1
|
Charidimou A, Boulouis G. Core CSF Biomarker Profile in Cerebral Amyloid Angiopathy: Updated Meta-Analysis. Neurology 2024; 103:e209795. [PMID: 39270153 DOI: 10.1212/wnl.0000000000209795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND AND OBJECTIVES There is a clear need to characterize and validate molecular biomarkers of cerebral amyloid angiopathy (CAA), in an effort to improve diagnostics, especially in the context of patients with Alzheimer disease (AD) receiving immunotherapies (for whom underlying CAA is the driver of amyloid-related imaging abnormalities). We performed an updated meta-analysis of 5 core CSF biomarkers (Aβ42, Aβ40, Aβ438, total tau [T-tau], and phosphorylated tau [P-tau]) to assess which of these are most altered in sporadic CAA. METHODS We systematically searched PubMed for eligible studies reporting data on CSF biomarkers reflecting APP metabolism (Aβ42, Aβ40, Aβ38), neurodegeneration (T-tau), and tangle pathology (P-tau), in symptomatic sporadic CAA cohorts (based on the Boston criteria) vs control groups and/or vs patients with AD. Biomarker performance was assessed in random-effects meta-analysis based on ratio of mean (RoM) biomarker concentrations in (1) patients with CAA to controls and (2) CAA to patients with AD. RoM >1 indicates higher biomarker concentration in CAA vs comparison population, and RoM <1 indicates higher concentration in comparison groups. RESULTS 8 studies met inclusion criteria: a total of 11 CAA cohorts (n = 289), 9 control cohorts (n = 310), and 8 AD cohorts (n = 339). Overall included studies were of medium quality based on our assessment tools. CAA to controls had lower mean level of all amyloid markers with CSF Aβ42, Aβ40, and Aβ38 RoMs of 0.46 (95% CI 0.38-0.55, p < 0.0001), 0.70 (95% CI 0.63-0.78, p < 0.0001), and 0.71 (95% CI 0.56-0.89, p = 0.003), respectively. CSF T-tau and P-tau RoMs of patients with CAA to controls were both greater than 1: 1.56 (95% CI 1.32-1.84, p < 0.0001) and 1.31 (95% CI 1.13-1.51, p < 0.0001), respectively. Differentiation between CAA and AD was strong for CSF Aβ40 (RoM 0.76, 95% CI 0.69-0.83, p < 0.0001) and Aβ38 (RoM 0.55, 95% CI 0.38-0.81, p < 0.0001), but not Aβ42 (RoM 1.00; 95% CI 0.81-1.23, p = 0.970). For T-tau and P-tau, average CSF ratios in patients with CAA vs AD were 0.64 (95% CI 0.58-0.71, p < 0.0001) and 0.64 (95% CI 0.58-0.71, p < 0.0001), respectively. DISCUSSION Specific CSF patterns of Aβ42, Aβ40, Aβ38, T-tau, and P-tau might serve as molecular biomarkers of CAA, in research and clinical settings, offering the potential to improve the clinical diagnostic approach pathway in specific scenarios.
Collapse
Affiliation(s)
- Andreas Charidimou
- From the Department of Neurology (A.C.), Boston University Medical Center, Boston University School of Medicine, MA; and Diagnostic and Interventional Neuroradiology (G.B.), University Hospital, Tours, France
| | - Gregoire Boulouis
- From the Department of Neurology (A.C.), Boston University Medical Center, Boston University School of Medicine, MA; and Diagnostic and Interventional Neuroradiology (G.B.), University Hospital, Tours, France
| |
Collapse
|
2
|
Wang J, Wang Y, Cai X, Xia W, Zhu J. A Review: Visuospatial Dysfunction in Patients with the Cerebral Small Vessel Disease. Neuroscience 2024; 552:47-53. [PMID: 38880241 DOI: 10.1016/j.neuroscience.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Cerebral small vessel disease (CSVD) impairs visuospatial function, and this is one of the most obvious areas of cognitive impairment in CSVD. So, recognizing, monitoring, and treating visuospatial dysfunction are all important to the prognosis of CSVD. This review discussed the anatomical and pathological mechanisms, clinical recognition (scales, imaging, and biomarkers), and treatment of cognitive impairment especially visuospatial dysfunction in CSVD.
Collapse
Affiliation(s)
- Jiaxing Wang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Youmeng Wang
- Department of Neurology, Fuyang People's Hospital, Fuyang, China
| | - Xiuying Cai
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Xia
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Juehua Zhu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
3
|
Wang J, Feng Y, Sun Y. ACOT7, a candidate and novel serum biomarker of Alzheimer's disease. Front Aging Neurosci 2024; 16:1345668. [PMID: 39026992 PMCID: PMC11254632 DOI: 10.3389/fnagi.2024.1345668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Alzheimer's disease (AD) is the most common fatal neurodegenerative disease among the elderly worldwide, characterized by memory and cognitive impairment. The identification of biomarkers for AD is crucial and urgent to facilitate the diagnosis and intervention. The aim of this study was to evaluate the diagnostic value of acyl-Coenzyme A thioesterase 7 (ACOT7) as a serum biomarker for the prediction of AD. In our study, we observed a significant increase in ACOT7 expression in patients (n = 366) with AD and animal (n = 8-12) models of AD, compared to the control group. A significant negative correlation was found between ACOT7 levels and Mini-Mental State Examination (MMSE) scores (r = -0.85; p < 0.001). The analysis of the receiver operating characteristic curve (ROC) showed that the area under the curve (AUC) for ACOT7 was 0.83 (95% confidence intervals: 0.80-0.86). The optimal cut-off point of 62.5 pg./mL was selected with the highest sum of sensitivity and specificity. The diagnostic accuracy of serum ACOT7 for AD was 77% (95% confidence intervals: 72-82%), with a sensitivity of 80% (95% confidence intervals: 75-84%) and a specificity of 74% (95% confidence intervals: 69-79%). Moreover, the ROC analysis showed that the AUC of Aβ42/40 ratio is 0.70, and the diagnostic accuracy was 72%, with 69% sensitivity and 76% specificity. Compared with the AD traditional marker Aβ42/40 ratio, ACOT7 shows better superiority as a new serum candidate biomarker of AD. By suppressing the ACOT7 gene, our study provides evidence of the involvement of ACOT7 in the metabolism of amyloid precursor protein (APP), resulting in alterations in the expression levels of Aβ42, BACE1 and βCTF. ACOT7 has the ability to modulate the amyloidogenic pathway of APP metabolism, while it does not have an impact on the non-amyloidogenic pathway. In conclusion, the findings of our study suggest that serum ACOT7 may serve as a promising and non-invasive biomarker for AD.
Collapse
Affiliation(s)
- Jintao Wang
- Department of Pharmacy, First People’s Hospital of Wenling, Wenling, China
| | - Yong Feng
- Department of Medical Research, Qingdao Huangdao People’s Hospital, Qingdao, China
| | - Yingni Sun
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, China
- Beijing Handian Pharmaceutical Co, Ltd., Beijing, China
- School of Life Sciences, Ludong University, Yantai, China
| |
Collapse
|
4
|
Jäkel L, De Kort AM, Stellingwerf A, Hernández Utrilla C, Kersten I, Vervuurt M, Vermeiren Y, Küsters B, Schreuder FHBM, Klijn CJM, Kuiperij HB, Verbeek MM. Altered brain expression and cerebrospinal fluid levels of TIMP4 in cerebral amyloid angiopathy. Acta Neuropathol Commun 2024; 12:103. [PMID: 38915119 PMCID: PMC11194996 DOI: 10.1186/s40478-024-01823-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024] Open
Abstract
Cerebral amyloid angiopathy (CAA) is a highly prevalent and progressive pathology, involving amyloid-β (Aβ) deposition in the cerebral blood vessel walls. CAA is associated with an increased risk for intracerebral hemorrhages (ICH). Insight into the molecular mechanisms associated with CAA pathology is urgently needed, to develop additional diagnostic tools to allow for reliable and early diagnosis of CAA and to obtain novel leads for the development of targeted therapies. Tissue inhibitor of matrix metalloproteinases 4 (TIMP4) is associated with cardiovascular functioning and disease and has been linked to vascular dementia. Using immunohistochemistry, we studied occipital brain tissue samples of 57 patients with CAA (39 without ICH and 18 with ICH) and 42 controls, and semi-quantitatively assessed expression levels of TIMP4. Patients with CAA had increased vascular expression of TIMP4 compared to controls (p < 0.001), and in these patients, TIMP4 expression correlated with CAA severity (τb = 0.38; p = 0.001). Moreover, TIMP4 expression was higher in CAA-ICH compared to CAA-non-ICH cases (p = 0.024). In a prospective cross-sectional study of 38 patients with CAA and 37 age- and sex-matched controls, we measured TIMP4 levels in cerebrospinal fluid (CSF) and serum using ELISA. Mean CSF levels of TIMP4 were decreased in patients with CAA compared to controls (3.36 ± 0.20 vs. 3.96 ± 0.22 ng/ml, p = 0.033), whereas median serum levels were increased in patients with CAA (4.51 ng/ml [IQR 3.75-5.29] vs 3.60 ng/ml [IQR 3.11-4.85], p-9.013). Moreover, mean CSF TIMP4 levels were lower in CAA patients who had experienced a symptomatic hemorrhage compared to CAA patients who did not (2.13 ± 0.24 vs. 3.57 ± 0.24 ng/ml, p = 0.007). CSF TIMP4 levels were associated with CSF levels of Aβ40 (spearman r (rs) = 0.321, p = 0.009). In summary, we show that TIMP4 is highly associated with CAA and CAA-related ICH, which is reflected by higher levels in the cerebral vasculature and lower levels in CSF. With these findings we provide novel insights into the pathophysiology of CAA, and more specifically in CAA-associated ICH.
Collapse
Affiliation(s)
- Lieke Jäkel
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 830 TML, P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Radboud Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anna M De Kort
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 830 TML, P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Radboud Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arno Stellingwerf
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 830 TML, P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Radboud Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Carla Hernández Utrilla
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 830 TML, P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Radboud Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Iris Kersten
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 830 TML, P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Marc Vervuurt
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 830 TML, P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Radboud Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yannick Vermeiren
- Division of Human Nutrition and Health, Chair Group Nutritional Biology, Wageningen University and Research (WUR), Wageningen, The Netherlands
- Faculty of Medicine and Health Sciences, Translational Neurosciences, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Benno Küsters
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Floris H B M Schreuder
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 830 TML, P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Catharina J M Klijn
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 830 TML, P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - H Bea Kuiperij
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 830 TML, P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Radboud Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel M Verbeek
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 830 TML, P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.
- Radboud Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
5
|
Theodorou A, Tsantzali I, Stefanou MI, Sacco S, Katsanos AH, Shoamanesh A, Karapanayiotides T, Koutroulou I, Stamati P, Werring DJ, Cordonnier C, Palaiodimou L, Zompola C, Boviatsis E, Stavrinou L, Frantzeskaki F, Steiner T, Alexandrov AV, Paraskevas GP, Tsivgoulis G. CSF and plasma biomarkers in cerebral amyloid angiopathy: A single-center study and a systematic review/meta-analysis. Eur Stroke J 2024:23969873241260538. [PMID: 38869035 DOI: 10.1177/23969873241260538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
INTRODUCTION There are limited data regarding cerebrospinal fluid (CSF) and plasma biomarkers among patients with Cerebral Amyloid Angiopathy (CAA). We sought to investigate the levels of four biomarkers [β-amyloids (Aβ42 and Aβ40), total tau (tau) and phosphorylated tau (p-tau)] in CAA patients compared to healthy controls (HC) and patients with Alzheimer Disease (AD). PATIENTS AND METHODS A systematic review and meta-analysis of published studies, including also a 5 year single-center cohort study, with available data on CSF and plasma biomarkers in symptomatic sporadic CAA versus HC and AD was conducted. Biomarkers' comparisons were investigated using random-effects models based on the ratio of mean (RoM) biomarker concentrations. RoM < 1 and RoM > 1 indicate lower and higher biomarker concentration in CAA compared to another population, respectively. RESULTS We identified nine cohorts, comprising 327 CAA patients (mean age: 71 ± 5 years; women: 45%) versus 336 HC (mean age: 65 ± 5 years; women: 45%) and 384 AD patients (mean age: 68 ± 3 years; women: 53%) with available data on CSF biomarkers. CSF Aβ42 levels [RoM: 0.47; 95% CI: 0.36-0.62; p < 0.0001], Aβ40 levels [RoM: 0.70; 95% CI: 0.63-0.79; p < 0.0001] and the ratio Aβ42/Aβ40 [RoM: 0.62; 95% CI: 0.39-0.98; p = 0.0438] differentiated CAA from HC. CSF Aβ40 levels [RoM: 0.73; 95% CI: 0.64-0.83; p = 0.0003] differentiated CAA from AD. CSF tau and p-tau levels differentiated CAA from HC [RoM: 1.71; 95% CI: 1.41-2.09; p = 0.0002 and RoM: 1.44; 95% CI: 1.20-1.73; p = 0.0014, respectively] and from AD [RoM: 0.65; 95% CI: 0.58-0.72; p < 0.0001 and RoM: 0.64; 95% CI: 0.57-0.71; p < 0.0001, respectively]. Plasma Aβ42 [RoM: 1.14; 95% CI: 0.89-1.45; p = 0.2079] and Aβ40 [RoM: 1.07; 95% CI: 0.91-1.25; p = 0.3306] levels were comparable between CAA and HC. CONCLUSIONS CAA is characterized by a distinct CSF biomarker pattern compared to HC and AD. CSF Aβ40 levels are lower in CAA compared to HC and AD, while tau and p-tau levels are higher in CAA compared to HC, but lower in comparison to AD patients.
Collapse
Affiliation(s)
- Aikaterini Theodorou
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioanna Tsantzali
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria-Ioanna Stefanou
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Simona Sacco
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, Italy
| | - Aristeidis H Katsanos
- Division of Neurology, McMaster University/Population Health Research Institute, Hamilton, Canada
| | - Ashkan Shoamanesh
- Division of Neurology, McMaster University/Population Health Research Institute, Hamilton, Canada
| | - Theodoros Karapanayiotides
- Second Department of Neurology, Aristotle University of Thessaloniki, School of Medicine, AHEPA University Hospital, Thessaloniki, Greece
| | - Ioanna Koutroulou
- Second Department of Neurology, Aristotle University of Thessaloniki, School of Medicine, AHEPA University Hospital, Thessaloniki, Greece
| | - Polyxeni Stamati
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, Larissa, Greece
| | - David J Werring
- Stroke Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Charlotte Cordonnier
- University Lille, Inserm, CHU Lille, U1172, LilNCog, Lille Neuroscience and Cognition, France
| | - Lina Palaiodimou
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Zompola
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstathios Boviatsis
- Second Department of Neurosurgery, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Lampis Stavrinou
- Second Department of Neurosurgery, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Frantzeska Frantzeskaki
- Second Critical Care Department, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Thorsten Steiner
- Departments of Neurology, Klinikum Frankfurt Höchst, Frankfurt and Heidelberg University Hospital, Heidelberg, Germany
| | - Andrei V Alexandrov
- Department of Neurology, University of Arizona, Banner University Medical Center, Phoenix
| | - Georgios P Paraskevas
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Department of Neurology, University of Tennessee Health Science Center, Memphis
| |
Collapse
|
6
|
Aranha MR, Montal V, van den Brink H, Pegueroles J, Carmona‐Iragui M, Videla L, Maure Blesa L, Benejam B, Arranz J, Valldeneu S, Barroeta I, Fernández S, Ribas L, Alcolea D, González‐Ortiz S, Bargalló N, Biessels GJ, Blesa R, Lleó A, Coutinho AM, Leite CC, Bejanin A, Fortea J. Cortical microinfarcts in adults with Down syndrome assessed with 3T-MRI. Alzheimers Dement 2024; 20:3906-3917. [PMID: 38644660 PMCID: PMC11180852 DOI: 10.1002/alz.13797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/01/2024] [Accepted: 02/22/2024] [Indexed: 04/23/2024]
Abstract
BACKGROUND Cortical microinfarcts (CMI) were attributed to cerebrovascular disease and cerebral amyloid angiopathy (CAA). CAA is frequent in Down syndrome (DS) while hypertension is rare, yet no studies have assessed CMI in DS. METHODS We included 195 adults with DS, 63 with symptomatic sporadic Alzheimer's disease (AD), and 106 controls with 3T magnetic resonance imaging. We assessed CMI prevalence in each group and CMI association with age, AD clinical continuum, vascular risk factors, vascular neuroimaging findings, amyloid/tau/neurodegeneration biomarkers, and cognition in DS. RESULTS CMI prevalence was 11.8% in DS, 4.7% in controls, and 17.5% in sporadic AD. In DS, CMI increased in prevalence with age and the AD clinical continuum, was clustered in the parietal lobes, and was associated with lacunes and cortico-subcortical infarcts, but not hemorrhagic lesions. DISCUSSION In DS, CMI are posteriorly distributed and related to ischemic but not hemorrhagic findings suggesting they might be associated with a specific ischemic CAA phenotype. HIGHLIGHTS This is the first study to assess cortical microinfarcts (assessed with 3T magnetic resonance imaging) in adults with Down syndrome (DS). We studied the prevalence of cortical microinfarcts in DS and its relationship with age, the Alzheimer's disease (AD) clinical continuum, vascular risk factors, vascular neuroimaging findings, amyloid/tau/neurodegeneration biomarkers, and cognition. The prevalence of cortical microinfarcts was 11.8% in DS and increased with age and along the AD clinical continuum. Cortical microinfarcts were clustered in the parietal lobes, and were associated with lacunes and cortico-subcortical infarcts, but not hemorrhagic lesions. In DS, cortical microinfarcts are posteriorly distributed and related to ischemic but not hemorrhagic findings suggesting they might be associated with a specific ischemic phenotype of cerebral amyloid angiopathy.
Collapse
|
7
|
Switzer AR, Charidimou A, McCarter S, Vemuri P, Nguyen AT, Przybelski SA, Lesnick TG, Rabinstein AA, Brown RD, Knopman DS, Petersen RC, Jack CR, Reichard RR, Graff-Radford J. Boston Criteria v2.0 for Cerebral Amyloid Angiopathy Without Hemorrhage: An MRI-Neuropathologic Validation Study. Neurology 2024; 102:e209386. [PMID: 38710005 PMCID: PMC11177590 DOI: 10.1212/wnl.0000000000209386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/20/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Updated criteria for the clinical-MRI diagnosis of cerebral amyloid angiopathy (CAA) have recently been proposed. However, their performance in individuals without symptomatic intracerebral hemorrhage (ICH) presentations is less defined. We aimed to assess the diagnostic performance of the Boston criteria version 2.0 for CAA diagnosis in a cohort of individuals ranging from cognitively normal to dementia in the community and memory clinic settings. METHODS Fifty-four participants from the Mayo Clinic Study of Aging or Alzheimer's Disease Research Center were included if they had an antemortem MRI with gradient-recall echo sequences and a brain autopsy with CAA evaluation. Performance of the Boston criteria v2.0 was compared with v1.5 using histopathologically verified CAA as the reference standard. RESULTS The median age at MRI was 75 years (interquartile range 65-80) with 28/54 participants having histopathologically verified CAA (i.e., moderate-to-severe CAA in at least 1 lobar region). The sensitivity and specificity of the Boston criteria v2.0 were 28.6% (95% CI 13.2%-48.7%) and 65.3% (95% CI 44.3%-82.8%) for probable CAA diagnosis (area under the receiver operating characteristic curve [AUC] 0.47) and 75.0% (55.1-89.3) and 38.5% (20.2-59.4) for any CAA diagnosis (possible + probable; AUC 0.57), respectively. The v2.0 Boston criteria were not superior in performance compared with the prior v1.5 criteria for either CAA diagnostic category. DISCUSSION The Boston criteria v2.0 have low accuracy in patients who are asymptomatic or only have cognitive symptoms. Additional biomarkers need to be explored to optimize CAA diagnosis in this population.
