controls compared to individuals with mood disorders. The lateral habenula, as a link between the dopaminergic and serotonergic systems, is thought to contribute to depressive symptoms in PD. However, there is only one imaging study about role of habenula in mood disorders in PD, although the relationship between PD and mood disorders is known. There is little known about habenula pathology in PD but given these observations, the question arises whether habenular dysfunction could play a role in PD and the development of PD-related mood disorders. In this review, we evaluate neuroimaging techniques and studies that investigated the habenula in the context of PD and mood disorders. Future studies are important to understand habenula's role in PD patients with mood disorders. Thus, new potential diagnostic and treatment opportunities would be found for mood disorders in PD.
Collapse
Affiliation(s)
- Bedia Samanci
- School for Mental Health and Neurosciences, Maastricht University, Maastricht, the Netherlands; Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| | - Sonny Tan
- School for Mental Health and Neurosciences, Maastricht University, Maastricht, the Netherlands; Department of Neurosurgery, Antwerp University Hospital, Edegem, Belgium
| | - Stijn Michielse
- School for Mental Health and Neurosciences, Maastricht University, Maastricht, the Netherlands
| | - Mark L Kuijf
- School for Mental Health and Neurosciences, Maastricht University, Maastricht, the Netherlands; Department of Neurology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Yasin Temel
- School for Mental Health and Neurosciences, Maastricht University, Maastricht, the Netherlands; Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, the Netherlands
| |
Collapse
|
4
|
Mao C, Zhang Y, Jiang J, Qin R, Ye Q, Zhu X, Wu J. Magnetic Resonance Imaging Biomarkers of Punding in Parkinson's Disease. Brain Sci 2023; 13:1423. [PMID: 37891792 PMCID: PMC10605844 DOI: 10.3390/brainsci13101423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Punding is a rare condition triggered by dopaminergic therapy in Parkinson's disease (PD), characterized by a complex, excessive, repetitive, and purposeless abnormal movement, and its pathogenesis remains unclear. We aimed to assess the brain structure alterations related to punding by using multipametric magnetic resonance imaging (MRI). Thirty-eight PD patients (19 with punding and 19 without punding) from the Parkinson's Progression Marker Initiative (PPMI) were included in this study. Cortical thickness was assessed with FreeSurfer, and the integrity of white matter fiber tracts and network topologies were analyzed by using FMRIB Software Library (FSL) and Pipeline for Analyzing braiN Diffusion imAges (PANDA). PD patients with punding showed a higher apathy score and more severe cortical atrophy in the left superior parietal, right inferior parietal, and right superior frontal gyrus, and worse integrity of the right cingulum cingulate tract compared to those without punding. On the other hand, no significant difference in structural network topologies was detected between the two groups. These data suggest that the specific area of destruction may be an MRI biomarker of punding risk, and these findings may have important implications for understanding the neural mechanisms of punding in PD.
Collapse
Affiliation(s)
- Chenglu Mao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; (C.M.); (Y.Z.); (J.J.); (R.Q.); (Q.Y.); (X.Z.)
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China
| | - Yang Zhang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; (C.M.); (Y.Z.); (J.J.); (R.Q.); (Q.Y.); (X.Z.)
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China
| | - Jialiu Jiang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; (C.M.); (Y.Z.); (J.J.); (R.Q.); (Q.Y.); (X.Z.)
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China
| | - Ruomeng Qin
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; (C.M.); (Y.Z.); (J.J.); (R.Q.); (Q.Y.); (X.Z.)
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China
| | - Qing Ye
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; (C.M.); (Y.Z.); (J.J.); (R.Q.); (Q.Y.); (X.Z.)
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China
| | - Xiaolei Zhu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; (C.M.); (Y.Z.); (J.J.); (R.Q.); (Q.Y.); (X.Z.)
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China
| | - Jiayong Wu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; (C.M.); (Y.Z.); (J.J.); (R.Q.); (Q.Y.); (X.Z.)
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China
| |
Collapse
|
5
|
Rajalingam R, Fasano A. Punding in Parkinson's Disease: An Update. Mov Disord Clin Pract 2023; 10:1035-1047. [PMID: 37476310 PMCID: PMC10354600 DOI: 10.1002/mdc3.13748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/16/2023] [Accepted: 04/02/2023] [Indexed: 07/22/2023] Open
Abstract
Background Punding is a stereotyped behavior characterized by an intense fascination with a complex, excessive, non-goal oriented, repetitive activity affecting individuals with Parkinson's disease (PD) on dopamine replacement therapy (DRT). Objectives In 2010, we published the first review focused on the pathophysiology of punding. This study aims to systematically review the literature of the past decade on punding in PD, particularly focusing on the clinical features, underlying pathophysiological mechanisms, and treatment. Methods Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, we searched PubMed, Embase, and APA PsycInfo for articles published between July 1, 2010 and March 19, 2022. The search strategy included: (punding) AND (parkinson*). Results Of 256 studies identified, 29 were eligible for inclusion with 19 original research articles and 10 case reports. This review confirmed that predictors of punding in PD are higher doses of DRT, younger age, male sex, and increasing disease severity. We also found an association between punding and psychiatric and/or cognitive symptoms. Neuroimaging studies have showed that punding in PD is associated with a disconnection between midbrain, limbic and white matter tracts projecting to the frontal cortices and a breakdown of the connectivity among the crucial nodes of the reward circuit. Low-frequency repetitive transcranial magnetic stimulation on the dorsolateral prefrontal cortex has been shown to produce a transient beneficial effect in PD patients with punding. Conclusion In conclusion, although the clinical features of punding have been established, in the past 12 years, we gained a better understanding of the pathophysiological mechanisms of punding, mainly thanks to magnetic resonance imaging techniques.
Collapse
Affiliation(s)
- Rajasumi Rajalingam
- Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders ClinicToronto Western Hospital, UHNTorontoOntarioCanada
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders ClinicToronto Western Hospital, UHNTorontoOntarioCanada
- Division of NeurologyUniversity of TorontoTorontoOntarioCanada
- Krembil Research InstituteTorontoOntarioCanada
| |
Collapse
|
6
|
Baagil H, Hohenfeld C, Habel U, Eickhoff SB, Gur RE, Reetz K, Dogan I. Neural correlates of impulse control behaviors in Parkinson's disease: Analysis of multimodal imaging data. Neuroimage Clin 2023; 37:103315. [PMID: 36610308 PMCID: PMC9850204 DOI: 10.1016/j.nicl.2023.103315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/22/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
BACKGROUND Impulse control behaviors (ICB) are frequently observed in patients with Parkinson's disease (PD) and are characterized by compulsive and repetitive behavior resulting from the inability to resist internal drives. OBJECTIVES In this study, we aimed to provide a better understanding of structural and functional brain alterations and clinical parameters related to ICB in PD patients. METHODS We utilized a dataset from the Parkinson's Progression Markers Initiative including 36 patients with ICB (PDICB+) compared to 76 without ICB (PDICB-) and 61 healthy controls (HC). Using multimodal MRI data we assessed gray matter brain volume, white matter integrity, and graph topological properties at rest. RESULTS Compared with HC, PDICB+ showed reduced gray matter volume in the bilateral superior and middle temporal gyrus and in the right middle occipital gyrus. Compared with PDICB-, PDICB+ showed volume reduction in the left anterior insula. Depression and anxiety were more prevalent in PDICB+ than in PDICB- and HC. In PDICB+, lower gray matter volume in the precentral gyrus and medial frontal cortex, and higher axial diffusivity in the superior corona radiata were related to higher depression score. Both PD groups showed disrupted functional topological network pattern within the cingulate cortex compared with HC. PDICB+ vs PDICB- displayed reduced topological network pattern in the anterior cingulate cortex, insula, and nucleus accumbens. CONCLUSIONS Our results suggest that structural alterations in the insula and abnormal topological connectivity pattern in the salience network and the nucleus accumbens may lead to impaired decision making and hypersensitivity towards reward in PDICB+. Moreover, PDICB+ are more prone to suffer from depression and anxiety.