Collapse
Affiliation(s)
- Aaron R Switzer
- From the Department of Neurology (A.R.S., S.M., A.A.R., R.D.B., D.S.K., R.C.P., J.G.-R.), Mayo Clinic Rochester, MN; Department of Neurology (A.R.S.), University of Calgary, Canada; Department of Neurology (A.C.), Boston University Chobanian & Avedisian School of Medicine; and Department of Radiology (P.V., C.R.J.), Department of Pathology (A.T.N., R.R.R.), Department of Quantitative Health Sciences (S.A.P.), and Health Sciences Research (T.G.L.), Mayo Clinic Rochester, MN
| | - Andreas Charidimou
- From the Department of Neurology (A.R.S., S.M., A.A.R., R.D.B., D.S.K., R.C.P., J.G.-R.), Mayo Clinic Rochester, MN; Department of Neurology (A.R.S.), University of Calgary, Canada; Department of Neurology (A.C.), Boston University Chobanian & Avedisian School of Medicine; and Department of Radiology (P.V., C.R.J.), Department of Pathology (A.T.N., R.R.R.), Department of Quantitative Health Sciences (S.A.P.), and Health Sciences Research (T.G.L.), Mayo Clinic Rochester, MN
| | - Stuart McCarter
- From the Department of Neurology (A.R.S., S.M., A.A.R., R.D.B., D.S.K., R.C.P., J.G.-R.), Mayo Clinic Rochester, MN; Department of Neurology (A.R.S.), University of Calgary, Canada; Department of Neurology (A.C.), Boston University Chobanian & Avedisian School of Medicine; and Department of Radiology (P.V., C.R.J.), Department of Pathology (A.T.N., R.R.R.), Department of Quantitative Health Sciences (S.A.P.), and Health Sciences Research (T.G.L.), Mayo Clinic Rochester, MN
| | - Prashanthi Vemuri
- From the Department of Neurology (A.R.S., S.M., A.A.R., R.D.B., D.S.K., R.C.P., J.G.-R.), Mayo Clinic Rochester, MN; Department of Neurology (A.R.S.), University of Calgary, Canada; Department of Neurology (A.C.), Boston University Chobanian & Avedisian School of Medicine; and Department of Radiology (P.V., C.R.J.), Department of Pathology (A.T.N., R.R.R.), Department of Quantitative Health Sciences (S.A.P.), and Health Sciences Research (T.G.L.), Mayo Clinic Rochester, MN
| | - Aivi T Nguyen
- From the Department of Neurology (A.R.S., S.M., A.A.R., R.D.B., D.S.K., R.C.P., J.G.-R.), Mayo Clinic Rochester, MN; Department of Neurology (A.R.S.), University of Calgary, Canada; Department of Neurology (A.C.), Boston University Chobanian & Avedisian School of Medicine; and Department of Radiology (P.V., C.R.J.), Department of Pathology (A.T.N., R.R.R.), Department of Quantitative Health Sciences (S.A.P.), and Health Sciences Research (T.G.L.), Mayo Clinic Rochester, MN
| | - Scott A Przybelski
- From the Department of Neurology (A.R.S., S.M., A.A.R., R.D.B., D.S.K., R.C.P., J.G.-R.), Mayo Clinic Rochester, MN; Department of Neurology (A.R.S.), University of Calgary, Canada; Department of Neurology (A.C.), Boston University Chobanian & Avedisian School of Medicine; and Department of Radiology (P.V., C.R.J.), Department of Pathology (A.T.N., R.R.R.), Department of Quantitative Health Sciences (S.A.P.), and Health Sciences Research (T.G.L.), Mayo Clinic Rochester, MN
| | - Timothy G Lesnick
- From the Department of Neurology (A.R.S., S.M., A.A.R., R.D.B., D.S.K., R.C.P., J.G.-R.), Mayo Clinic Rochester, MN; Department of Neurology (A.R.S.), University of Calgary, Canada; Department of Neurology (A.C.), Boston University Chobanian & Avedisian School of Medicine; and Department of Radiology (P.V., C.R.J.), Department of Pathology (A.T.N., R.R.R.), Department of Quantitative Health Sciences (S.A.P.), and Health Sciences Research (T.G.L.), Mayo Clinic Rochester, MN
| | - Alejandro A Rabinstein
- From the Department of Neurology (A.R.S., S.M., A.A.R., R.D.B., D.S.K., R.C.P., J.G.-R.), Mayo Clinic Rochester, MN; Department of Neurology (A.R.S.), University of Calgary, Canada; Department of Neurology (A.C.), Boston University Chobanian & Avedisian School of Medicine; and Department of Radiology (P.V., C.R.J.), Department of Pathology (A.T.N., R.R.R.), Department of Quantitative Health Sciences (S.A.P.), and Health Sciences Research (T.G.L.), Mayo Clinic Rochester, MN
| | - Robert D Brown
- From the Department of Neurology (A.R.S., S.M., A.A.R., R.D.B., D.S.K., R.C.P., J.G.-R.), Mayo Clinic Rochester, MN; Department of Neurology (A.R.S.), University of Calgary, Canada; Department of Neurology (A.C.), Boston University Chobanian & Avedisian School of Medicine; and Department of Radiology (P.V., C.R.J.), Department of Pathology (A.T.N., R.R.R.), Department of Quantitative Health Sciences (S.A.P.), and Health Sciences Research (T.G.L.), Mayo Clinic Rochester, MN
| | - David S Knopman
- From the Department of Neurology (A.R.S., S.M., A.A.R., R.D.B., D.S.K., R.C.P., J.G.-R.), Mayo Clinic Rochester, MN; Department of Neurology (A.R.S.), University of Calgary, Canada; Department of Neurology (A.C.), Boston University Chobanian & Avedisian School of Medicine; and Department of Radiology (P.V., C.R.J.), Department of Pathology (A.T.N., R.R.R.), Department of Quantitative Health Sciences (S.A.P.), and Health Sciences Research (T.G.L.), Mayo Clinic Rochester, MN
| | - Ronald C Petersen
- From the Department of Neurology (A.R.S., S.M., A.A.R., R.D.B., D.S.K., R.C.P., J.G.-R.), Mayo Clinic Rochester, MN; Department of Neurology (A.R.S.), University of Calgary, Canada; Department of Neurology (A.C.), Boston University Chobanian & Avedisian School of Medicine; and Department of Radiology (P.V., C.R.J.), Department of Pathology (A.T.N., R.R.R.), Department of Quantitative Health Sciences (S.A.P.), and Health Sciences Research (T.G.L.), Mayo Clinic Rochester, MN
| | - Clifford R Jack
- From the Department of Neurology (A.R.S., S.M., A.A.R., R.D.B., D.S.K., R.C.P., J.G.-R.), Mayo Clinic Rochester, MN; Department of Neurology (A.R.S.), University of Calgary, Canada; Department of Neurology (A.C.), Boston University Chobanian & Avedisian School of Medicine; and Department of Radiology (P.V., C.R.J.), Department of Pathology (A.T.N., R.R.R.), Department of Quantitative Health Sciences (S.A.P.), and Health Sciences Research (T.G.L.), Mayo Clinic Rochester, MN
| | - R Ross Reichard
- From the Department of Neurology (A.R.S., S.M., A.A.R., R.D.B., D.S.K., R.C.P., J.G.-R.), Mayo Clinic Rochester, MN; Department of Neurology (A.R.S.), University of Calgary, Canada; Department of Neurology (A.C.), Boston University Chobanian & Avedisian School of Medicine; and Department of Radiology (P.V., C.R.J.), Department of Pathology (A.T.N., R.R.R.), Department of Quantitative Health Sciences (S.A.P.), and Health Sciences Research (T.G.L.), Mayo Clinic Rochester, MN
| | - Jonathan Graff-Radford
- From the Department of Neurology (A.R.S., S.M., A.A.R., R.D.B., D.S.K., R.C.P., J.G.-R.), Mayo Clinic Rochester, MN; Department of Neurology (A.R.S.), University of Calgary, Canada; Department of Neurology (A.C.), Boston University Chobanian & Avedisian School of Medicine; and Department of Radiology (P.V., C.R.J.), Department of Pathology (A.T.N., R.R.R.), Department of Quantitative Health Sciences (S.A.P.), and Health Sciences Research (T.G.L.), Mayo Clinic Rochester, MN
| |
Collapse
|
8
|
van Veluw SJ, Benveniste H, Bakker ENTP, Carare RO, Greenberg SM, Iliff JJ, Lorthois S, Van Nostrand WE, Petzold GC, Shih AY, van Osch MJP. Is CAA a perivascular brain clearance disease? A discussion of the evidence to date and outlook for future studies. Cell Mol Life Sci 2024; 81:239. [PMID: 38801464 PMCID: PMC11130115 DOI: 10.1007/s00018-024-05277-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/20/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
The brain's network of perivascular channels for clearance of excess fluids and waste plays a critical role in the pathogenesis of several neurodegenerative diseases including cerebral amyloid angiopathy (CAA). CAA is the main cause of hemorrhagic stroke in the elderly, the most common vascular comorbidity in Alzheimer's disease and also implicated in adverse events related to anti-amyloid immunotherapy. Remarkably, the mechanisms governing perivascular clearance of soluble amyloid β-a key culprit in CAA-from the brain to draining lymphatics and systemic circulation remains poorly understood. This knowledge gap is critically important to bridge for understanding the pathophysiology of CAA and accelerate development of targeted therapeutics. The authors of this review recently converged their diverse expertise in the field of perivascular physiology to specifically address this problem within the framework of a Leducq Foundation Transatlantic Network of Excellence on Brain Clearance. This review discusses the overarching goal of the consortium and explores the evidence supporting or refuting the role of impaired perivascular clearance in the pathophysiology of CAA with a focus on translating observations from rodents to humans. We also discuss the anatomical features of perivascular channels as well as the biophysical characteristics of fluid and solute transport.
Collapse
Affiliation(s)
- Susanne J van Veluw
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
| | - Erik N T P Bakker
- Department of Biomedical Engineering, Amsterdam University Medical Center, Location AMC, Amsterdam Neuroscience Research Institute, Amsterdam, The Netherlands
| | - Roxana O Carare
- Clinical Neurosciences, University of Southampton, Southampton, UK
| | - Steven M Greenberg
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeffrey J Iliff
- VA Puget Sound Health Care System, University of Washington, Seattle, WA, USA
| | - Sylvie Lorthois
- Institut de Mécanique Des Fluides de Toulouse, IMFT, Université de Toulouse, CNRS, Toulouse, France
| | - William E Van Nostrand
- Department of Biomedical and Pharmaceutical Science, George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| | - Gabor C Petzold
- German Center for Neurodegenerative Disease, Bonn, Germany
- Division of Vascular Neurology, Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Andy Y Shih
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
9
|
Schrader JM, Xu F, Agostinucci KJ, DaSilva NA, Van Nostrand WE. Longitudinal markers of cerebral amyloid angiopathy and related inflammation in rTg-DI rats. Sci Rep 2024; 14:8441. [PMID: 38600214 PMCID: PMC11006668 DOI: 10.1038/s41598-024-59013-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 04/05/2024] [Indexed: 04/12/2024] Open
Abstract
Cerebral amyloid angiopathy (CAA) is a prevalent vascular dementia and common comorbidity of Alzheimer's disease (AD). While it is known that vascular fibrillar amyloid β (Aβ) deposits leads to vascular deterioration and can drive parenchymal CAA related inflammation (CAA-ri), underlying mechanisms of CAA pathology remain poorly understood. Here, we conducted brain regional proteomic analysis of early and late disease stages in the rTg-DI CAA rat model to gain molecular insight to mechanisms of CAA/CAA-ri progression and identify potential brain protein markers of CAA/CAA-ri. Longitudinal brain regional proteomic analysis revealed increased differentially expressed proteins (DEP) including ANXA3, HTRA1, APOE, CST3, and CLU, shared between the cortex, hippocampus, and thalamus, at both stages of disease in rTg-DI rats. Subsequent pathway analysis indicated pathway enrichment and predicted activation of TGF-β1, which was confirmed by immunolabeling and ELISA. Further, we identified numerous CAA related DEPs associate with astrocytes (HSPB1 and MLC1) and microglia (ANXA3, SPARC, TGF-β1) not previously associated with astrocytes or microglia in other AD models, possibly indicating that they are specific to CAA-ri. Thus, the data presented here identify several potential brain protein biomarkers of CAA/CAA-ri while providing novel molecular and mechanistic insight to mechanisms of CAA and CAA-ri pathological progression and glial cell mediated responses.
Collapse
Affiliation(s)
- Joseph M Schrader
- Department of Biomedical and Pharmaceutical Sciences, George & Anne Ryan Institute for Neuroscience, University of Rhode Island, 130 Flagg Road, Kingston, Rhode Island, 02881, USA
| | - Feng Xu
- Department of Biomedical and Pharmaceutical Sciences, George & Anne Ryan Institute for Neuroscience, University of Rhode Island, 130 Flagg Road, Kingston, Rhode Island, 02881, USA
| | - Kevin J Agostinucci
- Department of Biomedical and Pharmaceutical Sciences, George & Anne Ryan Institute for Neuroscience, University of Rhode Island, 130 Flagg Road, Kingston, Rhode Island, 02881, USA
| | - Nicholas A DaSilva
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, 02912, USA
| | - William E Van Nostrand
- Department of Biomedical and Pharmaceutical Sciences, George & Anne Ryan Institute for Neuroscience, University of Rhode Island, 130 Flagg Road, Kingston, Rhode Island, 02881, USA.
| |
Collapse
|
10
|
Biesbroek JM, Coenen M, DeCarli C, Fletcher EM, Maillard PM, Barkhof F, Barnes J, Benke T, Chen CPLH, Dal‐Bianco P, Dewenter A, Duering M, Enzinger C, Ewers M, Exalto LG, Franzmeier N, Hilal S, Hofer E, Koek HL, Maier AB, McCreary CR, Papma JM, Paterson RW, Pijnenburg YAL, Rubinski A, Schmidt R, Schott JM, Slattery CF, Smith EE, Sudre CH, Steketee RME, Teunissen CE, van den Berg E, van der Flier WM, Venketasubramanian N, Venkatraghavan V, Vernooij MW, Wolters FJ, Xin X, Kuijf HJ, Biessels GJ. Amyloid pathology and vascular risk are associated with distinct patterns of cerebral white matter hyperintensities: A multicenter study in 3132 memory clinic patients. Alzheimers Dement 2024; 20:2980-2989. [PMID: 38477469 PMCID: PMC11032573 DOI: 10.1002/alz.13765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 03/14/2024]
Abstract
INTRODUCTION White matter hyperintensities (WMH) are associated with key dementia etiologies, in particular arteriolosclerosis and amyloid pathology. We aimed to identify WMH locations associated with vascular risk or cerebral amyloid-β1-42 (Aβ42)-positive status. METHODS Individual patient data (n = 3,132; mean age 71.5 ± 9 years; 49.3% female) from 11 memory clinic cohorts were harmonized. WMH volumes in 28 regions were related to a vascular risk compound score (VRCS) and Aß42 status (based on cerebrospinal fluid or amyloid positron emission tomography), correcting for age, sex, study site, and total WMH volume. RESULTS VRCS was associated with WMH in anterior/superior corona radiata (B = 0.034/0.038, p < 0.001), external capsule (B = 0.052, p < 0.001), and middle cerebellar peduncle (B = 0.067, p < 0.001), and Aß42-positive status with WMH in posterior thalamic radiation (B = 0.097, p < 0.001) and splenium (B = 0.103, p < 0.001). DISCUSSION Vascular risk factors and Aß42 pathology have distinct signature WMH patterns. This regional vulnerability may incite future studies into how arteriolosclerosis and Aß42 pathology affect the brain's white matter. HIGHLIGHTS Key dementia etiologies may be associated with specific patterns of white matter hyperintensities (WMH). We related WMH locations to vascular risk and cerebral Aβ42 status in 11 memory clinic cohorts. Aβ42 positive status was associated with posterior WMH in splenium and posterior thalamic radiation. Vascular risk was associated with anterior and infratentorial WMH. Amyloid pathology and vascular risk have distinct signature WMH patterns.
Collapse
|
11
|
Tsai HH, Liu CJ, Lee BC, Chen YF, Yen RF, Jeng JS, Tsai LK. Cerebral tau pathology in cerebral amyloid angiopathy. Brain Commun 2024; 6:fcae086. [PMID: 38638152 PMCID: PMC11024817 DOI: 10.1093/braincomms/fcae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/01/2024] [Accepted: 03/11/2024] [Indexed: 04/20/2024] Open
Abstract
Tau, a hallmark of Alzheimer's disease, is poorly characterized in cerebral amyloid angiopathy. We aimed to assess the clinico-radiological correlations between tau positron emission tomography scans and cerebral amyloid angiopathy. We assessed cerebral amyloid and hyperphosphorylated tau in patients with probable cerebral amyloid angiopathy (n = 31) and hypertensive small vessel disease (n = 27) using 11C-Pittsburgh compound B and 18F-T807 positron emission tomography. Multivariable regression models were employed to assess radio-clinical features related to cerebral tau pathology in cerebral amyloid angiopathy. Cerebral amyloid angiopathy exhibited a higher cerebral tau burden in the inferior temporal lobe [1.25 (1.17-1.42) versus 1.08 (1.05-1.22), P < 0.001] and all Braak stage regions of interest (P < 0.05) than hypertensive small vessel disease, although the differences were attenuated after age adjustment. Cerebral tau pathology was significantly associated with cerebral amyloid angiopathy-related vascular markers, including cortical superficial siderosis (β = 0.12, 95% confidence interval 0.04-0.21) and cerebral amyloid angiopathy score (β = 0.12, 95% confidence interval 0.03-0.21) after adjustment for age, ApoE4 status and whole cortex amyloid load. Tau pathology correlated significantly with cognitive score (Spearman's ρ=-0.56, P = 0.001) and hippocampal volume (-0.49, P = 0.007), even after adjustment. In conclusion, tau pathology is more frequent in sporadic cerebral amyloid angiopathy than in hypertensive small vessel disease. Cerebral amyloid angiopathy-related vascular pathologies, especially cortical superficial siderosis, are potential markers of cerebral tau pathology suggestive of concomitant Alzheimer's disease.
Collapse
Affiliation(s)
- Hsin-Hsi Tsai
- Department of Neurology, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Chia-Ju Liu
- Department of Nuclear Medicine, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Bo-Ching Lee
- Department of Medical Imaging, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Ya-Fang Chen
- Department of Medical Imaging, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Ruoh-Fang Yen
- Department of Nuclear Medicine, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Jiann-Shing Jeng
- Department of Neurology, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Li-Kai Tsai
- Department of Neurology, National Taiwan University Hospital, Taipei 100225, Taiwan
| |
Collapse
|
12
|
Dargvainiene J, Jensen-Kondering U, Bender B, Berg D, Brüggemann N, Flüh C, Markewitz R, Neumann A, Röben B, Röcken C, Royl G, Schulte C, Wandinger KP, Weiler C, Margraf NG, Kuhlenbäumer G. Aβ38 and Aβ43 do not differentiate between Alzheimer's disease and cerebral amyloid angiopathy. Ann Clin Transl Neurol 2024; 11:806-811. [PMID: 38186185 DOI: 10.1002/acn3.51987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/23/2023] [Accepted: 12/10/2023] [Indexed: 01/09/2024] Open
Abstract
Differential diagnosis between Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA) using cerebrospinal fluid (CSF) biomarkers is challenging. A recent study suggested that the addition of Aβ38 and Aβ43 to a standard AD biomarker panel (Aβ40, Aβ42, t-tau, p-tau) to improve the differential diagnosis. We tested this hypothesis in an independent German cohort of CAA and AD patients and controls using the same analytical techniques. We found excellent discrimination between AD and controls and between CAA and controls, but not between AD and CAA. Adding Aβ38 and Aβ43 to the panel did not improve the discrimination between AD and CAA.
Collapse
Affiliation(s)
- Justina Dargvainiene
- Institute of Clinical Chemistry, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ulf Jensen-Kondering
- Department of Neuroradiology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel University (CAU), Kiel, Germany
| | - Benjamin Bender
- Department of Radiology, Diagnostical and Interventional Neuroradiology, University Hospital of Tübingen, Tübingen, Germany
| | - Daniela Berg
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel University (CAU), Kiel, Germany
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Norbert Brüggemann
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Charlotte Flüh
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel University (CAU), Kiel, Germany
| | - Robert Markewitz
- Institute of Clinical Chemistry, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Alexander Neumann
- Department of Neuroradiology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Benjamin Röben
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Department of Pathology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel University (CAU), Kiel, Germany
| | - Christoph Röcken
- Department of Pathology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel University (CAU), Kiel, Germany
| | - Georg Royl
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Claudia Schulte
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany
| | - Klaus-Peter Wandinger
- Institute of Clinical Chemistry, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Caroline Weiler
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel University (CAU), Kiel, Germany
| | - Nils G Margraf
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel University (CAU), Kiel, Germany
| | - Gregor Kuhlenbäumer
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel University (CAU), Kiel, Germany
| |
Collapse
|
13
|
Raposo N, Périole C, Planton M. In-vivo diagnosis of cerebral amyloid angiopathy: an updated review. Curr Opin Neurol 2024; 37:19-25. [PMID: 38038409 DOI: 10.1097/wco.0000000000001236] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
PURPOSE OF REVIEW Sporadic cerebral amyloid angiopathy (CAA) is a highly prevalent small vessel disease in ageing population with potential severe complications including lobar intracerebral hemorrhage (ICH), cognitive impairment, and dementia. Although diagnosis of CAA was made only with postmortem neuropathological examination a few decades ago, diagnosing CAA without pathological proof is now allowed in living patients. This review focuses on recently identified biomarkers of CAA and current diagnostic criteria. RECENT FINDINGS Over the past few years, clinicians and researchers have shown increased interest for CAA, and important advances have been made. Thanks to recent insights into mechanisms involved in CAA and advances in structural and functional neuroimaging, PET amyloid tracers, cerebrospinal fluid and plasma biomarkers analysis, a growing number of biomarkers of CAA have been identified. Imaging-based diagnostic criteria including emerging biomarkers have been recently developed or updated, enabling accurate and earlier diagnosis of CAA in living patients. SUMMARY Recent advances in neuroimaging allow diagnosing CAA in the absence of pathological examination. Current imaging-based criteria have high diagnostic performance in patients presenting with ICH, but is more limited in other clinical context such as cognitively impaired patients or asymptomatic individuals. Further research is still needed to improve diagnostic accuracy.
Collapse
Affiliation(s)
- Nicolas Raposo
- Department of neurology, Toulouse University Hospital
- Clinical Investigation Center, CIC1436, Toulouse University Hospital, F-CRIN/Strokelink Network, Toulouse
- Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, France
| | - Charlotte Périole
- Department of neurology, Toulouse University Hospital
- Clinical Investigation Center, CIC1436, Toulouse University Hospital, F-CRIN/Strokelink Network, Toulouse
| | - Mélanie Planton
- Department of neurology, Toulouse University Hospital
- Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, France
| |
Collapse
|
14
|
Muir RT, Ismail Z, Black SE, Smith EE. Comparative methods for quantifying plasma biomarkers in Alzheimer's disease: Implications for the next frontier in cerebral amyloid angiopathy diagnostics. Alzheimers Dement 2024; 20:1436-1458. [PMID: 37908054 PMCID: PMC10916950 DOI: 10.1002/alz.13510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 11/02/2023]
Abstract
Plasma amyloid beta (Aβ) and tau are emerging as accessible biomarkers for Alzheimer's disease (AD). However, many assays exist with variable test performances, highlighting the need for a comparative assessment to identify the most valid assays for future use in AD and to apply to other settings in which the same biomarkers may be useful, namely, cerebral amyloid angiopathy (CAA). CAA is a progressive cerebrovascular disease characterized by deposition of Aβ40 and Aβ42 in cortical and leptomeningeal vessels. Novel immunotherapies for AD can induce amyloid-related imaging abnormalities resembling CAA-related inflammation. Few studies have evaluated plasma biomarkers in CAA. Identifying a CAA signature could facilitate diagnosis, prognosis, and a safer selection of patients with AD for emerging immunotherapies. This review evaluates studies that compare the diagnostic test performance of plasma biomarker techniques in AD and cerebrovascular and plasma biomarker profiles of CAA; it also discusses novel hypotheses and future avenues for plasma biomarker research in CAA.
Collapse
Affiliation(s)
- Ryan T. Muir
- Calgary Stroke ProgramDepartment of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
- Department of Community Health SciencesUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | - Zahinoor Ismail
- Department of Community Health SciencesUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of PsychiatryUniversity of CalgaryCalgaryAlbertaCanada
| | - Sandra E. Black
- Division of NeurologyDepartment of MedicineSunnybrook Health Sciences CentreTorontoOntarioCanada
- LC Campbell Cognitive Neurology Research UnitDr Sandra Black Centre for Brain Resilience and Recovery, and Hurvitz Brain Sciences ProgramSunnybrook Research InstituteUniversity of TorontoTorontoOntarioCanada
| | - Eric E. Smith
- Calgary Stroke ProgramDepartment of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
- Department of Community Health SciencesUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
15
|
Vervuurt M, Schrader JM, de Kort AM, Kersten I, Wessels HJCT, Klijn CJM, Schreuder FHBM, Kuiperij HB, Gloerich J, Van Nostrand WE, Verbeek MM. Cerebrospinal fluid shotgun proteomics identifies distinct proteomic patterns in cerebral amyloid angiopathy rodent models and human patients. Acta Neuropathol Commun 2024; 12:6. [PMID: 38191511 PMCID: PMC10775534 DOI: 10.1186/s40478-023-01698-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024] Open
Abstract
Cerebral amyloid angiopathy (CAA) is a form of small vessel disease characterised by the progressive deposition of amyloid β protein in the cerebral vasculature, inducing symptoms including cognitive impairment and cerebral haemorrhages. Due to their accessibility and homogeneous disease phenotypes, animal models are advantageous platforms to study diseases like CAA. Untargeted proteomics studies of CAA rat models (e.g. rTg-DI) and CAA patients provide opportunities for the identification of novel biomarkers of CAA. We performed untargeted, data-independent acquisition proteomic shotgun analyses on the cerebrospinal fluid of rTg-DI rats and wild-type (WT) littermates. Rodents were analysed at 3 months (n = 6/10), 6 months (n = 8/8), and 12 months (n = 10/10) for rTg-DI and WT respectively. For humans, proteomic analyses were performed on CSF of sporadic CAA patients (sCAA) and control participants (n = 39/28). We show recurring patterns of differentially expressed (mostly increased) proteins in the rTg-DI rats compared to wild type rats, especially of proteases of the cathepsin protein family (CTSB, CTSD, CTSS), and their main inhibitor (CST3). In sCAA patients, decreased levels of synaptic proteins (e.g. including VGF, NPTX1, NRXN2) and several members of the granin family (SCG1, SCG2, SCG3, SCG5) compared to controls were discovered. Additionally, several serine protease inhibitors of the SERPIN protein family (including SERPINA3, SERPINC1 and SERPING1) were differentially expressed compared to controls. Fifteen proteins were significantly altered in both rTg-DI rats and sCAA patients, including (amongst others) SCG5 and SERPING1. These results identify specific groups of proteins likely involved in, or affected by, pathophysiological processes involved in CAA pathology such as protease and synapse function of rTg-DI rat models and sCAA patients, and may serve as candidate biomarkers for sCAA.
Collapse
Affiliation(s)
- Marc Vervuurt
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, 830 TML, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Joseph M Schrader
- Department of Biomedical and Pharmaceutical Sciences, George & Anne Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| | - Anna M de Kort
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, 830 TML, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Iris Kersten
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, 830 TML, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Hans J C T Wessels
- Department of Human Genetics, Translational Metabolic Laboratory, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Catharina J M Klijn
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, 830 TML, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Floris H B M Schreuder
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, 830 TML, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - H Bea Kuiperij
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, 830 TML, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Jolein Gloerich
- Department of Human Genetics, Translational Metabolic Laboratory, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - William E Van Nostrand
- Department of Biomedical and Pharmaceutical Sciences, George & Anne Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| | - Marcel M Verbeek
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, 830 TML, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
- Department of Human Genetics, Translational Metabolic Laboratory, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
16
|
Wheeler KV, Irimia A, Braskie MN. Using Neuroimaging to Study Cerebral Amyloid Angiopathy and Its Relationship to Alzheimer's Disease. J Alzheimers Dis 2024; 97:1479-1502. [PMID: 38306032 DOI: 10.3233/jad-230553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Cerebral amyloid angiopathy (CAA) is characterized by amyloid-β aggregation in the media and adventitia of the leptomeningeal and cortical blood vessels. CAA is one of the strongest vascular contributors to Alzheimer's disease (AD). It frequently co-occurs in AD patients, but the relationship between CAA and AD is incompletely understood. CAA may drive AD risk through damage to the neurovascular unit and accelerate parenchymal amyloid and tau deposition. Conversely, early AD may also drive CAA through cerebrovascular remodeling that impairs blood vessels from clearing amyloid-β. Sole reliance on autopsy examination to study CAA limits researchers' ability to investigate CAA's natural disease course and the effect of CAA on cognitive decline. Neuroimaging allows for in vivo assessment of brain function and structure and can be leveraged to investigate CAA staging and explore its associations with AD. In this review, we will discuss neuroimaging modalities that can be used to investigate markers associated with CAA that may impact AD vulnerability including hemorrhages and microbleeds, blood-brain barrier permeability disruption, reduced cerebral blood flow, amyloid and tau accumulation, white matter tract disruption, reduced cerebrovascular reactivity, and lowered brain glucose metabolism. We present possible areas for research inquiry to advance biomarker discovery and improve diagnostics.
Collapse
Affiliation(s)
- Koral V Wheeler
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina Del Rey, CA, USA
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, USC Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, Corwin D. Denney Research Center, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Meredith N Braskie
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina Del Rey, CA, USA
| |
Collapse
|
17
|
Timsina J, Ali M, Do A, Wang L, Western D, Sung YJ, Cruchaga C. Harmonization of CSF and imaging biomarkers in Alzheimer's disease: Need and practical applications for genetics studies and preclinical classification. Neurobiol Dis 2024; 190:106373. [PMID: 38072165 DOI: 10.1016/j.nbd.2023.106373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/06/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023] Open
Abstract
In Alzheimer's disease (AD) research, cerebrospinal fluid (CSF) Amyloid beta (Aβ), Tau and pTau are the most accepted and well validated biomarkers. Several methods and platforms exist to measure those biomarkers, leading to challenges in combining data across studies. Thus, there is a need to identify methods that harmonize and standardize these values. We used a Z-score based approach to harmonize CSF and amyloid imaging data from multiple cohorts and compared GWAS results using this approach with currently accepted methods. We also used a generalized mixture model to calculate the threshold for biomarker-positivity. Based on our findings, our normalization approach performed as well as meta-analysis and did not lead to any spurious results. In terms of dichotomization, cutoffs calculated with this approach were very similar to those reported previously. These findings show that the Z-score based harmonization approach can be applied to heterogeneous platforms and provides biomarker cut-offs consistent with the classical approaches without requiring any additional data.
Collapse
Affiliation(s)
- Jigyasha Timsina
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Muhammad Ali
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anh Do
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Lihua Wang
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel Western
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yun Ju Sung
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Biostatistics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
18
|
Henneicke S, Meuth SG, Schreiber S. [Cerebral Small Vessel Disease: Advances in Understanding its Pathophysiology]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2023; 91:494-502. [PMID: 38081163 DOI: 10.1055/a-2190-8957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Sporadic cerebral small vessel disease determines age- and vascular-risk-factor-related processes of the small brain vasculature. The underlying pathology develops in a stage-dependent manner - probably over decades - often already starting in midlife. Endothelial and pericyte activation precedes blood-brain barrier leaks, extracellular matrix remodeling and neuroinflammation, which ultimately result in bleeds, synaptic and neural dysfunction. Hemodynamic compromise of the small vessel walls promotes perivascular drainage failure and accumulation of neurotoxic waste products in the brain. Clinical diagnosis is mainly based on magnetic resonance imaging according to the Standards for Reporting Vascular Changes on Neuroimaging 2. Cerebral amyloid angiopathy is particularly stratified according to the Boston v2.0 criteria. Small vessel disease of the brain could be clinically silent, or manifested through a heterogeneous spectrum of diseases, where cognitive decline and stroke-related symptoms are the most common ones. Prevention and therapy are centered around vascular risk factor control, physically and cognitively enriched life style and, presumably, maintenance of a good sleep quality, which promotes sufficient perivascular drainage. Prevention of ischemic stroke through anticoagulation that carries at the same time an increased risk for large brain hemorrhages - particularly in the presence of disseminated cortical superficial siderosis - remains one of the main challenges. The cerebral small vessel disease field is rapidly evolving, focusing on the establishment of early disease stage imaging and biofluid biomarkers of neurovascular unit remodeling and the compromise of perivascular drainage. New prevention and therapy strategies will correspondingly center around the dedicated targeting of, e. g., cellular small vessel wall and perivascular tissue structures. Growing knowledge about brain microvasculature bridging neuroimmunological, neurovascular and neurodegenerative fields might lead to a rethink about apparently separate disease entities and the development of overarching concepts for a common line of prevention and treatment for several diseases.
Collapse
Affiliation(s)
- Solveig Henneicke
- Neurologie, Otto-von-Guericke-Universität Magdeburg Medizinische Fakultät, Magdeburg, Germany
| | | | - Stefanie Schreiber
- Neurologie, Otto-von-Guericke-Universität Magdeburg Medizinische Fakultät, Magdeburg, Germany
| |
Collapse
|
19
|
Cozza M, Amadori L, Boccardi V. Exploring cerebral amyloid angiopathy: Insights into pathogenesis, diagnosis, and treatment. J Neurol Sci 2023; 454:120866. [PMID: 37931443 DOI: 10.1016/j.jns.2023.120866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023]
Abstract
Cerebral Amyloid Angiopathy (CAA) is a neurological disorder characterized by the deposition of amyloid plaques in the walls of cerebral blood vessels. This condition poses significant challenges in terms of understanding its underlying mechanisms, accurate diagnosis, and effective treatment strategies. This article aims to shed light on the complexities of CAA by providing insights into its pathogenesis, diagnosis, and treatment options. The pathogenesis of CAA involves the accumulation of amyloid beta (Aβ) peptides in cerebral vessels, leading to vessel damage, impaired blood flow, and subsequent cognitive decline. Various genetic and environmental factors contribute to the development and progression of CAA, and understanding these factors is crucial for targeted interventions. Accurate diagnosis of CAA often requires advanced imaging techniques, such as magnetic resonance imaging (MRI) or positron emission tomography (PET) scans, to detect characteristic amyloid deposits in the brain. Early and accurate diagnosis enables appropriate management and intervention strategies. Treatment of CAA focuses on preventing further deposition of amyloid plaques, managing associated symptoms, and reducing the risk of complications such as cerebral hemorrhage. Currently, there are no disease-modifying therapies specifically approved for CAA. However, several experimental treatments targeting Aβ clearance and anti-inflammatory approaches are being investigated in clinical trials, offering hope for future therapeutic advancements.
Collapse
Affiliation(s)
| | - Lucia Amadori
- Department of Integration, Intermediate Care Programme, AUSL Bologna, Italy
| | - Virginia Boccardi
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Italy.
| |
Collapse
|
20
|
Theodorou A, Palaiodimou L, Papagiannopoulou G, Kargiotis O, Psychogios K, Safouris A, Bakola E, Chondrogianni M, Kotsali-Peteinelli V, Melanis K, Tsibonakis A, Andreadou E, Vasilopoulou S, Lachanis S, Velonakis G, Tzavellas E, Tzartos JS, Voumvourakis K, Paraskevas GP, Tsivgoulis G. Clinical Characteristics, Neuroimaging Markers, and Outcomes in Patients with Cerebral Amyloid Angiopathy: A Prospective Cohort Study. J Clin Med 2023; 12:5591. [PMID: 37685658 PMCID: PMC10488273 DOI: 10.3390/jcm12175591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Background and purpose: Sporadic cerebral amyloid angiopathy (CAA) is a small vessel disease, resulting from progressive amyloid-β deposition in the media/adventitia of cortical and leptomeningeal arterioles. We sought to assess the prevalence of baseline characteristics, clinical and radiological findings, as well as outcomes among patients with CAA, in the largest study to date conducted in Greece. Methods: Sixty-eight patients fulfilling the Boston Criteria v1.5 for probable/possible CAA were enrolled and followed for at least twelve months. Magnetic Resonance Imaging was used to assess specific neuroimaging markers. Data regarding cerebrospinal fluid biomarker profile and Apolipoprotein-E genotype were collected. Multiple logistic regression analyses were performed to identify predictors of clinical phenotypes. Cox-proportional hazard regression models were used to calculate associations with the risk of recurrent intracerebral hemorrhage (ICH). Results: Focal neurological deficits (75%), cognitive decline (57%), and transient focal neurological episodes (TFNEs; 21%) were the most common clinical manifestations. Hemorrhagic lesions, including lobar cerebral microbleeds (CMBs; 93%), cortical superficial siderosis (cSS; 48%), and lobar ICH (43%) were the most prevalent neuroimaging findings. cSS was independently associated with the likelihood of TFNEs at presentation (OR: 4.504, 95%CI:1.258-19.088), while multiple (>10) lobar CMBs were independently associated with cognitive decline at presentation (OR:5.418, 95%CI:1.316-28.497). cSS emerged as the only risk factor of recurrent ICH (HR:4.238, 95%CI:1.509-11.900) during a median follow-up of 20 months. Conclusions: cSS was independently associated with TFNEs at presentation and ICH recurrence at follow-up, while a higher burden of lobar CMBs with cognitive decline at baseline. These findings highlight the prognostic value of neuroimaging markers, which may influence clinical decision-making.
Collapse
Affiliation(s)
- Aikaterini Theodorou
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.T.); (L.P.); (G.P.); (E.B.); (M.C.); (V.K.-P.); (K.M.); (A.T.); (J.S.T.); (K.V.); (G.P.P.)
| | - Lina Palaiodimou
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.T.); (L.P.); (G.P.); (E.B.); (M.C.); (V.K.-P.); (K.M.); (A.T.); (J.S.T.); (K.V.); (G.P.P.)
| | - Georgia Papagiannopoulou
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.T.); (L.P.); (G.P.); (E.B.); (M.C.); (V.K.-P.); (K.M.); (A.T.); (J.S.T.); (K.V.); (G.P.P.)
| | - Odysseas Kargiotis
- Stroke Unit, Metropolitan Hospital, 18547 Piraeus, Greece; (O.K.); (K.P.); (A.S.)
| | - Klearchos Psychogios
- Stroke Unit, Metropolitan Hospital, 18547 Piraeus, Greece; (O.K.); (K.P.); (A.S.)
| | - Apostolos Safouris
- Stroke Unit, Metropolitan Hospital, 18547 Piraeus, Greece; (O.K.); (K.P.); (A.S.)
| | - Eleni Bakola
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.T.); (L.P.); (G.P.); (E.B.); (M.C.); (V.K.-P.); (K.M.); (A.T.); (J.S.T.); (K.V.); (G.P.P.)
| | - Maria Chondrogianni
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.T.); (L.P.); (G.P.); (E.B.); (M.C.); (V.K.-P.); (K.M.); (A.T.); (J.S.T.); (K.V.); (G.P.P.)
| | - Vasiliki Kotsali-Peteinelli
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.T.); (L.P.); (G.P.); (E.B.); (M.C.); (V.K.-P.); (K.M.); (A.T.); (J.S.T.); (K.V.); (G.P.P.)
| | - Konstantinos Melanis
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.T.); (L.P.); (G.P.); (E.B.); (M.C.); (V.K.-P.); (K.M.); (A.T.); (J.S.T.); (K.V.); (G.P.P.)
| | - Athanasios Tsibonakis
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.T.); (L.P.); (G.P.); (E.B.); (M.C.); (V.K.-P.); (K.M.); (A.T.); (J.S.T.); (K.V.); (G.P.P.)
| | - Elissavet Andreadou
- First Department of Neurology, “Eginition” Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (S.V.)
| | - Sofia Vasilopoulou
- First Department of Neurology, “Eginition” Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (S.V.)
| | - Stefanos Lachanis
- Iatropolis Magnetic Resonance Diagnostic Centre, 15231 Athens, Greece;
| | - Georgios Velonakis
- Second Department of Radiology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Elias Tzavellas
- First Department of Psychiatry, “Aiginition” Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - John S. Tzartos
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.T.); (L.P.); (G.P.); (E.B.); (M.C.); (V.K.-P.); (K.M.); (A.T.); (J.S.T.); (K.V.); (G.P.P.)
| | - Konstantinos Voumvourakis
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.T.); (L.P.); (G.P.); (E.B.); (M.C.); (V.K.-P.); (K.M.); (A.T.); (J.S.T.); (K.V.); (G.P.P.)
| | - Georgios P. Paraskevas
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.T.); (L.P.); (G.P.); (E.B.); (M.C.); (V.K.-P.); (K.M.); (A.T.); (J.S.T.); (K.V.); (G.P.P.)
| | - Georgios Tsivgoulis
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.T.); (L.P.); (G.P.); (E.B.); (M.C.); (V.K.-P.); (K.M.); (A.T.); (J.S.T.); (K.V.); (G.P.P.)