Collapse
Affiliation(s)
- Hamzah Baagil
- Department of Neurology, RWTH Aachen University, Pauwelsstraße 30, Aachen, Germany; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Center Jülich and RWTH Aachen University, Germany
| | - Christian Hohenfeld
- Department of Neurology, RWTH Aachen University, Pauwelsstraße 30, Aachen, Germany; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Center Jülich and RWTH Aachen University, Germany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelsstraße 30, Aachen, Germany; JARA‑BRAIN, Jülich‑Aachen Research Alliance, Institute of Brain Structure-Function Relationships, Aachen, Germany
| | - Simon B Eickhoff
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany; Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Jülich, Germany
| | - Raquel E Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Pauwelsstraße 30, Aachen, Germany; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Center Jülich and RWTH Aachen University, Germany.
| | - Imis Dogan
- Department of Neurology, RWTH Aachen University, Pauwelsstraße 30, Aachen, Germany; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Center Jülich and RWTH Aachen University, Germany
| |
Collapse
|
7
|
Wolfschlag M, Håkansson A. Drug-Induced Gambling Disorder: Epidemiology, Neurobiology, and Management. Pharmaceut Med 2023; 37:37-52. [PMID: 36611111 PMCID: PMC9825131 DOI: 10.1007/s40290-022-00453-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 01/09/2023]
Abstract
Problematic gambling has been suggested to be a possible consequence of dopaminergic medications used mainly in neurological conditions, i.e. pramipexole and ropinirole, and possibly by one antipsychotic compound, aripiprazole. Patients with Parkinson's disease, restless legs syndrome and other conditions potentially treated with dopamine agonists, as well as patients treated for psychotic disorders, are vulnerable patient groups with theoretically increased risk of developing gambling disorder (GD), for example due to higher rates of mental ill-health in these groups. The aim of the present paper is to review the epidemiological, clinical, and neurobiological evidence of the association between dopaminergic medications and GD, and to describe risk groups and treatment options. The neurobiology of GD involves the reward and reinforcement system, based mainly on mesocorticolimbic dopamine projections, with the nucleus accumbens being a crucial area for developing addictions to substances and behaviors. The addictive properties of gambling can perhaps be explained by the reward uncertainty that activates dopamine signaling in a pathological manner. Since reward-related learning is mediated by dopamine, it can be altered by dopaminergic medications, possibly leading to increased gambling behavior and a decreased impulse control. A causal relationship between the medications and GD seems likely, but the molecular mechanisms behind this association have not been fully described yet. More research is needed in order to fully outline the clinical picture of GD developing in patient groups with dopaminergic medications, and data are needed on the differentiation of risk in different compounds. In addition, very few interventional studies are available on the management of GD induced by dopaminergic medications. While GD overall can be treated, there is need for treatment studies testing the effectiveness of tapering of the medication or other gambling-specific treatment modalities in these patient groups.
Collapse
Affiliation(s)
- Mirjam Wolfschlag
- Malmö-Trelleborg Addiction Center, Competence Center Addiction, Region Skåne, Södra Förstadsgatan 35, plan 4, S-205 02 Malmö, Sweden ,Faculty of Medicine, Dept of Clinical Sciences Lund, Lund University, Psychiatry, Lund, Sweden
| | - Anders Håkansson
- Malmö-Trelleborg Addiction Center, Competence Center Addiction, Region Skåne, Södra Förstadsgatan 35, plan 4, S-205 02, Malmö, Sweden. .,Faculty of Medicine, Dept of Clinical Sciences Lund, Lund University, Psychiatry, Lund, Sweden.
| |
Collapse
|
8
|
Li Y, Huang X, Ruan X, Duan D, Zhang Y, Yu S, Chen A, Wang Z, Zou Y, Xia M, Wei X. Baseline cerebral structural morphology predict freezing of gait in early drug-naïve Parkinson's disease. NPJ Parkinsons Dis 2022; 8:176. [PMID: 36581626 PMCID: PMC9800563 DOI: 10.1038/s41531-022-00442-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 12/20/2022] [Indexed: 12/30/2022] Open
Abstract
Freezing of gait (FOG) greatly impacts the daily life of patients with Parkinson's disease (PD). However, predictors of FOG in early PD are limited. Moreover, recent neuroimaging evidence of cerebral morphological alterations in PD is heterogeneous. We aimed to develop a model that could predict the occurrence of FOG using machine learning, collaborating with clinical, laboratory, and cerebral structural imaging information of early drug-naïve PD and investigate alterations in cerebral morphology in early PD. Data from 73 healthy controls (HCs) and 158 early drug-naïve PD patients at baseline were obtained from the Parkinson's Progression Markers Initiative cohort. The CIVET pipeline was used to generate structural morphological features with T1-weighted imaging (T1WI). Five machine learning algorithms were calculated to assess the predictive performance of future FOG in early PD during a 5-year follow-up period. We found that models trained with structural morphological features showed fair to good performance (accuracy range, 0.67-0.73). Performance improved when clinical and laboratory data was added (accuracy range, 0.71-0.78). For machine learning algorithms, elastic net-support vector machine models (accuracy range, 0.69-0.78) performed the best. The main features used to predict FOG based on elastic net-support vector machine models were the structural morphological features that were mainly distributed in the left cerebrum. Moreover, the bilateral olfactory cortex (OLF) showed a significantly higher surface area in PD patients than in HCs. Overall, we found that T1WI morphometric markers helped predict future FOG occurrence in patients with early drug-naïve PD at the individual level. The OLF exhibits predominantly cortical expansion in early PD.
Collapse
Affiliation(s)
- Yuting Li
- grid.79703.3a0000 0004 1764 3838Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangdong, China ,grid.284723.80000 0000 8877 7471Affiliated Dongguan Hospital, Southern Medical University (Dongguan People’s Hospital), Guangdong, China
| | - Xiaofei Huang
- grid.79703.3a0000 0004 1764 3838Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangdong, China
| | - Xiuhang Ruan
- grid.79703.3a0000 0004 1764 3838Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangdong, China
| | - Dingna Duan
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Yihe Zhang
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Shaode Yu
- grid.443274.20000 0001 2237 1871School of Information and Communication Engineering, Communication University of China, Beijing, China
| | - Amei Chen
- grid.79703.3a0000 0004 1764 3838Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangdong, China
| | - Zhaoxiu Wang
- grid.79703.3a0000 0004 1764 3838Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangdong, China
| | - Yujian Zou
- grid.284723.80000 0000 8877 7471Affiliated Dongguan Hospital, Southern Medical University (Dongguan People’s Hospital), Guangdong, China
| | - Mingrui Xia
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Xinhua Wei
- grid.79703.3a0000 0004 1764 3838Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangdong, China
| |
Collapse
|
9
|
Imaging the Limbic System in Parkinson's Disease-A Review of Limbic Pathology and Clinical Symptoms. Brain Sci 2022; 12:brainsci12091248. [PMID: 36138984 PMCID: PMC9496800 DOI: 10.3390/brainsci12091248] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 01/09/2023] Open
Abstract
The limbic system describes a complex of brain structures central for memory, learning, as well as goal directed and emotional behavior. In addition to pathological studies, recent findings using in vivo structural and functional imaging of the brain pinpoint the vulnerability of limbic structures to neurodegeneration in Parkinson's disease (PD) throughout the disease course. Accordingly, dysfunction of the limbic system is critically related to the symptom complex which characterizes PD, including neuropsychiatric, vegetative, and motor symptoms, and their heterogeneity in patients with PD. The aim of this systematic review was to put the spotlight on neuroimaging of the limbic system in PD and to give an overview of the most important structures affected by the disease, their function, disease related alterations, and corresponding clinical manifestations. PubMed was searched in order to identify the most recent studies that investigate the limbic system in PD with the help of neuroimaging methods. First, PD related neuropathological changes and corresponding clinical symptoms of each limbic system region are reviewed, and, finally, a network integration of the limbic system within the complex of PD pathology is discussed.
Collapse
|
10
|
Gu L, Shu H, Wang Y, Xu H. Exploring brain changes of impulse control disorders in Parkinson's disease: An ALE study. Front Aging Neurosci 2022; 14:966525. [PMID: 36110428 PMCID: PMC9468821 DOI: 10.3389/fnagi.2022.966525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background Previous neuroimaging studies reported inconsistent results for comparison between Parkinson's disease (PD) with impulse control disorder (PD-ICD) and without ICD (PD-no ICD). Methods A search was performed in databases (PubMed and Web of Science) to identify studies published before May 2022. An anatomic likelihood estimation (ALE) method study was made for neuroimaging studies in PD-ICD. Results The study included 20 studies (including 341 PD-ICD and 437 PD-no ICD). PD-ICD patients showed significant cortical thinning in the right inferior frontal gyrus (IFG), the right middle frontal gyrus (MFG), the left superior frontal gyrus (SFG), the right precentral gyrus (PCG) and the left cingulate gyrus (CG), compared to PD-no ICD patients. The ALE study showed reduced resting-state brain activation in the right IFG, the right PCG, the left insula and the right transverse temporal gyrus (TTG) in PD-ICD, compared to PD-no ICD patients. In addition, PD-ICD showed increased resting-state brain activation in the right caudate, the bilateral insula and the left orbital gyrus (OG), compared to PD-no ICD patients. The study indicated reduced task-related brain activation in the right caudate, the right MFG, the right lentiform nucleus (LN) and the right precuneus (PCUN) in PD-ICD, compared to PD-no ICD patients. The study showed increased task-related brain activation in the left inferior parietal lobule (IPL), the right medial frontal gyrus, the right caudate and the right PCG in PD-ICD, compared to PD-no ICD patients. Conclusions The present ALE analysis has confirmed that brain changes in frontal, temporal and basal ganglia regions are among the most frequently reported regions in PD-ICD. Deficits in these regions could play a role in diagnosis of PD-ICD.
Collapse
Affiliation(s)
- Lihua Gu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- *Correspondence: Lihua Gu
| | - Hao Shu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yanjuan Wang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Hui Xu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
11
|
Tang S, Wang Y, Liu Y, Chau SW, Chan JW, Chu WC, Abrigo JM, Mok VC, Wing YK. Large-scale network dysfunction in α-Synucleinopathy: A meta-analysis of resting-state functional connectivity. EBioMedicine 2022; 77:103915. [PMID: 35259574 PMCID: PMC8904227 DOI: 10.1016/j.ebiom.2022.103915] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 01/22/2023] Open
Abstract
Background Although dysfunction of large-scale brain networks has been frequently demonstrated in patients with α-Synucleinopathy (α-Syn, i.e., Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy), a consistent pattern of dysfunction remains unclear. We aim to investigate network dysfunction in patients with α-Syn through a meta-analysis. Methods Whole-brain seed-based resting-state functional connectivity studies (published before September 1st, 2020 in English) comparing α-Syn patients with healthy controls (HC) were retrieved from electronic databases (PubMed, Web of Science, and EMBASE). Seeds from each study were categorized into networks by their location within a priori functional networks. Seed-based effect size mapping with Permutation of Subject Images analysis of between-group effects identified the network systems in which α-Syn was associated with hyperconnectivity (increased connectivity in α-Syn vs. HC) or hypoconnectivity (decreased connectivity in α-Syn vs. HC) within and between each seed-network. This study was registered on PROSPERO (CRD42020210133). Findings In total, 136 seed-based voxel-wise resting-state functional connectivity datasets from 72 publications (3093 α-Syn patients and 3331 HC) were included in the meta-analysis. We found that α-Syn patients demonstrated imbalanced connectivity among subcortical network, cerebellum, and frontal parietal networks that involved in motor functioning and executive control. The patient group was associated with hypoconnectivity in default mode network and ventral attention network that involved in cognition and attention. Additionally, the patient group exhibited hyperconnectivity between neural systems involved in top-down emotion regulation and hypoconnectivity between networks involved in bottom-up emotion processing. Interpretation These findings supported neurocognitive models in which network dysfunction is tightly linked to motor, cognitive and psychiatric symptoms observed in α-Syn patients.
Collapse
Affiliation(s)
- Shi Tang
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yanlin Wang
- Advanced Computing and Digital Engineering Research, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, China
| | - Yaping Liu
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Steven Wh Chau
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Joey Wy Chan
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Winnie Cw Chu
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jill M Abrigo
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Vincent Ct Mok
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yun Kwok Wing
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
12
|
Barbosa P, O'Sullivan SS, Joyce E, Lees AJ, Warner TT, Djamshidian A. Neuropsychiatric Features of Punding and Hobbyism in Parkinson's Disease. Mov Disord Clin Pract 2022; 9:82-86. [PMID: 35005069 PMCID: PMC8721828 DOI: 10.1002/mdc3.13363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/17/2021] [Accepted: 10/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Little is known about the cognitive and neuropsychiatric profile associated with punding and hobbyism in Parkinson's disease (PD). OBJECTIVE To compare the clinical and neuropsychological features of PD patients with punding and hobbyism to PD controls. METHODS The Questionnaire for Impulsive-Compulsive Disorders in Parkinson's Disease-Rating Scale (QUIP-RS) was used as a screening tool, and a structured interview was used to diagnose punding/hobbyism. Clinical and neuropsychological assessment was conducted with validated questionnaires/scales. RESULTS Twenty-one patients with PD and punding (PD + pu) were compared to 26 with hobbyism (PD + h) and 25 PD controls. PD + pu patients showed higher levels of anxiety, non-motor symptoms and motor symptoms, and lower Frontal Assessment Battery scores. The PD + h group exhibited similar levels of anxiety and motor fluctuations to the PD + pu group. CONCLUSION PD + pu showed increased anxiety and frontal lobe dysfunction, similar to PD + h. Hobbyism could be a prodromal phase with increased risk of leading to punding.
Collapse
Affiliation(s)
- Pedro Barbosa
- Reta Lila Weston Institute of Neurological Studies, Department of Clinical Movement Disorder and NeuroscienceInstitute of Neurology, University College LondonLondonUnited Kingdom
- The National Hospital for Neurology and NeurosurgeryLondonUnited Kingdom
| | | | - Eileen Joyce
- The National Hospital for Neurology and NeurosurgeryLondonUnited Kingdom
- Department of Clinical Movement Disorder and NeuroscienceInstitute of Neurology, University College LondonLondonUnited Kingdom
| | - Andrew J. Lees
- Reta Lila Weston Institute of Neurological Studies, Department of Clinical Movement Disorder and NeuroscienceInstitute of Neurology, University College LondonLondonUnited Kingdom
| | - Thomas T. Warner
- Reta Lila Weston Institute of Neurological Studies, Department of Clinical Movement Disorder and NeuroscienceInstitute of Neurology, University College LondonLondonUnited Kingdom
- The National Hospital for Neurology and NeurosurgeryLondonUnited Kingdom
| | - Atbin Djamshidian
- Reta Lila Weston Institute of Neurological Studies, Department of Clinical Movement Disorder and NeuroscienceInstitute of Neurology, University College LondonLondonUnited Kingdom
- Department of NeurologyInnsbruck Medical UniversityInnsbruckAustria
| |
Collapse
|
13
|
Hinkle JT, Perepezko K, Mills KA, Pontone GM. Attentional dysfunction and the punding spectrum in Parkinson's disease. Parkinsonism Relat Disord 2021; 84:23-28. [PMID: 33545553 PMCID: PMC7980283 DOI: 10.1016/j.parkreldis.2021.01.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 12/05/2020] [Accepted: 01/25/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Punding is a complication of Parkinson's disease (PD) treatment and stimulant abuse that features excessive preoccupation with repetitive and/or aimless behaviors. We hypothesized that cognitive impairment and functional limitations influence how punding behaviors manifest in PD. METHODS We extracted data on punding, hobbyism, and cognition from the Parkinson's Progression Marker Initiative (PPMI). Punding and hobbyism were measured with the Questionnaire for Impulsive-Compulsive Disorders in Parkinson's Disease (QUIP) scale. We determined how cognition predicted punding and hobbyism behaviors-adjusting for levodopa dose, Hoehn & Yahr stage, disease duration, and age-using generalized estimating equation (GEE) logistic regression. Activities of daily living (ADL) and motor impairment were measured with the MDS-UPDRS scale. RESULTS In GEE logistic regression models, punding was selectively associated with lower scores on the Letter Number Sequencing test (LNS), the primary attention test in PPMI (Odds ratio: 0.87 (95% CI: 0.79-0.96); p = 0.022). This was corroborated by a subscale-analysis of Montreal Cognitive Assessment (MoCA) scores, as only the attention subscale was significantly associated with punding (OR: 0.59 (0.45-0.77); p < 0.001). Baseline impairment in LNS (Hazard ratio: 2.52 (1.22-5.20); p = 0.012) and MoCA attention (HR: 2.68 (1.32-5.42); p = 0.006) predicted earlier punding in Cox regression. In turn, ADL dysfunction predicted punding (OR: 1.55 (1.20-2.00); p < 0.001), but not hobbyism. CONCLUSION Attentional dysfunction is a domain-specific cognitive biomarker of punding risk in PD. Further, attentional capacity and functional impairment may determine the complexity of perseverative behaviors on the continuum from rudimentary punding to semi-purposeful hobbyism.