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
21
|
Koemans EA, Chhatwal JP, van Veluw SJ, van Etten ES, van Osch MJP, van Walderveen MAA, Sohrabi HR, Kozberg MG, Shirzadi Z, Terwindt GM, van Buchem MA, Smith EE, Werring DJ, Martins RN, Wermer MJH, Greenberg SM. Progression of cerebral amyloid angiopathy: a pathophysiological framework. Lancet Neurol 2023; 22:632-642. [PMID: 37236210 DOI: 10.1016/s1474-4422(23)00114-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 02/21/2023] [Accepted: 03/14/2023] [Indexed: 05/28/2023]
Abstract
Cerebral amyloid angiopathy, which is defined by cerebrovascular deposition of amyloid β, is a common age-related small vessel pathology associated with intracerebral haemorrhage and cognitive impairment. Based on complementary lines of evidence from in vivo studies of individuals with hereditary, sporadic, and iatrogenic forms of cerebral amyloid angiopathy, histopathological analyses of affected brains, and experimental studies in transgenic mouse models, we present a framework and timeline for the progression of cerebral amyloid angiopathy from subclinical pathology to the clinical manifestation of the disease. Key stages that appear to evolve sequentially over two to three decades are (stage one) initial vascular amyloid deposition, (stage two) alteration of cerebrovascular physiology, (stage three) non-haemorrhagic brain injury, and (stage four) appearance of haemorrhagic brain lesions. This timeline of stages and the mechanistic processes that link them have substantial implications for identifying disease-modifying interventions for cerebral amyloid angiopathy and potentially for other cerebral small vessel diseases.
Collapse
Affiliation(s)
- Emma A Koemans
- Department of Neurology and Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Jasmeer P Chhatwal
- Department of Neurology and Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Susanne J van Veluw
- Department of Neurology and Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Ellis S van Etten
- Department of Neurology and Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Matthias J P van Osch
- Department of Neurology and Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Hamid R Sohrabi
- Centre for Healthy Ageing, Health Future Institute, Murdoch University, Perth, WA, Australia; Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Mariel G Kozberg
- Department of Neurology and Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Zahra Shirzadi
- Department of Neurology and Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Gisela M Terwindt
- Department of Neurology and Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Mark A van Buchem
- Department of Neurology and Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Eric E Smith
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - David J Werring
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, University College London Queen Square Institute of Neurology, London, UK; National Hospital for Neurology and Neurosurgery, London, UK
| | - Ralph N Martins
- Centre for Healthy Ageing, Health Future Institute, Murdoch University, Perth, WA, Australia; Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Marieke J H Wermer
- Department of Neurology and Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Steven M Greenberg
- Department of Neurology and Department of Radiology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
22
|
De Kort AM, Kuiperij HB, Marques TM, Jäkel L, van den Berg E, Kersten I, van Berckel-Smit HE, Duering M, Stoops E, Abdo WF, Rasing I, Voigt S, Koemans EA, Kaushik K, Warren AD, Greenberg SM, Brinkmalm G, Terwindt GM, Wermer MJ, Schreuder FH, Klijn CJ, Verbeek MM. Decreased Cerebrospinal Fluid Amyloid β 38, 40, 42, and 43 Levels in Sporadic and Hereditary Cerebral Amyloid Angiopathy. Ann Neurol 2023; 93:1173-1186. [PMID: 36707720 PMCID: PMC10238617 DOI: 10.1002/ana.26610] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Vascular amyloid β (Aβ) accumulation is the hallmark of cerebral amyloid angiopathy (CAA). The composition of cerebrospinal fluid (CSF) of CAA patients may serve as a diagnostic biomarker of CAA. We studied the diagnostic potential of the peptides Aβ38, Aβ40, Aβ42, and Aβ43 in patients with sporadic CAA (sCAA), hereditary Dutch-type CAA (D-CAA), and Alzheimer disease (AD). METHODS Aβ peptides were quantified by immunoassays in a discovery group (26 patients with sCAA and 40 controls), a validation group (40 patients with sCAA, 40 patients with AD, and 37 controls), and a group of 22 patients with D-CAA and 54 controls. To determine the diagnostic accuracy, the area under the curve (AUC) was calculated using a receiver operating characteristic curve with 95% confidence interval (CI). RESULTS We found decreased levels of all Aβ peptides in sCAA patients and D-CAA patients compared to controls. The difference was most prominent for Aβ42 (AUC of sCAA vs controls for discovery: 0.90, 95% CI = 0.82-0.99; for validation: 0.94, 95% CI = 0.89-0.99) and Aβ43 (AUC of sCAA vs controls for discovery: 0.95, 95% CI = 0.88-1.00; for validation: 0.91, 95% CI = 0.83-1.0). All Aβ peptides except Aβ43 were also decreased in sCAA compared to AD (CSF Aβ38: AUC = 0.82, 95% CI = 0.71-0.93; CSF Aβ40: AUC = 0.88, 95% CI = 0.80-0.96; CSF Aβ42: AUC = 0.79, 95% CI = 0.66-0.92). INTERPRETATION A combined biomarker panel of CSF Aβ38, Aβ40, Aβ42, and Aβ43 has potential to differentiate sCAA from AD and controls, and D-CAA from controls. ANN NEUROL 2023;93:1173-1186.
Collapse
Affiliation(s)
- Anna M. De Kort
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Nijmegen, The Netherlands
| | - H. Bea Kuiperij
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Nijmegen, The Netherlands
| | - Tainá M. Marques
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Nijmegen, The Netherlands
| | - Lieke Jäkel
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Nijmegen, The Netherlands
| | - Emma van den Berg
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Nijmegen, The Netherlands
| | - Iris Kersten
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Nijmegen, The Netherlands
| | - Hugo E.P. van Berckel-Smit
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Nijmegen, The Netherlands
| | - Marco Duering
- Medical Image Analysis Center (MIAC AG) and Qbig, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | | | - Wilson F. Abdo
- Department of Intensive Care, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ingeborg Rasing
- Department of Neurology, Leiden University Medical Center, the Netherlands
| | - Sabine Voigt
- Department of Neurology, Leiden University Medical Center, the Netherlands
| | - Emma A. Koemans
- Department of Neurology, Leiden University Medical Center, the Netherlands
| | - Kanishk Kaushik
- Department of Neurology, Leiden University Medical Center, the Netherlands
| | - Andrew Davock Warren
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Steven M. Greenberg
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gunnar Brinkmalm
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, and Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Gisela M. Terwindt
- Department of Neurology, Leiden University Medical Center, the Netherlands
| | | | - Floris H.B.M. Schreuder
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Nijmegen, The Netherlands
| | - Catharina J.M. Klijn
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Nijmegen, The Netherlands
| | - Marcel M. Verbeek
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
23
|
Timsina J, Ali M, Do A, Wang L, Sung YJ, Cruchaga C. Harmonization of CSF and imaging biomarkers for Alzheimer's disease biomarkers: need and practical applications for genetics studies and preclinical classification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.542118. [PMID: 37292823 PMCID: PMC10245826 DOI: 10.1101/2023.05.24.542118] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
INTRODUCTION In Alzheimer's disease (AD) research, cerebrospinal fluid (CSF) Amyloid beta (Aβ), Tau and pTau are the most accepted and well validated biomarkers. Several methods and platforms exist to measure those biomarkers which leads to challenges in combining data across studies. Thus, there is a need to identify methods that harmonize and standardize these values. METHODS We used a Z-score based approach to harmonize CSF and amyloid imaging data from multiple cohorts and compared GWAS result using this method with currently accepted methods. We also used a generalized mixture modelling to calculate the threshold for biomarker-positivity. RESULTS Z-scores method performed as well as meta-analysis and did not lead to any spurious results. Cutoffs calculated with this approach were found to be very similar to those reported previously. DISCUSSION This approach can be applied to heterogeneous platforms and provides biomarker cut-offs consistent with the classical approaches without requiring any additional data.
Collapse
Affiliation(s)
- Jigyasha Timsina
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Muhammad Ali
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anh Do
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lihua Wang
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yun Ju Sung
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
24
|
Sembill JA, Lusse C, Linnerbauer M, Sprügel MI, Mrochen A, Knott M, Engelhorn T, Schmidt MA, Doerfler A, Oberstein TJ, Maler JM, Kornhuber J, Lewczuk P, Rothhammer V, Schwab S, Kuramatsu JB. Cerebrospinal fluid biomarkers for cerebral amyloid angiopathy. Brain Commun 2023; 5:fcad159. [PMID: 37389304 PMCID: PMC10300526 DOI: 10.1093/braincomms/fcad159] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/10/2023] [Accepted: 05/17/2023] [Indexed: 07/01/2023] Open
Abstract
Integrating cerebrospinal fluid-biomarkers into diagnostic workup of patients with sporadic cerebral amyloid angiopathy may support early and correct identification. We aimed to identify and validate clinical- and cerebrospinal fluid-biomarkers for in vivo diagnosis of cerebral amyloid angiopathy. This observational cohort study screened 2795 consecutive patients admitted for cognitive complaints to the academic departments of neurology and psychiatry over a 10-year period (2009-2018). We included 372 patients with available hemosiderin-sensitive MR imaging and cerebrospinal fluid-based neurochemical dementia diagnostics, i.e. Aβ40, Aβ42, t-tau, p-tau. We investigated the association of clinical- and cerebrospinal fluid-biomarkers with the MRI-based diagnosis of cerebral amyloid angiopathy, applying confounder-adjusted modelling, receiver operating characteristic and unsupervised cluster analyses. We identified 67 patients with cerebral amyloid angiopathy, 76 patients with Alzheimer's disease, 75 patients with mild cognitive impairment due to Alzheimer's disease, 76 patients with mild cognitive impairment with unlikely Alzheimer's disease and 78 healthy controls. Patients with cerebral amyloid angiopathy showed a specific cerebrospinal fluid pattern: average concentration of Aß40 [13 792 pg/ml (10 081-18 063)] was decreased compared to all controls (P < 0.05); Aß42 [634 pg/ml (492-834)] was comparable to Alzheimer's disease and mild cognitive impairment due to Alzheimer's disease (P = 0.10, P = 0.93) but decreased compared to mild cognitive impairment and healthy controls (both P < 0.001); p-tau [67.3 pg/ml (42.9-91.9)] and t-tau [468 pg/ml (275-698)] were decreased compared to Alzheimer's disease (P < 0.001, P = 0.001) and mild cognitive impairment due to Alzheimer's disease (P = 0.001, P = 0.07), but elevated compared to mild cognitive impairment and healthy controls (both P < 0.001). Multivariate modelling validated independent clinical association of cerebral amyloid angiopathy with older age [odds-ratio: 1.06, 95% confidence interval (1.02-1.10), P < 0.01], prior lobar intracerebral haemorrhage [14.00 (2.64-74.19), P < 0.01], prior ischaemic stroke [3.36 (1.58-7.11), P < 0.01], transient focal neurologic episodes (TFNEs) [4.19 (1.06-16.64), P = 0.04] and gait disturbance [2.82 (1.11-7.15), P = 0.03]. For cerebrospinal fluid-biomarkers per 1 pg/ml, both lower Aß40 [0.9999 (0.9998-1.0000), P < 0.01] and lower Aß42 levels [0.9989 (0.9980-0.9998), P = 0.01] provided an independent association with cerebral amyloid angiopathy controlled for all aforementioned clinical confounders. Both amyloid biomarkers showed good discrimination for diagnosis of cerebral amyloid angiopathy among adjusted receiver operating characteristic analyses (area under the receiver operating characteristic curves, Aß40: 0.80 (0.73-0.86), P < 0.001; Aß42: 0.81 (0.75-0.88), P < 0.001). Unsupervised Euclidian clustering of all cerebrospinal fluid-biomarker-profiles resulted in distinct segregation of cerebral amyloid angiopathy patients from all controls. Together, we demonstrate that a distinctive set of cerebrospinal fluid-biomarkers effectively differentiate cerebral amyloid angiopathy patients from patients with Alzheimer's disease, mild cognitive impairment with or without underlying Alzheimer's disease, and healthy controls. Integrating our findings into a multiparametric approach may facilitate diagnosing cerebral amyloid angiopathy, and may aid clinical decision-making, but warrants future prospective validation.
Collapse
Affiliation(s)
- Jochen A Sembill
- Department of Neurology, University Hospital Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Christoph Lusse
- Department of Neurology, University Hospital Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Mathias Linnerbauer
- Department of Neurology, University Hospital Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Maximilian I Sprügel
- Department of Neurology, University Hospital Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Anne Mrochen
- Department of Neurology, University Hospital Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Michael Knott
- Department of Neuroradiology, University Hospital Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Tobias Engelhorn
- Department of Neuroradiology, University Hospital Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Manuel Alexander Schmidt
- Department of Neuroradiology, University Hospital Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Arnd Doerfler
- Department of Neuroradiology, University Hospital Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Timo Jan Oberstein
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Juan Manuel Maler
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, and Department of Biochemical Diagnostics, University Hospital of Bialystok, 15-090 Bialystok, Poland
| | - Veit Rothhammer
- Department of Neurology, University Hospital Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Stefan Schwab
- Department of Neurology, University Hospital Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Joji B Kuramatsu
- Correspondence to: Joji B. Kuramatsu, MD Department of Neurology, University Hospital Erlangen Schwabachanlage 6, 91054 Erlangen, Germany E-mail:
| |
Collapse
|
25
|
Ahmadi K, Pereira JB, Berron D, Vogel J, Ingala S, Strandberg OT, Janelidze S, Barkhof F, Pfeuffer J, Knutsson L, van Westen D, Palmqvist S, Mutsaerts HJ, Hansson O. Gray matter hypoperfusion is a late pathological event in the course of Alzheimer's disease. J Cereb Blood Flow Metab 2023; 43:565-580. [PMID: 36412244 PMCID: PMC10063832 DOI: 10.1177/0271678x221141139] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Several studies have shown decreased cerebral blood flow (CBF) in Alzheimer's disease (AD). However, the role of hypoperfusion in the disease pathogenesis remains unclear. Combining arterial spin labeling MRI, PET, and CSF biomarkers, we investigated the associations between gray matter (GM)-CBF and the key mechanisms in AD including amyloid-β (Aβ) and tau pathology, synaptic and axonal degeneration. Further, we applied a disease progression modeling to characterize the temporal sequence of different AD biomarkers. Lower perfusion was observed in temporo-occipito-parietal cortex in the Aβ-positive cognitively impaired compared to both Aβ-negative and Aβ-positive cognitively unimpaired individuals. In participants along the AD spectrum, GM-CBF was associated with tau, synaptic and axonal dysfunction, but not Aβ in similar cortical regions. Axonal degeneration was further associated with hypoperfusion in cognitively unimpaired individuals. Disease progression modeling revealed that GM-CBF disruption Followed the abnormality of biomarkers of Aβ, tau and brain atrophy. These findings indicate that tau tangles and neurodegeneration are more closely connected with GM-CBF changes than Aβ pathology. Although subjected to the sensitivity of the employed neuroimaging techniques and the modeling approach, these findings suggest that hypoperfusion might not be an early event associated with the build-up of Aβ in preclinical phase of AD.
Collapse
Affiliation(s)
- Khazar Ahmadi
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden.,Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Joana B Pereira
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden.,Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - David Berron
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Jacob Vogel
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Silvia Ingala
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Location VUmc, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Olof T Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Location VUmc, Amsterdam Neuroscience, Amsterdam, the Netherlands.,Queen's Square Institute of Neurology and Centre for Medical Image Computing, University College London, London, UK
| | - Josef Pfeuffer
- Application Development, Siemens Healthcare, Erlangen, Germany
| | - Linda Knutsson
- Department of Medical Radiation Physics, Lund University, Lund, Sweden.,The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Danielle van Westen
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden.,Diagnostic Radiology, Lund University, Lund, Sweden
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden.,Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Henk Jmm Mutsaerts
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Location VUmc, Amsterdam Neuroscience, Amsterdam, the Netherlands.,Queen's Square Institute of Neurology and Centre for Medical Image Computing, University College London, London, UK
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
26
|
Delaby C, Teunissen CE, Blennow K, Alcolea D, Arisi I, Amar EB, Beaume A, Bedel A, Bellomo G, Bigot‐Corbel E, Bjerke M, Blanc‐Quintin M, Boada M, Bousiges O, Chapman MD, DeMarco ML, D'Onofrio M, Dumurgier J, Dufour‐Rainfray D, Engelborghs S, Esselmann H, Fogli A, Gabelle A, Galloni E, Gondolf C, Grandhomme F, Grau‐Rivera O, Hart M, Ikeuchi T, Jeromin A, Kasuga K, Keshavan A, Khalil M, Körtvelyessy P, Kulczynska‐Przybik A, Laplanche J, Lewczuk P, Li Q, Lleó A, Malaplate C, Marquié M, Masters CL, Mroczko B, Nogueira L, Orellana A, Otto M, Oudart J, Paquet C, Paoletti FP, Parnetti L, Perret‐Liaudet A, Peoc'h K, Poesen K, Puig‐Pijoan A, Quadrio I, Quillard‐Muraine M, Rucheton B, Schraen S, Schott JM, Shaw LM, Suárez‐Calvet M, Tsolaki M, Tumani H, Udeh‐Momoh CT, Vaudran L, Verbeek MM, Verde F, Vermunt L, Vogelgsang J, Wiltfang J, Zetterberg H, Lehmann S. Clinical reporting following the quantification of cerebrospinal fluid biomarkers in Alzheimer's disease: An international overview. Alzheimers Dement 2022; 18:1868-1879. [PMID: 34936194 PMCID: PMC9787404 DOI: 10.1002/alz.12545] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 01/28/2023]
Abstract
INTRODUCTION The current practice of quantifying cerebrospinal fluid (CSF) biomarkers as an aid in the diagnosis of Alzheimer's disease (AD) varies from center to center. For a same biochemical profile, interpretation and reporting of results may differ, which can lead to misunderstandings and raises questions about the commutability of tests. METHODS We obtained a description of (pre-)analytical protocols and sample reports from 40 centers worldwide. A consensus approach allowed us to propose harmonized comments corresponding to the different CSF biomarker profiles observed in patients. RESULTS The (pre-)analytical procedures were similar between centers. There was considerable heterogeneity in cutoff definitions and report comments. We therefore identified and selected by consensus the most accurate and informative comments regarding the interpretation of CSF biomarkers in the context of AD diagnosis. DISCUSSION This is the first time that harmonized reports are proposed across worldwide specialized laboratories involved in the biochemical diagnosis of AD.