Collapse
Affiliation(s)
- Jared T Hinkle
- Medical Scientist Training Program, USA; Solomon H. Snyder Department of Neuroscience, USA.
| | - Kate Perepezko
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, USA; Department of Psychiatry and Behavioral Sciences, USA
| | - Kelly A Mills
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Gregory M Pontone
- Department of Psychiatry and Behavioral Sciences, USA; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
14
|
Pouchon A, Dondé C, Polosan M. Punding Behavior as a Red Flag for Dementia in a Patient With Depression: Case Report. Front Psychiatry 2021; 12:637861. [PMID: 33912083 PMCID: PMC8071987 DOI: 10.3389/fpsyt.2021.637861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/11/2021] [Indexed: 11/21/2022] Open
Abstract
Punding is defined as a stereotypic, complex, repetitive, and non-goal-oriented activity. This behavior has been observed in Parkinson's disease and chronic amphetamine users. However, in general, punding behavior is largely under-diagnosed. Here, we describe a rare case of a 53-year-old woman showing punding behavior during major depressive disorder with atypical clinical features suggestive of a frontal syndrome. Neuropsychological evaluations mainly reported deficits in executive functioning. Brain MRI and lumbar puncture were normal. Brain perfusion SPECT showed hypoperfusion predominating in the right frontal and parietooccipital lobes, and a slight hypoperfusion in subthalamic nucleus including the posterior area of right striatum. We diagnosed this case as a frontotemporal dementia. Punding behavior could be a red flag for dementia in patients with major depressive disorder.
Collapse
Affiliation(s)
- Arnaud Pouchon
- Univ. Grenoble Alpes, Inserm U1216 Grenoble Institute of Neurosciences, Psychiatry Department CHU Grenoble Alpes, Grenoble, France
| | - Clément Dondé
- Univ. Grenoble Alpes, Inserm U1216 Grenoble Institute of Neurosciences, Psychiatry Department CHU Grenoble Alpes, Grenoble, France
| | - Mircea Polosan
- Univ. Grenoble Alpes, Inserm U1216 Grenoble Institute of Neurosciences, Psychiatry Department CHU Grenoble Alpes, Grenoble, France
| |
Collapse
|
15
|
Pyatigorskaya N, Yahia-Cherif L, Valabregue R, Gaurav R, Gargouri F, Ewenczyk C, Gallea C, Fernandez-Vidal S, Arnulf I, Vidailhet M, Lehericy S. Parkinson Disease Propagation Using MRI Biomarkers and Partial Least Squares Path Modeling. Neurology 2020; 96:e460-e471. [PMID: 33277419 DOI: 10.1212/wnl.0000000000011155] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/25/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES The classic Braak neuropathologic staging model in Parkinson disease (PD) suggests that brain lesions progress from the medulla oblongata to the cortex. An alternative model in which neurodegeneration first occurs in the cortex has also been proposed. These 2 models may correspond to different patient phenotypes. To test these 2 models and to investigate whether they were influenced by the presence of REM sleep behavior disorder (RBD), we used multimodal MRI and partial least squares path modeling (PLS-PM) assuming that patients with RBD followed distinct neurodegeneration pattern. METHODS Fifty-four patients with PD (34 with RBD) and 25 healthy volunteers were scanned with T1-weighted, diffusion tensor, and neuromelanin-sensitive imaging. Volume, signal, and mean, axial, and radial diffusivities were calculated in brainstem, basal forebrain, and cortical regions. PLS-PM, estimating a network of causal relationships between blocks of variables, was used to build and test an analytical model based on Braak staging. The overall quality of the model was assessed with goodness of fit coefficient (Gof). RESULTS PLS-PM was run on patients with PD with RBD and without RBD separately. In PD with RBD, a brainstem-to-cortex model had significant Gof (0.71, p = 0.01), whereas a cortex-to-brainstem model did not. In contrast, in patients with PD without RBD, the brainstem-to-cortex model was not significant (Gof = 0.64, p = 0.27), and the cortex-to-brainstem model was highly significant (Gof = 0.72, p = 0.008). CONCLUSIONS With the PLS-PM imaging-based model, the neurodegeneration pattern of patients with PD with RBD was consistent with the Braak brainstem-to-cortex model, whereas that of patients without RBD followed the cortex-to-brainstem model.
Collapse
Affiliation(s)
- Nadya Pyatigorskaya
- From the Institut Cerveau Moelle (N.P., L.Y.-C., R.V., R.G., S.F.-V., S.L.), Centre de NeuroImagerie de Recherche; Sorbonne Université (N.P., L.Y.-C,, R.G., F.G., C.E., C.G., S.F.-V., I.A., M.V., S.L.), Paris 06, UMR S 1127, CNRS UMR 7225, Institut Cerveau Moelle, F-75013; Institut Cerveau Moelle Team Movement Investigation and Therapeutics (N.P., R.G., F.G., C.E., C.G., I.A., M.V., S.L.); Service de neuroradiologie (N.P., M.V., S.L.), APHP, Pitié-Salpêtrière; and Clinique des Mouvements Anormaux (C.E.), Département des Maladies du Système Nerveux, and Service des Pathologies du Sommeil (I.A.), Hôpital Pitié-Salpêtrière, APHP, Paris, France.
| | - Lydia Yahia-Cherif
- From the Institut Cerveau Moelle (N.P., L.Y.-C., R.V., R.G., S.F.-V., S.L.), Centre de NeuroImagerie de Recherche; Sorbonne Université (N.P., L.Y.-C,, R.G., F.G., C.E., C.G., S.F.-V., I.A., M.V., S.L.), Paris 06, UMR S 1127, CNRS UMR 7225, Institut Cerveau Moelle, F-75013; Institut Cerveau Moelle Team Movement Investigation and Therapeutics (N.P., R.G., F.G., C.E., C.G., I.A., M.V., S.L.); Service de neuroradiologie (N.P., M.V., S.L.), APHP, Pitié-Salpêtrière; and Clinique des Mouvements Anormaux (C.E.), Département des Maladies du Système Nerveux, and Service des Pathologies du Sommeil (I.A.), Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Romain Valabregue
- From the Institut Cerveau Moelle (N.P., L.Y.-C., R.V., R.G., S.F.-V., S.L.), Centre de NeuroImagerie de Recherche; Sorbonne Université (N.P., L.Y.-C,, R.G., F.G., C.E., C.G., S.F.-V., I.A., M.V., S.L.), Paris 06, UMR S 1127, CNRS UMR 7225, Institut Cerveau Moelle, F-75013; Institut Cerveau Moelle Team Movement Investigation and Therapeutics (N.P., R.G., F.G., C.E., C.G., I.A., M.V., S.L.); Service de neuroradiologie (N.P., M.V., S.L.), APHP, Pitié-Salpêtrière; and Clinique des Mouvements Anormaux (C.E.), Département des Maladies du Système Nerveux, and Service des Pathologies du Sommeil (I.A.), Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Rahul Gaurav
- From the Institut Cerveau Moelle (N.P., L.Y.-C., R.V., R.G., S.F.-V., S.L.), Centre de NeuroImagerie de Recherche; Sorbonne Université (N.P., L.Y.-C,, R.G., F.G., C.E., C.G., S.F.-V., I.A., M.V., S.L.), Paris 06, UMR S 1127, CNRS UMR 7225, Institut Cerveau Moelle, F-75013; Institut Cerveau Moelle Team Movement Investigation and Therapeutics (N.P., R.G., F.G., C.E., C.G., I.A., M.V., S.L.); Service de neuroradiologie (N.P., M.V., S.L.), APHP, Pitié-Salpêtrière; and Clinique des Mouvements Anormaux (C.E.), Département des Maladies du Système Nerveux, and Service des Pathologies du Sommeil (I.A.), Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Fatma Gargouri
- From the Institut Cerveau Moelle (N.P., L.Y.-C., R.V., R.G., S.F.-V., S.L.), Centre de NeuroImagerie de Recherche; Sorbonne Université (N.P., L.Y.-C,, R.G., F.G., C.E., C.G., S.F.-V., I.A., M.V., S.L.), Paris 06, UMR S 1127, CNRS UMR 7225, Institut Cerveau Moelle, F-75013; Institut Cerveau Moelle Team Movement Investigation and Therapeutics (N.P., R.G., F.G., C.E., C.G., I.A., M.V., S.L.); Service de neuroradiologie (N.P., M.V., S.L.), APHP, Pitié-Salpêtrière; and Clinique des Mouvements Anormaux (C.E.), Département des Maladies du Système Nerveux, and Service des Pathologies du Sommeil (I.A.), Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Claire Ewenczyk
- From the Institut Cerveau Moelle (N.P., L.Y.-C., R.V., R.G., S.F.-V., S.L.), Centre de NeuroImagerie de Recherche; Sorbonne Université (N.P., L.Y.-C,, R.G., F.G., C.E., C.G., S.F.-V., I.A., M.V., S.L.), Paris 06, UMR S 1127, CNRS UMR 7225, Institut Cerveau Moelle, F-75013; Institut Cerveau Moelle Team Movement Investigation and Therapeutics (N.P., R.G., F.G., C.E., C.G., I.A., M.V., S.L.); Service de neuroradiologie (N.P., M.V., S.L.), APHP, Pitié-Salpêtrière; and Clinique des Mouvements Anormaux (C.E.), Département des Maladies du Système Nerveux, and Service des Pathologies du Sommeil (I.A.), Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Cecile Gallea
- From the Institut Cerveau Moelle (N.P., L.Y.-C., R.V., R.G., S.F.-V., S.L.), Centre de NeuroImagerie de Recherche; Sorbonne Université (N.P., L.Y.-C,, R.G., F.G., C.E., C.G., S.F.-V., I.A., M.V., S.L.), Paris 06, UMR S 1127, CNRS UMR 7225, Institut Cerveau Moelle, F-75013; Institut Cerveau Moelle Team Movement Investigation and Therapeutics (N.P., R.G., F.G., C.E., C.G., I.A., M.V., S.L.); Service de neuroradiologie (N.P., M.V., S.L.), APHP, Pitié-Salpêtrière; and Clinique des Mouvements Anormaux (C.E.), Département des Maladies du Système Nerveux, and Service des Pathologies du Sommeil (I.A.), Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Sara Fernandez-Vidal
- From the Institut Cerveau Moelle (N.P., L.Y.-C., R.V., R.G., S.F.-V., S.L.), Centre de NeuroImagerie de Recherche; Sorbonne Université (N.P., L.Y.-C,, R.G., F.G., C.E., C.G., S.F.-V., I.A., M.V., S.L.), Paris 06, UMR S 1127, CNRS UMR 7225, Institut Cerveau Moelle, F-75013; Institut Cerveau Moelle Team Movement Investigation and Therapeutics (N.P., R.G., F.G., C.E., C.G., I.A., M.V., S.L.); Service de neuroradiologie (N.P., M.V., S.L.), APHP, Pitié-Salpêtrière; and Clinique des Mouvements Anormaux (C.E.), Département des Maladies du Système Nerveux, and Service des Pathologies du Sommeil (I.A.), Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Isabelle Arnulf
- From the Institut Cerveau Moelle (N.P., L.Y.-C., R.V., R.G., S.F.-V., S.L.), Centre de NeuroImagerie de Recherche; Sorbonne Université (N.P., L.Y.-C,, R.G., F.G., C.E., C.G., S.F.-V., I.A., M.V., S.L.), Paris 06, UMR S 1127, CNRS UMR 7225, Institut Cerveau Moelle, F-75013; Institut Cerveau Moelle Team Movement Investigation and Therapeutics (N.P., R.G., F.G., C.E., C.G., I.A., M.V., S.L.); Service de neuroradiologie (N.P., M.V., S.L.), APHP, Pitié-Salpêtrière; and Clinique des Mouvements Anormaux (C.E.), Département des Maladies du Système Nerveux, and Service des Pathologies du Sommeil (I.A.), Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Marie Vidailhet
- From the Institut Cerveau Moelle (N.P., L.Y.-C., R.V., R.G., S.F.-V., S.L.), Centre de NeuroImagerie de Recherche; Sorbonne Université (N.P., L.Y.-C,, R.G., F.G., C.E., C.G., S.F.-V., I.A., M.V., S.L.), Paris 06, UMR S 1127, CNRS UMR 7225, Institut Cerveau Moelle, F-75013; Institut Cerveau Moelle Team Movement Investigation and Therapeutics (N.P., R.G., F.G., C.E., C.G., I.A., M.V., S.L.); Service de neuroradiologie (N.P., M.V., S.L.), APHP, Pitié-Salpêtrière; and Clinique des Mouvements Anormaux (C.E.), Département des Maladies du Système Nerveux, and Service des Pathologies du Sommeil (I.A.), Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Stephane Lehericy
- From the Institut Cerveau Moelle (N.P., L.Y.-C., R.V., R.G., S.F.-V., S.L.), Centre de NeuroImagerie de Recherche; Sorbonne Université (N.P., L.Y.-C,, R.G., F.G., C.E., C.G., S.F.-V., I.A., M.V., S.L.), Paris 06, UMR S 1127, CNRS UMR 7225, Institut Cerveau Moelle, F-75013; Institut Cerveau Moelle Team Movement Investigation and Therapeutics (N.P., R.G., F.G., C.E., C.G., I.A., M.V., S.L.); Service de neuroradiologie (N.P., M.V., S.L.), APHP, Pitié-Salpêtrière; and Clinique des Mouvements Anormaux (C.E.), Département des Maladies du Système Nerveux, and Service des Pathologies du Sommeil (I.A.), Hôpital Pitié-Salpêtrière, APHP, Paris, France
| |
Collapse
|
16
|
Incentive-driven decision-making networks in de novo and drug-treated Parkinson's disease patients with impulsive-compulsive behaviors: A systematic review of neuroimaging studies. Parkinsonism Relat Disord 2020; 78:165-177. [PMID: 32927414 DOI: 10.1016/j.parkreldis.2020.07.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/30/2020] [Accepted: 07/20/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND In Parkinson's disease (PD), impulsive-compulsive behaviors (ICBs) may develop as side-effect of dopaminergic medications. Abnormal incentive-driven decision-making, which is supported by the cognitive control and motivation interaction, may represent an ICBs signature. This systematic review explored whether structural and/or functional brain differences between PD patients with vs without ICBs encompass incentive-driven decision-making networks. METHODS Structural and functional neuroimaging studies comparing PD patients with and without ICBs, either de novo or medicated, were included. RESULTS Thirty articles were identified. No consistent evidence of structural alteration both in de novo and medicated PD patients were found. Differences in connectivity within the default mode, the salience and the central executive networks predate ICBs development and remain stable once ICBs are fully developed. Medicated PD patients with ICBs show increased metabolism and cerebral blood flow in orbitofrontal and cingulate cortices, ventral striatum, amygdala, insula, temporal and supramarginal gyri. Abnormal ventral striatum connectivity with anterior cingulate cortex and limbic structures was reported in PD patients with ICBs. DISCUSSION Functional brain signatures of ICBs in PD encompass areas involved in cognitive control and motivational encoding networks of the incentive-driven decision-making. Functional alterations predating ICBs may be related to abnormal synaptic plasticity in these networks.