Collapse
Affiliation(s)
- Constance Delaby
- LBPC‐PPCUniv MontpellierCHU MontpellierINSERMMontpellierFrance,Hospital de la Santa Creu i Sant Pau ‐ Biomedical Research Institute Sant Pau ‐ Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Charlotte E. Teunissen
- Neurochemistry LabDepartment of Clinical ChemistryAmsterdam NeuroscienceAmsterdam UMCVrije Universiteit AmsterdamAmsterdamNetherlands
| | - Kaj Blennow
- Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
| | - Daniel Alcolea
- Hospital de la Santa Creu i Sant Pau ‐ Biomedical Research Institute Sant Pau ‐ Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Ivan Arisi
- European Brain Research Institute (EBRI) “Rita Levi‐Montalcini”RomaItaly
| | - Elodie Bouaziz Amar
- Université de ParisCognitive Neurology CenterGHU APHP Nord Lariboisière Fernand‐Widal HospitalParisFrance
| | | | | | - Giovanni Bellomo
- Lab of Clinical NeurochemistrySection of NeurologyDept. of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | | | - Maria Bjerke
- Vrije Universiteit BrusselCenter for Neurosciences and Department of Clinical BiologyClinical Neurochemistry LaboratoryUniversitair Ziekenhuis BrusselBrusselsBelgium,Department of Biomedical Sciences, Institute Born‐BungeUniversity of AntwerpAntwerpBelgium
| | | | - Mercè Boada
- Research Center and Memory ClinicFundació ACEInstitut Català de Neurociències Aplicades and Universitat Internacional de Catalunya (UIC)BarcelonaSpain,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)Instituto de Salud Carlos IIIMadridSpain
| | - Olivier Bousiges
- Laboratoire de Biochimie et Biologie Moléculaire, et CNRSICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg)Team IMISHôpitaux Universitaires de StrasbourgStrasbourgFrance
| | - Miles D Chapman
- Department of NeuroimmunologyNational Hospital for Neurology and Neurosurgery, UCL Queen SquareLondonUK
| | - Mari L. DeMarco
- Department of Pathology and Laboratory MedicineSt. Paul's Hospital, Providence Health Care, Vancouver, Canada & Department of Pathology & Laboratory MedicineUniversity of British ColumbiaVancouverCanada
| | - Mara D'Onofrio
- European Brain Research Institute (EBRI) “Rita Levi‐Montalcini”RomaItaly
| | - Julien Dumurgier
- Université de ParisCognitive Neurology CenterGHU APHP Nord Lariboisière Fernand‐Widal HospitalParisFrance
| | | | - Sebastiaan Engelborghs
- Department of Biomedical Sciences, Institute Born‐BungeUniversity of AntwerpAntwerpBelgium,Vrije Universiteit BrusselUniversitair Ziekenhuis BrusselCenter for Neurosciences and Department of NeurologyBrusselsBelgium
| | - Hermann Esselmann
- Department of Psychiatry and PsychotherapyUniversity Medical Center Goettingen (UMGGoettingenGermany
| | - Anne Fogli
- CHU Clermont‐FerrandClermont‐FerrandFrance
| | - Audrey Gabelle
- LBPC‐PPCUniv MontpellierCHU MontpellierINSERMMontpellierFrance
| | | | | | | | - Oriol Grau‐Rivera
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain,Servei de NeurologiaHospital del MarUnitat de deteriorament cognitiu i transtorns del movimentBarcelonaSpain,IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
| | - Melanie Hart
- Department of NeuroimmunologyNational Hospital for Neurology and Neurosurgery, UCL Queen SquareLondonUK
| | - Takeshi Ikeuchi
- Dept. of Molecular GeneticsCenter for BioresourcesBrain Research InstituteNiigata UniversityNiigataJapan
| | | | - Kensaku Kasuga
- Dept. of Molecular GeneticsCenter for BioresourcesBrain Research InstituteNiigata UniversityNiigataJapan
| | - Ashvini Keshavan
- Dementia Research CentreUCL Queen Square Institute of NeurologyLondonUK
| | | | - Peter Körtvelyessy
- Freie Universität Berlin and Humboldt‐Universität zu BerlinDepartment of NeurologyGerman Center for Neurodegenerative Diseases, Magdeburg, Germany and Charité‐Universitäts medizin BerlinBerlinGermany
| | | | - Jean‐Louis Laplanche
- Université de ParisCognitive Neurology CenterGHU APHP Nord Lariboisière Fernand‐Widal HospitalParisFrance
| | - Piotr Lewczuk
- Department of Neurodegeneration DiagnosticsMedical University of BialystokBialystokPoland,Lab for Clinical Neurochemistry and Neurochemical Dementia DiagnosticsUniversitätsklinikum Erlangen and Friedrich‐Alexander Universität Erlangen‐NürnbergErlangenGermany
| | - Qiao‐Xin Li
- Florey Institute and The University of MelbourneMelbourneVictoriaAustralia
| | - Alberto Lleó
- Hospital de la Santa Creu i Sant Pau ‐ Biomedical Research Institute Sant Pau ‐ Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Catherine Malaplate
- CHRU de NancyLaboratoire de BiochimieBiologie Moléculaire et Nutrition/ Université de LorraineNancyFrance
| | - Marta Marquié
- Research Center and Memory ClinicFundació ACEInstitut Català de Neurociències Aplicades and Universitat Internacional de Catalunya (UIC)BarcelonaSpain,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)Instituto de Salud Carlos IIIMadridSpain
| | - Colin L. Masters
- Florey Institute and The University of MelbourneMelbourneVictoriaAustralia
| | - Barbara Mroczko
- Department of Neurodegeneration DiagnosticsMedical University of BialystokBialystokPoland
| | - Léonor Nogueira
- Laboratoire de Biologie Cellulaire et CytologieCHU PURPANToulouseFrance
| | - Adelina Orellana
- Research Center and Memory ClinicFundació ACEInstitut Català de Neurociències Aplicades and Universitat Internacional de Catalunya (UIC)BarcelonaSpain,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)Instituto de Salud Carlos IIIMadridSpain
| | - Markus Otto
- Department of Neurology and CSF LaboratoryUniversity of UlmUlmGermany
| | | | - Claire Paquet
- Université de ParisCognitive Neurology CenterGHU APHP Nord Lariboisière Fernand‐Widal HospitalParisFrance
| | - Federico Paolini Paoletti
- Lab of Clinical NeurochemistrySection of NeurologyDept. of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Lucilla Parnetti
- Lab of Clinical NeurochemistrySection of NeurologyDept. of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Armand Perret‐Liaudet
- Lyon Neuroscience Research Center BIORAN Team ‐ CNRS UMR 5292INSERM U1028Lyon University HospitalLyonFrance
| | - Katell Peoc'h
- Université de Paris GHU APHP Nord Beaujon HospitalParisFrance
| | - Koen Poesen
- Laboratory for Molecular Neurobiomarker Research (LaMoN)Department of NeurosciencesKU LeuvenLeuven Brain InstituteLeuvenBelgium
| | - Albert Puig‐Pijoan
- Servei de NeurologiaHospital del MarUnitat de deteriorament cognitiu i transtorns del movimentBarcelonaSpain,IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
| | - Isabelle Quadrio
- Lyon Neuroscience Research Center BIORAN Team ‐ CNRS UMR 5292INSERM U1028Lyon University HospitalLyonFrance
| | - Muriel Quillard‐Muraine
- UNIROUENRouen University HospitalDepartment of Clinical biologyBiochemistry laboratoryNormandie UnivRouenFrance
| | | | - Susanna Schraen
- InsermCHU LilleU1172‐LilNCogLICENDLabEx DISTALZUniversité de LilleLilleFrance
| | | | - Leslie M. Shaw
- Department of Pathology and Laboratory Medicine HospitalUniversity of PennsylvaniaPennsylvaniaUSA
| | - Marc Suárez‐Calvet
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain,Servei de NeurologiaHospital del MarUnitat de deteriorament cognitiu i transtorns del movimentBarcelonaSpain,IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
| | - Magda Tsolaki
- 1st Department of NeurologySchool of MedicineFaculty of Health of SciencesAristotle University of ThessalonikiThessalonikiGreece
| | - Hayrettin Tumani
- Department of Neurology and CSF LaboratoryUniversity of UlmUlmGermany
| | | | | | - Marcel M Verbeek
- Donders Institute for Brain, Cognition and BehaviourRadboud Alzheimer CentreDepartments of Neurology and Laboratory MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - Federico Verde
- Department of Neurology ‐ Stroke Unit and Laboratory of NeuroscienceIRCCS Istituto Auxologico ItalianoMilanItaly,Department of Pathophysiology and Transplantation“Dino Ferrari” Center, Università degli Studi di MilanoMilanItaly
| | - Lisa Vermunt
- Neurochemistry LabDepartment of Clinical ChemistryAmsterdam NeuroscienceAmsterdam UMCVrije Universiteit AmsterdamAmsterdamNetherlands
| | - Jonathan Vogelgsang
- Department of Psychiatry and PsychotherapyUniversity Medical Center Goettingen (UMGGoettingenGermany,McLean HospitalTranslational Neuroscience LaboratoryHarvard Medical SchoolBelmontMassachusettsUSA
| | - Jens Wiltfang
- Department of Psychiatry and PsychotherapyUniversity Medical Center Goettingen (UMGGoettingenGermany,German Center for Neurodegenerative Diseases (DZNE)GoettingenGermany,Neurosciences and Signaling GroupInstitute of Biomedicine (iBiMED)Department of Medical SciencesUniversity of AveiroAveiroPortugal
| | - Henrik Zetterberg
- Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden,Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden,UK Dementia Research Institute at UCLLondonUK,Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
| | - Sylvain Lehmann
- LBPC‐PPCUniv MontpellierCHU MontpellierINSERMMontpellierFrance
| |
Collapse
|
27
|
Piccarducci R, Caselli MC, Zappelli E, Ulivi L, Daniele S, Siciliano G, Ceravolo R, Mancuso M, Baldacci F, Martini C. The Role of Amyloid-β, Tau, and α-Synuclein Proteins as Putative Blood Biomarkers in Patients with Cerebral Amyloid Angiopathy. J Alzheimers Dis 2022; 89:1039-1049. [PMID: 35964181 DOI: 10.3233/jad-220216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Cerebral amyloid angiopathy (CAA) is a cerebrovascular disorder characterized by the deposition of amyloid-β protein (Aβ) within brain blood vessels that develops in elderly people and Alzheimer's disease (AD) patients. Therefore, the investigation of biomarkers able to differentiate CAA patients from AD patients and healthy controls (HC) is of great interest, in particular in peripheral fluids. OBJECTIVE The current study aimed to detect the neurodegenerative disease (ND)-related protein (i.e., Aβ 1 - 40, Aβ 1 - 42, tau, and α-synuclein) levels in both red blood cells (RBCs) and plasma of CAA patients and HC, evaluating their role as putative peripheral biomarkers for CAA. METHODS For this purpose, the proteins' concentration was quantified in RBCs and plasma by homemade immunoenzymatic assays in an exploratory cohort of 20 CAA patients and 20 HC. RESULTS The results highlighted a significant increase of Aβ 1 - 40 and α-synuclein concentrations in both RBCs and plasma of CAA patients, while higher Aβ 1 - 42 and t-tau levels were detected only in RBCs of CAA individuals compared to HC. Moreover, Aβ 1 - 42/Aβ 1 - 40 ratio increased in RBCs and decreased in plasma of CAA patients. The role of these proteins as candidate peripheral biomarkers easily measurable with a blood sample in CAA needs to be confirmed in larger studies. CONCLUSION In conclusion, we provide evidence concerning the possible use of blood biomarkers for contributing to CAA diagnosis and differentiation from other NDs.
Collapse
Affiliation(s)
| | - Maria Chiara Caselli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Leonardo Ulivi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Michelangelo Mancuso
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Filippo Baldacci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | |
Collapse
|
28
|
Charidimou A, Boulouis G, Frosch MP, Baron JC, Pasi M, Albucher JF, Banerjee G, Barbato C, Bonneville F, Brandner S, Calviere L, Caparros F, Casolla B, Cordonnier C, Delisle MB, Deramecourt V, Dichgans M, Gokcal E, Herms J, Hernandez-Guillamon M, Jäger HR, Jaunmuktane Z, Linn J, Martinez-Ramirez S, Martínez-Sáez E, Mawrin C, Montaner J, Moulin S, Olivot JM, Piazza F, Puy L, Raposo N, Rodrigues MA, Roeber S, Romero JR, Samarasekera N, Schneider JA, Schreiber S, Schreiber F, Schwall C, Smith C, Szalardy L, Varlet P, Viguier A, Wardlaw JM, Warren A, Wollenweber FA, Zedde M, van Buchem MA, Gurol ME, Viswanathan A, Al-Shahi Salman R, Smith EE, Werring DJ, Greenberg SM. The Boston criteria version 2.0 for cerebral amyloid angiopathy: a multicentre, retrospective, MRI-neuropathology diagnostic accuracy study. Lancet Neurol 2022; 21:714-725. [PMID: 35841910 PMCID: PMC9389452 DOI: 10.1016/s1474-4422(22)00208-3] [Citation(s) in RCA: 218] [Impact Index Per Article: 109.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/11/2022] [Accepted: 05/06/2022] [Indexed: 12/26/2022]
Abstract
BACKGROUND Cerebral amyloid angiopathy (CAA) is an age-related small vessel disease, characterised pathologically by progressive deposition of amyloid β in the cerebrovascular wall. The Boston criteria are used worldwide for the in-vivo diagnosis of CAA but have not been updated since 2010, before the emergence of additional MRI markers. We report an international collaborative study aiming to update and externally validate the Boston diagnostic criteria across the full spectrum of clinical CAA presentations. METHODS In this multicentre, hospital-based, retrospective, MRI and neuropathology diagnostic accuracy study, we did a retrospective analysis of clinical, radiological, and histopathological data available to sites participating in the International CAA Association to formulate updated Boston criteria and establish their diagnostic accuracy across different populations and clinical presentations. Ten North American and European academic medical centres identified patients aged 50 years and older with potential CAA-related clinical presentations (ie, spontaneous intracerebral haemorrhage, cognitive impairment, or transient focal neurological episodes), available brain MRI, and histopathological assessment for CAA diagnosis. MRI scans were centrally rated at Massachusetts General Hospital (Boston, MA, USA) for haemorrhagic and non-haemorrhagic CAA markers, and brain tissue samples were rated by neuropathologists at the contributing sites. We derived the Boston criteria version 2.0 (v2.0) by selecting MRI features to optimise diagnostic specificity and sensitivity in a prespecified derivation cohort (Boston cases 1994-2012, n=159), then externally validated the criteria in a prespecified temporal validation cohort (Boston cases 2012-18, n=59) and a geographical validation cohort (non-Boston cases 2004-18; n=123), comparing accuracy of the new criteria to the currently used modified Boston criteria with histopathological assessment of CAA as the diagnostic standard. We also assessed performance of the v2.0 criteria in patients across all cohorts who had the diagnostic gold standard of brain autopsy. FINDINGS The study protocol was finalised on Jan 15, 2017, patient identification was completed on Dec 31, 2018, and imaging analyses were completed on Sept 30, 2019. Of 401 potentially eligible patients presenting to Massachusetts General Hospital, 218 were eligible to be included in the analysis; of 160 patient datasets from other centres, 123 were included. Using the derivation cohort, we derived provisional criteria for probable CAA requiring the presence of at least two strictly lobar haemorrhagic lesions (ie, intracerebral haemorrhages, cerebral microbleeds, or foci of cortical superficial siderosis) or at least one strictly lobar haemorrhagic lesion and at least one white matter characteristic (ie, severe visible perivascular spaces in centrum semiovale or white matter hyperintensities in a multispot pattern). The sensitivity and specificity of these criteria were 74·8% (95% CI 65·4-82·7) and 84·6% (71·9-93·1) in the derivation cohort, 92·5% (79·6-98·4) and 89·5% (66·9-98·7) in the temporal validation cohort, 80·2% (70·8-87·6) and 81·5% (61·9-93·7) in the geographical validation cohort, and 74·5% (65·4-82·4) and 95·0% (83·1-99·4) in all patients who had autopsy as the diagnostic standard. The area under the receiver operating characteristic curve (AUC) was 0·797 (0·732-0·861) in the derivation cohort, 0·910 (0·828-0·992) in the temporal validation cohort, 0·808 (0·724-0·893) in the geographical validation cohort, and 0·848 (0·794-0·901) in patients who had autopsy as the diagnostic standard. The v2.0 Boston criteria for probable CAA had superior accuracy to the current Boston criteria (sensitivity 64·5% [54·9-73·4]; specificity 95·0% [83·1-99·4]; AUC 0·798 [0·741-0854]; p=0·0005 for comparison of AUC) across all individuals who had autopsy as the diagnostic standard. INTERPRETATION The Boston criteria v2.0 incorporate emerging MRI markers of CAA to enhance sensitivity without compromising their specificity in our cohorts of patients aged 50 years and older presenting with spontaneous intracerebral haemorrhage, cognitive impairment, or transient focal neurological episodes. Future studies will be needed to determine generalisability of the v.2.0 criteria across the full range of patients and clinical presentations. FUNDING US National Institutes of Health (R01 AG26484).