Collapse
|
17
|
Roman E, Weininger J, Lim B, Roman M, Barry D, Tierney P, O'Hanlon E, Levins K, O'Keane V, Roddy D. Untangling the dorsal diencephalic conduction system: a review of structure and function of the stria medullaris, habenula and fasciculus retroflexus. Brain Struct Funct 2020; 225:1437-1458. [PMID: 32367265 DOI: 10.1007/s00429-020-02069-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 04/11/2020] [Indexed: 12/23/2022]
Abstract
The often-overlooked dorsal diencephalic conduction system (DDCS) is a highly conserved pathway linking the basal forebrain and the monoaminergic brainstem. It consists of three key structures; the stria medullaris, the habenula and the fasciculus retroflexus. The first component of the DDCS, the stria medullaris, is a discrete bilateral tract composed of fibers from the basal forebrain that terminate in the triangular eminence of the stalk of the pineal gland, known as the habenula. The habenula acts as a relay hub where incoming signals from the stria medullaris are processed and subsequently relayed to the midbrain and hindbrain monoaminergic nuclei through the fasciculus retroflexus. As a result of its wide-ranging connections, the DDCS has recently been implicated in a wide range of behaviors related to reward processing, aversion and motivation. As such, an understanding of the structure and connections of the DDCS may help illuminate the pathophysiology of neuropsychiatric disorders such as depression, addiction and pain. This is the first review of all three components of the DDCS, the stria medullaris, the habenula and the fasciculus retroflexus, with particular focus on their anatomy, function and development.
Collapse
Affiliation(s)
- Elena Roman
- Department of Psychiatry, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland.,Department of Psychiatry, Education and Research Centre , Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Joshua Weininger
- Department of Psychiatry, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Basil Lim
- Department of Psychiatry, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland.,Department of Game Design, Technological University Dublin, Dublin 2, Ireland
| | - Marin Roman
- Department of Psychiatry, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Denis Barry
- Anatomy Department, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Paul Tierney
- Anatomy Department, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Erik O'Hanlon
- Department of Psychiatry, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland.,Department of Psychiatry, Education and Research Centre , Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Kirk Levins
- Department of Anaesthetics, Intensive Care and Pain Medicine, St. Vincent's University Hospital, Dublin 4, Ireland
| | - Veronica O'Keane
- Department of Psychiatry, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Darren Roddy
- Department of Psychiatry, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
18
|
Canu E, Agosta F, Tomic A, Sarasso E, Petrovic I, Piramide N, Svetel M, Inuggi A, D Miskovic N, Kostic VS, Filippi M. Breakdown of the affective-cognitive network in functional dystonia. Hum Brain Mapp 2020; 41:3059-3076. [PMID: 32243055 PMCID: PMC7336141 DOI: 10.1002/hbm.24997] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/13/2020] [Accepted: 03/15/2020] [Indexed: 01/19/2023] Open
Abstract
Previous studies suggested that brain regions subtending affective‐cognitive processes can be implicated in the pathophysiology of functional dystonia (FD). In this study, the role of the affective‐cognitive network was explored in two phenotypes of FD: fixed (FixFD) and mobile dystonia (MobFD). We hypothesized that each of these phenotypes would show peculiar functional connectivity (FC) alterations in line with their divergent disease clinical expressions. Resting state fMRI (RS‐fMRI) was obtained in 40 FD patients (12 FixFD; 28 MobFD) and 43 controls (14 young FixFD‐age‐matched [yHC]; 29 old MobFD‐age‐matched [oHC]). FC of brain regions of interest, known to be involved in affective‐cognitive processes, and independent component analysis of RS‐fMRI data to explore brain networks were employed. Compared to HC, all FD patients showed reduced FC between the majority of affective‐cognitive seeds of interest and the fronto‐subcortical and limbic circuits; enhanced FC between the right affective‐cognitive part of the cerebellum and the bilateral associative parietal cortex; enhanced FC of the bilateral amygdala with the subcortical and posterior cortical brain regions; and altered FC between the left medial dorsal nucleus and the sensorimotor and associative brain regions (enhanced in MobFD and reduced in FixFD). Compared with yHC and MobFD patients, FixFD patients had an extensive pattern of reduced FC within the cerebellar network, and between the majority of affective‐cognitive seeds of interest and the sensorimotor and high‐order function (“cognitive”) areas with a unique involvement of dorsal anterior cingulate cortex connectivity. Brain FC within the affective‐cognitive network is altered in FD and presented specific features associated with each FD phenotype, suggesting an interaction between brain connectivity and clinical expression of the disease.
Collapse
Affiliation(s)
- Elisa Canu
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Aleksandra Tomic
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Elisabetta Sarasso
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Igor Petrovic
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Noemi Piramide
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Marina Svetel
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Alberto Inuggi
- Unit of Robotics, Brain and Cognitive Sciences, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Natasa D Miskovic
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir S Kostic
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
19
|
Donzuso G, Agosta F, Canu E, Filippi M. MRI of Motor and Nonmotor Therapy-Induced Complications in Parkinson's Disease. Mov Disord 2020; 35:724-740. [PMID: 32181946 DOI: 10.1002/mds.28025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 12/28/2022] Open
Abstract
Levodopa therapy remains the most effective drug for the treatment of Parkinson's disease, and it is associated with the greatest improvement in motor function as assessed by the Unified Parkinson's Disease Rating Scale. Dopamine agonists have also proven their efficacy as monotherapy in early Parkinson's disease but also as adjunct therapy. However, the chronic use of dopaminergic therapy is associated with disabling motor and nonmotor side effects and complications, among which levodopa-induced dyskinesias and impulse control behaviors are the most common. The underlying mechanisms of these disorders are not fully understood. In the last decade, classic neuroimaging methods and more sophisticated techniques, such as analysis of gray-matter structural imaging and functional magnetic resonance imaging, have given access to anatomical and functional abnormalities, respectively, in the brain. This review presents an overview of structural and functional brain changes associated with motor and nonmotor therapy-induced complications in Parkinson's disease. Magnetic resonance imaging may offer structural and/or functional neuroimaging biomarkers that could be used as predictive signs of development, maintenance, and progression of these complications. Neurophysiological tools, such as theta burst stimulation and transcranial magnetic stimulation, might help us to integrate neuroimaging findings and clinical features and could be used as therapeutic options, translating neuroimaging data into clinical practice. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Giulia Donzuso
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Department "G.F. Ingrassia," Section of Neurosciences, University of Catania, Catania, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Elisa Canu
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
20
|
Neural bases of impulse control disorders in Parkinson’s disease: A systematic review and an ALE meta-analysis. Neurosci Biobehav Rev 2019; 107:672-685. [DOI: 10.1016/j.neubiorev.2019.09.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/24/2019] [Accepted: 09/28/2019] [Indexed: 12/16/2022]
|
21
|
Abstract
Purpose of Review Parkinson’s disease (PD) has a wide spectrum of symptoms including the presence of psychiatric disease. At present, most treatment plans, comprised of dopaminergic drugs, are chronic and complex. Though dopaminergic agents are quite efficient in managing the motor aspects of the disease, chronic pharmacotherapy specifically with dopamine receptor agonists has been highly linked to the occurrence of Impulse Compulsive disorder (ICD), which can be problematic for individual patients. Recent Findings Much of what is known today about PD-related ICD stems from brain imaging studies, however, evidence is not quite conclusive. Research in the field has been focused on identifying the underlying mechanisms of PD-related ICD and understanding the functions of the structures involved in the reward network. Summary This article presents an update of recent findings from key neuroimaging studies in PD-related ICD, discusses results from controversial studies, and identifies areas for future research in the field.
Collapse
Affiliation(s)
- Andreas-Antonios Roussakis
- Neurology Imaging Unit, Imperial College London - Hammersmith Hospital, 1st Floor, B-Block, Du Cane Road, London, W12 0NN, UK
| | - Nicholas P Lao-Kaim
- Neurology Imaging Unit, Imperial College London - Hammersmith Hospital, 1st Floor, B-Block, Du Cane Road, London, W12 0NN, UK
| | - Paola Piccini
- Neurology Imaging Unit, Imperial College London - Hammersmith Hospital, 1st Floor, B-Block, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
22
|
Deformities of the Globus Pallidus are Associated with Severity of Suicidal Ideation and Impulsivity in Patients with Major Depressive Disorder. Sci Rep 2019; 9:7462. [PMID: 31097766 PMCID: PMC6522489 DOI: 10.1038/s41598-019-43882-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/03/2019] [Indexed: 01/18/2023] Open
Abstract
Neuroimaging research increasingly suggests there are biological features related to suicidal risk, including brain morphometric features, leading to an elaborate suicide risk assessment. However, few studies have focused on the severity of suicidal ideation and its association with subcortical anatomy in patients with major depressive disorder (MDD). Here, we mainly investigated whether specific structural differences were present in MDD patients with and without suicidal ideation; and supplemented comparison with and without suicidal attempt. We hypothesized that structures associated with suicidal ideation would be derived from a combination of depression and impulsivity. Local atrophy of subcortical structures in 48 patients with MDD (24 with suicidal ideation and 24 without) and 25 age- and sex-matched healthy controls were compared using a surface-based shape analysis method. There was no difference in brain volume between MDD patients with or without suicidal ideations; or MDD patients with or without suicidal attempt. However, the atrophy level in the left pallidum showed a positive correlation with severity of suicidal risk in MDD patients with suicidal ideation. Local atrophy of the left hippocampus, right caudate, and right pallidum had a positive correlation with total impulsivity. These findings possibly suggest that vulnerability to suicidal attempt can be derived from suicidal ideation combined with depression and impulsivity, related to reduced motivational control.
Collapse
|
23
|
Schönfeld LM, Wojtecki L. Beyond Emotions: Oscillations of the Amygdala and Their Implications for Electrical Neuromodulation. Front Neurosci 2019; 13:366. [PMID: 31057358 PMCID: PMC6482269 DOI: 10.3389/fnins.2019.00366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/01/2019] [Indexed: 01/18/2023] Open
Abstract
The amygdala is a structure involved in emotions, fear, learning and memory and is highly interconnected with other brain regions, for example the motor cortex and the basal ganglia that are often targets of treatments involving electrical stimulation. Deep brain stimulation of the basal ganglia is successfully used to treat movement disorders, but can carry along non-motor side effects. The origin of these non-motor side effects is not fully understood yet, but might be altered oscillatory communication between specific motor areas and the amygdala. Oscillations in various frequency bands have been detected in the amygdala during cognitive and emotional tasks, which can couple with oscillations in cortical regions or the hippocampus. However, data on oscillatory coupling between the amygdala and motor areas are still lacking. This review provides a summary of oscillation frequencies measured in the amygdala and their possible functional relevance in different species, followed by evidence for connectivity between the amygdala and motor areas, such as the basal ganglia and the motor cortex. We hypothesize that the amygdala could communicate with motor areas through coherence of low frequency bands in the theta-alpha range. Furthermore, we discuss a potential role of the amygdala in therapeutic approaches based on electrical stimulation.
Collapse
Affiliation(s)
- Lisa-Maria Schönfeld
- Comparative Psychology, Institute of Experimental Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lars Wojtecki
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Department of Neurology and Neurorehabilitation, Hospital zum Heiligen Geist, Kempen, Germany
| |
Collapse
|
24
|
Gatto EM, Aldinio V. Impulse Control Disorders in Parkinson's Disease. A Brief and Comprehensive Review. Front Neurol 2019; 10:351. [PMID: 31057473 PMCID: PMC6481351 DOI: 10.3389/fneur.2019.00351] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 03/22/2019] [Indexed: 12/25/2022] Open
Abstract
Impulse control and related disorders (ICDs-RD) encompasses a heterogeneous group of disorders that involve pleasurable behaviors performed repetitively, excessively, and compulsively. The key common symptom in all these disorders is the failure to resist an impulse or temptation to control an act or specific behavior, which is ultimately harmful to oneself or others and interferes in major areas of life. The major symptoms of ICDs include pathological gambling (PG), hypersexualtiy (HS), compulsive buying/shopping (CB) and binge eating (BE) functioning. ICDs and ICDs-RD have been included in the behavioral spectrum of non-motor symptoms in Parkinson's disease (PD) leading, in some cases, to serious financial, legal and psychosocial devastating consequences. Herein we present the prevalence of ICDs, the risk factors, its pathophysiological mechanisms, the link with agonist dopaminergic therapies and therapeutic managements.
Collapse
Affiliation(s)
- Emilia M Gatto
- Department of Neurology, Sanatorio de la Trinidad Mitre, Buenos Aires, Argentina.,Instituto de Neurociencias Buenos Aires, Ineba, Buenos Aires, Argentina
| | - Victoria Aldinio
- Department of Neurology, Sanatorio de la Trinidad Mitre, Buenos Aires, Argentina
| |
Collapse
|
25
|
Ma Z, Zhong Y, Hines CS, Wu Y, Li Y, Pang M, Li J, Wang C, Fox PT, Zhang N, Wang C. Identifying generalized anxiety disorder using resting state habenular circuitry. Brain Imaging Behav 2019; 14:1406-1418. [DOI: 10.1007/s11682-019-00055-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Eisinger RS, Ramirez-Zamora A, Carbunaru S, Ptak B, Peng-Chen Z, Okun MS, Gunduz A. Medications, Deep Brain Stimulation, and Other Factors Influencing Impulse Control Disorders in Parkinson's Disease. Front Neurol 2019; 10:86. [PMID: 30863353 PMCID: PMC6399407 DOI: 10.3389/fneur.2019.00086] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/22/2019] [Indexed: 12/18/2022] Open
Abstract
Impulse control disorders (ICDs) in Parkinson's disease (PD) have a high cumulative incidence and negatively impact quality of life. ICDs are influenced by a complex interaction of multiple factors. Although it is now well-recognized that dopaminergic treatments and especially dopamine agonists underpin many ICDs, medications alone are not the sole cause. Susceptibility to ICD is increased in the setting of PD. While causality can be challenging to ascertain, a wide range of modifiable and non-modifiable risk factors have been linked to ICDs. Common characteristics of PD patients with ICDs have been consistently identified across many studies; for example, males with an early age of PD onset and dopamine agonist use have a higher risk of ICD. However, not all cases of ICDs in PD can be directly attributable to dopamine, and studies have concluded that additional factors such as genetics, smoking, and/or depression may be more predictive. Beyond dopamine, other ICD associations have been described but remain difficult to explain, including deep brain stimulation surgery, especially in the setting of a reduction in dopaminergic medication use. In this review, we will summarize the demographic, genetic, behavioral, and clinical contributions potentially influencing ICD onset in PD. These associations may inspire future preventative or therapeutic strategies.
Collapse
Affiliation(s)
- Robert S. Eisinger
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Adolfo Ramirez-Zamora
- Hospital Padre Hurtado, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Samuel Carbunaru
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Brandon Ptak
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Zhongxing Peng-Chen
- Hospital Padre Hurtado, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Michael S. Okun
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
- Department of Neurology, Fixel Center for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Aysegul Gunduz
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| |
Collapse
|
27
|
Filippi M, Sarasso E, Agosta F. Resting-state Functional MRI in Parkinsonian Syndromes. Mov Disord Clin Pract 2019; 6:104-117. [PMID: 30838308 DOI: 10.1002/mdc3.12730] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/28/2018] [Accepted: 01/16/2019] [Indexed: 01/18/2023] Open
Abstract
Background Functional MRI (fMRI) has been widely used to study abnormal patterns of functional connectivity at rest in patients with movement disorders such as idiopathic Parkinson's disease (PD) and atypical parkinsonisms. Methods This manuscript provides an educational review of the current use of resting-state fMRI in the field of parkinsonian syndromes. Results Resting-state fMRI studies have improved the current knowledge about the mechanisms underlying motor and non-motor symptom development and progression in movement disorders. Even if its inclusion in clinical practice is still far away, resting-state fMRI has the potential to be a promising biomarker for early disease detection and prediction. It may also aid in differential diagnosis and monitoring brain responses to therapeutic agents and neurorehabilitation strategies in different movement disorders. Conclusions There is urgent need to identify and validate prodromal biomarkers in PD patients, to perform further studies assessing both overlapping and disease-specific fMRI abnormalities among parkinsonian syndromes, and to continue technical advances to fully realize the potential of fMRI as a tool to monitor the efficacy of chronic therapies.