Collapse
Affiliation(s)
- Andreas Charidimou
- Hemorrhagic Stroke Research Program, J Philip Kistler Research Center, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| | - Gregoire Boulouis
- Hemorrhagic Stroke Research Program, J Philip Kistler Research Center, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Groupe Hospitalier Universitaire (GHU) Paris Psychiatrie et Neurosciences, Institut de Psychiatrie et Neurosciences de Paris, INSERM UMR-S1266, Université Paris Cité, Paris, France
| | - Matthew P Frosch
- C S Kubik Laboratory of Neuropathology, Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Jean-Claude Baron
- Groupe Hospitalier Universitaire (GHU) Paris Psychiatrie et Neurosciences, Institut de Psychiatrie et Neurosciences de Paris, INSERM UMR-S1266, Université Paris Cité, Paris, France; GHU Psychiatrie et Neurosciences, site Sainte-Anne, Paris, France
| | - Marco Pasi
- Hemorrhagic Stroke Research Program, J Philip Kistler Research Center, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Université Lille, INSERM, Centre Hospitalier Universitaire (CHU) Lille, U1172-Lille Neuroscience and Cognition, Lille, France
| | - Jean Francois Albucher
- Departments of Neurology, Neuroradiology, and Pathology, Hôpital Pierre-Paul Riquet, CHU Toulouse, Toulouse Neuroimaging Centre, Universite da Toulouse, INSERM UPS, France
| | - Gargi Banerjee
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, University College London Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Carmen Barbato
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, University College London Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Fabrice Bonneville
- Departments of Neurology, Neuroradiology, and Pathology, Hôpital Pierre-Paul Riquet, CHU Toulouse, Toulouse Neuroimaging Centre, Universite da Toulouse, INSERM UPS, France
| | - Sebastian Brandner
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, University College London Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Lionel Calviere
- Departments of Neurology, Neuroradiology, and Pathology, Hôpital Pierre-Paul Riquet, CHU Toulouse, Toulouse Neuroimaging Centre, Universite da Toulouse, INSERM UPS, France
| | - François Caparros
- Université Lille, INSERM, Centre Hospitalier Universitaire (CHU) Lille, U1172-Lille Neuroscience and Cognition, Lille, France
| | - Barbara Casolla
- Université Lille, INSERM, Centre Hospitalier Universitaire (CHU) Lille, U1172-Lille Neuroscience and Cognition, Lille, France
| | - Charlotte Cordonnier
- Université Lille, INSERM, Centre Hospitalier Universitaire (CHU) Lille, U1172-Lille Neuroscience and Cognition, Lille, France
| | - Marie-Bernadette Delisle
- Departments of Neurology, Neuroradiology, and Pathology, Hôpital Pierre-Paul Riquet, CHU Toulouse, Toulouse Neuroimaging Centre, Universite da Toulouse, INSERM UPS, France
| | - Vincent Deramecourt
- Université Lille, INSERM, Centre Hospitalier Universitaire (CHU) Lille, U1172-Lille Neuroscience and Cognition, Lille, France
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, Ludwig-Maximilians University Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy) and German Center for Neurodegenerative Diseases, Munich, Germany
| | - Elif Gokcal
- Hemorrhagic Stroke Research Program, J Philip Kistler Research Center, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Jochen Herms
- Center for Neuropathology and Prion Research, Ludwig-Maximilians University Munich, Munich, Germany
| | - Mar Hernandez-Guillamon
- Neurovascular Research Laboratory, Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Hans Rolf Jäger
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, University College London Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Zane Jaunmuktane
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, University College London Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Jennifer Linn
- Institute for Diagnostic and Interventional Neuroradiology, University Hospital, Dresden, Germany
| | - Sergi Martinez-Ramirez
- Hemorrhagic Stroke Research Program, J Philip Kistler Research Center, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Framingham Heart Study and Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Elena Martínez-Sáez
- Neurovascular Research Laboratory, Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Christian Mawrin
- Departments of Neuropathology, Neurosurgery, and Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Joan Montaner
- Neurovascular Research Laboratory, Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain; Institute of Biomedicine of Seville, Hospital Universitario Virgen Macarena, Consejo Superior de Investigaciones Científicas, University of Seville, Spain
| | - Solene Moulin
- Université Lille, INSERM, Centre Hospitalier Universitaire (CHU) Lille, U1172-Lille Neuroscience and Cognition, Lille, France
| | - Jean-Marc Olivot
- Departments of Neurology, Neuroradiology, and Pathology, Hôpital Pierre-Paul Riquet, CHU Toulouse, Toulouse Neuroimaging Centre, Universite da Toulouse, INSERM UPS, France
| | - Fabrizio Piazza
- CAA and AD Translational Research and Biomarkers Laboratory, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Laurent Puy
- Université Lille, INSERM, Centre Hospitalier Universitaire (CHU) Lille, U1172-Lille Neuroscience and Cognition, Lille, France
| | - Nicolas Raposo
- Departments of Neurology, Neuroradiology, and Pathology, Hôpital Pierre-Paul Riquet, CHU Toulouse, Toulouse Neuroimaging Centre, Universite da Toulouse, INSERM UPS, France
| | - Mark A Rodrigues
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Sigrun Roeber
- Center for Neuropathology and Prion Research, Ludwig-Maximilians University Munich, Munich, Germany
| | - Jose Rafael Romero
- Framingham Heart Study and Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | | | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Stefanie Schreiber
- Departments of Neuropathology, Neurosurgery, and Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Frank Schreiber
- Departments of Neuropathology, Neurosurgery, and Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Corentin Schwall
- Groupe Hospitalier Universitaire (GHU) Paris Psychiatrie et Neurosciences, Institut de Psychiatrie et Neurosciences de Paris, INSERM UMR-S1266, Université Paris Cité, Paris, France; GHU Psychiatrie et Neurosciences, site Sainte-Anne, Paris, France
| | - Colin Smith
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Levente Szalardy
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Pascale Varlet
- Groupe Hospitalier Universitaire (GHU) Paris Psychiatrie et Neurosciences, Institut de Psychiatrie et Neurosciences de Paris, INSERM UMR-S1266, Université Paris Cité, Paris, France; GHU Psychiatrie et Neurosciences, site Sainte-Anne, Paris, France
| | - Alain Viguier
- Departments of Neurology, Neuroradiology, and Pathology, Hôpital Pierre-Paul Riquet, CHU Toulouse, Toulouse Neuroimaging Centre, Universite da Toulouse, INSERM UPS, France
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Andrew Warren
- Hemorrhagic Stroke Research Program, J Philip Kistler Research Center, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Frank A Wollenweber
- Institute for Stroke and Dementia Research, Ludwig-Maximilians University Munich, Munich, Germany; Helios Dr Horst Schmidt Kliniken, Wiesbaden, Germany
| | - Marialuisa Zedde
- Neurology Unit-Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Mark A van Buchem
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - M Edip Gurol
- Hemorrhagic Stroke Research Program, J Philip Kistler Research Center, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Anand Viswanathan
- Hemorrhagic Stroke Research Program, J Philip Kistler Research Center, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Rustam Al-Shahi Salman
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Eric E Smith
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - David J Werring
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, University College London Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Steven M Greenberg
- Hemorrhagic Stroke Research Program, J Philip Kistler Research Center, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
29
|
Goeldlin M, Stewart C, Radojewski P, Wiest R, Seiffge D, Werring DJ. Clinical neuroimaging in intracerebral haemorrhage related to cerebral small vessel disease: contemporary practice and emerging concepts. Expert Rev Neurother 2022; 22:579-594. [PMID: 35850578 DOI: 10.1080/14737175.2022.2104157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION About 80% of all non-traumatic intracerebral haemorrhage (ICH) are caused by the sporadic cerebral small vessel diseases deep perforator arteriopathy (DPA, also termed hypertensive arteriopathy or arteriolosclerosis) and cerebral amyloid angiopathy (CAA), though these frequently co-exist in older people. Contemporary neuroimaging (MRI and CT) detects an increasing spectrum of haemorrhagic and non-haemorrhagic imaging biomarkers of small vessel disease which may identify the underlying arteriopathies. AREAS COVERED We discuss biomarkers for cerebral small vessel disease subtypes in ICH, and explore their implications for clinical practice and research. EXPERT OPINION ICH is not a single disease, but results from a defined range of vascular pathologies with important implications for prognosis and treatment. The terms "primary" and "hypertensive" ICH are poorly defined and should be avoided, as they encourage incomplete investigation and classification. Imaging-based criteria for CAA will show improved diagnostic accuracy, but specific imaging biomarkers of DPA are needed. Ultra-high-field 7T-MRI using structural and quantitative MRI may provide further insights into mechanisms and pathophysiology of small vessel disease. We expect neuroimaging biomarkers and classifications to allow personalized treatments (e.g. antithrombotic drugs) in clinical practice and to improve patient selection and monitoring in trials of targeted therapies directed at the underlying arteriopathies.
Collapse
Affiliation(s)
- Martina Goeldlin
- Department of Neurology, Inselspital Bern University Hospital and University of Bern, Bern, Switzerland.,Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Catriona Stewart
- Stroke Research Group, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Piotr Radojewski
- Institute of Diagnostic and Interventional Neuroradiology, Inselspital University Hospital Bern, Switzerland
| | - Roland Wiest
- Institute of Diagnostic and Interventional Neuroradiology, Inselspital University Hospital Bern, Switzerland
| | - David Seiffge
- Department of Neurology, Inselspital Bern University Hospital and University of Bern, Bern, Switzerland
| | - David J Werring
- Stroke Research Group, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
30
|
Grangeon L, Quesney G, Verdalle-Cazes M, Coulette S, Renard D, Wacongne A, Allou T, Olivier N, Boukriche Y, Blanchet-Fourcade G, Labauge P, Arquizan C, Canaple S, Godefroy O, Martinaud O, Verdure P, Quillard-Muraine M, Pariente J, Magnin E, Nicolas G, Charbonnier C, Maltête D, Formaglio M, Raposo N, Ayrignac X, Wallon D. Different clinical outcomes between cerebral amyloid angiopathy-related inflammation and non-inflammatory form. J Neurol 2022; 269:4972-4984. [PMID: 35752990 DOI: 10.1007/s00415-022-11145-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 10/17/2022]
Abstract
OBJECTIVE Cerebral amyloid angiopathy-related inflammation (CAA-ri) is a rare manifestation related to CAA, thought to be more severe. We aimed to compare the clinical and radiological outcomes of CAA-ri and non-inflammatory CAA. MATERIALS AND METHODS We retrospectively included all patients with CAA-ri from 13 French centers. We constituted a sex- and age-matched control cohort with non-inflammatory CAA and similar disease duration. Survival, autonomy and cognitive evolution were compared after logistic regression. Cerebral microbleeds (CMB), intracerebral hemorrhage, cortical superficial siderosis and hippocampal atrophy were analyzed as well as CSF biomarker profile and APOE genotype when available. Outcomes were compared using Kaplan-Meier curves and log-rank tests. RESULTS Data from 48 CAA-ri patients including 28 already reported and 20 new patients were analyzed. Over a mean of 3.1 years, 11 patients died (22.9%) and 18 (37.5%) relapsed. CAA-ri patients were more frequently institutionalized than non-inflammatory CAA patients (30% vs 8.3%, p < 0.001); mortality rates remained similar. MMSE and modified Rankin scale scores showed greater severity in CAA-ri at last follow-up. MRI showed a higher number of CMB at baseline and last follow-up in CAA-ri (p < 0.001 and p = 0.004, respectively). CSF showed lower baseline levels of Aß42 in CAA-ri than non-inflammatory CAA (373.3 pg/ml vs 490.8 pg/ml, p = 0.05). CAA-ri patients more likely carried at least one APOE ε4 allele (76% vs 37.5%, adjusted p = 0.05) particularly as homozygous status (56% vs 6.2%, p < 0.001). INTERPRETATION CAA-ri appears to be more severe than non-inflammatory CAA with a significant loss of autonomy and global higher amyloid burden, shown by more CMB and a distinct CSF profile. This burden may be partially promoted by ε4 allele.
Collapse
Affiliation(s)
- L Grangeon
- Department of Neurology, Rouen University Hospital, 76031, Rouen, France.
| | - G Quesney
- Department of Neurology, Rouen University Hospital, 76031, Rouen, France
| | - M Verdalle-Cazes
- Department of Radiology, Rouen University Hospital, Rouen, France
| | - S Coulette
- Department of Neurology, INM, Univ Montpellier, INSERM, Montpellier University Hospital, Montpellier, France
| | - D Renard
- Department of Neurology, Nimes University Hospital, Nimes, France
| | - A Wacongne
- Department of Neurology, Nimes University Hospital, Nimes, France
| | - T Allou
- Department of Neurology, Perpignan Hospital, Perpignan, France
| | - N Olivier
- Department of Neurology, Perpignan Hospital, Perpignan, France
| | - Y Boukriche
- Department of Neurology, Beziers Hospital, Beziers, France
| | | | - P Labauge
- Department of Neurology, INM, Univ Montpellier, INSERM, Montpellier University Hospital, Montpellier, France
| | - C Arquizan
- Department of Neurology, INM, Univ Montpellier, INSERM, Montpellier University Hospital, Montpellier, France
| | - S Canaple
- Department of Neurology and Functional Neuroscience, Lab (UR UPJV 4559), Amiens University Hospital and University of Picardy Jules Verne, Amiens, France
| | - O Godefroy
- Department of Neurology and Functional Neuroscience, Lab (UR UPJV 4559), Amiens University Hospital and University of Picardy Jules Verne, Amiens, France
| | - O Martinaud
- Department of Neurology, Caen University Hospital, Caen, France.,EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie Et Imagerie de La Mémoire Humaine, Normandie Univ, UNICAEN, PSL Research University, Caen, France
| | - P Verdure
- Department of Neurology, Les Feugrais Hospital, Elbeuf, France
| | - M Quillard-Muraine
- Laboratoire de Biochimie, Rouen University Hospital and University of Rouen, Rouen, France
| | - J Pariente
- Neurology Department, Hôpital Pierre-Paul Riquet, Centre Hospitalier, Universitaire de Toulouse, Toulouse, France
| | - E Magnin
- Department of Neurology, Besancon Hospital, Besancon, France
| | - G Nicolas
- INSERM U1245, IRIB, Normandy University, CNR-MAJ, Rouen University Hospital, Rouen, France
| | - C Charbonnier
- INSERM U1245, IRIB, Normandy University, CNR-MAJ, Rouen University Hospital, Rouen, France
| | - D Maltête
- Department of Neurology, Rouen University Hospital, 76031, Rouen, France
| | - M Formaglio
- Department of Neurology, Lyon University Hospital, Lyon, France
| | - N Raposo
- Neurology Department, Hôpital Pierre-Paul Riquet, Centre Hospitalier, Universitaire de Toulouse, Toulouse, France
| | - X Ayrignac
- Department of Neurology, INM, Univ Montpellier, INSERM, Montpellier University Hospital, Montpellier, France
| | - D Wallon
- Department of Neurology, Rouen University Hospital, 76031, Rouen, France.,Department of Neurology, Besancon Hospital, Besancon, France
| |
Collapse
|
31
|
Greenberg SM, Ziai WC, Cordonnier C, Dowlatshahi D, Francis B, Goldstein JN, Hemphill JC, Johnson R, Keigher KM, Mack WJ, Mocco J, Newton EJ, Ruff IM, Sansing LH, Schulman S, Selim MH, Sheth KN, Sprigg N, Sunnerhagen KS. 2022 Guideline for the Management of Patients With Spontaneous Intracerebral Hemorrhage: A Guideline From the American Heart Association/American Stroke Association. Stroke 2022; 53:e282-e361. [PMID: 35579034 DOI: 10.1161/str.0000000000000407] [Citation(s) in RCA: 443] [Impact Index Per Article: 221.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | - William J Mack
- AHA Stroke Council Scientific Statement Oversight Committee on Clinical Practice Guideline liaison
| | | | | | - Ilana M Ruff
- AHA Stroke Council Stroke Performance Measures Oversight Committee liaison
| | | | | | | | - Kevin N Sheth
- AHA Stroke Council Scientific Statement Oversight Committee on Clinical Practice Guideline liaison.,AAN representative
| | | | | | | |
Collapse
|
32
|
Banerjee G, Samra K, Adams ME, Jaunmuktane Z, Parry-Jones AR, Grieve J, Toma AK, Farmer SF, Sylvester R, Houlden H, Rudge P, Mead S, Brandner S, Schott JM, Collinge J, Werring DJ. Iatrogenic cerebral amyloid angiopathy: an emerging clinical phenomenon. J Neurol Neurosurg Psychiatry 2022; 93:jnnp-2022-328792. [PMID: 35577510 DOI: 10.1136/jnnp-2022-328792] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/15/2022] [Indexed: 11/04/2022]
Abstract
In the last 6 years, following the first pathological description of presumed amyloid-beta (Aβ) transmission in humans (in 2015) and subsequent experimental confirmation (in 2018), clinical cases of iatrogenic cerebral amyloid angiopathy (CAA)-attributed to the transmission of Aβ seeds-have been increasingly recognised and reported. This newly described form of CAA is associated with early disease onset (typically in the third to fifth decade), and often presents with intracerebral haemorrhage, but also seizures and cognitive impairment. Although assumed to be rare, it is important that clinicians remain vigilant for potential cases, particularly as the optimal management, prognosis, true incidence and public health implications remain unknown. This review summarises our current understanding of the clinical spectrum of iatrogenic CAA and provides a diagnostic framework for clinicians. We provide clinical details for three patients with pathological evidence of iatrogenic CAA and present a summary of the published cases to date (n=20), identified following a systematic review. Our aims are: (1) To describe the clinical features of iatrogenic CAA, highlighting important similarities and differences between iatrogenic and sporadic CAA; and (2) To discuss potential approaches for investigation and diagnosis, including suggested diagnostic criteria for iatrogenic CAA.
Collapse
Affiliation(s)
- Gargi Banerjee
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
| | - Kiran Samra
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Matthew E Adams
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
| | - Zane Jaunmuktane
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Adrian Robert Parry-Jones
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, UK
| | - Joan Grieve
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
| | - Ahmed K Toma
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
| | - Simon F Farmer
- Department of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
| | - Richard Sylvester
- Department of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
| | - Henry Houlden
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Peter Rudge
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
| | - Simon Mead
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
| | - Sebastian Brandner
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
| | - Jonathan M Schott
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - John Collinge
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
| | - David J Werring
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
33
|
Charidimou A. Cerebrospinal Fluid Biomarkers for Cerebral Amyloid Angiopathy Diagnosis. J Alzheimers Dis 2022; 87:803-805. [PMID: 35527557 DOI: 10.3233/jad-220133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
An accurate diagnosis of sporadic cerebral amyloid angiopathy (CAA) is critical for patient management and research (including clinical trials) for this common small vessel pathology of the brain. While the "big bang" of the CAA field has been the device and wide adoption of the clinico-radiological Boston criteria which allowed for CAA diagnosis during life, these criteria are not without major shortcoming. As it is now becoming evident that CAA is probably not a single disease, but rather represents divergent pathophysiological phenotypes and clinical trajectories, new biomarker-driven diagnostic approaches should be sought. One such complimentary approach for CAA diagnosis is the use of cerebrospinal fluid biomarkers (CSF), which could provide dynamic measures of the underlying disease process and is discussed in this commentary given exciting new advances. A hint on how the practicing clinician could apply the current CSF data for CAA diagnosis is also provided.
Collapse
Affiliation(s)
- Andreas Charidimou
- Department of Neurology, Boston University Medical Center and Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
34
|
Abdulrahman H, Smedinga M, Verbeek MM, Klijn CJM, Richard E, Perry M. Views on the Desirability of Diagnosing Sporadic Cerebral Amyloid Angiopathy with Biological Evidence. J Alzheimers Dis 2022; 87:807-816. [PMID: 35404283 PMCID: PMC9198748 DOI: 10.3233/jad-220052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Sporadic cerebral amyloid angiopathy (sCAA) research of the past decade has increasingly focused on developing biomarkers that allow for an earlier and more accurate sCAA-diagnosis. Considering that sCAA does not have treatment options available (yet), more fundamental questions concerning the desirability of using such early-sCAA biomarkers in clinical practice need to be addressed. OBJECTIVE In this qualitative interview study, we aim to explore the views of vascular neurologists on the purpose and possible consequences of an earlier and more accurate sCAA-diagnosis, using new biomarkers. METHODS Vascular neurologists from around the world were approached via email and interviewed via video call. Topics included views on current sCAA diagnostic practice, considerations on the use of new biomarkers, and expectations and hopes for the future. All interviews were transcribed ad verbatim using a transcription program (Otter.ai). Transcripts were analyzed using inductive content analysis. RESULTS We interviewed 14 vascular neurologists. Views regarding the desirability of new sCAA-biomarkers differed substantially between interviewees as to when and in whom these biomarkers could be of benefit in clinical practice. These differences were mainly reported with regards to prognosis, risk stratification, and biological precision, between general stroke neurologists and neurologists with specific sCAA-expertise. CONCLUSION Views on the use of sCAA-biomarkers in clinical practice differ substantially between vascular neurologists. There is particularly no consensus regarding when, and in whom sCAA biomarkers could be useful in clinical practice.
Collapse
Affiliation(s)
- Herrer Abdulrahman
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marthe Smedinga
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel M Verbeek
- Department of Laboratory Medicine, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Alzheimer Centre, Radboud University Medical Center, The Netherlands
| | - Catharina J M Klijn
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Edo Richard
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Alzheimer Centre, Radboud University Medical Center, The Netherlands
| | - Marieke Perry
- Radboud Alzheimer Centre, Radboud University Medical Center, The Netherlands.,Department of Geriatric Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
35
|
Grangeon L, Paquet C, Guey S, Zarea A, Martinaud O, Rotharmel M, Maltête D, Quillard-Muraine M, Nicolas G, Charbonnier C, Chabriat H, Wallon D. Cerebrospinal Fluid Profile of Tau, Phosphorylated Tau, Aβ42, and Aβ40 in Probable Cerebral Amyloid Angiopathy. J Alzheimers Dis 2022; 87:791-802. [DOI: 10.3233/jad-215208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: There is no consensus regarding the diagnostic value of cerebrospinal fluid (CSF) Alzheimer’s disease (AD) biomarkers in cerebral amyloid angiopathy (CAA). Objective: To describe the CSF levels of Aβ 42, Aβ 40, total protein Tau, and phosphorylated-Tau (p-Tau) in a large series of probable CAA patients and to compare with AD patients in order to identify a specific pattern in CAA but also to look for correlations with the neuroimaging profile. Methods: We retrospectively included from 2 French centers probable CAA patients according to modified Boston criteria who underwent lumbar puncture (LP) with CSF AD biomarker quantifications. Two neurologists independently analyzed all MRI sequences. A logistic regression and Spearman’s correlation coefficient were used to identify correlation between MRI and CSF biomarkers in CAA. Results: We included 63 probable CAA and 27 AD patients. Among CAA 50.8% presented with decreased Aβ 42 level associated with elevated p-Tau and/or Tau, 34.9% with isolated decreased Aβ 42 level and 14.3% patients with normal Aβ 42 level. Compared to AD, CAA showed lower levels of Tau (p = 0.008), p-Tau (p = 0.004), and Aβ 40 (p = 0.001) but similar Aβ 42 level (p = 0.07). No correlation between Aβ 42 or Aβ 40 levels and neuroimaging was found. Conclusion: CSF biomarkers may improve the accuracy of the modified Boston criteria with altered profile in 85% of the patients fulfilling revised Boston criteria for probable CAA. Aβ 40 appears as an interesting selective biomarker in differential diagnosis.