Collapse
Affiliation(s)
- Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute Vita-Salute San Raffaele University Milan Italy.,Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute Vita-Salute San Raffaele University Milan Italy
| | - Elisabetta Sarasso
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute Vita-Salute San Raffaele University Milan Italy.,Laboratory of Movement Analysis San Raffaele Scientific Institute Milan Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute Vita-Salute San Raffaele University Milan Italy
| |
Collapse
|
28
|
Ramdave S, Dawson A, Carter A, Dissanayaka NNW. Unmasking neurobiological commonalities between addictive disorders and impulse control disorders in Parkinson’s disease. Brain Imaging Behav 2019; 14:2785-2798. [PMID: 30707344 DOI: 10.1007/s11682-019-00041-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Changes in reward circuitry have been studied extensively in substance and behavioural addictions. However, comparatively little is known about the neurobiology underlying impulse control disorders (ICDs) in Parkinson's disease, which show roughly similar risk factors and behavioural presentations to both stimulant and behavioural addictions. ICDs occur in a subset of susceptible patients with Parkinson's disease (PD) following intake of dopamine replacement therapy (DRT). These behavioural disorders often have debilitating effects on a patient's quality of life and increase caregiver burden. This comprehensive review examined findings of 40 neuroimaging studies of ICDs in PD to determine (a) whether there are putative neurobiological commonalities between traditional substance and behavioural addictions and DRT-induced ICD in PD and (b) opportunities for future studies to advance current neurobiological understanding of the phenomenon. Results revealed that strikingly similar (a) deficits in dopaminergic receptor expression, (b) connectivity changes in corticostriatal circuitry and (c) neural responses to cue exposure are observed in both ICDs in PD and addictive disorders. These findings point to the value of adopting a transdiagnostic approach when studying addicted populations and pave the way for demystifying this peculiar, often-devastating phenomenon in PD that has so far proven extremely difficult to treat and predict with any precision.
Collapse
Affiliation(s)
- Swathi Ramdave
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia.
- School of Psychology, The University of Queensland, Brisbane, Australia.
| | - Andrew Dawson
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Clayton, Australia
| | - Adrian Carter
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Clayton, Australia
| | - Nadeeka N W Dissanayaka
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- School of Psychology, The University of Queensland, Brisbane, Australia
- Department of Neurology, Royal Brisbane & Woman's Hospital, Brisbane, Australia
| |
Collapse
|
29
|
Vargas AP, Cardoso FEC. Impulse control and related disorders in Parkinson's disease. ARQUIVOS DE NEURO-PSIQUIATRIA 2018; 76:399-410. [PMID: 29972423 DOI: 10.1590/0004-282x20180052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/17/2018] [Indexed: 12/29/2022]
Abstract
Neuropsychiatric disorders are common among patients with Parkinson's disease and may appear in any stage of the disease. However, these disorders often go undiagnosed and receive insufficient treatment. Observations in recent years have revealed that dopamine replacement therapy may lead to the development or worsening of conditions, such as gambling disorder, compulsive sexual behavior, compulsive buying and binge eating, in addition to punding and dopamine dysregulation syndrome. The pathophysiology of these disorders seems to be related to abnormal dopaminergic stimulation of the basal regions of the basal ganglia, especially via nigro-mesolimbic pathways. The aim of the present study was to perform a literature review on impulsivity, impulse control disorders and related conditions among patients with Parkinson's disease, with emphasis on their epidemiology, clinical characteristics and treatment.
Collapse
Affiliation(s)
- Antonio Pedro Vargas
- Rede SARAH de Hospitais de Reabilitação, Departamento de Neurologia, Belo Horizonte MG, Brasil
| | - Francisco Eduardo Costa Cardoso
- Universidade Federal de Minas Gerais, Unidade de Distúrbios do Movimento, Departamento de Clínica Médica, Serviço de Neurologia, Belo Horizonte MG, Brasil
| |
Collapse
|
30
|
Filippi M, Elisabetta S, Piramide N, Agosta F. Functional MRI in Idiopathic Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 141:439-467. [PMID: 30314606 DOI: 10.1016/bs.irn.2018.08.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Functional MRI (fMRI) has been widely used to study abnormal patterns of brain connectivity at rest and activation during a variety of tasks in patients with idiopathic Parkinson's disease (PD). fMRI studies in PD have led to a better understanding of many aspects of the disease including both motor and non-motor symptoms. Although its translation into clinical practice is still at an early stage, fMRI measures hold promise for multiple clinical applications in PD, including the early detection, predicting future change in clinical status, and as a marker of alterations in brain physiology related to neurotherapeutic agents and neurorehabilitative strategies.
Collapse
Affiliation(s)
- Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy; Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.
| | - Sarasso Elisabetta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy; Laboratory of Movement Analysis, San Raffaele Scientific Institute, Milan, Italy
| | - Noemi Piramide
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
31
|
Dawson A, Dissanayaka NN, Evans A, Verdejo-Garcia A, Chong TTJ, Frazzitta G, Ferrazzoli D, Ortelli P, Yücel M, Carter A. Neurocognitive correlates of medication-induced addictive behaviours in Parkinson's disease: A systematic review. Eur Neuropsychopharmacol 2018; 28:561-578. [PMID: 29653742 DOI: 10.1016/j.euroneuro.2018.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/06/2018] [Accepted: 03/22/2018] [Indexed: 12/28/2022]
Abstract
Dopaminergic medication can induce severe addictive behaviours (e.g., pathological gambling) in susceptible Parkinson's disease (PD) patients. It is still unknown which particular neurocognitive processes become exacerbated or dysfunctional in PD patients with addictive behaviours. We sought to systematically review the relevant literature to identity potential neurocognitive correlates of medication-induced addictive behaviours in PD. We framed our review around neurocognitive processes central to four dominant accounts of substance addiction: 'aberrant learning', 'incentive sensitization', 'impulsivity to compulsivity' and 'impaired response inhibition and salience attribution'. Searches of the PubMed and Scopus databases were completed on June 23, 2017. To be included, studies were required to involve: (a) medicated PD patients, without a history of deep brain stimulation, with and without addictive behaviours; (b) a reward-related or decision-making task; and (c) statistical comparison of addictive and non-addictive groups' 'on' medication performance on the task(s). Studies were summarised qualitatively with statistically significant (p<.05) group differences and effect sizes (Cohen's d) highlighted. 35 studies were included. Findings showed that the extant literature is highly heterogeneous. The domains of reward and punishment learning, reflection impulsivity and disadvantageous decision-making exemplify this. More homogeneity exists in domains in which (a) neurocognitive dysfunction is not apparent (motor control, cognitive/attentional flexibility and cognitive control) or (b) typical neurocognitive processes appear exacerbated by medication (reward motivation and choice impulsivity). Future large-scale neurocognitive studies are still required to develop our scientific understanding of addictive behaviours in PD and aid their clinical treatment and prediction.
Collapse
Affiliation(s)
- Andrew Dawson
- Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Clayton, Victoria 3800, Australia
| | - Nadeeka N Dissanayaka
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Queensland 4029, Australia; Department of Neurology, Royal Brisbane & Women's Hospital, Herston, Queensland 4029, Australia; School of Psychology, The University of Queensland, St. Lucia, Queensland 4029, Australia
| | - Andrew Evans
- The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Antonio Verdejo-Garcia
- Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Clayton, Victoria 3800, Australia
| | - Trevor T J Chong
- Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Clayton, Victoria 3800, Australia
| | - Giuseppe Frazzitta
- Movement Disorders and Brain Injury Rehabilitation, 'Moriggia-Pelascini' Hospital, Gravedona ed Uniti, Como 22015, Italy
| | - Davide Ferrazzoli
- Movement Disorders and Brain Injury Rehabilitation, 'Moriggia-Pelascini' Hospital, Gravedona ed Uniti, Como 22015, Italy
| | - Paola Ortelli
- Movement Disorders and Brain Injury Rehabilitation, 'Moriggia-Pelascini' Hospital, Gravedona ed Uniti, Como 22015, Italy
| | - Murat Yücel
- Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Clayton, Victoria 3800, Australia
| | - Adrian Carter
- Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Clayton, Victoria 3800, Australia; University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Queensland 4029, Australia
| |
Collapse
|