Collapse
Affiliation(s)
- Lou Grangeon
- Normandie Univ, UNIROUEN, Inserm U1245 and CHURouen, Department of Neurology and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Claire Paquet
- CMRR Paris Nord AP-HP, Groupe Hospitalier Lariboisière Fernand-Widal Saint-Louis, INSERM, U942, Université Paris Diderot, Sorbonne Paris Cité, UMRS 942, France
| | - Stéphanie Guey
- Department of Neurology, AP-HP, Groupe Hospitalier Lariboisière Fernand-Widal Saint-Louis, Paris, France
| | - Aline Zarea
- Normandie Univ, UNIROUEN, Inserm U1245 and CHURouen, Department of Neurology and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | | | - Maud Rotharmel
- Rouvray Hospital of Rouen, University Department of Psychiatry, France
| | - David Maltête
- Normandie Univ, UNIROUEN, Inserm U1245 and CHURouen, Department of Neurology and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | | | - Gael Nicolas
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Camille Charbonnier
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Hugues Chabriat
- Department of Neurology, AP-HP, Groupe Hospitalier Lariboisière Fernand-Widal Saint-Louis, Paris, France
| | - David Wallon
- Normandie Univ, UNIROUEN, Inserm U1245 and CHURouen, Department of Neurology and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| |
Collapse
|
36
|
Vervuurt M, Zhu X, Schrader J, de Kort AM, Marques TM, Kersten I, Peters van Ton AM, Abdo WF, Schreuder FHBM, Rasing I, Terwindt GM, Wermer MJH, Greenberg SM, Klijn CJM, Kuiperij HB, Van Nostrand WE, Verbeek MM. Elevated expression of urokinase plasminogen activator in rodent models and patients with cerebral amyloid angiopathy. Neuropathol Appl Neurobiol 2022; 48:e12804. [PMID: 35266166 DOI: 10.1111/nan.12804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 11/30/2022]
Abstract
AIMS The aim of this work is to study the association of urokinase plasminogen activator (uPA) with development and progression of cerebral amyloid angiopathy (CAA). MATERIALS AND METHODS We studied the expression of uPA mRNA by quantitative polymerase chain reaction (qPCR) and co-localisation of uPA with amyloid-β (Aβ) using immunohistochemistry in the cerebral vasculature of rTg-DI rats compared with wild-type (WT) rats and in a sporadic CAA (sCAA) patient and control subject using immunohistochemistry. Cerebrospinal fluid (CSF) uPA levels were measured in rTg-DI and WT rats and in two separate cohorts of sCAA and Dutch-type hereditary CAA (D-CAA) patients and controls, using enzyme-linked immunosorbent assays (ELISA). RESULTS The presence of uPA was clearly detected in the cerebral vasculature of rTg-DI rats and an sCAA patient but not in WT rats or a non-CAA human control. uPA expression was highly co-localised with microvascular Aβ deposits. In rTg-DI rats, uPA mRNA expression was highly elevated at 3 months of age (coinciding with the emergence of microvascular Aβ deposition) and sustained up to 12 months of age (with severe microvascular CAA deposition) compared with WT rats. CSF uPA levels were elevated in rTg-DI rats compared with WT rats (p = 0.03), and in sCAA patients compared with controls (after adjustment for age of subjects, p = 0.05 and p = 0.03). No differences in CSF uPA levels were found between asymptomatic and symptomatic D-CAA patients and their respective controls (after age-adjustment, p = 0.09 and p = 0.44). Increased cerebrovascular expression of uPA in CAA correlates with increased quantities of CSF uPA in rTg-DI rats and human CAA patients, suggesting that uPA could serve as a biomarker for CAA.
Collapse
Affiliation(s)
- Marc Vervuurt
- Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Xiaoyue Zhu
- Department of Biomedical and Pharmaceutical Sciences, George & Anne Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island, USA
| | - Joseph Schrader
- Department of Biomedical and Pharmaceutical Sciences, George & Anne Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island, USA
| | - Anna M de Kort
- Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tainá M Marques
- Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Iris Kersten
- Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Wilson F Abdo
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Floris H B M Schreuder
- Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ingeborg Rasing
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marieke J H Wermer
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Steven M Greenberg
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Catharina J M Klijn
- Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - H Bea Kuiperij
- Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - William E Van Nostrand
- Department of Biomedical and Pharmaceutical Sciences, George & Anne Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island, USA
| | - Marcel M Verbeek
- Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
37
|
Aspli KT, Holmøy T, Flaten TP, Whist JE, Aaseth JO. Skogholt's disease-A tauopathy precipitated by iron and copper? J Trace Elem Med Biol 2022; 70:126915. [PMID: 34959013 DOI: 10.1016/j.jtemb.2021.126915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/12/2021] [Accepted: 12/14/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND It has been suggested that Skogholt's disease is a new neurological disease entity. The disease, confined to a family line in Hedmark county, Norway, usually affects both the brain and peripheral nerves. Typical findings are white matter lesions in the brain, myelin damage in peripheral nerves, and discolored cerebrospinal fluid with high concentrations of protein, copper, and iron. Little is known about the natural progression of the disease and its underlying cause, but the high level of copper and iron in the cerebrospinal fluid may cause or exacerbate inflammation in the central nervous system. METHODS The present clinical study further explores the disease progression with clinical chemistry analyses and mass spectrometry of blood and cerebrospinal fluid (CSF) from patients and controls. Findings are corroborated with cognitive assessments. RESULTS Pathological changes in CSF with low amyloid-β42 and high levels of tau proteins, total protein, copper, and iron, were discovered among Skogholt patients. The Montreal Cognitive Assessment identified 36 % of the patients as below normal range, while most patients performed slower than the norm mean time on the Trail Making Test. Mini-Mental Status Examination disclosed only minor deviations. CONCLUSION The findings in the present study strengthen our initial suggestion that Skogholt's disease most likely is a new neurological disorder and provide new clues to its cause: The disease may belong to the family of neurodegenerative disorders termed tauopathies. The increased level of copper and iron may contribute to neuroinflammation as these metals also have been associated with other neurodegenerative disorders. Although the causes of neurodegenerative disorders are currently largely unknown, studies on rare disease entities, such as the present one, may increase the understanding of neurodegeneration in general.
Collapse
Affiliation(s)
- Klaus T Aspli
- Department of Neurology, Innlandet Hospital Trust, Lillehammer, Norway; Institute of Clinical Medicine, University of Oslo, Norway.
| | - Trygve Holmøy
- Institute of Clinical Medicine, University of Oslo, Norway; Department of Neurology, Akershus University Hospital, Norway
| | - Trond Peder Flaten
- Department of Chemistry, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jon Elling Whist
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway
| | - Jan O Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway
| |
Collapse
|
38
|
Margraf NG, Jensen-Kondering U, Weiler C, Leypoldt F, Maetzler W, Philippen S, Bartsch T, Flüh C, Röcken C, Möller B, Royl G, Neumann A, Brüggemann N, Roeben B, Schulte C, Bender B, Berg D, Kuhlenbäumer G. Cerebrospinal Fluid Biomarkers in Cerebral Amyloid Angiopathy: New Data and Quantitative Meta-Analysis. Front Aging Neurosci 2022; 14:783996. [PMID: 35237145 PMCID: PMC8884145 DOI: 10.3389/fnagi.2022.783996] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/03/2022] [Indexed: 01/31/2023] Open
Abstract
Background To evaluate the diagnostic accuracy of cerebrospinal fluid (CSF) biomarkers in patients with probable cerebral amyloid angiopathy (CAA) according to the modified Boston criteria in a retrospective multicentric cohort. Methods Beta-amyloid 1-40 (Aβ40), beta-amyloid 1-42 (Aβ42), total tau (t-tau), and phosphorylated tau 181 (p-tau181) were measured in 31 patients with probable CAA, 28 patients with Alzheimer’s disease (AD), and 30 controls. Receiver-operating characteristics (ROC) analyses were performed for the measured parameters as well as the Aβ42/40 ratio to estimate diagnostic parameters. A meta-analysis of all amenable published studies was conducted. Results In our data Aβ42/40 (AUC 0.88) discriminated best between CAA and controls while Aβ40 did not perform well (AUC 0.63). Differentiating between CAA and AD, p-tau181 (AUC 0.75) discriminated best in this study while Aβ40 (AUC 0.58) and Aβ42 (AUC 0.54) provided no discrimination. In the meta-analysis, Aβ42/40 (AUC 0.90) showed the best discrimination between CAA and controls followed by t-tau (AUC 0.79), Aβ40 (AUC 0.76), and p-tau181 (AUC 0.71). P-tau181 (AUC 0.76), Aβ40 (AUC 0.73), and t-tau (AUC 0.71) differentiated comparably between AD and CAA while Aβ42 (AUC 0.54) did not. In agreement with studies examining AD biomarkers, Aβ42/40 discriminated excellently between AD and controls (AUC 0.92–0.96) in this study as well as the meta-analysis. Conclusion The analyzed parameters differentiate between controls and CAA with clinically useful accuracy (AUC > ∼0.85) but not between CAA and AD. Since there is a neuropathological, clinical and diagnostic continuum between CAA and AD, other diagnostic markers, e.g., novel CSF biomarkers or other parameters might be more successful.
Collapse
Affiliation(s)
- Nils G. Margraf
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel University, Kiel, Germany
- *Correspondence: Nils G. Margraf,
| | - Ulf Jensen-Kondering
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel University, Kiel, Germany
- Department of Neuroradiology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Caroline Weiler
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel University, Kiel, Germany
| | - Frank Leypoldt
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel University, Kiel, Germany
- Institute of Clinical Chemistry, University Medical Center Schleswig-Holstein, Kiel/Lübeck, Germany
| | - Walter Maetzler
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel University, Kiel, Germany
| | - Sarah Philippen
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel University, Kiel, Germany
| | - Thorsten Bartsch
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel University, Kiel, Germany
| | - Charlotte Flüh
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel University, Kiel, Germany
| | - Christoph Röcken
- Department of Pathology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel University, Kiel, Germany
| | - Bettina Möller
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel University, Kiel, Germany
| | - Georg Royl
- Department of Neurology, University Medical Center Schleswig Holstein, Campus Lübeck, Lübeck, Germany
| | - Alexander Neumann
- Department of Neuroradiology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Norbert Brüggemann
- Department of Neurology, University Medical Center Schleswig Holstein, Campus Lübeck, Lübeck, Germany
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Benjamin Roeben
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany
| | - Claudia Schulte
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany
| | - Benjamin Bender
- Department of Neuroradiology, Diagnostical and Interventional Neuroradiology, University Hospital of Tübingen, Tübingen, Germany
| | - Daniela Berg
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel University, Kiel, Germany
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Gregor Kuhlenbäumer
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel University, Kiel, Germany
| |
Collapse
|
39
|
Oblak JP, Jurečič A, Writzl K, Frol S. Preceding Head Trauma in Four Cases of Sporadic Cerebral Amyloid Angiopathy - Case Report Series. J Stroke Cerebrovasc Dis 2021; 31:106260. [PMID: 34933275 DOI: 10.1016/j.jstrokecerebrovasdis.2021.106260] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/07/2021] [Accepted: 11/29/2021] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND CAA is a heterogeneous group of diseases caused by Aβ deposition in the vascular walls, often leading to lobar ICH and cognitive impairment. Although CAA is rare in younger patients, it has been associated with specific mutations as well as with other causes. CASE PRESENTATION We present four cases of patients with CAA and recurrent ICH who have a history of severe TBI in childhood. CONCLUSION Our cases as well as review of the literature suggest that a history of TBI in patients with genetic predispositions such as male sex may be associated with CAA in young persons.
Collapse
Affiliation(s)
- Janja Pretnar Oblak
- Department of Vascular Neurology, University Medical Centre Ljubljana, Slovenia; Neurology Department, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Ana Jurečič
- Neurology Department, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Karin Writzl
- Clinical Institute for Medical Genetics, University Medical Centre Ljubljana, Slovenia
| | - Senta Frol
- Department of Vascular Neurology, University Medical Centre Ljubljana, Slovenia; Neurology Department, Faculty of Medicine, University of Ljubljana, Slovenia
| |
Collapse
|
40
|
Gireud-Goss M, Mack AF, McCullough LD, Urayama A. Cerebral Amyloid Angiopathy and Blood-Brain Barrier Dysfunction. Neuroscientist 2021; 27:668-684. [PMID: 33238806 PMCID: PMC9853919 DOI: 10.1177/1073858420954811] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cerebral hemorrhage, a devastating subtype of stroke, is often caused by hypertension and cerebral amyloid angiopathy (CAA). Pathological evidence of CAA is detected in approximately half of all individuals over the age of 70 and is associated with cortical microinfarcts and cognitive impairment. The underlying pathophysiology of CAA is characterized by accumulation of pathogenic amyloid β (Aβ) fragments of amyloid precursor protein in the cerebral vasculature. Vascular deposition of Aβ damages the vessel wall, results in blood-brain barrier (BBB) leakiness, vessel occlusion or rupture, and leads to hemorrhages and decreased cerebral blood flow that negatively affects vessel integrity and cognitive function. Currently, the main hypothesis surrounding the mechanism of CAA pathogenesis is that there is an impaired clearance of Aβ peptides, which includes compromised perivascular drainage as well as dysfunction of BBB transport. Also, the immune response in CAA pathogenesis plays an important role. Therefore, the mechanism by which Aβ vascular deposition occurs is crucial for our understanding of CAA pathogenesis and for the development of potential therapeutic options.
Collapse
Affiliation(s)
- Monica Gireud-Goss
- Department of Neurology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Alexis F. Mack
- Department of Neurology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Louise D. McCullough
- Department of Neurology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Akihiko Urayama
- Department of Neurology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
41
|
Jang H, Kim JS, Lee HJ, Kim CH, Na DL, Kim HJ, Allué JA, Sarasa L, Castillo S, Pesini P, Gallacher J, Seo SW. Performance of the plasma Aβ42/Aβ40 ratio, measured with a novel HPLC-MS/MS method, as a biomarker of amyloid PET status in a DPUK-KOREAN cohort. ALZHEIMERS RESEARCH & THERAPY 2021; 13:179. [PMID: 34686209 PMCID: PMC8540152 DOI: 10.1186/s13195-021-00911-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 10/02/2021] [Indexed: 12/20/2022]
Abstract
Background We assessed the feasibility of plasma Aβ42/Aβ40 determined using a novel liquid chromatography-mass spectrometry method (LC-MS) as a useful biomarker of PET status in a Korean cohort from the DPUK Study. Methods A total of 580 participants belonging to six groups, Alzheimer’s disease dementia (ADD, n = 134), amnestic mild cognitive impairment (aMCI, n = 212), old controls (OC, n = 149), young controls (YC, n = 15), subcortical vascular cognitive impairment (SVCI, n = 58), and cerebral amyloid angiopathy (CAA, n = 12), were included in this study. Plasma Aβ40 and Aβ42 were quantitated using a new antibody-free, LC-MS, which drastically reduced the sample preparation time and cost. We performed receiver operating characteristic (ROC) analysis to develop the cutoff of Aβ42/Aβ40 and investigated its performance predicting centiloid-based PET positivity (PET+). Results Plasma Aβ42/Aβ40 were lower for PET+ individuals in ADD, aMCI, OC, and SVCI (p < 0.001), but not in CAA (p = 0.133). In the group of YC, OC, aMCI, and ADD groups, plasma Aβ42/Aβ40 predicted PET+ with an area under the ROC curve (AUC) of 0.814 at a cutoff of 0.2576. When adding age, APOE4, and diagnosis, the AUC significantly improved to 0.912. Conclusion Plasma Aβ42/Aβ40, as measured by this novel LC-MS method, showed good discriminating performance based on PET positivity. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-021-00911-7.
Collapse
Affiliation(s)
- Hyemin Jang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.,Neuroscience Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.,Alzheimer's Disease Convergence Research Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Ji Sun Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.,Neuroscience Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Hye Joo Lee
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.,Alzheimer's Disease Convergence Research Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Chi-Hun Kim
- Department of Neurology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, South Korea.,Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Duk L Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.,Neuroscience Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.,Alzheimer's Disease Convergence Research Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.,Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.,Department of Health Sciences and Technology, Seoul, Republic of Korea
| | - Hee Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.,Neuroscience Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.,Alzheimer's Disease Convergence Research Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | | | - Leticia Sarasa
- Araclon Biotech-Grifols, Vía Hispanidad, 21, 50009, Zaragoza, Spain
| | - Sergio Castillo
- Araclon Biotech-Grifols, Vía Hispanidad, 21, 50009, Zaragoza, Spain
| | - Pedro Pesini
- Araclon Biotech-Grifols, Vía Hispanidad, 21, 50009, Zaragoza, Spain
| | - John Gallacher
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea. .,Neuroscience Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea. .,Alzheimer's Disease Convergence Research Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea. .,Department of Clinical Research Design & Evaluation, SAIHST, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea. .,Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| | | |
Collapse
|
42
|
Marazuela P, Solé M, Bonaterra-Pastra A, Pizarro J, Camacho J, Martínez-Sáez E, Kuiperij HB, Verbeek MM, de Kort AM, Schreuder FHBM, Klijn CJM, Castillo-Ribelles L, Pancorbo O, Rodríguez-Luna D, Pujadas F, Delgado P, Hernández-Guillamon M. MFG-E8 (LACTADHERIN): a novel marker associated with cerebral amyloid angiopathy. Acta Neuropathol Commun 2021; 9:154. [PMID: 34530925 PMCID: PMC8444498 DOI: 10.1186/s40478-021-01257-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 02/08/2023] Open
Abstract
Brain accumulation of amyloid-beta (Aβ) is a crucial feature in Alzheimer´s disease (AD) and cerebral amyloid angiopathy (CAA), although the pathophysiological relationship between these diseases remains unclear. Numerous proteins are associated with Aβ deposited in parenchymal plaques and/or cerebral vessels. We hypothesized that the study of these proteins would increase our understanding of the overlap and biological differences between these two pathologies and may yield new diagnostic tools and specific therapeutic targets. We used a laser capture microdissection approach combined with mass spectrometry in the APP23 transgenic mouse model of cerebral-β-amyloidosis to specifically identify vascular Aβ-associated proteins. We focused on one of the main proteins detected in the Aβ-affected cerebrovasculature: MFG-E8 (milk fat globule-EGF factor 8), also known as lactadherin. We first validated the presence of MFG-E8 in mouse and human brains. Immunofluorescence and immunoblotting studies revealed that MFG-E8 brain levels were higher in APP23 mice than in WT mice. Furthermore, MFG-E8 was strongly detected in Aβ-positive vessels in human postmortem CAA brains, whereas MFG-E8 was not present in parenchymal Aβ deposits. Levels of MFG-E8 were additionally analysed in serum and cerebrospinal fluid (CSF) from patients diagnosed with CAA, patients with AD and control subjects. Whereas no differences were found in MFG-E8 serum levels between groups, MFG-E8 concentration was significantly lower in the CSF of CAA patients compared to controls and AD patients. Finally, in human vascular smooth muscle cells MFG-E8 was protective against the toxic effects of the treatment with the Aβ40 peptide containing the Dutch mutation. In summary, our study shows that MFG-E8 is highly associated with CAA pathology and highlights MFG-E8 as a new CSF biomarker that could potentially be used to differentiate cerebrovascular Aβ pathology from parenchymal Aβ deposition.
Collapse
Affiliation(s)
- Paula Marazuela
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Hospital Universitari Vall d´Hebron, Universitat Autónoma de Barcelona, Pg. Vall d´Hebron, 119-129, 08035, Barcelona, Spain
| | - Montse Solé
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Hospital Universitari Vall d´Hebron, Universitat Autónoma de Barcelona, Pg. Vall d´Hebron, 119-129, 08035, Barcelona, Spain
| | - Anna Bonaterra-Pastra
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Hospital Universitari Vall d´Hebron, Universitat Autónoma de Barcelona, Pg. Vall d´Hebron, 119-129, 08035, Barcelona, Spain
| | - Jesús Pizarro
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Hospital Universitari Vall d´Hebron, Universitat Autónoma de Barcelona, Pg. Vall d´Hebron, 119-129, 08035, Barcelona, Spain
| | - Jessica Camacho
- Pathology Department, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elena Martínez-Sáez
- Pathology Department, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - H Bea Kuiperij
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel M Verbeek
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anna M de Kort
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Floris H B M Schreuder
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Catharina J M Klijn
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laura Castillo-Ribelles
- Clinical Biochemistry Department, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Olalla Pancorbo
- Stroke Unit, Department of Neurology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - David Rodríguez-Luna
- Stroke Unit, Department of Neurology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Francesc Pujadas
- Neurology Department, Dementia Unit, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Pilar Delgado
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Hospital Universitari Vall d´Hebron, Universitat Autónoma de Barcelona, Pg. Vall d´Hebron, 119-129, 08035, Barcelona, Spain
| | - Mar Hernández-Guillamon
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Hospital Universitari Vall d´Hebron, Universitat Autónoma de Barcelona, Pg. Vall d´Hebron, 119-129, 08035, Barcelona, Spain.
| |
Collapse
|
43
|
Costa AS, Pinho J, Kučikienė D, Reich A, Schulz JB, Reetz K. Cerebral Amyloid Angiopathy in Amyloid-Positive Patients from a Memory Clinic Cohort. J Alzheimers Dis 2021; 79:1661-1672. [PMID: 33492291 DOI: 10.3233/jad-201218] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The overlap between cerebral amyloid angiopathy (CAA) and Alzheimer's disease (AD) is frequent and relevant for patients with cognitive impairment. OBJECTIVE To assess the role of the diagnosis of CAA on the phenotype of amyloid-β (Aβ) positive patients from a university-hospital memory clinic. METHODS Consecutive patients referred for suspected cognitive impairment, screened for Aβ pathological changes in cerebrospinal fluid (CSF), with available MRI and neuropsychological results were included. We determined the association between probable CAA and clinical, neuropsychological (at presentation and after a mean follow-up of 17 months in a sub-sample) and MRI (atrophy, white matter hyperintensities, perivascular spaces) characteristics. RESULTS Of 218 amyloid-positive patients, 8.3% fulfilled criteria for probable CAA. A multivariable logistic regression showed an independent association of probable CAA with lower Aβ1-42 (adjusted odds ratio [aOR] = 0.94, 95% confidence interval [95% CI] = 0.90-0.98, p = 0.003), and Aβ1-40 (aOR = 0.98, 95% CI=0.97-0.99 p = 0.017) levels in CSF, and presence of severe burden of enlarged perivascular spaces (EPVS) in the centrum semiovale (aOR = 3.67, 95% CI = 1.21-11.15, p = 0.022). Linear mixed-model analysis showed that both groups significantly deteriorated in global clinical severity, executive function and memory. Nevertheless, the presence of probable CAA did not differently affect the rate of cognitive decline. CONCLUSION The presence of probable CAA in Aβ positive patients was associated with lower Aβ1-42 and Aβ1-40 CSF levels and increased centrum semiovale EPVS burden, but did not independently influence clinical phenotype nor the rate of cognitive decline within our follow-up time window.
Collapse
Affiliation(s)
- Ana Sofia Costa
- Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany.,JARA-Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich, Jülich, Germany and RWTH Aachen University, Aachen, Germany
| | - João Pinho
- Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany
| | - Domantė Kučikienė
- Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany
| | - Arno Reich
- Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany
| | - Jörg B Schulz
- Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany.,JARA-Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich, Jülich, Germany and RWTH Aachen University, Aachen, Germany
| | - Kathrin Reetz
- Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany.,JARA-Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich, Jülich, Germany and RWTH Aachen University, Aachen, Germany
| |
Collapse
|
44
|
Zebhauser PT, Berthele A, Franz MS, Goldhardt O, Diehl-Schmid J, Priller J, Ortner M, Grimmer T. Age-Dependency of Total Tau in the Cerebrospinal Fluid Is Corrected by Amyloid-β 1-40: A Correlational Study in Healthy Adults. J Alzheimers Dis 2021; 83:155-162. [PMID: 34250938 DOI: 10.3233/jad-210286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Tau proteins are established biomarkers of neuroaxonal damage in a wide range of neurodegenerative conditions. Although measurement of total-Tau in the cerebrospinal fluid is widely used in research and clinical settings, the relationship between age and total-Tau in the cerebrospinal fluid is yet to be fully understood. While past studies reported a correlation between age and total-Tau in the cerebrospinal fluid of healthy adults, in clinical practice the same cut-off value is used independently of patient's age. OBJECTIVE To further explore the relationship between age and total-Tau and to disentangle neurodegenerative from drainage-dependent effects. METHODS We analyzed cerebrospinal fluid samples of 76 carefully selected cognitively healthy adults and included amyloid-β 1-40 as a potential marker of drainage from the brain's interstitial system. RESULTS We found a significant correlation of total-Tau and age, which was no longer present when correcting total-Tau for amyloid-β 1-40 concentrations. These findings were replicated under varied inclusion criteria. CONCLUSION Results call into question the association of age and total-Tau in the cerebrospinal fluid. Furthermore, they suggest diagnostic utility of amyloid-β 1-40 as a possible proxy for drainage-mechanisms into the cerebrospinal fluid when interpreting biomarker concentrations for neurodegenerative diseases.
Collapse
Affiliation(s)
- Paul Theo Zebhauser
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany.,Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Achim Berthele
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Marie-Sophie Franz
- Department of Anesthesiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Oliver Goldhardt
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Janine Diehl-Schmid
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Josef Priller
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany.,Charité-Universitätsmedizin Berlin and DZNE, Berlin, Germany.,University of Edinburgh and UK Dementia Research Institute, Edinburgh, UK
| | - Marion Ortner
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Timo Grimmer
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| |
Collapse
|
45
|
Wang Y, Wang J, Zuo YC, Jiang J, Tu T, Yan XX, Liu F. Elevation of CSF Sortilin Following Subarachnoid Hemorrhage in Patients and Experimental Model Rats. Neuroscience 2021; 470:23-36. [PMID: 34273414 DOI: 10.1016/j.neuroscience.2021.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
Subarachnoid hemorrhage (SAH) can cause acute neuronal injury and chronic neurocognitive deficits; biomarkers reflecting its associated neuronal injury are of potential prognostic value. Sortilin, a member of the vacuolar protein sorting 10p (Vps10p) family, is enriched in neurons and is likely involved in neurodegenerative diseases. Here, we explored sortilin in the cerebrospinal fluid (CSF) as a potential biomarker for early neuronal injury after SAH. Sortilin levels in the CSF of SAH patients (n = 11) and controls (n = 6) were analyzed by immunoblot. SAH rats surviving 3-72 h (h) were evaluated neurologically, with their brain and CSF samples examined histologically and biochemically. Sortilin protein ~100 kDa was detected in the CSF from SAH patients only, with its levels correlated to Hunt-Hess scale. Rats in the SAH groups showed poorer Garcia score and beam balancing capability than sham controls. Sortilin ~100 kDa was detectable in the CSF of the SAH, but not sham, animals. Levels of sortilin ~100 kDa and fragments ~40 kDa in cortical lysates were elevated in the SAH relative to control rats. Levels of cortical glial fibrillary acidic protein (GFAP) were also elevated in the SAH rats. In immunohistochemistry, the pattern of sortilin labeling in the brain was largely comparable between the SAH and control rats, whereas an increased astrocytic GFAP immunolabeling was evident in the former. Together, these results suggest that SAH can cause an early and remarkable rise of sortilin products in CSF, likely reflecting neuronal change. Sortilin could be further explored as a potential biomarker in some brain disorders.
Collapse
Affiliation(s)
- Yiping Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Jikai Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Yu-Chun Zuo
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, Hunan 410008, China
| | - Juan Jiang
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan 410013, China
| | - Tian Tu
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan 410013, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan 410013, China.
| | - Fei Liu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China.
| |
Collapse
|
46
|
McCollum LE, Das SR, Xie L, de Flores R, Wang J, Xie SX, Wisse LEM, Yushkevich PA, Wolk DA. Oh brother, where art tau? Amyloid, neurodegeneration, and cognitive decline without elevated tau. Neuroimage Clin 2021; 31:102717. [PMID: 34119903 PMCID: PMC8207301 DOI: 10.1016/j.nicl.2021.102717] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 05/21/2021] [Accepted: 06/02/2021] [Indexed: 12/24/2022]
Abstract
Mild cognitive impairment (MCI) can be an early manifestation of Alzheimer's disease (AD) pathology, other pathologic entities [e.g., cerebrovascular disease, Lewy body disease, LATE (limbic-predominant age-related TDP-43 encephalopathy)], or mixed pathologies, with concomitant AD- and non-AD pathology being particularly common, albeit difficult to identify, in living MCI patients. The National Institute on Aging and Alzheimer's Association (NIA-AA) A/T/(N) [β-Amyloid/Tau/(Neurodegeneration)] AD research framework, which classifies research participants according to three binary biomarkers [β-amyloid (A+/A-), tau (T+/T-), and neurodegeneration (N+/N-)], provides an indirect means of identifying such cases. Individuals with A+T-(N+) MCI are thought to have both AD pathologic change, given the presence of β-amyloid, and non-AD pathophysiology, given neurodegeneration without tau, because in typical AD it is tau accumulation that is most tightly linked to neuronal injury and cognitive decline. Thus, in A+T-(N+) MCI (hereafter referred to as "mismatch MCI" for the tau-neurodegeneration mismatch), non-AD pathology is hypothesized to drive neurodegeneration and symptoms, because β-amyloid, in the absence of tau, likely reflects a preclinical stage of AD. We compared a group of individuals with mismatch MCI to groups with A+T+(N+) MCI (or "prodromal AD") and A-T-(N+) MCI (or "neurodegeneration-only MCI") on cross-sectional and longitudinal cognition and neuroimaging characteristics. β-amyloid and tau status were determined by CSF assays, while neurodegeneration status was based on hippocampal volume on MRI. Overall, mismatch MCI was less "AD-like" than prodromal AD and generally, with some exceptions, more closely resembled the neurodegeneration-only group. At baseline, mismatch MCI had less episodic memory loss compared to prodromal AD. Longitudinally, mismatch MCI declined more slowly than prodromal AD across all included cognitive domains, while mismatch MCI and neurodegeneration-only MCI declined at comparable rates. Prodromal AD had smaller baseline posterior hippocampal volume than mismatch MCI, and whole brain analyses demonstrated cortical thinning that was widespread in prodromal AD but largely restricted to the medial temporal lobes (MTLs) for the mismatch and neurodegeneration-only MCI groups. Longitudinally, mismatch MCI had slower rates of volume loss than prodromal AD throughout the MTLs. Differences in cross-sectional and longitudinal cognitive and neuroimaging measures between mismatch MCI and prodromal AD may reflect disparate underlying pathologic processes, with the mismatch group potentially being driven by non-AD pathologies on a background of largely preclinical AD. These findings suggest that β-amyloid status alone in MCI may not reveal the underlying driver of symptoms with important implications for enrollment in clinical trials and prognosis.
Collapse
Affiliation(s)
- Lauren E McCollum
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA; Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN, USA.
| | - Sandhitsu R Das
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA; Department of Radiology, Penn Image Computing and Science Laboratory (PICSL), University of Pennsylvania, Philadelphia, PA, USA
| | - Long Xie
- Department of Radiology, Penn Image Computing and Science Laboratory (PICSL), University of Pennsylvania, Philadelphia, PA, USA
| | - Robin de Flores
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA; Department of Radiology, Penn Image Computing and Science Laboratory (PICSL), University of Pennsylvania, Philadelphia, PA, USA; INSERM UMR-S U1237, Université de Caen Normandie, Caen, Normandy, USA
| | - Jieqiong Wang
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Sharon X Xie
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Laura E M Wisse
- Department of Radiology, Penn Image Computing and Science Laboratory (PICSL), University of Pennsylvania, Philadelphia, PA, USA; Department of Diagnostic Radiology, Lund University, Lund, Sweden
| | - Paul A Yushkevich
- Department of Radiology, Penn Image Computing and Science Laboratory (PICSL), University of Pennsylvania, Philadelphia, PA, USA
| | - David A Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
47
|
Kozberg MG, Perosa V, Gurol ME, van Veluw SJ. A practical approach to the management of cerebral amyloid angiopathy. Int J Stroke 2021; 16:356-369. [PMID: 33252026 PMCID: PMC9097498 DOI: 10.1177/1747493020974464] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cerebral amyloid angiopathy is a common small vessel disease in the elderly involving vascular amyloid-β deposition. Cerebral amyloid angiopathy is one of the leading causes of intracerebral hemorrhage and a significant contributor to age-related cognitive decline. The awareness of a diagnosis of cerebral amyloid angiopathy is important in clinical practice as it impacts decisions to use lifelong anticoagulation or nonpharmacological alternatives to anticoagulation such as left atrial appendage closure in patients who have concurrent atrial fibrillation, another common condition in older adults. This review summarizes the latest literature regarding the management of patients with sporadic cerebral amyloid angiopathy, including diagnostic criteria, imaging biomarkers for cerebral amyloid angiopathy severity, and management strategies to decrease intracerebral hemorrhage risk. In a minority of patients, the presence of cerebral amyloid angiopathy triggers an autoimmune inflammatory reaction, referred to as cerebral amyloid angiopathy-related inflammation, which is often responsive to immunosuppressive treatment in the acute phase. Diagnosis and management of cerebral amyloid angiopathy-related inflammation will be presented separately. While there are currently no effective therapeutics available to cure or halt the progression of cerebral amyloid angiopathy, we discuss emerging avenues for potential future interventions.
Collapse
Affiliation(s)
- Mariel G Kozberg
- MassGeneral Institute for Neurodegenerative Disease, 2348Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Neurology, 2348Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Hemorrhagic Stroke Research Program, J. Philip Kistler Stroke Research Center, Department of Neurology, 2348Massachusetts General Hospital, Harvard Medical School, Boston, MA,USA
| | - Valentina Perosa
- MassGeneral Institute for Neurodegenerative Disease, 2348Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Neurology, 2348Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Hemorrhagic Stroke Research Program, J. Philip Kistler Stroke Research Center, Department of Neurology, 2348Massachusetts General Hospital, Harvard Medical School, Boston, MA,USA
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - M Edip Gurol
- Department of Neurology, 2348Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Hemorrhagic Stroke Research Program, J. Philip Kistler Stroke Research Center, Department of Neurology, 2348Massachusetts General Hospital, Harvard Medical School, Boston, MA,USA
| | - Susanne J van Veluw
- MassGeneral Institute for Neurodegenerative Disease, 2348Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Neurology, 2348Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Hemorrhagic Stroke Research Program, J. Philip Kistler Stroke Research Center, Department of Neurology, 2348Massachusetts General Hospital, Harvard Medical School, Boston, MA,USA
| |
Collapse
|
48
|
Jäkel L, De Kort AM, Klijn CJM, Schreuder FHBM, Verbeek MM. Prevalence of cerebral amyloid angiopathy: A systematic review and meta-analysis. Alzheimers Dement 2021; 18:10-28. [PMID: 34057813 PMCID: PMC9290643 DOI: 10.1002/alz.12366] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 01/05/2023]
Abstract
Reported prevalence estimates of sporadic cerebral amyloid angiopathy (CAA) vary widely. CAA is associated with cognitive dysfunction and intracerebral hemorrhage, and linked to immunotherapy‐related side‐effects in Alzheimer's disease (AD). Given ongoing efforts to develop AD immunotherapy, accurate estimates of CAA prevalence are important. CAA can be diagnosed neuropathologically or during life using MRI markers including strictly lobar microbleeds. In this meta‐analysis of 170 studies including over 73,000 subjects, we show that in patients with AD, CAA prevalence based on pathology (48%) is twice that based on presence of strictly lobar cerebral microbleeds (22%); in the general population this difference is three‐fold (23% vs 7%). Both methods yield similar estimated prevalences of CAA in cognitively normal elderly (5% to 7%), in patients with intracerebral hemorrhage (19% to 24%), and in patients with lobar intracerebral hemorrhage (50% to 57%). However, we observed large heterogeneity among neuropathology and MRI protocols, which calls for standardized assessment and reporting of CAA.
Collapse
Affiliation(s)
- Lieke Jäkel
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Cente, Nijmegen, The Netherlands
| | - Anna M De Kort
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Cente, Nijmegen, The Netherlands
| | - Catharina J M Klijn
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Cente, Nijmegen, The Netherlands
| | - Floris H B M Schreuder
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Cente, Nijmegen, The Netherlands
| | - Marcel M Verbeek
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Cente, Nijmegen, The Netherlands.,Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
49
|
Cerebral microbleeds in vascular dementia from clinical aspects to host-microbial interaction. Neurochem Int 2021; 148:105073. [PMID: 34048844 DOI: 10.1016/j.neuint.2021.105073] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/15/2021] [Accepted: 05/16/2021] [Indexed: 12/30/2022]
Abstract
Vascular dementia is the second leading cause of dementia after Alzheimer's disease in the elderly population worldwide. Cerebral microbleeds (CMBs) are frequently observed in MRI of elderly subjects and considered as a possible surrogate marker. The number and location of CMBs reflect the severity of diseases and the underlying pathologies may involve cerebral amyloid angiopathy or hypertensive vasculopathy. Accumulating evidence demonstrated the clinicopathological discrepancies of CMBs, the clinical significance of CMBs associated with other MRI markers of cerebral small vessel disease, cognitive impairments, serum, and cerebrospinal fluid biomarkers. Moreover, emerging evidence has shown that genetic factors and gene-environmental interactions might shed light on the underlying etiologies of CMBs, focusing on blood-brain-barrier and inflammation. In this review, we introduce recent genetic and microbiome studies as a cutting-edge approach to figure out the etiology of CMBs through the "microbe-brain-oral axis" and "microbiome-brain-gut axis." Finally, we propose novel concepts, "microvascular matrisome" and "imbalanced proteostasis," which may provide better perspectives for elucidating the pathophysiology of CMBs and future development of therapeutics for vascular dementia using CMBs as a surrogate marker.
Collapse
|
50
|
George Kerry R, Ukhurebor KE, Kumari S, Maurya GK, Patra S, Panigrahi B, Majhi S, Rout JR, Rodriguez-Torres MDP, Das G, Shin HS, Patra JK. A comprehensive review on the applications of nano-biosensor-based approaches for non-communicable and communicable disease detection. Biomater Sci 2021; 9:3576-3602. [PMID: 34008586 DOI: 10.1039/d0bm02164d] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The outstretched applications of biosensors in diverse domains has become the reason for their attraction for scientific communities. Because they are analytical devices, they can detect both quantitative and qualitative biological components through the generation of detectable signals. In the recent past, biosensors witnessed significant changes and developments in their design as well as features. Nanotechnology has revolutionized sensing phenomena by increasing biodiagnostic capacity in terms of specificity, size, and cost, resulting in exceptional sensitivity and flexibility. The steep increase of non-communicable diseases across the world has emerged as a matter of concern. In parallel, the abrupt outbreak of communicable diseases poses a serious threat to mankind. For decreasing the morbidity and mortality associated with various communicable and non-communicable diseases, early detection and subsequent treatment are indispensable. Detection of different biological markers generates quantifiable signals that can be electrochemical, mass-based, optical, thermal, or piezoelectric. Speculating on the incumbent applicability and versatility of nano-biosensors in large disciplines, this review highlights different types of biosensors along with their components and detection mechanisms. Moreover, it deals with the current advancements made in biosensors and the applications of nano-biosensors in detection of various non-communicable and communicable diseases, as well as future prospects of nano-biosensors for diagnostics.
Collapse
Affiliation(s)
- Rout George Kerry
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004, India
| | - Kingsley Eghonghon Ukhurebor
- Climatic/Environmental/Telecommunication Unit, Department of Physics, Edo University Iyamho, P.B.M. 04, Auchi, 312101, Edo State, Nigeria
| | - Swati Kumari
- Biopioneer Private limited, Bhubaneswar, Odisha 751024, India
| | - Ganesh Kumar Maurya
- Zoology Section, Mahila MahaVidyalya, Banaras Hindu University, Varanasi-221005, India
| | - Sushmita Patra
- Department of Biotechnology, North Odissa University, Takatpur, Baripada, Odisha 757003, India
| | - Bijayananda Panigrahi
- Biopioneer Private limited, Bhubaneswar, Odisha 751024, India and School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751024, India
| | - Sanatan Majhi
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004, India
| | | | - María Del Pilar Rodriguez-Torres
- Departamento de Ingeniería Molecular de Materiales, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Blvd Juriquilla 3001, 76230, Querétaro, Mexico
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, Republic of Korea.
| | - Han-Seung Shin
- Department of Food Science & Biotechnology, Dongguk University-Seoul, Goyangsi, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, Republic of Korea.
| |
Collapse
|